xfs_buf_item.c 31 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129
  1. /*
  2. * Copyright (c) 2000-2005 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include "xfs_fs.h"
  20. #include "xfs_types.h"
  21. #include "xfs_bit.h"
  22. #include "xfs_log.h"
  23. #include "xfs_trans.h"
  24. #include "xfs_sb.h"
  25. #include "xfs_ag.h"
  26. #include "xfs_mount.h"
  27. #include "xfs_buf_item.h"
  28. #include "xfs_trans_priv.h"
  29. #include "xfs_error.h"
  30. #include "xfs_trace.h"
  31. kmem_zone_t *xfs_buf_item_zone;
  32. static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip)
  33. {
  34. return container_of(lip, struct xfs_buf_log_item, bli_item);
  35. }
  36. STATIC void xfs_buf_do_callbacks(struct xfs_buf *bp);
  37. /*
  38. * This returns the number of log iovecs needed to log the
  39. * given buf log item.
  40. *
  41. * It calculates this as 1 iovec for the buf log format structure
  42. * and 1 for each stretch of non-contiguous chunks to be logged.
  43. * Contiguous chunks are logged in a single iovec.
  44. *
  45. * If the XFS_BLI_STALE flag has been set, then log nothing.
  46. */
  47. STATIC uint
  48. xfs_buf_item_size_segment(
  49. struct xfs_buf_log_item *bip,
  50. struct xfs_buf_log_format *blfp)
  51. {
  52. struct xfs_buf *bp = bip->bli_buf;
  53. uint nvecs;
  54. int next_bit;
  55. int last_bit;
  56. last_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
  57. if (last_bit == -1)
  58. return 0;
  59. /*
  60. * initial count for a dirty buffer is 2 vectors - the format structure
  61. * and the first dirty region.
  62. */
  63. nvecs = 2;
  64. while (last_bit != -1) {
  65. /*
  66. * This takes the bit number to start looking from and
  67. * returns the next set bit from there. It returns -1
  68. * if there are no more bits set or the start bit is
  69. * beyond the end of the bitmap.
  70. */
  71. next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
  72. last_bit + 1);
  73. /*
  74. * If we run out of bits, leave the loop,
  75. * else if we find a new set of bits bump the number of vecs,
  76. * else keep scanning the current set of bits.
  77. */
  78. if (next_bit == -1) {
  79. break;
  80. } else if (next_bit != last_bit + 1) {
  81. last_bit = next_bit;
  82. nvecs++;
  83. } else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) !=
  84. (xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) +
  85. XFS_BLF_CHUNK)) {
  86. last_bit = next_bit;
  87. nvecs++;
  88. } else {
  89. last_bit++;
  90. }
  91. }
  92. return nvecs;
  93. }
  94. /*
  95. * This returns the number of log iovecs needed to log the given buf log item.
  96. *
  97. * It calculates this as 1 iovec for the buf log format structure and 1 for each
  98. * stretch of non-contiguous chunks to be logged. Contiguous chunks are logged
  99. * in a single iovec.
  100. *
  101. * Discontiguous buffers need a format structure per region that that is being
  102. * logged. This makes the changes in the buffer appear to log recovery as though
  103. * they came from separate buffers, just like would occur if multiple buffers
  104. * were used instead of a single discontiguous buffer. This enables
  105. * discontiguous buffers to be in-memory constructs, completely transparent to
  106. * what ends up on disk.
  107. *
  108. * If the XFS_BLI_STALE flag has been set, then log nothing but the buf log
  109. * format structures.
  110. */
  111. STATIC uint
  112. xfs_buf_item_size(
  113. struct xfs_log_item *lip)
  114. {
  115. struct xfs_buf_log_item *bip = BUF_ITEM(lip);
  116. uint nvecs;
  117. int i;
  118. ASSERT(atomic_read(&bip->bli_refcount) > 0);
  119. if (bip->bli_flags & XFS_BLI_STALE) {
  120. /*
  121. * The buffer is stale, so all we need to log
  122. * is the buf log format structure with the
  123. * cancel flag in it.
  124. */
  125. trace_xfs_buf_item_size_stale(bip);
  126. ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
  127. return bip->bli_format_count;
  128. }
  129. ASSERT(bip->bli_flags & XFS_BLI_LOGGED);
  130. if (bip->bli_flags & XFS_BLI_ORDERED) {
  131. /*
  132. * The buffer has been logged just to order it.
  133. * It is not being included in the transaction
  134. * commit, so no vectors are used at all.
  135. */
  136. trace_xfs_buf_item_size_ordered(bip);
  137. return XFS_LOG_VEC_ORDERED;
  138. }
  139. /*
  140. * the vector count is based on the number of buffer vectors we have
  141. * dirty bits in. This will only be greater than one when we have a
  142. * compound buffer with more than one segment dirty. Hence for compound
  143. * buffers we need to track which segment the dirty bits correspond to,
  144. * and when we move from one segment to the next increment the vector
  145. * count for the extra buf log format structure that will need to be
  146. * written.
  147. */
  148. nvecs = 0;
  149. for (i = 0; i < bip->bli_format_count; i++) {
  150. nvecs += xfs_buf_item_size_segment(bip, &bip->bli_formats[i]);
  151. }
  152. trace_xfs_buf_item_size(bip);
  153. return nvecs;
  154. }
  155. static struct xfs_log_iovec *
  156. xfs_buf_item_format_segment(
  157. struct xfs_buf_log_item *bip,
  158. struct xfs_log_iovec *vecp,
  159. uint offset,
  160. struct xfs_buf_log_format *blfp)
  161. {
  162. struct xfs_buf *bp = bip->bli_buf;
  163. uint base_size;
  164. uint nvecs;
  165. int first_bit;
  166. int last_bit;
  167. int next_bit;
  168. uint nbits;
  169. uint buffer_offset;
  170. /* copy the flags across from the base format item */
  171. blfp->blf_flags = bip->__bli_format.blf_flags;
  172. /*
  173. * Base size is the actual size of the ondisk structure - it reflects
  174. * the actual size of the dirty bitmap rather than the size of the in
  175. * memory structure.
  176. */
  177. base_size = offsetof(struct xfs_buf_log_format, blf_data_map) +
  178. (blfp->blf_map_size * sizeof(blfp->blf_data_map[0]));
  179. nvecs = 0;
  180. first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
  181. if (!(bip->bli_flags & XFS_BLI_STALE) && first_bit == -1) {
  182. /*
  183. * If the map is not be dirty in the transaction, mark
  184. * the size as zero and do not advance the vector pointer.
  185. */
  186. goto out;
  187. }
  188. vecp->i_addr = blfp;
  189. vecp->i_len = base_size;
  190. vecp->i_type = XLOG_REG_TYPE_BFORMAT;
  191. vecp++;
  192. nvecs = 1;
  193. if (bip->bli_flags & XFS_BLI_STALE) {
  194. /*
  195. * The buffer is stale, so all we need to log
  196. * is the buf log format structure with the
  197. * cancel flag in it.
  198. */
  199. trace_xfs_buf_item_format_stale(bip);
  200. ASSERT(blfp->blf_flags & XFS_BLF_CANCEL);
  201. goto out;
  202. }
  203. /*
  204. * Fill in an iovec for each set of contiguous chunks.
  205. */
  206. last_bit = first_bit;
  207. nbits = 1;
  208. for (;;) {
  209. /*
  210. * This takes the bit number to start looking from and
  211. * returns the next set bit from there. It returns -1
  212. * if there are no more bits set or the start bit is
  213. * beyond the end of the bitmap.
  214. */
  215. next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
  216. (uint)last_bit + 1);
  217. /*
  218. * If we run out of bits fill in the last iovec and get
  219. * out of the loop.
  220. * Else if we start a new set of bits then fill in the
  221. * iovec for the series we were looking at and start
  222. * counting the bits in the new one.
  223. * Else we're still in the same set of bits so just
  224. * keep counting and scanning.
  225. */
  226. if (next_bit == -1) {
  227. buffer_offset = offset + first_bit * XFS_BLF_CHUNK;
  228. vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
  229. vecp->i_len = nbits * XFS_BLF_CHUNK;
  230. vecp->i_type = XLOG_REG_TYPE_BCHUNK;
  231. nvecs++;
  232. break;
  233. } else if (next_bit != last_bit + 1) {
  234. buffer_offset = offset + first_bit * XFS_BLF_CHUNK;
  235. vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
  236. vecp->i_len = nbits * XFS_BLF_CHUNK;
  237. vecp->i_type = XLOG_REG_TYPE_BCHUNK;
  238. nvecs++;
  239. vecp++;
  240. first_bit = next_bit;
  241. last_bit = next_bit;
  242. nbits = 1;
  243. } else if (xfs_buf_offset(bp, offset +
  244. (next_bit << XFS_BLF_SHIFT)) !=
  245. (xfs_buf_offset(bp, offset +
  246. (last_bit << XFS_BLF_SHIFT)) +
  247. XFS_BLF_CHUNK)) {
  248. buffer_offset = offset + first_bit * XFS_BLF_CHUNK;
  249. vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
  250. vecp->i_len = nbits * XFS_BLF_CHUNK;
  251. vecp->i_type = XLOG_REG_TYPE_BCHUNK;
  252. nvecs++;
  253. vecp++;
  254. first_bit = next_bit;
  255. last_bit = next_bit;
  256. nbits = 1;
  257. } else {
  258. last_bit++;
  259. nbits++;
  260. }
  261. }
  262. out:
  263. blfp->blf_size = nvecs;
  264. return vecp;
  265. }
  266. /*
  267. * This is called to fill in the vector of log iovecs for the
  268. * given log buf item. It fills the first entry with a buf log
  269. * format structure, and the rest point to contiguous chunks
  270. * within the buffer.
  271. */
  272. STATIC void
  273. xfs_buf_item_format(
  274. struct xfs_log_item *lip,
  275. struct xfs_log_iovec *vecp)
  276. {
  277. struct xfs_buf_log_item *bip = BUF_ITEM(lip);
  278. struct xfs_buf *bp = bip->bli_buf;
  279. uint offset = 0;
  280. int i;
  281. ASSERT(atomic_read(&bip->bli_refcount) > 0);
  282. ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
  283. (bip->bli_flags & XFS_BLI_STALE));
  284. /*
  285. * If it is an inode buffer, transfer the in-memory state to the
  286. * format flags and clear the in-memory state.
  287. *
  288. * For buffer based inode allocation, we do not transfer
  289. * this state if the inode buffer allocation has not yet been committed
  290. * to the log as setting the XFS_BLI_INODE_BUF flag will prevent
  291. * correct replay of the inode allocation.
  292. *
  293. * For icreate item based inode allocation, the buffers aren't written
  294. * to the journal during allocation, and hence we should always tag the
  295. * buffer as an inode buffer so that the correct unlinked list replay
  296. * occurs during recovery.
  297. */
  298. if (bip->bli_flags & XFS_BLI_INODE_BUF) {
  299. if (xfs_sb_version_hascrc(&lip->li_mountp->m_sb) ||
  300. !((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) &&
  301. xfs_log_item_in_current_chkpt(lip)))
  302. bip->__bli_format.blf_flags |= XFS_BLF_INODE_BUF;
  303. bip->bli_flags &= ~XFS_BLI_INODE_BUF;
  304. }
  305. if ((bip->bli_flags & (XFS_BLI_ORDERED|XFS_BLI_STALE)) ==
  306. XFS_BLI_ORDERED) {
  307. /*
  308. * The buffer has been logged just to order it. It is not being
  309. * included in the transaction commit, so don't format it.
  310. */
  311. trace_xfs_buf_item_format_ordered(bip);
  312. return;
  313. }
  314. for (i = 0; i < bip->bli_format_count; i++) {
  315. vecp = xfs_buf_item_format_segment(bip, vecp, offset,
  316. &bip->bli_formats[i]);
  317. offset += bp->b_maps[i].bm_len;
  318. }
  319. /*
  320. * Check to make sure everything is consistent.
  321. */
  322. trace_xfs_buf_item_format(bip);
  323. }
  324. /*
  325. * This is called to pin the buffer associated with the buf log item in memory
  326. * so it cannot be written out.
  327. *
  328. * We also always take a reference to the buffer log item here so that the bli
  329. * is held while the item is pinned in memory. This means that we can
  330. * unconditionally drop the reference count a transaction holds when the
  331. * transaction is completed.
  332. */
  333. STATIC void
  334. xfs_buf_item_pin(
  335. struct xfs_log_item *lip)
  336. {
  337. struct xfs_buf_log_item *bip = BUF_ITEM(lip);
  338. ASSERT(atomic_read(&bip->bli_refcount) > 0);
  339. ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
  340. (bip->bli_flags & XFS_BLI_ORDERED) ||
  341. (bip->bli_flags & XFS_BLI_STALE));
  342. trace_xfs_buf_item_pin(bip);
  343. atomic_inc(&bip->bli_refcount);
  344. atomic_inc(&bip->bli_buf->b_pin_count);
  345. }
  346. /*
  347. * This is called to unpin the buffer associated with the buf log
  348. * item which was previously pinned with a call to xfs_buf_item_pin().
  349. *
  350. * Also drop the reference to the buf item for the current transaction.
  351. * If the XFS_BLI_STALE flag is set and we are the last reference,
  352. * then free up the buf log item and unlock the buffer.
  353. *
  354. * If the remove flag is set we are called from uncommit in the
  355. * forced-shutdown path. If that is true and the reference count on
  356. * the log item is going to drop to zero we need to free the item's
  357. * descriptor in the transaction.
  358. */
  359. STATIC void
  360. xfs_buf_item_unpin(
  361. struct xfs_log_item *lip,
  362. int remove)
  363. {
  364. struct xfs_buf_log_item *bip = BUF_ITEM(lip);
  365. xfs_buf_t *bp = bip->bli_buf;
  366. struct xfs_ail *ailp = lip->li_ailp;
  367. int stale = bip->bli_flags & XFS_BLI_STALE;
  368. int freed;
  369. ASSERT(bp->b_fspriv == bip);
  370. ASSERT(atomic_read(&bip->bli_refcount) > 0);
  371. trace_xfs_buf_item_unpin(bip);
  372. freed = atomic_dec_and_test(&bip->bli_refcount);
  373. if (atomic_dec_and_test(&bp->b_pin_count))
  374. wake_up_all(&bp->b_waiters);
  375. if (freed && stale) {
  376. ASSERT(bip->bli_flags & XFS_BLI_STALE);
  377. ASSERT(xfs_buf_islocked(bp));
  378. ASSERT(XFS_BUF_ISSTALE(bp));
  379. ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
  380. trace_xfs_buf_item_unpin_stale(bip);
  381. if (remove) {
  382. /*
  383. * If we are in a transaction context, we have to
  384. * remove the log item from the transaction as we are
  385. * about to release our reference to the buffer. If we
  386. * don't, the unlock that occurs later in
  387. * xfs_trans_uncommit() will try to reference the
  388. * buffer which we no longer have a hold on.
  389. */
  390. if (lip->li_desc)
  391. xfs_trans_del_item(lip);
  392. /*
  393. * Since the transaction no longer refers to the buffer,
  394. * the buffer should no longer refer to the transaction.
  395. */
  396. bp->b_transp = NULL;
  397. }
  398. /*
  399. * If we get called here because of an IO error, we may
  400. * or may not have the item on the AIL. xfs_trans_ail_delete()
  401. * will take care of that situation.
  402. * xfs_trans_ail_delete() drops the AIL lock.
  403. */
  404. if (bip->bli_flags & XFS_BLI_STALE_INODE) {
  405. xfs_buf_do_callbacks(bp);
  406. bp->b_fspriv = NULL;
  407. bp->b_iodone = NULL;
  408. } else {
  409. spin_lock(&ailp->xa_lock);
  410. xfs_trans_ail_delete(ailp, lip, SHUTDOWN_LOG_IO_ERROR);
  411. xfs_buf_item_relse(bp);
  412. ASSERT(bp->b_fspriv == NULL);
  413. }
  414. xfs_buf_relse(bp);
  415. } else if (freed && remove) {
  416. /*
  417. * There are currently two references to the buffer - the active
  418. * LRU reference and the buf log item. What we are about to do
  419. * here - simulate a failed IO completion - requires 3
  420. * references.
  421. *
  422. * The LRU reference is removed by the xfs_buf_stale() call. The
  423. * buf item reference is removed by the xfs_buf_iodone()
  424. * callback that is run by xfs_buf_do_callbacks() during ioend
  425. * processing (via the bp->b_iodone callback), and then finally
  426. * the ioend processing will drop the IO reference if the buffer
  427. * is marked XBF_ASYNC.
  428. *
  429. * Hence we need to take an additional reference here so that IO
  430. * completion processing doesn't free the buffer prematurely.
  431. */
  432. xfs_buf_lock(bp);
  433. xfs_buf_hold(bp);
  434. bp->b_flags |= XBF_ASYNC;
  435. xfs_buf_ioerror(bp, EIO);
  436. XFS_BUF_UNDONE(bp);
  437. xfs_buf_stale(bp);
  438. xfs_buf_ioend(bp, 0);
  439. }
  440. }
  441. STATIC uint
  442. xfs_buf_item_push(
  443. struct xfs_log_item *lip,
  444. struct list_head *buffer_list)
  445. {
  446. struct xfs_buf_log_item *bip = BUF_ITEM(lip);
  447. struct xfs_buf *bp = bip->bli_buf;
  448. uint rval = XFS_ITEM_SUCCESS;
  449. if (xfs_buf_ispinned(bp))
  450. return XFS_ITEM_PINNED;
  451. if (!xfs_buf_trylock(bp)) {
  452. /*
  453. * If we have just raced with a buffer being pinned and it has
  454. * been marked stale, we could end up stalling until someone else
  455. * issues a log force to unpin the stale buffer. Check for the
  456. * race condition here so xfsaild recognizes the buffer is pinned
  457. * and queues a log force to move it along.
  458. */
  459. if (xfs_buf_ispinned(bp))
  460. return XFS_ITEM_PINNED;
  461. return XFS_ITEM_LOCKED;
  462. }
  463. ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
  464. trace_xfs_buf_item_push(bip);
  465. if (!xfs_buf_delwri_queue(bp, buffer_list))
  466. rval = XFS_ITEM_FLUSHING;
  467. xfs_buf_unlock(bp);
  468. return rval;
  469. }
  470. /*
  471. * Release the buffer associated with the buf log item. If there is no dirty
  472. * logged data associated with the buffer recorded in the buf log item, then
  473. * free the buf log item and remove the reference to it in the buffer.
  474. *
  475. * This call ignores the recursion count. It is only called when the buffer
  476. * should REALLY be unlocked, regardless of the recursion count.
  477. *
  478. * We unconditionally drop the transaction's reference to the log item. If the
  479. * item was logged, then another reference was taken when it was pinned, so we
  480. * can safely drop the transaction reference now. This also allows us to avoid
  481. * potential races with the unpin code freeing the bli by not referencing the
  482. * bli after we've dropped the reference count.
  483. *
  484. * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item
  485. * if necessary but do not unlock the buffer. This is for support of
  486. * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't
  487. * free the item.
  488. */
  489. STATIC void
  490. xfs_buf_item_unlock(
  491. struct xfs_log_item *lip)
  492. {
  493. struct xfs_buf_log_item *bip = BUF_ITEM(lip);
  494. struct xfs_buf *bp = bip->bli_buf;
  495. bool clean;
  496. bool aborted;
  497. int flags;
  498. /* Clear the buffer's association with this transaction. */
  499. bp->b_transp = NULL;
  500. /*
  501. * If this is a transaction abort, don't return early. Instead, allow
  502. * the brelse to happen. Normally it would be done for stale
  503. * (cancelled) buffers at unpin time, but we'll never go through the
  504. * pin/unpin cycle if we abort inside commit.
  505. */
  506. aborted = (lip->li_flags & XFS_LI_ABORTED) ? true : false;
  507. /*
  508. * Before possibly freeing the buf item, copy the per-transaction state
  509. * so we can reference it safely later after clearing it from the
  510. * buffer log item.
  511. */
  512. flags = bip->bli_flags;
  513. bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD | XFS_BLI_ORDERED);
  514. /*
  515. * If the buf item is marked stale, then don't do anything. We'll
  516. * unlock the buffer and free the buf item when the buffer is unpinned
  517. * for the last time.
  518. */
  519. if (flags & XFS_BLI_STALE) {
  520. trace_xfs_buf_item_unlock_stale(bip);
  521. ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
  522. if (!aborted) {
  523. atomic_dec(&bip->bli_refcount);
  524. return;
  525. }
  526. }
  527. trace_xfs_buf_item_unlock(bip);
  528. /*
  529. * If the buf item isn't tracking any data, free it, otherwise drop the
  530. * reference we hold to it. If we are aborting the transaction, this may
  531. * be the only reference to the buf item, so we free it anyway
  532. * regardless of whether it is dirty or not. A dirty abort implies a
  533. * shutdown, anyway.
  534. *
  535. * Ordered buffers are dirty but may have no recorded changes, so ensure
  536. * we only release clean items here.
  537. */
  538. clean = (flags & XFS_BLI_DIRTY) ? false : true;
  539. if (clean) {
  540. int i;
  541. for (i = 0; i < bip->bli_format_count; i++) {
  542. if (!xfs_bitmap_empty(bip->bli_formats[i].blf_data_map,
  543. bip->bli_formats[i].blf_map_size)) {
  544. clean = false;
  545. break;
  546. }
  547. }
  548. }
  549. if (clean)
  550. xfs_buf_item_relse(bp);
  551. else if (aborted) {
  552. if (atomic_dec_and_test(&bip->bli_refcount)) {
  553. ASSERT(XFS_FORCED_SHUTDOWN(lip->li_mountp));
  554. xfs_buf_item_relse(bp);
  555. }
  556. } else
  557. atomic_dec(&bip->bli_refcount);
  558. if (!(flags & XFS_BLI_HOLD))
  559. xfs_buf_relse(bp);
  560. }
  561. /*
  562. * This is called to find out where the oldest active copy of the
  563. * buf log item in the on disk log resides now that the last log
  564. * write of it completed at the given lsn.
  565. * We always re-log all the dirty data in a buffer, so usually the
  566. * latest copy in the on disk log is the only one that matters. For
  567. * those cases we simply return the given lsn.
  568. *
  569. * The one exception to this is for buffers full of newly allocated
  570. * inodes. These buffers are only relogged with the XFS_BLI_INODE_BUF
  571. * flag set, indicating that only the di_next_unlinked fields from the
  572. * inodes in the buffers will be replayed during recovery. If the
  573. * original newly allocated inode images have not yet been flushed
  574. * when the buffer is so relogged, then we need to make sure that we
  575. * keep the old images in the 'active' portion of the log. We do this
  576. * by returning the original lsn of that transaction here rather than
  577. * the current one.
  578. */
  579. STATIC xfs_lsn_t
  580. xfs_buf_item_committed(
  581. struct xfs_log_item *lip,
  582. xfs_lsn_t lsn)
  583. {
  584. struct xfs_buf_log_item *bip = BUF_ITEM(lip);
  585. trace_xfs_buf_item_committed(bip);
  586. if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0)
  587. return lip->li_lsn;
  588. return lsn;
  589. }
  590. STATIC void
  591. xfs_buf_item_committing(
  592. struct xfs_log_item *lip,
  593. xfs_lsn_t commit_lsn)
  594. {
  595. }
  596. /*
  597. * This is the ops vector shared by all buf log items.
  598. */
  599. static const struct xfs_item_ops xfs_buf_item_ops = {
  600. .iop_size = xfs_buf_item_size,
  601. .iop_format = xfs_buf_item_format,
  602. .iop_pin = xfs_buf_item_pin,
  603. .iop_unpin = xfs_buf_item_unpin,
  604. .iop_unlock = xfs_buf_item_unlock,
  605. .iop_committed = xfs_buf_item_committed,
  606. .iop_push = xfs_buf_item_push,
  607. .iop_committing = xfs_buf_item_committing
  608. };
  609. STATIC int
  610. xfs_buf_item_get_format(
  611. struct xfs_buf_log_item *bip,
  612. int count)
  613. {
  614. ASSERT(bip->bli_formats == NULL);
  615. bip->bli_format_count = count;
  616. if (count == 1) {
  617. bip->bli_formats = &bip->__bli_format;
  618. return 0;
  619. }
  620. bip->bli_formats = kmem_zalloc(count * sizeof(struct xfs_buf_log_format),
  621. KM_SLEEP);
  622. if (!bip->bli_formats)
  623. return ENOMEM;
  624. return 0;
  625. }
  626. STATIC void
  627. xfs_buf_item_free_format(
  628. struct xfs_buf_log_item *bip)
  629. {
  630. if (bip->bli_formats != &bip->__bli_format) {
  631. kmem_free(bip->bli_formats);
  632. bip->bli_formats = NULL;
  633. }
  634. }
  635. /*
  636. * Allocate a new buf log item to go with the given buffer.
  637. * Set the buffer's b_fsprivate field to point to the new
  638. * buf log item. If there are other item's attached to the
  639. * buffer (see xfs_buf_attach_iodone() below), then put the
  640. * buf log item at the front.
  641. */
  642. void
  643. xfs_buf_item_init(
  644. xfs_buf_t *bp,
  645. xfs_mount_t *mp)
  646. {
  647. xfs_log_item_t *lip = bp->b_fspriv;
  648. xfs_buf_log_item_t *bip;
  649. int chunks;
  650. int map_size;
  651. int error;
  652. int i;
  653. /*
  654. * Check to see if there is already a buf log item for
  655. * this buffer. If there is, it is guaranteed to be
  656. * the first. If we do already have one, there is
  657. * nothing to do here so return.
  658. */
  659. ASSERT(bp->b_target->bt_mount == mp);
  660. if (lip != NULL && lip->li_type == XFS_LI_BUF)
  661. return;
  662. bip = kmem_zone_zalloc(xfs_buf_item_zone, KM_SLEEP);
  663. xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops);
  664. bip->bli_buf = bp;
  665. xfs_buf_hold(bp);
  666. /*
  667. * chunks is the number of XFS_BLF_CHUNK size pieces the buffer
  668. * can be divided into. Make sure not to truncate any pieces.
  669. * map_size is the size of the bitmap needed to describe the
  670. * chunks of the buffer.
  671. *
  672. * Discontiguous buffer support follows the layout of the underlying
  673. * buffer. This makes the implementation as simple as possible.
  674. */
  675. error = xfs_buf_item_get_format(bip, bp->b_map_count);
  676. ASSERT(error == 0);
  677. for (i = 0; i < bip->bli_format_count; i++) {
  678. chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len),
  679. XFS_BLF_CHUNK);
  680. map_size = DIV_ROUND_UP(chunks, NBWORD);
  681. bip->bli_formats[i].blf_type = XFS_LI_BUF;
  682. bip->bli_formats[i].blf_blkno = bp->b_maps[i].bm_bn;
  683. bip->bli_formats[i].blf_len = bp->b_maps[i].bm_len;
  684. bip->bli_formats[i].blf_map_size = map_size;
  685. }
  686. #ifdef XFS_TRANS_DEBUG
  687. /*
  688. * Allocate the arrays for tracking what needs to be logged
  689. * and what our callers request to be logged. bli_orig
  690. * holds a copy of the original, clean buffer for comparison
  691. * against, and bli_logged keeps a 1 bit flag per byte in
  692. * the buffer to indicate which bytes the callers have asked
  693. * to have logged.
  694. */
  695. bip->bli_orig = kmem_alloc(BBTOB(bp->b_length), KM_SLEEP);
  696. memcpy(bip->bli_orig, bp->b_addr, BBTOB(bp->b_length));
  697. bip->bli_logged = kmem_zalloc(BBTOB(bp->b_length) / NBBY, KM_SLEEP);
  698. #endif
  699. /*
  700. * Put the buf item into the list of items attached to the
  701. * buffer at the front.
  702. */
  703. if (bp->b_fspriv)
  704. bip->bli_item.li_bio_list = bp->b_fspriv;
  705. bp->b_fspriv = bip;
  706. }
  707. /*
  708. * Mark bytes first through last inclusive as dirty in the buf
  709. * item's bitmap.
  710. */
  711. void
  712. xfs_buf_item_log_segment(
  713. struct xfs_buf_log_item *bip,
  714. uint first,
  715. uint last,
  716. uint *map)
  717. {
  718. uint first_bit;
  719. uint last_bit;
  720. uint bits_to_set;
  721. uint bits_set;
  722. uint word_num;
  723. uint *wordp;
  724. uint bit;
  725. uint end_bit;
  726. uint mask;
  727. /*
  728. * Convert byte offsets to bit numbers.
  729. */
  730. first_bit = first >> XFS_BLF_SHIFT;
  731. last_bit = last >> XFS_BLF_SHIFT;
  732. /*
  733. * Calculate the total number of bits to be set.
  734. */
  735. bits_to_set = last_bit - first_bit + 1;
  736. /*
  737. * Get a pointer to the first word in the bitmap
  738. * to set a bit in.
  739. */
  740. word_num = first_bit >> BIT_TO_WORD_SHIFT;
  741. wordp = &map[word_num];
  742. /*
  743. * Calculate the starting bit in the first word.
  744. */
  745. bit = first_bit & (uint)(NBWORD - 1);
  746. /*
  747. * First set any bits in the first word of our range.
  748. * If it starts at bit 0 of the word, it will be
  749. * set below rather than here. That is what the variable
  750. * bit tells us. The variable bits_set tracks the number
  751. * of bits that have been set so far. End_bit is the number
  752. * of the last bit to be set in this word plus one.
  753. */
  754. if (bit) {
  755. end_bit = MIN(bit + bits_to_set, (uint)NBWORD);
  756. mask = ((1 << (end_bit - bit)) - 1) << bit;
  757. *wordp |= mask;
  758. wordp++;
  759. bits_set = end_bit - bit;
  760. } else {
  761. bits_set = 0;
  762. }
  763. /*
  764. * Now set bits a whole word at a time that are between
  765. * first_bit and last_bit.
  766. */
  767. while ((bits_to_set - bits_set) >= NBWORD) {
  768. *wordp |= 0xffffffff;
  769. bits_set += NBWORD;
  770. wordp++;
  771. }
  772. /*
  773. * Finally, set any bits left to be set in one last partial word.
  774. */
  775. end_bit = bits_to_set - bits_set;
  776. if (end_bit) {
  777. mask = (1 << end_bit) - 1;
  778. *wordp |= mask;
  779. }
  780. }
  781. /*
  782. * Mark bytes first through last inclusive as dirty in the buf
  783. * item's bitmap.
  784. */
  785. void
  786. xfs_buf_item_log(
  787. xfs_buf_log_item_t *bip,
  788. uint first,
  789. uint last)
  790. {
  791. int i;
  792. uint start;
  793. uint end;
  794. struct xfs_buf *bp = bip->bli_buf;
  795. /*
  796. * walk each buffer segment and mark them dirty appropriately.
  797. */
  798. start = 0;
  799. for (i = 0; i < bip->bli_format_count; i++) {
  800. if (start > last)
  801. break;
  802. end = start + BBTOB(bp->b_maps[i].bm_len);
  803. if (first > end) {
  804. start += BBTOB(bp->b_maps[i].bm_len);
  805. continue;
  806. }
  807. if (first < start)
  808. first = start;
  809. if (end > last)
  810. end = last;
  811. xfs_buf_item_log_segment(bip, first, end,
  812. &bip->bli_formats[i].blf_data_map[0]);
  813. start += bp->b_maps[i].bm_len;
  814. }
  815. }
  816. /*
  817. * Return 1 if the buffer has been logged or ordered in a transaction (at any
  818. * point, not just the current transaction) and 0 if not.
  819. */
  820. uint
  821. xfs_buf_item_dirty(
  822. xfs_buf_log_item_t *bip)
  823. {
  824. return (bip->bli_flags & XFS_BLI_DIRTY);
  825. }
  826. STATIC void
  827. xfs_buf_item_free(
  828. xfs_buf_log_item_t *bip)
  829. {
  830. #ifdef XFS_TRANS_DEBUG
  831. kmem_free(bip->bli_orig);
  832. kmem_free(bip->bli_logged);
  833. #endif /* XFS_TRANS_DEBUG */
  834. xfs_buf_item_free_format(bip);
  835. kmem_zone_free(xfs_buf_item_zone, bip);
  836. }
  837. /*
  838. * This is called when the buf log item is no longer needed. It should
  839. * free the buf log item associated with the given buffer and clear
  840. * the buffer's pointer to the buf log item. If there are no more
  841. * items in the list, clear the b_iodone field of the buffer (see
  842. * xfs_buf_attach_iodone() below).
  843. */
  844. void
  845. xfs_buf_item_relse(
  846. xfs_buf_t *bp)
  847. {
  848. xfs_buf_log_item_t *bip = bp->b_fspriv;
  849. trace_xfs_buf_item_relse(bp, _RET_IP_);
  850. ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL));
  851. bp->b_fspriv = bip->bli_item.li_bio_list;
  852. if (bp->b_fspriv == NULL)
  853. bp->b_iodone = NULL;
  854. xfs_buf_rele(bp);
  855. xfs_buf_item_free(bip);
  856. }
  857. /*
  858. * Add the given log item with its callback to the list of callbacks
  859. * to be called when the buffer's I/O completes. If it is not set
  860. * already, set the buffer's b_iodone() routine to be
  861. * xfs_buf_iodone_callbacks() and link the log item into the list of
  862. * items rooted at b_fsprivate. Items are always added as the second
  863. * entry in the list if there is a first, because the buf item code
  864. * assumes that the buf log item is first.
  865. */
  866. void
  867. xfs_buf_attach_iodone(
  868. xfs_buf_t *bp,
  869. void (*cb)(xfs_buf_t *, xfs_log_item_t *),
  870. xfs_log_item_t *lip)
  871. {
  872. xfs_log_item_t *head_lip;
  873. ASSERT(xfs_buf_islocked(bp));
  874. lip->li_cb = cb;
  875. head_lip = bp->b_fspriv;
  876. if (head_lip) {
  877. lip->li_bio_list = head_lip->li_bio_list;
  878. head_lip->li_bio_list = lip;
  879. } else {
  880. bp->b_fspriv = lip;
  881. }
  882. ASSERT(bp->b_iodone == NULL ||
  883. bp->b_iodone == xfs_buf_iodone_callbacks);
  884. bp->b_iodone = xfs_buf_iodone_callbacks;
  885. }
  886. /*
  887. * We can have many callbacks on a buffer. Running the callbacks individually
  888. * can cause a lot of contention on the AIL lock, so we allow for a single
  889. * callback to be able to scan the remaining lip->li_bio_list for other items
  890. * of the same type and callback to be processed in the first call.
  891. *
  892. * As a result, the loop walking the callback list below will also modify the
  893. * list. it removes the first item from the list and then runs the callback.
  894. * The loop then restarts from the new head of the list. This allows the
  895. * callback to scan and modify the list attached to the buffer and we don't
  896. * have to care about maintaining a next item pointer.
  897. */
  898. STATIC void
  899. xfs_buf_do_callbacks(
  900. struct xfs_buf *bp)
  901. {
  902. struct xfs_log_item *lip;
  903. while ((lip = bp->b_fspriv) != NULL) {
  904. bp->b_fspriv = lip->li_bio_list;
  905. ASSERT(lip->li_cb != NULL);
  906. /*
  907. * Clear the next pointer so we don't have any
  908. * confusion if the item is added to another buf.
  909. * Don't touch the log item after calling its
  910. * callback, because it could have freed itself.
  911. */
  912. lip->li_bio_list = NULL;
  913. lip->li_cb(bp, lip);
  914. }
  915. }
  916. /*
  917. * This is the iodone() function for buffers which have had callbacks
  918. * attached to them by xfs_buf_attach_iodone(). It should remove each
  919. * log item from the buffer's list and call the callback of each in turn.
  920. * When done, the buffer's fsprivate field is set to NULL and the buffer
  921. * is unlocked with a call to iodone().
  922. */
  923. void
  924. xfs_buf_iodone_callbacks(
  925. struct xfs_buf *bp)
  926. {
  927. struct xfs_log_item *lip = bp->b_fspriv;
  928. struct xfs_mount *mp = lip->li_mountp;
  929. static ulong lasttime;
  930. static xfs_buftarg_t *lasttarg;
  931. if (likely(!xfs_buf_geterror(bp)))
  932. goto do_callbacks;
  933. /*
  934. * If we've already decided to shutdown the filesystem because of
  935. * I/O errors, there's no point in giving this a retry.
  936. */
  937. if (XFS_FORCED_SHUTDOWN(mp)) {
  938. xfs_buf_stale(bp);
  939. XFS_BUF_DONE(bp);
  940. trace_xfs_buf_item_iodone(bp, _RET_IP_);
  941. goto do_callbacks;
  942. }
  943. if (bp->b_target != lasttarg ||
  944. time_after(jiffies, (lasttime + 5*HZ))) {
  945. lasttime = jiffies;
  946. xfs_buf_ioerror_alert(bp, __func__);
  947. }
  948. lasttarg = bp->b_target;
  949. /*
  950. * If the write was asynchronous then no one will be looking for the
  951. * error. Clear the error state and write the buffer out again.
  952. *
  953. * XXX: This helps against transient write errors, but we need to find
  954. * a way to shut the filesystem down if the writes keep failing.
  955. *
  956. * In practice we'll shut the filesystem down soon as non-transient
  957. * erorrs tend to affect the whole device and a failing log write
  958. * will make us give up. But we really ought to do better here.
  959. */
  960. if (XFS_BUF_ISASYNC(bp)) {
  961. ASSERT(bp->b_iodone != NULL);
  962. trace_xfs_buf_item_iodone_async(bp, _RET_IP_);
  963. xfs_buf_ioerror(bp, 0); /* errno of 0 unsets the flag */
  964. if (!XFS_BUF_ISSTALE(bp)) {
  965. bp->b_flags |= XBF_WRITE | XBF_ASYNC | XBF_DONE;
  966. xfs_buf_iorequest(bp);
  967. } else {
  968. xfs_buf_relse(bp);
  969. }
  970. return;
  971. }
  972. /*
  973. * If the write of the buffer was synchronous, we want to make
  974. * sure to return the error to the caller of xfs_bwrite().
  975. */
  976. xfs_buf_stale(bp);
  977. XFS_BUF_DONE(bp);
  978. trace_xfs_buf_error_relse(bp, _RET_IP_);
  979. do_callbacks:
  980. xfs_buf_do_callbacks(bp);
  981. bp->b_fspriv = NULL;
  982. bp->b_iodone = NULL;
  983. xfs_buf_ioend(bp, 0);
  984. }
  985. /*
  986. * This is the iodone() function for buffers which have been
  987. * logged. It is called when they are eventually flushed out.
  988. * It should remove the buf item from the AIL, and free the buf item.
  989. * It is called by xfs_buf_iodone_callbacks() above which will take
  990. * care of cleaning up the buffer itself.
  991. */
  992. void
  993. xfs_buf_iodone(
  994. struct xfs_buf *bp,
  995. struct xfs_log_item *lip)
  996. {
  997. struct xfs_ail *ailp = lip->li_ailp;
  998. ASSERT(BUF_ITEM(lip)->bli_buf == bp);
  999. xfs_buf_rele(bp);
  1000. /*
  1001. * If we are forcibly shutting down, this may well be
  1002. * off the AIL already. That's because we simulate the
  1003. * log-committed callbacks to unpin these buffers. Or we may never
  1004. * have put this item on AIL because of the transaction was
  1005. * aborted forcibly. xfs_trans_ail_delete() takes care of these.
  1006. *
  1007. * Either way, AIL is useless if we're forcing a shutdown.
  1008. */
  1009. spin_lock(&ailp->xa_lock);
  1010. xfs_trans_ail_delete(ailp, lip, SHUTDOWN_CORRUPT_INCORE);
  1011. xfs_buf_item_free(BUF_ITEM(lip));
  1012. }