task_mmu.c 37 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499
  1. #include <linux/mm.h>
  2. #include <linux/hugetlb.h>
  3. #include <linux/huge_mm.h>
  4. #include <linux/mount.h>
  5. #include <linux/seq_file.h>
  6. #include <linux/highmem.h>
  7. #include <linux/ptrace.h>
  8. #include <linux/slab.h>
  9. #include <linux/pagemap.h>
  10. #include <linux/mempolicy.h>
  11. #include <linux/rmap.h>
  12. #include <linux/swap.h>
  13. #include <linux/swapops.h>
  14. #include <linux/mmu_notifier.h>
  15. #include <asm/elf.h>
  16. #include <asm/uaccess.h>
  17. #include <asm/tlbflush.h>
  18. #include "internal.h"
  19. void task_mem(struct seq_file *m, struct mm_struct *mm)
  20. {
  21. unsigned long data, text, lib, swap;
  22. unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
  23. /*
  24. * Note: to minimize their overhead, mm maintains hiwater_vm and
  25. * hiwater_rss only when about to *lower* total_vm or rss. Any
  26. * collector of these hiwater stats must therefore get total_vm
  27. * and rss too, which will usually be the higher. Barriers? not
  28. * worth the effort, such snapshots can always be inconsistent.
  29. */
  30. hiwater_vm = total_vm = mm->total_vm;
  31. if (hiwater_vm < mm->hiwater_vm)
  32. hiwater_vm = mm->hiwater_vm;
  33. hiwater_rss = total_rss = get_mm_rss(mm);
  34. if (hiwater_rss < mm->hiwater_rss)
  35. hiwater_rss = mm->hiwater_rss;
  36. data = mm->total_vm - mm->shared_vm - mm->stack_vm;
  37. text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
  38. lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
  39. swap = get_mm_counter(mm, MM_SWAPENTS);
  40. seq_printf(m,
  41. "VmPeak:\t%8lu kB\n"
  42. "VmSize:\t%8lu kB\n"
  43. "VmLck:\t%8lu kB\n"
  44. "VmPin:\t%8lu kB\n"
  45. "VmHWM:\t%8lu kB\n"
  46. "VmRSS:\t%8lu kB\n"
  47. "VmData:\t%8lu kB\n"
  48. "VmStk:\t%8lu kB\n"
  49. "VmExe:\t%8lu kB\n"
  50. "VmLib:\t%8lu kB\n"
  51. "VmPTE:\t%8lu kB\n"
  52. "VmSwap:\t%8lu kB\n",
  53. hiwater_vm << (PAGE_SHIFT-10),
  54. total_vm << (PAGE_SHIFT-10),
  55. mm->locked_vm << (PAGE_SHIFT-10),
  56. mm->pinned_vm << (PAGE_SHIFT-10),
  57. hiwater_rss << (PAGE_SHIFT-10),
  58. total_rss << (PAGE_SHIFT-10),
  59. data << (PAGE_SHIFT-10),
  60. mm->stack_vm << (PAGE_SHIFT-10), text, lib,
  61. (PTRS_PER_PTE*sizeof(pte_t)*mm->nr_ptes) >> 10,
  62. swap << (PAGE_SHIFT-10));
  63. }
  64. unsigned long task_vsize(struct mm_struct *mm)
  65. {
  66. return PAGE_SIZE * mm->total_vm;
  67. }
  68. unsigned long task_statm(struct mm_struct *mm,
  69. unsigned long *shared, unsigned long *text,
  70. unsigned long *data, unsigned long *resident)
  71. {
  72. *shared = get_mm_counter(mm, MM_FILEPAGES);
  73. *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
  74. >> PAGE_SHIFT;
  75. *data = mm->total_vm - mm->shared_vm;
  76. *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
  77. return mm->total_vm;
  78. }
  79. static void pad_len_spaces(struct seq_file *m, int len)
  80. {
  81. len = 25 + sizeof(void*) * 6 - len;
  82. if (len < 1)
  83. len = 1;
  84. seq_printf(m, "%*c", len, ' ');
  85. }
  86. #ifdef CONFIG_NUMA
  87. /*
  88. * These functions are for numa_maps but called in generic **maps seq_file
  89. * ->start(), ->stop() ops.
  90. *
  91. * numa_maps scans all vmas under mmap_sem and checks their mempolicy.
  92. * Each mempolicy object is controlled by reference counting. The problem here
  93. * is how to avoid accessing dead mempolicy object.
  94. *
  95. * Because we're holding mmap_sem while reading seq_file, it's safe to access
  96. * each vma's mempolicy, no vma objects will never drop refs to mempolicy.
  97. *
  98. * A task's mempolicy (task->mempolicy) has different behavior. task->mempolicy
  99. * is set and replaced under mmap_sem but unrefed and cleared under task_lock().
  100. * So, without task_lock(), we cannot trust get_vma_policy() because we cannot
  101. * gurantee the task never exits under us. But taking task_lock() around
  102. * get_vma_plicy() causes lock order problem.
  103. *
  104. * To access task->mempolicy without lock, we hold a reference count of an
  105. * object pointed by task->mempolicy and remember it. This will guarantee
  106. * that task->mempolicy points to an alive object or NULL in numa_maps accesses.
  107. */
  108. static void hold_task_mempolicy(struct proc_maps_private *priv)
  109. {
  110. struct task_struct *task = priv->task;
  111. task_lock(task);
  112. priv->task_mempolicy = task->mempolicy;
  113. mpol_get(priv->task_mempolicy);
  114. task_unlock(task);
  115. }
  116. static void release_task_mempolicy(struct proc_maps_private *priv)
  117. {
  118. mpol_put(priv->task_mempolicy);
  119. }
  120. #else
  121. static void hold_task_mempolicy(struct proc_maps_private *priv)
  122. {
  123. }
  124. static void release_task_mempolicy(struct proc_maps_private *priv)
  125. {
  126. }
  127. #endif
  128. static void vma_stop(struct proc_maps_private *priv, struct vm_area_struct *vma)
  129. {
  130. if (vma && vma != priv->tail_vma) {
  131. struct mm_struct *mm = vma->vm_mm;
  132. release_task_mempolicy(priv);
  133. up_read(&mm->mmap_sem);
  134. mmput(mm);
  135. }
  136. }
  137. static void *m_start(struct seq_file *m, loff_t *pos)
  138. {
  139. struct proc_maps_private *priv = m->private;
  140. unsigned long last_addr = m->version;
  141. struct mm_struct *mm;
  142. struct vm_area_struct *vma, *tail_vma = NULL;
  143. loff_t l = *pos;
  144. /* Clear the per syscall fields in priv */
  145. priv->task = NULL;
  146. priv->tail_vma = NULL;
  147. /*
  148. * We remember last_addr rather than next_addr to hit with
  149. * mmap_cache most of the time. We have zero last_addr at
  150. * the beginning and also after lseek. We will have -1 last_addr
  151. * after the end of the vmas.
  152. */
  153. if (last_addr == -1UL)
  154. return NULL;
  155. priv->task = get_pid_task(priv->pid, PIDTYPE_PID);
  156. if (!priv->task)
  157. return ERR_PTR(-ESRCH);
  158. mm = mm_access(priv->task, PTRACE_MODE_READ);
  159. if (!mm || IS_ERR(mm))
  160. return mm;
  161. down_read(&mm->mmap_sem);
  162. tail_vma = get_gate_vma(priv->task->mm);
  163. priv->tail_vma = tail_vma;
  164. hold_task_mempolicy(priv);
  165. /* Start with last addr hint */
  166. vma = find_vma(mm, last_addr);
  167. if (last_addr && vma) {
  168. vma = vma->vm_next;
  169. goto out;
  170. }
  171. /*
  172. * Check the vma index is within the range and do
  173. * sequential scan until m_index.
  174. */
  175. vma = NULL;
  176. if ((unsigned long)l < mm->map_count) {
  177. vma = mm->mmap;
  178. while (l-- && vma)
  179. vma = vma->vm_next;
  180. goto out;
  181. }
  182. if (l != mm->map_count)
  183. tail_vma = NULL; /* After gate vma */
  184. out:
  185. if (vma)
  186. return vma;
  187. release_task_mempolicy(priv);
  188. /* End of vmas has been reached */
  189. m->version = (tail_vma != NULL)? 0: -1UL;
  190. up_read(&mm->mmap_sem);
  191. mmput(mm);
  192. return tail_vma;
  193. }
  194. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  195. {
  196. struct proc_maps_private *priv = m->private;
  197. struct vm_area_struct *vma = v;
  198. struct vm_area_struct *tail_vma = priv->tail_vma;
  199. (*pos)++;
  200. if (vma && (vma != tail_vma) && vma->vm_next)
  201. return vma->vm_next;
  202. vma_stop(priv, vma);
  203. return (vma != tail_vma)? tail_vma: NULL;
  204. }
  205. static void m_stop(struct seq_file *m, void *v)
  206. {
  207. struct proc_maps_private *priv = m->private;
  208. struct vm_area_struct *vma = v;
  209. if (!IS_ERR(vma))
  210. vma_stop(priv, vma);
  211. if (priv->task)
  212. put_task_struct(priv->task);
  213. }
  214. static int do_maps_open(struct inode *inode, struct file *file,
  215. const struct seq_operations *ops)
  216. {
  217. struct proc_maps_private *priv;
  218. int ret = -ENOMEM;
  219. priv = kzalloc(sizeof(*priv), GFP_KERNEL);
  220. if (priv) {
  221. priv->pid = proc_pid(inode);
  222. ret = seq_open(file, ops);
  223. if (!ret) {
  224. struct seq_file *m = file->private_data;
  225. m->private = priv;
  226. } else {
  227. kfree(priv);
  228. }
  229. }
  230. return ret;
  231. }
  232. static void
  233. show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
  234. {
  235. struct mm_struct *mm = vma->vm_mm;
  236. struct file *file = vma->vm_file;
  237. struct proc_maps_private *priv = m->private;
  238. struct task_struct *task = priv->task;
  239. vm_flags_t flags = vma->vm_flags;
  240. unsigned long ino = 0;
  241. unsigned long long pgoff = 0;
  242. unsigned long start, end;
  243. dev_t dev = 0;
  244. int len;
  245. const char *name = NULL;
  246. if (file) {
  247. struct inode *inode = file_inode(vma->vm_file);
  248. dev = inode->i_sb->s_dev;
  249. ino = inode->i_ino;
  250. pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
  251. }
  252. /* We don't show the stack guard page in /proc/maps */
  253. start = vma->vm_start;
  254. if (stack_guard_page_start(vma, start))
  255. start += PAGE_SIZE;
  256. end = vma->vm_end;
  257. if (stack_guard_page_end(vma, end))
  258. end -= PAGE_SIZE;
  259. seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu %n",
  260. start,
  261. end,
  262. flags & VM_READ ? 'r' : '-',
  263. flags & VM_WRITE ? 'w' : '-',
  264. flags & VM_EXEC ? 'x' : '-',
  265. flags & VM_MAYSHARE ? 's' : 'p',
  266. pgoff,
  267. MAJOR(dev), MINOR(dev), ino, &len);
  268. /*
  269. * Print the dentry name for named mappings, and a
  270. * special [heap] marker for the heap:
  271. */
  272. if (file) {
  273. pad_len_spaces(m, len);
  274. seq_path(m, &file->f_path, "\n");
  275. goto done;
  276. }
  277. name = arch_vma_name(vma);
  278. if (!name) {
  279. pid_t tid;
  280. if (!mm) {
  281. name = "[vdso]";
  282. goto done;
  283. }
  284. if (vma->vm_start <= mm->brk &&
  285. vma->vm_end >= mm->start_brk) {
  286. name = "[heap]";
  287. goto done;
  288. }
  289. tid = vm_is_stack(task, vma, is_pid);
  290. if (tid != 0) {
  291. /*
  292. * Thread stack in /proc/PID/task/TID/maps or
  293. * the main process stack.
  294. */
  295. if (!is_pid || (vma->vm_start <= mm->start_stack &&
  296. vma->vm_end >= mm->start_stack)) {
  297. name = "[stack]";
  298. } else {
  299. /* Thread stack in /proc/PID/maps */
  300. pad_len_spaces(m, len);
  301. seq_printf(m, "[stack:%d]", tid);
  302. }
  303. }
  304. }
  305. done:
  306. if (name) {
  307. pad_len_spaces(m, len);
  308. seq_puts(m, name);
  309. }
  310. seq_putc(m, '\n');
  311. }
  312. static int show_map(struct seq_file *m, void *v, int is_pid)
  313. {
  314. struct vm_area_struct *vma = v;
  315. struct proc_maps_private *priv = m->private;
  316. struct task_struct *task = priv->task;
  317. show_map_vma(m, vma, is_pid);
  318. if (m->count < m->size) /* vma is copied successfully */
  319. m->version = (vma != get_gate_vma(task->mm))
  320. ? vma->vm_start : 0;
  321. return 0;
  322. }
  323. static int show_pid_map(struct seq_file *m, void *v)
  324. {
  325. return show_map(m, v, 1);
  326. }
  327. static int show_tid_map(struct seq_file *m, void *v)
  328. {
  329. return show_map(m, v, 0);
  330. }
  331. static const struct seq_operations proc_pid_maps_op = {
  332. .start = m_start,
  333. .next = m_next,
  334. .stop = m_stop,
  335. .show = show_pid_map
  336. };
  337. static const struct seq_operations proc_tid_maps_op = {
  338. .start = m_start,
  339. .next = m_next,
  340. .stop = m_stop,
  341. .show = show_tid_map
  342. };
  343. static int pid_maps_open(struct inode *inode, struct file *file)
  344. {
  345. return do_maps_open(inode, file, &proc_pid_maps_op);
  346. }
  347. static int tid_maps_open(struct inode *inode, struct file *file)
  348. {
  349. return do_maps_open(inode, file, &proc_tid_maps_op);
  350. }
  351. const struct file_operations proc_pid_maps_operations = {
  352. .open = pid_maps_open,
  353. .read = seq_read,
  354. .llseek = seq_lseek,
  355. .release = seq_release_private,
  356. };
  357. const struct file_operations proc_tid_maps_operations = {
  358. .open = tid_maps_open,
  359. .read = seq_read,
  360. .llseek = seq_lseek,
  361. .release = seq_release_private,
  362. };
  363. /*
  364. * Proportional Set Size(PSS): my share of RSS.
  365. *
  366. * PSS of a process is the count of pages it has in memory, where each
  367. * page is divided by the number of processes sharing it. So if a
  368. * process has 1000 pages all to itself, and 1000 shared with one other
  369. * process, its PSS will be 1500.
  370. *
  371. * To keep (accumulated) division errors low, we adopt a 64bit
  372. * fixed-point pss counter to minimize division errors. So (pss >>
  373. * PSS_SHIFT) would be the real byte count.
  374. *
  375. * A shift of 12 before division means (assuming 4K page size):
  376. * - 1M 3-user-pages add up to 8KB errors;
  377. * - supports mapcount up to 2^24, or 16M;
  378. * - supports PSS up to 2^52 bytes, or 4PB.
  379. */
  380. #define PSS_SHIFT 12
  381. #ifdef CONFIG_PROC_PAGE_MONITOR
  382. struct mem_size_stats {
  383. struct vm_area_struct *vma;
  384. unsigned long resident;
  385. unsigned long shared_clean;
  386. unsigned long shared_dirty;
  387. unsigned long private_clean;
  388. unsigned long private_dirty;
  389. unsigned long referenced;
  390. unsigned long anonymous;
  391. unsigned long anonymous_thp;
  392. unsigned long swap;
  393. unsigned long nonlinear;
  394. u64 pss;
  395. };
  396. static void smaps_pte_entry(pte_t ptent, unsigned long addr,
  397. unsigned long ptent_size, struct mm_walk *walk)
  398. {
  399. struct mem_size_stats *mss = walk->private;
  400. struct vm_area_struct *vma = mss->vma;
  401. pgoff_t pgoff = linear_page_index(vma, addr);
  402. struct page *page = NULL;
  403. int mapcount;
  404. if (pte_present(ptent)) {
  405. page = vm_normal_page(vma, addr, ptent);
  406. } else if (is_swap_pte(ptent)) {
  407. swp_entry_t swpent = pte_to_swp_entry(ptent);
  408. if (!non_swap_entry(swpent))
  409. mss->swap += ptent_size;
  410. else if (is_migration_entry(swpent))
  411. page = migration_entry_to_page(swpent);
  412. } else if (pte_file(ptent)) {
  413. if (pte_to_pgoff(ptent) != pgoff)
  414. mss->nonlinear += ptent_size;
  415. }
  416. if (!page)
  417. return;
  418. if (PageAnon(page))
  419. mss->anonymous += ptent_size;
  420. if (page->index != pgoff)
  421. mss->nonlinear += ptent_size;
  422. mss->resident += ptent_size;
  423. /* Accumulate the size in pages that have been accessed. */
  424. if (pte_young(ptent) || PageReferenced(page))
  425. mss->referenced += ptent_size;
  426. mapcount = page_mapcount(page);
  427. if (mapcount >= 2) {
  428. if (pte_dirty(ptent) || PageDirty(page))
  429. mss->shared_dirty += ptent_size;
  430. else
  431. mss->shared_clean += ptent_size;
  432. mss->pss += (ptent_size << PSS_SHIFT) / mapcount;
  433. } else {
  434. if (pte_dirty(ptent) || PageDirty(page))
  435. mss->private_dirty += ptent_size;
  436. else
  437. mss->private_clean += ptent_size;
  438. mss->pss += (ptent_size << PSS_SHIFT);
  439. }
  440. }
  441. static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
  442. struct mm_walk *walk)
  443. {
  444. struct mem_size_stats *mss = walk->private;
  445. struct vm_area_struct *vma = mss->vma;
  446. pte_t *pte;
  447. spinlock_t *ptl;
  448. if (pmd_trans_huge_lock(pmd, vma) == 1) {
  449. smaps_pte_entry(*(pte_t *)pmd, addr, HPAGE_PMD_SIZE, walk);
  450. spin_unlock(&walk->mm->page_table_lock);
  451. mss->anonymous_thp += HPAGE_PMD_SIZE;
  452. return 0;
  453. }
  454. if (pmd_trans_unstable(pmd))
  455. return 0;
  456. /*
  457. * The mmap_sem held all the way back in m_start() is what
  458. * keeps khugepaged out of here and from collapsing things
  459. * in here.
  460. */
  461. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  462. for (; addr != end; pte++, addr += PAGE_SIZE)
  463. smaps_pte_entry(*pte, addr, PAGE_SIZE, walk);
  464. pte_unmap_unlock(pte - 1, ptl);
  465. cond_resched();
  466. return 0;
  467. }
  468. static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
  469. {
  470. /*
  471. * Don't forget to update Documentation/ on changes.
  472. */
  473. static const char mnemonics[BITS_PER_LONG][2] = {
  474. /*
  475. * In case if we meet a flag we don't know about.
  476. */
  477. [0 ... (BITS_PER_LONG-1)] = "??",
  478. [ilog2(VM_READ)] = "rd",
  479. [ilog2(VM_WRITE)] = "wr",
  480. [ilog2(VM_EXEC)] = "ex",
  481. [ilog2(VM_SHARED)] = "sh",
  482. [ilog2(VM_MAYREAD)] = "mr",
  483. [ilog2(VM_MAYWRITE)] = "mw",
  484. [ilog2(VM_MAYEXEC)] = "me",
  485. [ilog2(VM_MAYSHARE)] = "ms",
  486. [ilog2(VM_GROWSDOWN)] = "gd",
  487. [ilog2(VM_PFNMAP)] = "pf",
  488. [ilog2(VM_DENYWRITE)] = "dw",
  489. [ilog2(VM_LOCKED)] = "lo",
  490. [ilog2(VM_IO)] = "io",
  491. [ilog2(VM_SEQ_READ)] = "sr",
  492. [ilog2(VM_RAND_READ)] = "rr",
  493. [ilog2(VM_DONTCOPY)] = "dc",
  494. [ilog2(VM_DONTEXPAND)] = "de",
  495. [ilog2(VM_ACCOUNT)] = "ac",
  496. [ilog2(VM_NORESERVE)] = "nr",
  497. [ilog2(VM_HUGETLB)] = "ht",
  498. [ilog2(VM_NONLINEAR)] = "nl",
  499. [ilog2(VM_ARCH_1)] = "ar",
  500. [ilog2(VM_DONTDUMP)] = "dd",
  501. [ilog2(VM_MIXEDMAP)] = "mm",
  502. [ilog2(VM_HUGEPAGE)] = "hg",
  503. [ilog2(VM_NOHUGEPAGE)] = "nh",
  504. [ilog2(VM_MERGEABLE)] = "mg",
  505. };
  506. size_t i;
  507. seq_puts(m, "VmFlags: ");
  508. for (i = 0; i < BITS_PER_LONG; i++) {
  509. if (vma->vm_flags & (1UL << i)) {
  510. seq_printf(m, "%c%c ",
  511. mnemonics[i][0], mnemonics[i][1]);
  512. }
  513. }
  514. seq_putc(m, '\n');
  515. }
  516. static int show_smap(struct seq_file *m, void *v, int is_pid)
  517. {
  518. struct proc_maps_private *priv = m->private;
  519. struct task_struct *task = priv->task;
  520. struct vm_area_struct *vma = v;
  521. struct mem_size_stats mss;
  522. struct mm_walk smaps_walk = {
  523. .pmd_entry = smaps_pte_range,
  524. .mm = vma->vm_mm,
  525. .private = &mss,
  526. };
  527. memset(&mss, 0, sizeof mss);
  528. mss.vma = vma;
  529. /* mmap_sem is held in m_start */
  530. if (vma->vm_mm && !is_vm_hugetlb_page(vma))
  531. walk_page_range(vma->vm_start, vma->vm_end, &smaps_walk);
  532. show_map_vma(m, vma, is_pid);
  533. seq_printf(m,
  534. "Size: %8lu kB\n"
  535. "Rss: %8lu kB\n"
  536. "Pss: %8lu kB\n"
  537. "Shared_Clean: %8lu kB\n"
  538. "Shared_Dirty: %8lu kB\n"
  539. "Private_Clean: %8lu kB\n"
  540. "Private_Dirty: %8lu kB\n"
  541. "Referenced: %8lu kB\n"
  542. "Anonymous: %8lu kB\n"
  543. "AnonHugePages: %8lu kB\n"
  544. "Swap: %8lu kB\n"
  545. "KernelPageSize: %8lu kB\n"
  546. "MMUPageSize: %8lu kB\n"
  547. "Locked: %8lu kB\n",
  548. (vma->vm_end - vma->vm_start) >> 10,
  549. mss.resident >> 10,
  550. (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
  551. mss.shared_clean >> 10,
  552. mss.shared_dirty >> 10,
  553. mss.private_clean >> 10,
  554. mss.private_dirty >> 10,
  555. mss.referenced >> 10,
  556. mss.anonymous >> 10,
  557. mss.anonymous_thp >> 10,
  558. mss.swap >> 10,
  559. vma_kernel_pagesize(vma) >> 10,
  560. vma_mmu_pagesize(vma) >> 10,
  561. (vma->vm_flags & VM_LOCKED) ?
  562. (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
  563. if (vma->vm_flags & VM_NONLINEAR)
  564. seq_printf(m, "Nonlinear: %8lu kB\n",
  565. mss.nonlinear >> 10);
  566. show_smap_vma_flags(m, vma);
  567. if (m->count < m->size) /* vma is copied successfully */
  568. m->version = (vma != get_gate_vma(task->mm))
  569. ? vma->vm_start : 0;
  570. return 0;
  571. }
  572. static int show_pid_smap(struct seq_file *m, void *v)
  573. {
  574. return show_smap(m, v, 1);
  575. }
  576. static int show_tid_smap(struct seq_file *m, void *v)
  577. {
  578. return show_smap(m, v, 0);
  579. }
  580. static const struct seq_operations proc_pid_smaps_op = {
  581. .start = m_start,
  582. .next = m_next,
  583. .stop = m_stop,
  584. .show = show_pid_smap
  585. };
  586. static const struct seq_operations proc_tid_smaps_op = {
  587. .start = m_start,
  588. .next = m_next,
  589. .stop = m_stop,
  590. .show = show_tid_smap
  591. };
  592. static int pid_smaps_open(struct inode *inode, struct file *file)
  593. {
  594. return do_maps_open(inode, file, &proc_pid_smaps_op);
  595. }
  596. static int tid_smaps_open(struct inode *inode, struct file *file)
  597. {
  598. return do_maps_open(inode, file, &proc_tid_smaps_op);
  599. }
  600. const struct file_operations proc_pid_smaps_operations = {
  601. .open = pid_smaps_open,
  602. .read = seq_read,
  603. .llseek = seq_lseek,
  604. .release = seq_release_private,
  605. };
  606. const struct file_operations proc_tid_smaps_operations = {
  607. .open = tid_smaps_open,
  608. .read = seq_read,
  609. .llseek = seq_lseek,
  610. .release = seq_release_private,
  611. };
  612. /*
  613. * We do not want to have constant page-shift bits sitting in
  614. * pagemap entries and are about to reuse them some time soon.
  615. *
  616. * Here's the "migration strategy":
  617. * 1. when the system boots these bits remain what they are,
  618. * but a warning about future change is printed in log;
  619. * 2. once anyone clears soft-dirty bits via clear_refs file,
  620. * these flag is set to denote, that user is aware of the
  621. * new API and those page-shift bits change their meaning.
  622. * The respective warning is printed in dmesg;
  623. * 3. In a couple of releases we will remove all the mentions
  624. * of page-shift in pagemap entries.
  625. */
  626. static bool soft_dirty_cleared __read_mostly;
  627. enum clear_refs_types {
  628. CLEAR_REFS_ALL = 1,
  629. CLEAR_REFS_ANON,
  630. CLEAR_REFS_MAPPED,
  631. CLEAR_REFS_SOFT_DIRTY,
  632. CLEAR_REFS_LAST,
  633. };
  634. struct clear_refs_private {
  635. struct vm_area_struct *vma;
  636. enum clear_refs_types type;
  637. };
  638. static inline void clear_soft_dirty(struct vm_area_struct *vma,
  639. unsigned long addr, pte_t *pte)
  640. {
  641. #ifdef CONFIG_MEM_SOFT_DIRTY
  642. /*
  643. * The soft-dirty tracker uses #PF-s to catch writes
  644. * to pages, so write-protect the pte as well. See the
  645. * Documentation/vm/soft-dirty.txt for full description
  646. * of how soft-dirty works.
  647. */
  648. pte_t ptent = *pte;
  649. ptent = pte_wrprotect(ptent);
  650. ptent = pte_clear_flags(ptent, _PAGE_SOFT_DIRTY);
  651. set_pte_at(vma->vm_mm, addr, pte, ptent);
  652. #endif
  653. }
  654. static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
  655. unsigned long end, struct mm_walk *walk)
  656. {
  657. struct clear_refs_private *cp = walk->private;
  658. struct vm_area_struct *vma = cp->vma;
  659. pte_t *pte, ptent;
  660. spinlock_t *ptl;
  661. struct page *page;
  662. split_huge_page_pmd(vma, addr, pmd);
  663. if (pmd_trans_unstable(pmd))
  664. return 0;
  665. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  666. for (; addr != end; pte++, addr += PAGE_SIZE) {
  667. ptent = *pte;
  668. if (!pte_present(ptent))
  669. continue;
  670. if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
  671. clear_soft_dirty(vma, addr, pte);
  672. continue;
  673. }
  674. page = vm_normal_page(vma, addr, ptent);
  675. if (!page)
  676. continue;
  677. /* Clear accessed and referenced bits. */
  678. ptep_test_and_clear_young(vma, addr, pte);
  679. ClearPageReferenced(page);
  680. }
  681. pte_unmap_unlock(pte - 1, ptl);
  682. cond_resched();
  683. return 0;
  684. }
  685. static ssize_t clear_refs_write(struct file *file, const char __user *buf,
  686. size_t count, loff_t *ppos)
  687. {
  688. struct task_struct *task;
  689. char buffer[PROC_NUMBUF];
  690. struct mm_struct *mm;
  691. struct vm_area_struct *vma;
  692. enum clear_refs_types type;
  693. int itype;
  694. int rv;
  695. memset(buffer, 0, sizeof(buffer));
  696. if (count > sizeof(buffer) - 1)
  697. count = sizeof(buffer) - 1;
  698. if (copy_from_user(buffer, buf, count))
  699. return -EFAULT;
  700. rv = kstrtoint(strstrip(buffer), 10, &itype);
  701. if (rv < 0)
  702. return rv;
  703. type = (enum clear_refs_types)itype;
  704. if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
  705. return -EINVAL;
  706. if (type == CLEAR_REFS_SOFT_DIRTY) {
  707. soft_dirty_cleared = true;
  708. pr_warn_once("The pagemap bits 55-60 has changed their meaning! "
  709. "See the linux/Documentation/vm/pagemap.txt for details.\n");
  710. }
  711. task = get_proc_task(file_inode(file));
  712. if (!task)
  713. return -ESRCH;
  714. mm = get_task_mm(task);
  715. if (mm) {
  716. struct clear_refs_private cp = {
  717. .type = type,
  718. };
  719. struct mm_walk clear_refs_walk = {
  720. .pmd_entry = clear_refs_pte_range,
  721. .mm = mm,
  722. .private = &cp,
  723. };
  724. down_read(&mm->mmap_sem);
  725. if (type == CLEAR_REFS_SOFT_DIRTY)
  726. mmu_notifier_invalidate_range_start(mm, 0, -1);
  727. for (vma = mm->mmap; vma; vma = vma->vm_next) {
  728. cp.vma = vma;
  729. if (is_vm_hugetlb_page(vma))
  730. continue;
  731. /*
  732. * Writing 1 to /proc/pid/clear_refs affects all pages.
  733. *
  734. * Writing 2 to /proc/pid/clear_refs only affects
  735. * Anonymous pages.
  736. *
  737. * Writing 3 to /proc/pid/clear_refs only affects file
  738. * mapped pages.
  739. */
  740. if (type == CLEAR_REFS_ANON && vma->vm_file)
  741. continue;
  742. if (type == CLEAR_REFS_MAPPED && !vma->vm_file)
  743. continue;
  744. walk_page_range(vma->vm_start, vma->vm_end,
  745. &clear_refs_walk);
  746. }
  747. if (type == CLEAR_REFS_SOFT_DIRTY)
  748. mmu_notifier_invalidate_range_end(mm, 0, -1);
  749. flush_tlb_mm(mm);
  750. up_read(&mm->mmap_sem);
  751. mmput(mm);
  752. }
  753. put_task_struct(task);
  754. return count;
  755. }
  756. const struct file_operations proc_clear_refs_operations = {
  757. .write = clear_refs_write,
  758. .llseek = noop_llseek,
  759. };
  760. typedef struct {
  761. u64 pme;
  762. } pagemap_entry_t;
  763. struct pagemapread {
  764. int pos, len;
  765. pagemap_entry_t *buffer;
  766. bool v2;
  767. };
  768. #define PAGEMAP_WALK_SIZE (PMD_SIZE)
  769. #define PAGEMAP_WALK_MASK (PMD_MASK)
  770. #define PM_ENTRY_BYTES sizeof(u64)
  771. #define PM_STATUS_BITS 3
  772. #define PM_STATUS_OFFSET (64 - PM_STATUS_BITS)
  773. #define PM_STATUS_MASK (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET)
  774. #define PM_STATUS(nr) (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK)
  775. #define PM_PSHIFT_BITS 6
  776. #define PM_PSHIFT_OFFSET (PM_STATUS_OFFSET - PM_PSHIFT_BITS)
  777. #define PM_PSHIFT_MASK (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET)
  778. #define __PM_PSHIFT(x) (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK)
  779. #define PM_PFRAME_MASK ((1LL << PM_PSHIFT_OFFSET) - 1)
  780. #define PM_PFRAME(x) ((x) & PM_PFRAME_MASK)
  781. /* in "new" pagemap pshift bits are occupied with more status bits */
  782. #define PM_STATUS2(v2, x) (__PM_PSHIFT(v2 ? x : PAGE_SHIFT))
  783. #define __PM_SOFT_DIRTY (1LL)
  784. #define PM_PRESENT PM_STATUS(4LL)
  785. #define PM_SWAP PM_STATUS(2LL)
  786. #define PM_FILE PM_STATUS(1LL)
  787. #define PM_NOT_PRESENT(v2) PM_STATUS2(v2, 0)
  788. #define PM_END_OF_BUFFER 1
  789. static inline pagemap_entry_t make_pme(u64 val)
  790. {
  791. return (pagemap_entry_t) { .pme = val };
  792. }
  793. static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
  794. struct pagemapread *pm)
  795. {
  796. pm->buffer[pm->pos++] = *pme;
  797. if (pm->pos >= pm->len)
  798. return PM_END_OF_BUFFER;
  799. return 0;
  800. }
  801. static int pagemap_pte_hole(unsigned long start, unsigned long end,
  802. struct mm_walk *walk)
  803. {
  804. struct pagemapread *pm = walk->private;
  805. unsigned long addr;
  806. int err = 0;
  807. pagemap_entry_t pme = make_pme(PM_NOT_PRESENT(pm->v2));
  808. for (addr = start; addr < end; addr += PAGE_SIZE) {
  809. err = add_to_pagemap(addr, &pme, pm);
  810. if (err)
  811. break;
  812. }
  813. return err;
  814. }
  815. static void pte_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
  816. struct vm_area_struct *vma, unsigned long addr, pte_t pte)
  817. {
  818. u64 frame, flags;
  819. struct page *page = NULL;
  820. int flags2 = 0;
  821. if (pte_present(pte)) {
  822. frame = pte_pfn(pte);
  823. flags = PM_PRESENT;
  824. page = vm_normal_page(vma, addr, pte);
  825. } else if (is_swap_pte(pte)) {
  826. swp_entry_t entry = pte_to_swp_entry(pte);
  827. frame = swp_type(entry) |
  828. (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
  829. flags = PM_SWAP;
  830. if (is_migration_entry(entry))
  831. page = migration_entry_to_page(entry);
  832. } else {
  833. *pme = make_pme(PM_NOT_PRESENT(pm->v2));
  834. return;
  835. }
  836. if (page && !PageAnon(page))
  837. flags |= PM_FILE;
  838. if (pte_soft_dirty(pte))
  839. flags2 |= __PM_SOFT_DIRTY;
  840. *pme = make_pme(PM_PFRAME(frame) | PM_STATUS2(pm->v2, flags2) | flags);
  841. }
  842. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  843. static void thp_pmd_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
  844. pmd_t pmd, int offset, int pmd_flags2)
  845. {
  846. /*
  847. * Currently pmd for thp is always present because thp can not be
  848. * swapped-out, migrated, or HWPOISONed (split in such cases instead.)
  849. * This if-check is just to prepare for future implementation.
  850. */
  851. if (pmd_present(pmd))
  852. *pme = make_pme(PM_PFRAME(pmd_pfn(pmd) + offset)
  853. | PM_STATUS2(pm->v2, pmd_flags2) | PM_PRESENT);
  854. else
  855. *pme = make_pme(PM_NOT_PRESENT(pm->v2));
  856. }
  857. #else
  858. static inline void thp_pmd_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
  859. pmd_t pmd, int offset, int pmd_flags2)
  860. {
  861. }
  862. #endif
  863. static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
  864. struct mm_walk *walk)
  865. {
  866. struct vm_area_struct *vma;
  867. struct pagemapread *pm = walk->private;
  868. pte_t *pte;
  869. int err = 0;
  870. pagemap_entry_t pme = make_pme(PM_NOT_PRESENT(pm->v2));
  871. /* find the first VMA at or above 'addr' */
  872. vma = find_vma(walk->mm, addr);
  873. if (vma && pmd_trans_huge_lock(pmd, vma) == 1) {
  874. int pmd_flags2;
  875. pmd_flags2 = (pmd_soft_dirty(*pmd) ? __PM_SOFT_DIRTY : 0);
  876. for (; addr != end; addr += PAGE_SIZE) {
  877. unsigned long offset;
  878. offset = (addr & ~PAGEMAP_WALK_MASK) >>
  879. PAGE_SHIFT;
  880. thp_pmd_to_pagemap_entry(&pme, pm, *pmd, offset, pmd_flags2);
  881. err = add_to_pagemap(addr, &pme, pm);
  882. if (err)
  883. break;
  884. }
  885. spin_unlock(&walk->mm->page_table_lock);
  886. return err;
  887. }
  888. if (pmd_trans_unstable(pmd))
  889. return 0;
  890. for (; addr != end; addr += PAGE_SIZE) {
  891. /* check to see if we've left 'vma' behind
  892. * and need a new, higher one */
  893. if (vma && (addr >= vma->vm_end)) {
  894. vma = find_vma(walk->mm, addr);
  895. pme = make_pme(PM_NOT_PRESENT(pm->v2));
  896. }
  897. /* check that 'vma' actually covers this address,
  898. * and that it isn't a huge page vma */
  899. if (vma && (vma->vm_start <= addr) &&
  900. !is_vm_hugetlb_page(vma)) {
  901. pte = pte_offset_map(pmd, addr);
  902. pte_to_pagemap_entry(&pme, pm, vma, addr, *pte);
  903. /* unmap before userspace copy */
  904. pte_unmap(pte);
  905. }
  906. err = add_to_pagemap(addr, &pme, pm);
  907. if (err)
  908. return err;
  909. }
  910. cond_resched();
  911. return err;
  912. }
  913. #ifdef CONFIG_HUGETLB_PAGE
  914. static void huge_pte_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
  915. pte_t pte, int offset)
  916. {
  917. if (pte_present(pte))
  918. *pme = make_pme(PM_PFRAME(pte_pfn(pte) + offset)
  919. | PM_STATUS2(pm->v2, 0) | PM_PRESENT);
  920. else
  921. *pme = make_pme(PM_NOT_PRESENT(pm->v2));
  922. }
  923. /* This function walks within one hugetlb entry in the single call */
  924. static int pagemap_hugetlb_range(pte_t *pte, unsigned long hmask,
  925. unsigned long addr, unsigned long end,
  926. struct mm_walk *walk)
  927. {
  928. struct pagemapread *pm = walk->private;
  929. int err = 0;
  930. pagemap_entry_t pme;
  931. for (; addr != end; addr += PAGE_SIZE) {
  932. int offset = (addr & ~hmask) >> PAGE_SHIFT;
  933. huge_pte_to_pagemap_entry(&pme, pm, *pte, offset);
  934. err = add_to_pagemap(addr, &pme, pm);
  935. if (err)
  936. return err;
  937. }
  938. cond_resched();
  939. return err;
  940. }
  941. #endif /* HUGETLB_PAGE */
  942. /*
  943. * /proc/pid/pagemap - an array mapping virtual pages to pfns
  944. *
  945. * For each page in the address space, this file contains one 64-bit entry
  946. * consisting of the following:
  947. *
  948. * Bits 0-54 page frame number (PFN) if present
  949. * Bits 0-4 swap type if swapped
  950. * Bits 5-54 swap offset if swapped
  951. * Bits 55-60 page shift (page size = 1<<page shift)
  952. * Bit 61 page is file-page or shared-anon
  953. * Bit 62 page swapped
  954. * Bit 63 page present
  955. *
  956. * If the page is not present but in swap, then the PFN contains an
  957. * encoding of the swap file number and the page's offset into the
  958. * swap. Unmapped pages return a null PFN. This allows determining
  959. * precisely which pages are mapped (or in swap) and comparing mapped
  960. * pages between processes.
  961. *
  962. * Efficient users of this interface will use /proc/pid/maps to
  963. * determine which areas of memory are actually mapped and llseek to
  964. * skip over unmapped regions.
  965. */
  966. static ssize_t pagemap_read(struct file *file, char __user *buf,
  967. size_t count, loff_t *ppos)
  968. {
  969. struct task_struct *task = get_proc_task(file_inode(file));
  970. struct mm_struct *mm;
  971. struct pagemapread pm;
  972. int ret = -ESRCH;
  973. struct mm_walk pagemap_walk = {};
  974. unsigned long src;
  975. unsigned long svpfn;
  976. unsigned long start_vaddr;
  977. unsigned long end_vaddr;
  978. int copied = 0;
  979. if (!task)
  980. goto out;
  981. ret = -EINVAL;
  982. /* file position must be aligned */
  983. if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
  984. goto out_task;
  985. ret = 0;
  986. if (!count)
  987. goto out_task;
  988. pm.v2 = soft_dirty_cleared;
  989. pm.len = PM_ENTRY_BYTES * (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
  990. pm.buffer = kmalloc(pm.len, GFP_TEMPORARY);
  991. ret = -ENOMEM;
  992. if (!pm.buffer)
  993. goto out_task;
  994. mm = mm_access(task, PTRACE_MODE_READ);
  995. ret = PTR_ERR(mm);
  996. if (!mm || IS_ERR(mm))
  997. goto out_free;
  998. pagemap_walk.pmd_entry = pagemap_pte_range;
  999. pagemap_walk.pte_hole = pagemap_pte_hole;
  1000. #ifdef CONFIG_HUGETLB_PAGE
  1001. pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
  1002. #endif
  1003. pagemap_walk.mm = mm;
  1004. pagemap_walk.private = &pm;
  1005. src = *ppos;
  1006. svpfn = src / PM_ENTRY_BYTES;
  1007. start_vaddr = svpfn << PAGE_SHIFT;
  1008. end_vaddr = TASK_SIZE_OF(task);
  1009. /* watch out for wraparound */
  1010. if (svpfn > TASK_SIZE_OF(task) >> PAGE_SHIFT)
  1011. start_vaddr = end_vaddr;
  1012. /*
  1013. * The odds are that this will stop walking way
  1014. * before end_vaddr, because the length of the
  1015. * user buffer is tracked in "pm", and the walk
  1016. * will stop when we hit the end of the buffer.
  1017. */
  1018. ret = 0;
  1019. while (count && (start_vaddr < end_vaddr)) {
  1020. int len;
  1021. unsigned long end;
  1022. pm.pos = 0;
  1023. end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
  1024. /* overflow ? */
  1025. if (end < start_vaddr || end > end_vaddr)
  1026. end = end_vaddr;
  1027. down_read(&mm->mmap_sem);
  1028. ret = walk_page_range(start_vaddr, end, &pagemap_walk);
  1029. up_read(&mm->mmap_sem);
  1030. start_vaddr = end;
  1031. len = min(count, PM_ENTRY_BYTES * pm.pos);
  1032. if (copy_to_user(buf, pm.buffer, len)) {
  1033. ret = -EFAULT;
  1034. goto out_mm;
  1035. }
  1036. copied += len;
  1037. buf += len;
  1038. count -= len;
  1039. }
  1040. *ppos += copied;
  1041. if (!ret || ret == PM_END_OF_BUFFER)
  1042. ret = copied;
  1043. out_mm:
  1044. mmput(mm);
  1045. out_free:
  1046. kfree(pm.buffer);
  1047. out_task:
  1048. put_task_struct(task);
  1049. out:
  1050. return ret;
  1051. }
  1052. static int pagemap_open(struct inode *inode, struct file *file)
  1053. {
  1054. pr_warn_once("Bits 55-60 of /proc/PID/pagemap entries are about "
  1055. "to stop being page-shift some time soon. See the "
  1056. "linux/Documentation/vm/pagemap.txt for details.\n");
  1057. return 0;
  1058. }
  1059. const struct file_operations proc_pagemap_operations = {
  1060. .llseek = mem_lseek, /* borrow this */
  1061. .read = pagemap_read,
  1062. .open = pagemap_open,
  1063. };
  1064. #endif /* CONFIG_PROC_PAGE_MONITOR */
  1065. #ifdef CONFIG_NUMA
  1066. struct numa_maps {
  1067. struct vm_area_struct *vma;
  1068. unsigned long pages;
  1069. unsigned long anon;
  1070. unsigned long active;
  1071. unsigned long writeback;
  1072. unsigned long mapcount_max;
  1073. unsigned long dirty;
  1074. unsigned long swapcache;
  1075. unsigned long node[MAX_NUMNODES];
  1076. };
  1077. struct numa_maps_private {
  1078. struct proc_maps_private proc_maps;
  1079. struct numa_maps md;
  1080. };
  1081. static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
  1082. unsigned long nr_pages)
  1083. {
  1084. int count = page_mapcount(page);
  1085. md->pages += nr_pages;
  1086. if (pte_dirty || PageDirty(page))
  1087. md->dirty += nr_pages;
  1088. if (PageSwapCache(page))
  1089. md->swapcache += nr_pages;
  1090. if (PageActive(page) || PageUnevictable(page))
  1091. md->active += nr_pages;
  1092. if (PageWriteback(page))
  1093. md->writeback += nr_pages;
  1094. if (PageAnon(page))
  1095. md->anon += nr_pages;
  1096. if (count > md->mapcount_max)
  1097. md->mapcount_max = count;
  1098. md->node[page_to_nid(page)] += nr_pages;
  1099. }
  1100. static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
  1101. unsigned long addr)
  1102. {
  1103. struct page *page;
  1104. int nid;
  1105. if (!pte_present(pte))
  1106. return NULL;
  1107. page = vm_normal_page(vma, addr, pte);
  1108. if (!page)
  1109. return NULL;
  1110. if (PageReserved(page))
  1111. return NULL;
  1112. nid = page_to_nid(page);
  1113. if (!node_isset(nid, node_states[N_MEMORY]))
  1114. return NULL;
  1115. return page;
  1116. }
  1117. static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
  1118. unsigned long end, struct mm_walk *walk)
  1119. {
  1120. struct numa_maps *md;
  1121. spinlock_t *ptl;
  1122. pte_t *orig_pte;
  1123. pte_t *pte;
  1124. md = walk->private;
  1125. if (pmd_trans_huge_lock(pmd, md->vma) == 1) {
  1126. pte_t huge_pte = *(pte_t *)pmd;
  1127. struct page *page;
  1128. page = can_gather_numa_stats(huge_pte, md->vma, addr);
  1129. if (page)
  1130. gather_stats(page, md, pte_dirty(huge_pte),
  1131. HPAGE_PMD_SIZE/PAGE_SIZE);
  1132. spin_unlock(&walk->mm->page_table_lock);
  1133. return 0;
  1134. }
  1135. if (pmd_trans_unstable(pmd))
  1136. return 0;
  1137. orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
  1138. do {
  1139. struct page *page = can_gather_numa_stats(*pte, md->vma, addr);
  1140. if (!page)
  1141. continue;
  1142. gather_stats(page, md, pte_dirty(*pte), 1);
  1143. } while (pte++, addr += PAGE_SIZE, addr != end);
  1144. pte_unmap_unlock(orig_pte, ptl);
  1145. return 0;
  1146. }
  1147. #ifdef CONFIG_HUGETLB_PAGE
  1148. static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
  1149. unsigned long addr, unsigned long end, struct mm_walk *walk)
  1150. {
  1151. struct numa_maps *md;
  1152. struct page *page;
  1153. if (pte_none(*pte))
  1154. return 0;
  1155. page = pte_page(*pte);
  1156. if (!page)
  1157. return 0;
  1158. md = walk->private;
  1159. gather_stats(page, md, pte_dirty(*pte), 1);
  1160. return 0;
  1161. }
  1162. #else
  1163. static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
  1164. unsigned long addr, unsigned long end, struct mm_walk *walk)
  1165. {
  1166. return 0;
  1167. }
  1168. #endif
  1169. /*
  1170. * Display pages allocated per node and memory policy via /proc.
  1171. */
  1172. static int show_numa_map(struct seq_file *m, void *v, int is_pid)
  1173. {
  1174. struct numa_maps_private *numa_priv = m->private;
  1175. struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
  1176. struct vm_area_struct *vma = v;
  1177. struct numa_maps *md = &numa_priv->md;
  1178. struct file *file = vma->vm_file;
  1179. struct task_struct *task = proc_priv->task;
  1180. struct mm_struct *mm = vma->vm_mm;
  1181. struct mm_walk walk = {};
  1182. struct mempolicy *pol;
  1183. int n;
  1184. char buffer[50];
  1185. if (!mm)
  1186. return 0;
  1187. /* Ensure we start with an empty set of numa_maps statistics. */
  1188. memset(md, 0, sizeof(*md));
  1189. md->vma = vma;
  1190. walk.hugetlb_entry = gather_hugetbl_stats;
  1191. walk.pmd_entry = gather_pte_stats;
  1192. walk.private = md;
  1193. walk.mm = mm;
  1194. pol = get_vma_policy(task, vma, vma->vm_start);
  1195. mpol_to_str(buffer, sizeof(buffer), pol);
  1196. mpol_cond_put(pol);
  1197. seq_printf(m, "%08lx %s", vma->vm_start, buffer);
  1198. if (file) {
  1199. seq_printf(m, " file=");
  1200. seq_path(m, &file->f_path, "\n\t= ");
  1201. } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
  1202. seq_printf(m, " heap");
  1203. } else {
  1204. pid_t tid = vm_is_stack(task, vma, is_pid);
  1205. if (tid != 0) {
  1206. /*
  1207. * Thread stack in /proc/PID/task/TID/maps or
  1208. * the main process stack.
  1209. */
  1210. if (!is_pid || (vma->vm_start <= mm->start_stack &&
  1211. vma->vm_end >= mm->start_stack))
  1212. seq_printf(m, " stack");
  1213. else
  1214. seq_printf(m, " stack:%d", tid);
  1215. }
  1216. }
  1217. if (is_vm_hugetlb_page(vma))
  1218. seq_printf(m, " huge");
  1219. walk_page_range(vma->vm_start, vma->vm_end, &walk);
  1220. if (!md->pages)
  1221. goto out;
  1222. if (md->anon)
  1223. seq_printf(m, " anon=%lu", md->anon);
  1224. if (md->dirty)
  1225. seq_printf(m, " dirty=%lu", md->dirty);
  1226. if (md->pages != md->anon && md->pages != md->dirty)
  1227. seq_printf(m, " mapped=%lu", md->pages);
  1228. if (md->mapcount_max > 1)
  1229. seq_printf(m, " mapmax=%lu", md->mapcount_max);
  1230. if (md->swapcache)
  1231. seq_printf(m, " swapcache=%lu", md->swapcache);
  1232. if (md->active < md->pages && !is_vm_hugetlb_page(vma))
  1233. seq_printf(m, " active=%lu", md->active);
  1234. if (md->writeback)
  1235. seq_printf(m, " writeback=%lu", md->writeback);
  1236. for_each_node_state(n, N_MEMORY)
  1237. if (md->node[n])
  1238. seq_printf(m, " N%d=%lu", n, md->node[n]);
  1239. out:
  1240. seq_putc(m, '\n');
  1241. if (m->count < m->size)
  1242. m->version = (vma != proc_priv->tail_vma) ? vma->vm_start : 0;
  1243. return 0;
  1244. }
  1245. static int show_pid_numa_map(struct seq_file *m, void *v)
  1246. {
  1247. return show_numa_map(m, v, 1);
  1248. }
  1249. static int show_tid_numa_map(struct seq_file *m, void *v)
  1250. {
  1251. return show_numa_map(m, v, 0);
  1252. }
  1253. static const struct seq_operations proc_pid_numa_maps_op = {
  1254. .start = m_start,
  1255. .next = m_next,
  1256. .stop = m_stop,
  1257. .show = show_pid_numa_map,
  1258. };
  1259. static const struct seq_operations proc_tid_numa_maps_op = {
  1260. .start = m_start,
  1261. .next = m_next,
  1262. .stop = m_stop,
  1263. .show = show_tid_numa_map,
  1264. };
  1265. static int numa_maps_open(struct inode *inode, struct file *file,
  1266. const struct seq_operations *ops)
  1267. {
  1268. struct numa_maps_private *priv;
  1269. int ret = -ENOMEM;
  1270. priv = kzalloc(sizeof(*priv), GFP_KERNEL);
  1271. if (priv) {
  1272. priv->proc_maps.pid = proc_pid(inode);
  1273. ret = seq_open(file, ops);
  1274. if (!ret) {
  1275. struct seq_file *m = file->private_data;
  1276. m->private = priv;
  1277. } else {
  1278. kfree(priv);
  1279. }
  1280. }
  1281. return ret;
  1282. }
  1283. static int pid_numa_maps_open(struct inode *inode, struct file *file)
  1284. {
  1285. return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
  1286. }
  1287. static int tid_numa_maps_open(struct inode *inode, struct file *file)
  1288. {
  1289. return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
  1290. }
  1291. const struct file_operations proc_pid_numa_maps_operations = {
  1292. .open = pid_numa_maps_open,
  1293. .read = seq_read,
  1294. .llseek = seq_lseek,
  1295. .release = seq_release_private,
  1296. };
  1297. const struct file_operations proc_tid_numa_maps_operations = {
  1298. .open = tid_numa_maps_open,
  1299. .read = seq_read,
  1300. .llseek = seq_lseek,
  1301. .release = seq_release_private,
  1302. };
  1303. #endif /* CONFIG_NUMA */