namespace.c 70 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902
  1. /*
  2. * linux/fs/namespace.c
  3. *
  4. * (C) Copyright Al Viro 2000, 2001
  5. * Released under GPL v2.
  6. *
  7. * Based on code from fs/super.c, copyright Linus Torvalds and others.
  8. * Heavily rewritten.
  9. */
  10. #include <linux/syscalls.h>
  11. #include <linux/export.h>
  12. #include <linux/capability.h>
  13. #include <linux/mnt_namespace.h>
  14. #include <linux/user_namespace.h>
  15. #include <linux/namei.h>
  16. #include <linux/security.h>
  17. #include <linux/idr.h>
  18. #include <linux/acct.h> /* acct_auto_close_mnt */
  19. #include <linux/ramfs.h> /* init_rootfs */
  20. #include <linux/fs_struct.h> /* get_fs_root et.al. */
  21. #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
  22. #include <linux/uaccess.h>
  23. #include <linux/proc_ns.h>
  24. #include <linux/magic.h>
  25. #include "pnode.h"
  26. #include "internal.h"
  27. #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
  28. #define HASH_SIZE (1UL << HASH_SHIFT)
  29. static int event;
  30. static DEFINE_IDA(mnt_id_ida);
  31. static DEFINE_IDA(mnt_group_ida);
  32. static DEFINE_SPINLOCK(mnt_id_lock);
  33. static int mnt_id_start = 0;
  34. static int mnt_group_start = 1;
  35. static struct list_head *mount_hashtable __read_mostly;
  36. static struct list_head *mountpoint_hashtable __read_mostly;
  37. static struct kmem_cache *mnt_cache __read_mostly;
  38. static struct rw_semaphore namespace_sem;
  39. /* /sys/fs */
  40. struct kobject *fs_kobj;
  41. EXPORT_SYMBOL_GPL(fs_kobj);
  42. /*
  43. * vfsmount lock may be taken for read to prevent changes to the
  44. * vfsmount hash, ie. during mountpoint lookups or walking back
  45. * up the tree.
  46. *
  47. * It should be taken for write in all cases where the vfsmount
  48. * tree or hash is modified or when a vfsmount structure is modified.
  49. */
  50. DEFINE_BRLOCK(vfsmount_lock);
  51. static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
  52. {
  53. unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
  54. tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
  55. tmp = tmp + (tmp >> HASH_SHIFT);
  56. return tmp & (HASH_SIZE - 1);
  57. }
  58. #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
  59. /*
  60. * allocation is serialized by namespace_sem, but we need the spinlock to
  61. * serialize with freeing.
  62. */
  63. static int mnt_alloc_id(struct mount *mnt)
  64. {
  65. int res;
  66. retry:
  67. ida_pre_get(&mnt_id_ida, GFP_KERNEL);
  68. spin_lock(&mnt_id_lock);
  69. res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
  70. if (!res)
  71. mnt_id_start = mnt->mnt_id + 1;
  72. spin_unlock(&mnt_id_lock);
  73. if (res == -EAGAIN)
  74. goto retry;
  75. return res;
  76. }
  77. static void mnt_free_id(struct mount *mnt)
  78. {
  79. int id = mnt->mnt_id;
  80. spin_lock(&mnt_id_lock);
  81. ida_remove(&mnt_id_ida, id);
  82. if (mnt_id_start > id)
  83. mnt_id_start = id;
  84. spin_unlock(&mnt_id_lock);
  85. }
  86. /*
  87. * Allocate a new peer group ID
  88. *
  89. * mnt_group_ida is protected by namespace_sem
  90. */
  91. static int mnt_alloc_group_id(struct mount *mnt)
  92. {
  93. int res;
  94. if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
  95. return -ENOMEM;
  96. res = ida_get_new_above(&mnt_group_ida,
  97. mnt_group_start,
  98. &mnt->mnt_group_id);
  99. if (!res)
  100. mnt_group_start = mnt->mnt_group_id + 1;
  101. return res;
  102. }
  103. /*
  104. * Release a peer group ID
  105. */
  106. void mnt_release_group_id(struct mount *mnt)
  107. {
  108. int id = mnt->mnt_group_id;
  109. ida_remove(&mnt_group_ida, id);
  110. if (mnt_group_start > id)
  111. mnt_group_start = id;
  112. mnt->mnt_group_id = 0;
  113. }
  114. /*
  115. * vfsmount lock must be held for read
  116. */
  117. static inline void mnt_add_count(struct mount *mnt, int n)
  118. {
  119. #ifdef CONFIG_SMP
  120. this_cpu_add(mnt->mnt_pcp->mnt_count, n);
  121. #else
  122. preempt_disable();
  123. mnt->mnt_count += n;
  124. preempt_enable();
  125. #endif
  126. }
  127. /*
  128. * vfsmount lock must be held for write
  129. */
  130. unsigned int mnt_get_count(struct mount *mnt)
  131. {
  132. #ifdef CONFIG_SMP
  133. unsigned int count = 0;
  134. int cpu;
  135. for_each_possible_cpu(cpu) {
  136. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
  137. }
  138. return count;
  139. #else
  140. return mnt->mnt_count;
  141. #endif
  142. }
  143. static struct mount *alloc_vfsmnt(const char *name)
  144. {
  145. struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
  146. if (mnt) {
  147. int err;
  148. err = mnt_alloc_id(mnt);
  149. if (err)
  150. goto out_free_cache;
  151. if (name) {
  152. mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
  153. if (!mnt->mnt_devname)
  154. goto out_free_id;
  155. }
  156. #ifdef CONFIG_SMP
  157. mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
  158. if (!mnt->mnt_pcp)
  159. goto out_free_devname;
  160. this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
  161. #else
  162. mnt->mnt_count = 1;
  163. mnt->mnt_writers = 0;
  164. #endif
  165. INIT_LIST_HEAD(&mnt->mnt_hash);
  166. INIT_LIST_HEAD(&mnt->mnt_child);
  167. INIT_LIST_HEAD(&mnt->mnt_mounts);
  168. INIT_LIST_HEAD(&mnt->mnt_list);
  169. INIT_LIST_HEAD(&mnt->mnt_expire);
  170. INIT_LIST_HEAD(&mnt->mnt_share);
  171. INIT_LIST_HEAD(&mnt->mnt_slave_list);
  172. INIT_LIST_HEAD(&mnt->mnt_slave);
  173. #ifdef CONFIG_FSNOTIFY
  174. INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
  175. #endif
  176. }
  177. return mnt;
  178. #ifdef CONFIG_SMP
  179. out_free_devname:
  180. kfree(mnt->mnt_devname);
  181. #endif
  182. out_free_id:
  183. mnt_free_id(mnt);
  184. out_free_cache:
  185. kmem_cache_free(mnt_cache, mnt);
  186. return NULL;
  187. }
  188. /*
  189. * Most r/o checks on a fs are for operations that take
  190. * discrete amounts of time, like a write() or unlink().
  191. * We must keep track of when those operations start
  192. * (for permission checks) and when they end, so that
  193. * we can determine when writes are able to occur to
  194. * a filesystem.
  195. */
  196. /*
  197. * __mnt_is_readonly: check whether a mount is read-only
  198. * @mnt: the mount to check for its write status
  199. *
  200. * This shouldn't be used directly ouside of the VFS.
  201. * It does not guarantee that the filesystem will stay
  202. * r/w, just that it is right *now*. This can not and
  203. * should not be used in place of IS_RDONLY(inode).
  204. * mnt_want/drop_write() will _keep_ the filesystem
  205. * r/w.
  206. */
  207. int __mnt_is_readonly(struct vfsmount *mnt)
  208. {
  209. if (mnt->mnt_flags & MNT_READONLY)
  210. return 1;
  211. if (mnt->mnt_sb->s_flags & MS_RDONLY)
  212. return 1;
  213. return 0;
  214. }
  215. EXPORT_SYMBOL_GPL(__mnt_is_readonly);
  216. static inline void mnt_inc_writers(struct mount *mnt)
  217. {
  218. #ifdef CONFIG_SMP
  219. this_cpu_inc(mnt->mnt_pcp->mnt_writers);
  220. #else
  221. mnt->mnt_writers++;
  222. #endif
  223. }
  224. static inline void mnt_dec_writers(struct mount *mnt)
  225. {
  226. #ifdef CONFIG_SMP
  227. this_cpu_dec(mnt->mnt_pcp->mnt_writers);
  228. #else
  229. mnt->mnt_writers--;
  230. #endif
  231. }
  232. static unsigned int mnt_get_writers(struct mount *mnt)
  233. {
  234. #ifdef CONFIG_SMP
  235. unsigned int count = 0;
  236. int cpu;
  237. for_each_possible_cpu(cpu) {
  238. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
  239. }
  240. return count;
  241. #else
  242. return mnt->mnt_writers;
  243. #endif
  244. }
  245. static int mnt_is_readonly(struct vfsmount *mnt)
  246. {
  247. if (mnt->mnt_sb->s_readonly_remount)
  248. return 1;
  249. /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
  250. smp_rmb();
  251. return __mnt_is_readonly(mnt);
  252. }
  253. /*
  254. * Most r/o & frozen checks on a fs are for operations that take discrete
  255. * amounts of time, like a write() or unlink(). We must keep track of when
  256. * those operations start (for permission checks) and when they end, so that we
  257. * can determine when writes are able to occur to a filesystem.
  258. */
  259. /**
  260. * __mnt_want_write - get write access to a mount without freeze protection
  261. * @m: the mount on which to take a write
  262. *
  263. * This tells the low-level filesystem that a write is about to be performed to
  264. * it, and makes sure that writes are allowed (mnt it read-write) before
  265. * returning success. This operation does not protect against filesystem being
  266. * frozen. When the write operation is finished, __mnt_drop_write() must be
  267. * called. This is effectively a refcount.
  268. */
  269. int __mnt_want_write(struct vfsmount *m)
  270. {
  271. struct mount *mnt = real_mount(m);
  272. int ret = 0;
  273. preempt_disable();
  274. mnt_inc_writers(mnt);
  275. /*
  276. * The store to mnt_inc_writers must be visible before we pass
  277. * MNT_WRITE_HOLD loop below, so that the slowpath can see our
  278. * incremented count after it has set MNT_WRITE_HOLD.
  279. */
  280. smp_mb();
  281. while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
  282. cpu_relax();
  283. /*
  284. * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
  285. * be set to match its requirements. So we must not load that until
  286. * MNT_WRITE_HOLD is cleared.
  287. */
  288. smp_rmb();
  289. if (mnt_is_readonly(m)) {
  290. mnt_dec_writers(mnt);
  291. ret = -EROFS;
  292. }
  293. preempt_enable();
  294. return ret;
  295. }
  296. /**
  297. * mnt_want_write - get write access to a mount
  298. * @m: the mount on which to take a write
  299. *
  300. * This tells the low-level filesystem that a write is about to be performed to
  301. * it, and makes sure that writes are allowed (mount is read-write, filesystem
  302. * is not frozen) before returning success. When the write operation is
  303. * finished, mnt_drop_write() must be called. This is effectively a refcount.
  304. */
  305. int mnt_want_write(struct vfsmount *m)
  306. {
  307. int ret;
  308. sb_start_write(m->mnt_sb);
  309. ret = __mnt_want_write(m);
  310. if (ret)
  311. sb_end_write(m->mnt_sb);
  312. return ret;
  313. }
  314. EXPORT_SYMBOL_GPL(mnt_want_write);
  315. /**
  316. * mnt_clone_write - get write access to a mount
  317. * @mnt: the mount on which to take a write
  318. *
  319. * This is effectively like mnt_want_write, except
  320. * it must only be used to take an extra write reference
  321. * on a mountpoint that we already know has a write reference
  322. * on it. This allows some optimisation.
  323. *
  324. * After finished, mnt_drop_write must be called as usual to
  325. * drop the reference.
  326. */
  327. int mnt_clone_write(struct vfsmount *mnt)
  328. {
  329. /* superblock may be r/o */
  330. if (__mnt_is_readonly(mnt))
  331. return -EROFS;
  332. preempt_disable();
  333. mnt_inc_writers(real_mount(mnt));
  334. preempt_enable();
  335. return 0;
  336. }
  337. EXPORT_SYMBOL_GPL(mnt_clone_write);
  338. /**
  339. * __mnt_want_write_file - get write access to a file's mount
  340. * @file: the file who's mount on which to take a write
  341. *
  342. * This is like __mnt_want_write, but it takes a file and can
  343. * do some optimisations if the file is open for write already
  344. */
  345. int __mnt_want_write_file(struct file *file)
  346. {
  347. struct inode *inode = file_inode(file);
  348. if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
  349. return __mnt_want_write(file->f_path.mnt);
  350. else
  351. return mnt_clone_write(file->f_path.mnt);
  352. }
  353. /**
  354. * mnt_want_write_file - get write access to a file's mount
  355. * @file: the file who's mount on which to take a write
  356. *
  357. * This is like mnt_want_write, but it takes a file and can
  358. * do some optimisations if the file is open for write already
  359. */
  360. int mnt_want_write_file(struct file *file)
  361. {
  362. int ret;
  363. sb_start_write(file->f_path.mnt->mnt_sb);
  364. ret = __mnt_want_write_file(file);
  365. if (ret)
  366. sb_end_write(file->f_path.mnt->mnt_sb);
  367. return ret;
  368. }
  369. EXPORT_SYMBOL_GPL(mnt_want_write_file);
  370. /**
  371. * __mnt_drop_write - give up write access to a mount
  372. * @mnt: the mount on which to give up write access
  373. *
  374. * Tells the low-level filesystem that we are done
  375. * performing writes to it. Must be matched with
  376. * __mnt_want_write() call above.
  377. */
  378. void __mnt_drop_write(struct vfsmount *mnt)
  379. {
  380. preempt_disable();
  381. mnt_dec_writers(real_mount(mnt));
  382. preempt_enable();
  383. }
  384. /**
  385. * mnt_drop_write - give up write access to a mount
  386. * @mnt: the mount on which to give up write access
  387. *
  388. * Tells the low-level filesystem that we are done performing writes to it and
  389. * also allows filesystem to be frozen again. Must be matched with
  390. * mnt_want_write() call above.
  391. */
  392. void mnt_drop_write(struct vfsmount *mnt)
  393. {
  394. __mnt_drop_write(mnt);
  395. sb_end_write(mnt->mnt_sb);
  396. }
  397. EXPORT_SYMBOL_GPL(mnt_drop_write);
  398. void __mnt_drop_write_file(struct file *file)
  399. {
  400. __mnt_drop_write(file->f_path.mnt);
  401. }
  402. void mnt_drop_write_file(struct file *file)
  403. {
  404. mnt_drop_write(file->f_path.mnt);
  405. }
  406. EXPORT_SYMBOL(mnt_drop_write_file);
  407. static int mnt_make_readonly(struct mount *mnt)
  408. {
  409. int ret = 0;
  410. br_write_lock(&vfsmount_lock);
  411. mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
  412. /*
  413. * After storing MNT_WRITE_HOLD, we'll read the counters. This store
  414. * should be visible before we do.
  415. */
  416. smp_mb();
  417. /*
  418. * With writers on hold, if this value is zero, then there are
  419. * definitely no active writers (although held writers may subsequently
  420. * increment the count, they'll have to wait, and decrement it after
  421. * seeing MNT_READONLY).
  422. *
  423. * It is OK to have counter incremented on one CPU and decremented on
  424. * another: the sum will add up correctly. The danger would be when we
  425. * sum up each counter, if we read a counter before it is incremented,
  426. * but then read another CPU's count which it has been subsequently
  427. * decremented from -- we would see more decrements than we should.
  428. * MNT_WRITE_HOLD protects against this scenario, because
  429. * mnt_want_write first increments count, then smp_mb, then spins on
  430. * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
  431. * we're counting up here.
  432. */
  433. if (mnt_get_writers(mnt) > 0)
  434. ret = -EBUSY;
  435. else
  436. mnt->mnt.mnt_flags |= MNT_READONLY;
  437. /*
  438. * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
  439. * that become unheld will see MNT_READONLY.
  440. */
  441. smp_wmb();
  442. mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
  443. br_write_unlock(&vfsmount_lock);
  444. return ret;
  445. }
  446. static void __mnt_unmake_readonly(struct mount *mnt)
  447. {
  448. br_write_lock(&vfsmount_lock);
  449. mnt->mnt.mnt_flags &= ~MNT_READONLY;
  450. br_write_unlock(&vfsmount_lock);
  451. }
  452. int sb_prepare_remount_readonly(struct super_block *sb)
  453. {
  454. struct mount *mnt;
  455. int err = 0;
  456. /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
  457. if (atomic_long_read(&sb->s_remove_count))
  458. return -EBUSY;
  459. br_write_lock(&vfsmount_lock);
  460. list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
  461. if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
  462. mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
  463. smp_mb();
  464. if (mnt_get_writers(mnt) > 0) {
  465. err = -EBUSY;
  466. break;
  467. }
  468. }
  469. }
  470. if (!err && atomic_long_read(&sb->s_remove_count))
  471. err = -EBUSY;
  472. if (!err) {
  473. sb->s_readonly_remount = 1;
  474. smp_wmb();
  475. }
  476. list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
  477. if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
  478. mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
  479. }
  480. br_write_unlock(&vfsmount_lock);
  481. return err;
  482. }
  483. static void free_vfsmnt(struct mount *mnt)
  484. {
  485. kfree(mnt->mnt_devname);
  486. mnt_free_id(mnt);
  487. #ifdef CONFIG_SMP
  488. free_percpu(mnt->mnt_pcp);
  489. #endif
  490. kmem_cache_free(mnt_cache, mnt);
  491. }
  492. /*
  493. * find the first or last mount at @dentry on vfsmount @mnt depending on
  494. * @dir. If @dir is set return the first mount else return the last mount.
  495. * vfsmount_lock must be held for read or write.
  496. */
  497. struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
  498. int dir)
  499. {
  500. struct list_head *head = mount_hashtable + hash(mnt, dentry);
  501. struct list_head *tmp = head;
  502. struct mount *p, *found = NULL;
  503. for (;;) {
  504. tmp = dir ? tmp->next : tmp->prev;
  505. p = NULL;
  506. if (tmp == head)
  507. break;
  508. p = list_entry(tmp, struct mount, mnt_hash);
  509. if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) {
  510. found = p;
  511. break;
  512. }
  513. }
  514. return found;
  515. }
  516. /*
  517. * lookup_mnt - Return the first child mount mounted at path
  518. *
  519. * "First" means first mounted chronologically. If you create the
  520. * following mounts:
  521. *
  522. * mount /dev/sda1 /mnt
  523. * mount /dev/sda2 /mnt
  524. * mount /dev/sda3 /mnt
  525. *
  526. * Then lookup_mnt() on the base /mnt dentry in the root mount will
  527. * return successively the root dentry and vfsmount of /dev/sda1, then
  528. * /dev/sda2, then /dev/sda3, then NULL.
  529. *
  530. * lookup_mnt takes a reference to the found vfsmount.
  531. */
  532. struct vfsmount *lookup_mnt(struct path *path)
  533. {
  534. struct mount *child_mnt;
  535. br_read_lock(&vfsmount_lock);
  536. child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
  537. if (child_mnt) {
  538. mnt_add_count(child_mnt, 1);
  539. br_read_unlock(&vfsmount_lock);
  540. return &child_mnt->mnt;
  541. } else {
  542. br_read_unlock(&vfsmount_lock);
  543. return NULL;
  544. }
  545. }
  546. static struct mountpoint *new_mountpoint(struct dentry *dentry)
  547. {
  548. struct list_head *chain = mountpoint_hashtable + hash(NULL, dentry);
  549. struct mountpoint *mp;
  550. list_for_each_entry(mp, chain, m_hash) {
  551. if (mp->m_dentry == dentry) {
  552. /* might be worth a WARN_ON() */
  553. if (d_unlinked(dentry))
  554. return ERR_PTR(-ENOENT);
  555. mp->m_count++;
  556. return mp;
  557. }
  558. }
  559. mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
  560. if (!mp)
  561. return ERR_PTR(-ENOMEM);
  562. spin_lock(&dentry->d_lock);
  563. if (d_unlinked(dentry)) {
  564. spin_unlock(&dentry->d_lock);
  565. kfree(mp);
  566. return ERR_PTR(-ENOENT);
  567. }
  568. dentry->d_flags |= DCACHE_MOUNTED;
  569. spin_unlock(&dentry->d_lock);
  570. mp->m_dentry = dentry;
  571. mp->m_count = 1;
  572. list_add(&mp->m_hash, chain);
  573. return mp;
  574. }
  575. static void put_mountpoint(struct mountpoint *mp)
  576. {
  577. if (!--mp->m_count) {
  578. struct dentry *dentry = mp->m_dentry;
  579. spin_lock(&dentry->d_lock);
  580. dentry->d_flags &= ~DCACHE_MOUNTED;
  581. spin_unlock(&dentry->d_lock);
  582. list_del(&mp->m_hash);
  583. kfree(mp);
  584. }
  585. }
  586. static inline int check_mnt(struct mount *mnt)
  587. {
  588. return mnt->mnt_ns == current->nsproxy->mnt_ns;
  589. }
  590. /*
  591. * vfsmount lock must be held for write
  592. */
  593. static void touch_mnt_namespace(struct mnt_namespace *ns)
  594. {
  595. if (ns) {
  596. ns->event = ++event;
  597. wake_up_interruptible(&ns->poll);
  598. }
  599. }
  600. /*
  601. * vfsmount lock must be held for write
  602. */
  603. static void __touch_mnt_namespace(struct mnt_namespace *ns)
  604. {
  605. if (ns && ns->event != event) {
  606. ns->event = event;
  607. wake_up_interruptible(&ns->poll);
  608. }
  609. }
  610. /*
  611. * vfsmount lock must be held for write
  612. */
  613. static void detach_mnt(struct mount *mnt, struct path *old_path)
  614. {
  615. old_path->dentry = mnt->mnt_mountpoint;
  616. old_path->mnt = &mnt->mnt_parent->mnt;
  617. mnt->mnt_parent = mnt;
  618. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  619. list_del_init(&mnt->mnt_child);
  620. list_del_init(&mnt->mnt_hash);
  621. put_mountpoint(mnt->mnt_mp);
  622. mnt->mnt_mp = NULL;
  623. }
  624. /*
  625. * vfsmount lock must be held for write
  626. */
  627. void mnt_set_mountpoint(struct mount *mnt,
  628. struct mountpoint *mp,
  629. struct mount *child_mnt)
  630. {
  631. mp->m_count++;
  632. mnt_add_count(mnt, 1); /* essentially, that's mntget */
  633. child_mnt->mnt_mountpoint = dget(mp->m_dentry);
  634. child_mnt->mnt_parent = mnt;
  635. child_mnt->mnt_mp = mp;
  636. }
  637. /*
  638. * vfsmount lock must be held for write
  639. */
  640. static void attach_mnt(struct mount *mnt,
  641. struct mount *parent,
  642. struct mountpoint *mp)
  643. {
  644. mnt_set_mountpoint(parent, mp, mnt);
  645. list_add_tail(&mnt->mnt_hash, mount_hashtable +
  646. hash(&parent->mnt, mp->m_dentry));
  647. list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
  648. }
  649. /*
  650. * vfsmount lock must be held for write
  651. */
  652. static void commit_tree(struct mount *mnt)
  653. {
  654. struct mount *parent = mnt->mnt_parent;
  655. struct mount *m;
  656. LIST_HEAD(head);
  657. struct mnt_namespace *n = parent->mnt_ns;
  658. BUG_ON(parent == mnt);
  659. list_add_tail(&head, &mnt->mnt_list);
  660. list_for_each_entry(m, &head, mnt_list)
  661. m->mnt_ns = n;
  662. list_splice(&head, n->list.prev);
  663. list_add_tail(&mnt->mnt_hash, mount_hashtable +
  664. hash(&parent->mnt, mnt->mnt_mountpoint));
  665. list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
  666. touch_mnt_namespace(n);
  667. }
  668. static struct mount *next_mnt(struct mount *p, struct mount *root)
  669. {
  670. struct list_head *next = p->mnt_mounts.next;
  671. if (next == &p->mnt_mounts) {
  672. while (1) {
  673. if (p == root)
  674. return NULL;
  675. next = p->mnt_child.next;
  676. if (next != &p->mnt_parent->mnt_mounts)
  677. break;
  678. p = p->mnt_parent;
  679. }
  680. }
  681. return list_entry(next, struct mount, mnt_child);
  682. }
  683. static struct mount *skip_mnt_tree(struct mount *p)
  684. {
  685. struct list_head *prev = p->mnt_mounts.prev;
  686. while (prev != &p->mnt_mounts) {
  687. p = list_entry(prev, struct mount, mnt_child);
  688. prev = p->mnt_mounts.prev;
  689. }
  690. return p;
  691. }
  692. struct vfsmount *
  693. vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
  694. {
  695. struct mount *mnt;
  696. struct dentry *root;
  697. if (!type)
  698. return ERR_PTR(-ENODEV);
  699. mnt = alloc_vfsmnt(name);
  700. if (!mnt)
  701. return ERR_PTR(-ENOMEM);
  702. if (flags & MS_KERNMOUNT)
  703. mnt->mnt.mnt_flags = MNT_INTERNAL;
  704. root = mount_fs(type, flags, name, data);
  705. if (IS_ERR(root)) {
  706. free_vfsmnt(mnt);
  707. return ERR_CAST(root);
  708. }
  709. mnt->mnt.mnt_root = root;
  710. mnt->mnt.mnt_sb = root->d_sb;
  711. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  712. mnt->mnt_parent = mnt;
  713. br_write_lock(&vfsmount_lock);
  714. list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
  715. br_write_unlock(&vfsmount_lock);
  716. return &mnt->mnt;
  717. }
  718. EXPORT_SYMBOL_GPL(vfs_kern_mount);
  719. static struct mount *clone_mnt(struct mount *old, struct dentry *root,
  720. int flag)
  721. {
  722. struct super_block *sb = old->mnt.mnt_sb;
  723. struct mount *mnt;
  724. int err;
  725. mnt = alloc_vfsmnt(old->mnt_devname);
  726. if (!mnt)
  727. return ERR_PTR(-ENOMEM);
  728. if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
  729. mnt->mnt_group_id = 0; /* not a peer of original */
  730. else
  731. mnt->mnt_group_id = old->mnt_group_id;
  732. if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
  733. err = mnt_alloc_group_id(mnt);
  734. if (err)
  735. goto out_free;
  736. }
  737. mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
  738. /* Don't allow unprivileged users to change mount flags */
  739. if ((flag & CL_UNPRIVILEGED) && (mnt->mnt.mnt_flags & MNT_READONLY))
  740. mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
  741. atomic_inc(&sb->s_active);
  742. mnt->mnt.mnt_sb = sb;
  743. mnt->mnt.mnt_root = dget(root);
  744. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  745. mnt->mnt_parent = mnt;
  746. br_write_lock(&vfsmount_lock);
  747. list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
  748. br_write_unlock(&vfsmount_lock);
  749. if ((flag & CL_SLAVE) ||
  750. ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
  751. list_add(&mnt->mnt_slave, &old->mnt_slave_list);
  752. mnt->mnt_master = old;
  753. CLEAR_MNT_SHARED(mnt);
  754. } else if (!(flag & CL_PRIVATE)) {
  755. if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
  756. list_add(&mnt->mnt_share, &old->mnt_share);
  757. if (IS_MNT_SLAVE(old))
  758. list_add(&mnt->mnt_slave, &old->mnt_slave);
  759. mnt->mnt_master = old->mnt_master;
  760. }
  761. if (flag & CL_MAKE_SHARED)
  762. set_mnt_shared(mnt);
  763. /* stick the duplicate mount on the same expiry list
  764. * as the original if that was on one */
  765. if (flag & CL_EXPIRE) {
  766. if (!list_empty(&old->mnt_expire))
  767. list_add(&mnt->mnt_expire, &old->mnt_expire);
  768. }
  769. return mnt;
  770. out_free:
  771. free_vfsmnt(mnt);
  772. return ERR_PTR(err);
  773. }
  774. static inline void mntfree(struct mount *mnt)
  775. {
  776. struct vfsmount *m = &mnt->mnt;
  777. struct super_block *sb = m->mnt_sb;
  778. /*
  779. * This probably indicates that somebody messed
  780. * up a mnt_want/drop_write() pair. If this
  781. * happens, the filesystem was probably unable
  782. * to make r/w->r/o transitions.
  783. */
  784. /*
  785. * The locking used to deal with mnt_count decrement provides barriers,
  786. * so mnt_get_writers() below is safe.
  787. */
  788. WARN_ON(mnt_get_writers(mnt));
  789. fsnotify_vfsmount_delete(m);
  790. dput(m->mnt_root);
  791. free_vfsmnt(mnt);
  792. deactivate_super(sb);
  793. }
  794. static void mntput_no_expire(struct mount *mnt)
  795. {
  796. put_again:
  797. #ifdef CONFIG_SMP
  798. br_read_lock(&vfsmount_lock);
  799. if (likely(mnt->mnt_ns)) {
  800. /* shouldn't be the last one */
  801. mnt_add_count(mnt, -1);
  802. br_read_unlock(&vfsmount_lock);
  803. return;
  804. }
  805. br_read_unlock(&vfsmount_lock);
  806. br_write_lock(&vfsmount_lock);
  807. mnt_add_count(mnt, -1);
  808. if (mnt_get_count(mnt)) {
  809. br_write_unlock(&vfsmount_lock);
  810. return;
  811. }
  812. #else
  813. mnt_add_count(mnt, -1);
  814. if (likely(mnt_get_count(mnt)))
  815. return;
  816. br_write_lock(&vfsmount_lock);
  817. #endif
  818. if (unlikely(mnt->mnt_pinned)) {
  819. mnt_add_count(mnt, mnt->mnt_pinned + 1);
  820. mnt->mnt_pinned = 0;
  821. br_write_unlock(&vfsmount_lock);
  822. acct_auto_close_mnt(&mnt->mnt);
  823. goto put_again;
  824. }
  825. list_del(&mnt->mnt_instance);
  826. br_write_unlock(&vfsmount_lock);
  827. mntfree(mnt);
  828. }
  829. void mntput(struct vfsmount *mnt)
  830. {
  831. if (mnt) {
  832. struct mount *m = real_mount(mnt);
  833. /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
  834. if (unlikely(m->mnt_expiry_mark))
  835. m->mnt_expiry_mark = 0;
  836. mntput_no_expire(m);
  837. }
  838. }
  839. EXPORT_SYMBOL(mntput);
  840. struct vfsmount *mntget(struct vfsmount *mnt)
  841. {
  842. if (mnt)
  843. mnt_add_count(real_mount(mnt), 1);
  844. return mnt;
  845. }
  846. EXPORT_SYMBOL(mntget);
  847. void mnt_pin(struct vfsmount *mnt)
  848. {
  849. br_write_lock(&vfsmount_lock);
  850. real_mount(mnt)->mnt_pinned++;
  851. br_write_unlock(&vfsmount_lock);
  852. }
  853. EXPORT_SYMBOL(mnt_pin);
  854. void mnt_unpin(struct vfsmount *m)
  855. {
  856. struct mount *mnt = real_mount(m);
  857. br_write_lock(&vfsmount_lock);
  858. if (mnt->mnt_pinned) {
  859. mnt_add_count(mnt, 1);
  860. mnt->mnt_pinned--;
  861. }
  862. br_write_unlock(&vfsmount_lock);
  863. }
  864. EXPORT_SYMBOL(mnt_unpin);
  865. static inline void mangle(struct seq_file *m, const char *s)
  866. {
  867. seq_escape(m, s, " \t\n\\");
  868. }
  869. /*
  870. * Simple .show_options callback for filesystems which don't want to
  871. * implement more complex mount option showing.
  872. *
  873. * See also save_mount_options().
  874. */
  875. int generic_show_options(struct seq_file *m, struct dentry *root)
  876. {
  877. const char *options;
  878. rcu_read_lock();
  879. options = rcu_dereference(root->d_sb->s_options);
  880. if (options != NULL && options[0]) {
  881. seq_putc(m, ',');
  882. mangle(m, options);
  883. }
  884. rcu_read_unlock();
  885. return 0;
  886. }
  887. EXPORT_SYMBOL(generic_show_options);
  888. /*
  889. * If filesystem uses generic_show_options(), this function should be
  890. * called from the fill_super() callback.
  891. *
  892. * The .remount_fs callback usually needs to be handled in a special
  893. * way, to make sure, that previous options are not overwritten if the
  894. * remount fails.
  895. *
  896. * Also note, that if the filesystem's .remount_fs function doesn't
  897. * reset all options to their default value, but changes only newly
  898. * given options, then the displayed options will not reflect reality
  899. * any more.
  900. */
  901. void save_mount_options(struct super_block *sb, char *options)
  902. {
  903. BUG_ON(sb->s_options);
  904. rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
  905. }
  906. EXPORT_SYMBOL(save_mount_options);
  907. void replace_mount_options(struct super_block *sb, char *options)
  908. {
  909. char *old = sb->s_options;
  910. rcu_assign_pointer(sb->s_options, options);
  911. if (old) {
  912. synchronize_rcu();
  913. kfree(old);
  914. }
  915. }
  916. EXPORT_SYMBOL(replace_mount_options);
  917. #ifdef CONFIG_PROC_FS
  918. /* iterator; we want it to have access to namespace_sem, thus here... */
  919. static void *m_start(struct seq_file *m, loff_t *pos)
  920. {
  921. struct proc_mounts *p = proc_mounts(m);
  922. down_read(&namespace_sem);
  923. return seq_list_start(&p->ns->list, *pos);
  924. }
  925. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  926. {
  927. struct proc_mounts *p = proc_mounts(m);
  928. return seq_list_next(v, &p->ns->list, pos);
  929. }
  930. static void m_stop(struct seq_file *m, void *v)
  931. {
  932. up_read(&namespace_sem);
  933. }
  934. static int m_show(struct seq_file *m, void *v)
  935. {
  936. struct proc_mounts *p = proc_mounts(m);
  937. struct mount *r = list_entry(v, struct mount, mnt_list);
  938. return p->show(m, &r->mnt);
  939. }
  940. const struct seq_operations mounts_op = {
  941. .start = m_start,
  942. .next = m_next,
  943. .stop = m_stop,
  944. .show = m_show,
  945. };
  946. #endif /* CONFIG_PROC_FS */
  947. /**
  948. * may_umount_tree - check if a mount tree is busy
  949. * @mnt: root of mount tree
  950. *
  951. * This is called to check if a tree of mounts has any
  952. * open files, pwds, chroots or sub mounts that are
  953. * busy.
  954. */
  955. int may_umount_tree(struct vfsmount *m)
  956. {
  957. struct mount *mnt = real_mount(m);
  958. int actual_refs = 0;
  959. int minimum_refs = 0;
  960. struct mount *p;
  961. BUG_ON(!m);
  962. /* write lock needed for mnt_get_count */
  963. br_write_lock(&vfsmount_lock);
  964. for (p = mnt; p; p = next_mnt(p, mnt)) {
  965. actual_refs += mnt_get_count(p);
  966. minimum_refs += 2;
  967. }
  968. br_write_unlock(&vfsmount_lock);
  969. if (actual_refs > minimum_refs)
  970. return 0;
  971. return 1;
  972. }
  973. EXPORT_SYMBOL(may_umount_tree);
  974. /**
  975. * may_umount - check if a mount point is busy
  976. * @mnt: root of mount
  977. *
  978. * This is called to check if a mount point has any
  979. * open files, pwds, chroots or sub mounts. If the
  980. * mount has sub mounts this will return busy
  981. * regardless of whether the sub mounts are busy.
  982. *
  983. * Doesn't take quota and stuff into account. IOW, in some cases it will
  984. * give false negatives. The main reason why it's here is that we need
  985. * a non-destructive way to look for easily umountable filesystems.
  986. */
  987. int may_umount(struct vfsmount *mnt)
  988. {
  989. int ret = 1;
  990. down_read(&namespace_sem);
  991. br_write_lock(&vfsmount_lock);
  992. if (propagate_mount_busy(real_mount(mnt), 2))
  993. ret = 0;
  994. br_write_unlock(&vfsmount_lock);
  995. up_read(&namespace_sem);
  996. return ret;
  997. }
  998. EXPORT_SYMBOL(may_umount);
  999. static LIST_HEAD(unmounted); /* protected by namespace_sem */
  1000. static void namespace_unlock(void)
  1001. {
  1002. struct mount *mnt;
  1003. LIST_HEAD(head);
  1004. if (likely(list_empty(&unmounted))) {
  1005. up_write(&namespace_sem);
  1006. return;
  1007. }
  1008. list_splice_init(&unmounted, &head);
  1009. up_write(&namespace_sem);
  1010. while (!list_empty(&head)) {
  1011. mnt = list_first_entry(&head, struct mount, mnt_hash);
  1012. list_del_init(&mnt->mnt_hash);
  1013. if (mnt_has_parent(mnt)) {
  1014. struct dentry *dentry;
  1015. struct mount *m;
  1016. br_write_lock(&vfsmount_lock);
  1017. dentry = mnt->mnt_mountpoint;
  1018. m = mnt->mnt_parent;
  1019. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  1020. mnt->mnt_parent = mnt;
  1021. m->mnt_ghosts--;
  1022. br_write_unlock(&vfsmount_lock);
  1023. dput(dentry);
  1024. mntput(&m->mnt);
  1025. }
  1026. mntput(&mnt->mnt);
  1027. }
  1028. }
  1029. static inline void namespace_lock(void)
  1030. {
  1031. down_write(&namespace_sem);
  1032. }
  1033. /*
  1034. * vfsmount lock must be held for write
  1035. * namespace_sem must be held for write
  1036. */
  1037. void umount_tree(struct mount *mnt, int propagate)
  1038. {
  1039. LIST_HEAD(tmp_list);
  1040. struct mount *p;
  1041. for (p = mnt; p; p = next_mnt(p, mnt))
  1042. list_move(&p->mnt_hash, &tmp_list);
  1043. if (propagate)
  1044. propagate_umount(&tmp_list);
  1045. list_for_each_entry(p, &tmp_list, mnt_hash) {
  1046. list_del_init(&p->mnt_expire);
  1047. list_del_init(&p->mnt_list);
  1048. __touch_mnt_namespace(p->mnt_ns);
  1049. p->mnt_ns = NULL;
  1050. list_del_init(&p->mnt_child);
  1051. if (mnt_has_parent(p)) {
  1052. p->mnt_parent->mnt_ghosts++;
  1053. put_mountpoint(p->mnt_mp);
  1054. p->mnt_mp = NULL;
  1055. }
  1056. change_mnt_propagation(p, MS_PRIVATE);
  1057. }
  1058. list_splice(&tmp_list, &unmounted);
  1059. }
  1060. static void shrink_submounts(struct mount *mnt);
  1061. static int do_umount(struct mount *mnt, int flags)
  1062. {
  1063. struct super_block *sb = mnt->mnt.mnt_sb;
  1064. int retval;
  1065. retval = security_sb_umount(&mnt->mnt, flags);
  1066. if (retval)
  1067. return retval;
  1068. /*
  1069. * Allow userspace to request a mountpoint be expired rather than
  1070. * unmounting unconditionally. Unmount only happens if:
  1071. * (1) the mark is already set (the mark is cleared by mntput())
  1072. * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
  1073. */
  1074. if (flags & MNT_EXPIRE) {
  1075. if (&mnt->mnt == current->fs->root.mnt ||
  1076. flags & (MNT_FORCE | MNT_DETACH))
  1077. return -EINVAL;
  1078. /*
  1079. * probably don't strictly need the lock here if we examined
  1080. * all race cases, but it's a slowpath.
  1081. */
  1082. br_write_lock(&vfsmount_lock);
  1083. if (mnt_get_count(mnt) != 2) {
  1084. br_write_unlock(&vfsmount_lock);
  1085. return -EBUSY;
  1086. }
  1087. br_write_unlock(&vfsmount_lock);
  1088. if (!xchg(&mnt->mnt_expiry_mark, 1))
  1089. return -EAGAIN;
  1090. }
  1091. /*
  1092. * If we may have to abort operations to get out of this
  1093. * mount, and they will themselves hold resources we must
  1094. * allow the fs to do things. In the Unix tradition of
  1095. * 'Gee thats tricky lets do it in userspace' the umount_begin
  1096. * might fail to complete on the first run through as other tasks
  1097. * must return, and the like. Thats for the mount program to worry
  1098. * about for the moment.
  1099. */
  1100. if (flags & MNT_FORCE && sb->s_op->umount_begin) {
  1101. sb->s_op->umount_begin(sb);
  1102. }
  1103. /*
  1104. * No sense to grab the lock for this test, but test itself looks
  1105. * somewhat bogus. Suggestions for better replacement?
  1106. * Ho-hum... In principle, we might treat that as umount + switch
  1107. * to rootfs. GC would eventually take care of the old vfsmount.
  1108. * Actually it makes sense, especially if rootfs would contain a
  1109. * /reboot - static binary that would close all descriptors and
  1110. * call reboot(9). Then init(8) could umount root and exec /reboot.
  1111. */
  1112. if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
  1113. /*
  1114. * Special case for "unmounting" root ...
  1115. * we just try to remount it readonly.
  1116. */
  1117. down_write(&sb->s_umount);
  1118. if (!(sb->s_flags & MS_RDONLY))
  1119. retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
  1120. up_write(&sb->s_umount);
  1121. return retval;
  1122. }
  1123. namespace_lock();
  1124. br_write_lock(&vfsmount_lock);
  1125. event++;
  1126. if (!(flags & MNT_DETACH))
  1127. shrink_submounts(mnt);
  1128. retval = -EBUSY;
  1129. if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
  1130. if (!list_empty(&mnt->mnt_list))
  1131. umount_tree(mnt, 1);
  1132. retval = 0;
  1133. }
  1134. br_write_unlock(&vfsmount_lock);
  1135. namespace_unlock();
  1136. return retval;
  1137. }
  1138. /*
  1139. * Is the caller allowed to modify his namespace?
  1140. */
  1141. static inline bool may_mount(void)
  1142. {
  1143. return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
  1144. }
  1145. /*
  1146. * Now umount can handle mount points as well as block devices.
  1147. * This is important for filesystems which use unnamed block devices.
  1148. *
  1149. * We now support a flag for forced unmount like the other 'big iron'
  1150. * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
  1151. */
  1152. SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
  1153. {
  1154. struct path path;
  1155. struct mount *mnt;
  1156. int retval;
  1157. int lookup_flags = 0;
  1158. if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
  1159. return -EINVAL;
  1160. if (!may_mount())
  1161. return -EPERM;
  1162. if (!(flags & UMOUNT_NOFOLLOW))
  1163. lookup_flags |= LOOKUP_FOLLOW;
  1164. retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
  1165. if (retval)
  1166. goto out;
  1167. mnt = real_mount(path.mnt);
  1168. retval = -EINVAL;
  1169. if (path.dentry != path.mnt->mnt_root)
  1170. goto dput_and_out;
  1171. if (!check_mnt(mnt))
  1172. goto dput_and_out;
  1173. retval = do_umount(mnt, flags);
  1174. dput_and_out:
  1175. /* we mustn't call path_put() as that would clear mnt_expiry_mark */
  1176. dput(path.dentry);
  1177. mntput_no_expire(mnt);
  1178. out:
  1179. return retval;
  1180. }
  1181. #ifdef __ARCH_WANT_SYS_OLDUMOUNT
  1182. /*
  1183. * The 2.0 compatible umount. No flags.
  1184. */
  1185. SYSCALL_DEFINE1(oldumount, char __user *, name)
  1186. {
  1187. return sys_umount(name, 0);
  1188. }
  1189. #endif
  1190. static bool mnt_ns_loop(struct path *path)
  1191. {
  1192. /* Could bind mounting the mount namespace inode cause a
  1193. * mount namespace loop?
  1194. */
  1195. struct inode *inode = path->dentry->d_inode;
  1196. struct proc_ns *ei;
  1197. struct mnt_namespace *mnt_ns;
  1198. if (!proc_ns_inode(inode))
  1199. return false;
  1200. ei = get_proc_ns(inode);
  1201. if (ei->ns_ops != &mntns_operations)
  1202. return false;
  1203. mnt_ns = ei->ns;
  1204. return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
  1205. }
  1206. struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
  1207. int flag)
  1208. {
  1209. struct mount *res, *p, *q, *r, *parent;
  1210. if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
  1211. return ERR_PTR(-EINVAL);
  1212. res = q = clone_mnt(mnt, dentry, flag);
  1213. if (IS_ERR(q))
  1214. return q;
  1215. q->mnt_mountpoint = mnt->mnt_mountpoint;
  1216. p = mnt;
  1217. list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
  1218. struct mount *s;
  1219. if (!is_subdir(r->mnt_mountpoint, dentry))
  1220. continue;
  1221. for (s = r; s; s = next_mnt(s, r)) {
  1222. if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
  1223. s = skip_mnt_tree(s);
  1224. continue;
  1225. }
  1226. while (p != s->mnt_parent) {
  1227. p = p->mnt_parent;
  1228. q = q->mnt_parent;
  1229. }
  1230. p = s;
  1231. parent = q;
  1232. q = clone_mnt(p, p->mnt.mnt_root, flag);
  1233. if (IS_ERR(q))
  1234. goto out;
  1235. br_write_lock(&vfsmount_lock);
  1236. list_add_tail(&q->mnt_list, &res->mnt_list);
  1237. attach_mnt(q, parent, p->mnt_mp);
  1238. br_write_unlock(&vfsmount_lock);
  1239. }
  1240. }
  1241. return res;
  1242. out:
  1243. if (res) {
  1244. br_write_lock(&vfsmount_lock);
  1245. umount_tree(res, 0);
  1246. br_write_unlock(&vfsmount_lock);
  1247. }
  1248. return q;
  1249. }
  1250. /* Caller should check returned pointer for errors */
  1251. struct vfsmount *collect_mounts(struct path *path)
  1252. {
  1253. struct mount *tree;
  1254. namespace_lock();
  1255. tree = copy_tree(real_mount(path->mnt), path->dentry,
  1256. CL_COPY_ALL | CL_PRIVATE);
  1257. namespace_unlock();
  1258. if (IS_ERR(tree))
  1259. return NULL;
  1260. return &tree->mnt;
  1261. }
  1262. void drop_collected_mounts(struct vfsmount *mnt)
  1263. {
  1264. namespace_lock();
  1265. br_write_lock(&vfsmount_lock);
  1266. umount_tree(real_mount(mnt), 0);
  1267. br_write_unlock(&vfsmount_lock);
  1268. namespace_unlock();
  1269. }
  1270. int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
  1271. struct vfsmount *root)
  1272. {
  1273. struct mount *mnt;
  1274. int res = f(root, arg);
  1275. if (res)
  1276. return res;
  1277. list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
  1278. res = f(&mnt->mnt, arg);
  1279. if (res)
  1280. return res;
  1281. }
  1282. return 0;
  1283. }
  1284. static void cleanup_group_ids(struct mount *mnt, struct mount *end)
  1285. {
  1286. struct mount *p;
  1287. for (p = mnt; p != end; p = next_mnt(p, mnt)) {
  1288. if (p->mnt_group_id && !IS_MNT_SHARED(p))
  1289. mnt_release_group_id(p);
  1290. }
  1291. }
  1292. static int invent_group_ids(struct mount *mnt, bool recurse)
  1293. {
  1294. struct mount *p;
  1295. for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
  1296. if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
  1297. int err = mnt_alloc_group_id(p);
  1298. if (err) {
  1299. cleanup_group_ids(mnt, p);
  1300. return err;
  1301. }
  1302. }
  1303. }
  1304. return 0;
  1305. }
  1306. /*
  1307. * @source_mnt : mount tree to be attached
  1308. * @nd : place the mount tree @source_mnt is attached
  1309. * @parent_nd : if non-null, detach the source_mnt from its parent and
  1310. * store the parent mount and mountpoint dentry.
  1311. * (done when source_mnt is moved)
  1312. *
  1313. * NOTE: in the table below explains the semantics when a source mount
  1314. * of a given type is attached to a destination mount of a given type.
  1315. * ---------------------------------------------------------------------------
  1316. * | BIND MOUNT OPERATION |
  1317. * |**************************************************************************
  1318. * | source-->| shared | private | slave | unbindable |
  1319. * | dest | | | | |
  1320. * | | | | | | |
  1321. * | v | | | | |
  1322. * |**************************************************************************
  1323. * | shared | shared (++) | shared (+) | shared(+++)| invalid |
  1324. * | | | | | |
  1325. * |non-shared| shared (+) | private | slave (*) | invalid |
  1326. * ***************************************************************************
  1327. * A bind operation clones the source mount and mounts the clone on the
  1328. * destination mount.
  1329. *
  1330. * (++) the cloned mount is propagated to all the mounts in the propagation
  1331. * tree of the destination mount and the cloned mount is added to
  1332. * the peer group of the source mount.
  1333. * (+) the cloned mount is created under the destination mount and is marked
  1334. * as shared. The cloned mount is added to the peer group of the source
  1335. * mount.
  1336. * (+++) the mount is propagated to all the mounts in the propagation tree
  1337. * of the destination mount and the cloned mount is made slave
  1338. * of the same master as that of the source mount. The cloned mount
  1339. * is marked as 'shared and slave'.
  1340. * (*) the cloned mount is made a slave of the same master as that of the
  1341. * source mount.
  1342. *
  1343. * ---------------------------------------------------------------------------
  1344. * | MOVE MOUNT OPERATION |
  1345. * |**************************************************************************
  1346. * | source-->| shared | private | slave | unbindable |
  1347. * | dest | | | | |
  1348. * | | | | | | |
  1349. * | v | | | | |
  1350. * |**************************************************************************
  1351. * | shared | shared (+) | shared (+) | shared(+++) | invalid |
  1352. * | | | | | |
  1353. * |non-shared| shared (+*) | private | slave (*) | unbindable |
  1354. * ***************************************************************************
  1355. *
  1356. * (+) the mount is moved to the destination. And is then propagated to
  1357. * all the mounts in the propagation tree of the destination mount.
  1358. * (+*) the mount is moved to the destination.
  1359. * (+++) the mount is moved to the destination and is then propagated to
  1360. * all the mounts belonging to the destination mount's propagation tree.
  1361. * the mount is marked as 'shared and slave'.
  1362. * (*) the mount continues to be a slave at the new location.
  1363. *
  1364. * if the source mount is a tree, the operations explained above is
  1365. * applied to each mount in the tree.
  1366. * Must be called without spinlocks held, since this function can sleep
  1367. * in allocations.
  1368. */
  1369. static int attach_recursive_mnt(struct mount *source_mnt,
  1370. struct mount *dest_mnt,
  1371. struct mountpoint *dest_mp,
  1372. struct path *parent_path)
  1373. {
  1374. LIST_HEAD(tree_list);
  1375. struct mount *child, *p;
  1376. int err;
  1377. if (IS_MNT_SHARED(dest_mnt)) {
  1378. err = invent_group_ids(source_mnt, true);
  1379. if (err)
  1380. goto out;
  1381. }
  1382. err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
  1383. if (err)
  1384. goto out_cleanup_ids;
  1385. br_write_lock(&vfsmount_lock);
  1386. if (IS_MNT_SHARED(dest_mnt)) {
  1387. for (p = source_mnt; p; p = next_mnt(p, source_mnt))
  1388. set_mnt_shared(p);
  1389. }
  1390. if (parent_path) {
  1391. detach_mnt(source_mnt, parent_path);
  1392. attach_mnt(source_mnt, dest_mnt, dest_mp);
  1393. touch_mnt_namespace(source_mnt->mnt_ns);
  1394. } else {
  1395. mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
  1396. commit_tree(source_mnt);
  1397. }
  1398. list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
  1399. list_del_init(&child->mnt_hash);
  1400. commit_tree(child);
  1401. }
  1402. br_write_unlock(&vfsmount_lock);
  1403. return 0;
  1404. out_cleanup_ids:
  1405. if (IS_MNT_SHARED(dest_mnt))
  1406. cleanup_group_ids(source_mnt, NULL);
  1407. out:
  1408. return err;
  1409. }
  1410. static struct mountpoint *lock_mount(struct path *path)
  1411. {
  1412. struct vfsmount *mnt;
  1413. struct dentry *dentry = path->dentry;
  1414. retry:
  1415. mutex_lock(&dentry->d_inode->i_mutex);
  1416. if (unlikely(cant_mount(dentry))) {
  1417. mutex_unlock(&dentry->d_inode->i_mutex);
  1418. return ERR_PTR(-ENOENT);
  1419. }
  1420. namespace_lock();
  1421. mnt = lookup_mnt(path);
  1422. if (likely(!mnt)) {
  1423. struct mountpoint *mp = new_mountpoint(dentry);
  1424. if (IS_ERR(mp)) {
  1425. namespace_unlock();
  1426. mutex_unlock(&dentry->d_inode->i_mutex);
  1427. return mp;
  1428. }
  1429. return mp;
  1430. }
  1431. namespace_unlock();
  1432. mutex_unlock(&path->dentry->d_inode->i_mutex);
  1433. path_put(path);
  1434. path->mnt = mnt;
  1435. dentry = path->dentry = dget(mnt->mnt_root);
  1436. goto retry;
  1437. }
  1438. static void unlock_mount(struct mountpoint *where)
  1439. {
  1440. struct dentry *dentry = where->m_dentry;
  1441. put_mountpoint(where);
  1442. namespace_unlock();
  1443. mutex_unlock(&dentry->d_inode->i_mutex);
  1444. }
  1445. static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
  1446. {
  1447. if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
  1448. return -EINVAL;
  1449. if (S_ISDIR(mp->m_dentry->d_inode->i_mode) !=
  1450. S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
  1451. return -ENOTDIR;
  1452. return attach_recursive_mnt(mnt, p, mp, NULL);
  1453. }
  1454. /*
  1455. * Sanity check the flags to change_mnt_propagation.
  1456. */
  1457. static int flags_to_propagation_type(int flags)
  1458. {
  1459. int type = flags & ~(MS_REC | MS_SILENT);
  1460. /* Fail if any non-propagation flags are set */
  1461. if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  1462. return 0;
  1463. /* Only one propagation flag should be set */
  1464. if (!is_power_of_2(type))
  1465. return 0;
  1466. return type;
  1467. }
  1468. /*
  1469. * recursively change the type of the mountpoint.
  1470. */
  1471. static int do_change_type(struct path *path, int flag)
  1472. {
  1473. struct mount *m;
  1474. struct mount *mnt = real_mount(path->mnt);
  1475. int recurse = flag & MS_REC;
  1476. int type;
  1477. int err = 0;
  1478. if (path->dentry != path->mnt->mnt_root)
  1479. return -EINVAL;
  1480. type = flags_to_propagation_type(flag);
  1481. if (!type)
  1482. return -EINVAL;
  1483. namespace_lock();
  1484. if (type == MS_SHARED) {
  1485. err = invent_group_ids(mnt, recurse);
  1486. if (err)
  1487. goto out_unlock;
  1488. }
  1489. br_write_lock(&vfsmount_lock);
  1490. for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
  1491. change_mnt_propagation(m, type);
  1492. br_write_unlock(&vfsmount_lock);
  1493. out_unlock:
  1494. namespace_unlock();
  1495. return err;
  1496. }
  1497. /*
  1498. * do loopback mount.
  1499. */
  1500. static int do_loopback(struct path *path, const char *old_name,
  1501. int recurse)
  1502. {
  1503. struct path old_path;
  1504. struct mount *mnt = NULL, *old, *parent;
  1505. struct mountpoint *mp;
  1506. int err;
  1507. if (!old_name || !*old_name)
  1508. return -EINVAL;
  1509. err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
  1510. if (err)
  1511. return err;
  1512. err = -EINVAL;
  1513. if (mnt_ns_loop(&old_path))
  1514. goto out;
  1515. mp = lock_mount(path);
  1516. err = PTR_ERR(mp);
  1517. if (IS_ERR(mp))
  1518. goto out;
  1519. old = real_mount(old_path.mnt);
  1520. parent = real_mount(path->mnt);
  1521. err = -EINVAL;
  1522. if (IS_MNT_UNBINDABLE(old))
  1523. goto out2;
  1524. if (!check_mnt(parent) || !check_mnt(old))
  1525. goto out2;
  1526. if (recurse)
  1527. mnt = copy_tree(old, old_path.dentry, 0);
  1528. else
  1529. mnt = clone_mnt(old, old_path.dentry, 0);
  1530. if (IS_ERR(mnt)) {
  1531. err = PTR_ERR(mnt);
  1532. goto out2;
  1533. }
  1534. err = graft_tree(mnt, parent, mp);
  1535. if (err) {
  1536. br_write_lock(&vfsmount_lock);
  1537. umount_tree(mnt, 0);
  1538. br_write_unlock(&vfsmount_lock);
  1539. }
  1540. out2:
  1541. unlock_mount(mp);
  1542. out:
  1543. path_put(&old_path);
  1544. return err;
  1545. }
  1546. static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
  1547. {
  1548. int error = 0;
  1549. int readonly_request = 0;
  1550. if (ms_flags & MS_RDONLY)
  1551. readonly_request = 1;
  1552. if (readonly_request == __mnt_is_readonly(mnt))
  1553. return 0;
  1554. if (mnt->mnt_flags & MNT_LOCK_READONLY)
  1555. return -EPERM;
  1556. if (readonly_request)
  1557. error = mnt_make_readonly(real_mount(mnt));
  1558. else
  1559. __mnt_unmake_readonly(real_mount(mnt));
  1560. return error;
  1561. }
  1562. /*
  1563. * change filesystem flags. dir should be a physical root of filesystem.
  1564. * If you've mounted a non-root directory somewhere and want to do remount
  1565. * on it - tough luck.
  1566. */
  1567. static int do_remount(struct path *path, int flags, int mnt_flags,
  1568. void *data)
  1569. {
  1570. int err;
  1571. struct super_block *sb = path->mnt->mnt_sb;
  1572. struct mount *mnt = real_mount(path->mnt);
  1573. if (!check_mnt(mnt))
  1574. return -EINVAL;
  1575. if (path->dentry != path->mnt->mnt_root)
  1576. return -EINVAL;
  1577. err = security_sb_remount(sb, data);
  1578. if (err)
  1579. return err;
  1580. down_write(&sb->s_umount);
  1581. if (flags & MS_BIND)
  1582. err = change_mount_flags(path->mnt, flags);
  1583. else if (!capable(CAP_SYS_ADMIN))
  1584. err = -EPERM;
  1585. else
  1586. err = do_remount_sb(sb, flags, data, 0);
  1587. if (!err) {
  1588. br_write_lock(&vfsmount_lock);
  1589. mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
  1590. mnt->mnt.mnt_flags = mnt_flags;
  1591. br_write_unlock(&vfsmount_lock);
  1592. }
  1593. up_write(&sb->s_umount);
  1594. if (!err) {
  1595. br_write_lock(&vfsmount_lock);
  1596. touch_mnt_namespace(mnt->mnt_ns);
  1597. br_write_unlock(&vfsmount_lock);
  1598. }
  1599. return err;
  1600. }
  1601. static inline int tree_contains_unbindable(struct mount *mnt)
  1602. {
  1603. struct mount *p;
  1604. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1605. if (IS_MNT_UNBINDABLE(p))
  1606. return 1;
  1607. }
  1608. return 0;
  1609. }
  1610. static int do_move_mount(struct path *path, const char *old_name)
  1611. {
  1612. struct path old_path, parent_path;
  1613. struct mount *p;
  1614. struct mount *old;
  1615. struct mountpoint *mp;
  1616. int err;
  1617. if (!old_name || !*old_name)
  1618. return -EINVAL;
  1619. err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
  1620. if (err)
  1621. return err;
  1622. mp = lock_mount(path);
  1623. err = PTR_ERR(mp);
  1624. if (IS_ERR(mp))
  1625. goto out;
  1626. old = real_mount(old_path.mnt);
  1627. p = real_mount(path->mnt);
  1628. err = -EINVAL;
  1629. if (!check_mnt(p) || !check_mnt(old))
  1630. goto out1;
  1631. err = -EINVAL;
  1632. if (old_path.dentry != old_path.mnt->mnt_root)
  1633. goto out1;
  1634. if (!mnt_has_parent(old))
  1635. goto out1;
  1636. if (S_ISDIR(path->dentry->d_inode->i_mode) !=
  1637. S_ISDIR(old_path.dentry->d_inode->i_mode))
  1638. goto out1;
  1639. /*
  1640. * Don't move a mount residing in a shared parent.
  1641. */
  1642. if (IS_MNT_SHARED(old->mnt_parent))
  1643. goto out1;
  1644. /*
  1645. * Don't move a mount tree containing unbindable mounts to a destination
  1646. * mount which is shared.
  1647. */
  1648. if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
  1649. goto out1;
  1650. err = -ELOOP;
  1651. for (; mnt_has_parent(p); p = p->mnt_parent)
  1652. if (p == old)
  1653. goto out1;
  1654. err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
  1655. if (err)
  1656. goto out1;
  1657. /* if the mount is moved, it should no longer be expire
  1658. * automatically */
  1659. list_del_init(&old->mnt_expire);
  1660. out1:
  1661. unlock_mount(mp);
  1662. out:
  1663. if (!err)
  1664. path_put(&parent_path);
  1665. path_put(&old_path);
  1666. return err;
  1667. }
  1668. static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
  1669. {
  1670. int err;
  1671. const char *subtype = strchr(fstype, '.');
  1672. if (subtype) {
  1673. subtype++;
  1674. err = -EINVAL;
  1675. if (!subtype[0])
  1676. goto err;
  1677. } else
  1678. subtype = "";
  1679. mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
  1680. err = -ENOMEM;
  1681. if (!mnt->mnt_sb->s_subtype)
  1682. goto err;
  1683. return mnt;
  1684. err:
  1685. mntput(mnt);
  1686. return ERR_PTR(err);
  1687. }
  1688. /*
  1689. * add a mount into a namespace's mount tree
  1690. */
  1691. static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
  1692. {
  1693. struct mountpoint *mp;
  1694. struct mount *parent;
  1695. int err;
  1696. mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
  1697. mp = lock_mount(path);
  1698. if (IS_ERR(mp))
  1699. return PTR_ERR(mp);
  1700. parent = real_mount(path->mnt);
  1701. err = -EINVAL;
  1702. if (unlikely(!check_mnt(parent))) {
  1703. /* that's acceptable only for automounts done in private ns */
  1704. if (!(mnt_flags & MNT_SHRINKABLE))
  1705. goto unlock;
  1706. /* ... and for those we'd better have mountpoint still alive */
  1707. if (!parent->mnt_ns)
  1708. goto unlock;
  1709. }
  1710. /* Refuse the same filesystem on the same mount point */
  1711. err = -EBUSY;
  1712. if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
  1713. path->mnt->mnt_root == path->dentry)
  1714. goto unlock;
  1715. err = -EINVAL;
  1716. if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
  1717. goto unlock;
  1718. newmnt->mnt.mnt_flags = mnt_flags;
  1719. err = graft_tree(newmnt, parent, mp);
  1720. unlock:
  1721. unlock_mount(mp);
  1722. return err;
  1723. }
  1724. /*
  1725. * create a new mount for userspace and request it to be added into the
  1726. * namespace's tree
  1727. */
  1728. static int do_new_mount(struct path *path, const char *fstype, int flags,
  1729. int mnt_flags, const char *name, void *data)
  1730. {
  1731. struct file_system_type *type;
  1732. struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
  1733. struct vfsmount *mnt;
  1734. int err;
  1735. if (!fstype)
  1736. return -EINVAL;
  1737. type = get_fs_type(fstype);
  1738. if (!type)
  1739. return -ENODEV;
  1740. if (user_ns != &init_user_ns) {
  1741. if (!(type->fs_flags & FS_USERNS_MOUNT)) {
  1742. put_filesystem(type);
  1743. return -EPERM;
  1744. }
  1745. /* Only in special cases allow devices from mounts
  1746. * created outside the initial user namespace.
  1747. */
  1748. if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
  1749. flags |= MS_NODEV;
  1750. mnt_flags |= MNT_NODEV;
  1751. }
  1752. }
  1753. mnt = vfs_kern_mount(type, flags, name, data);
  1754. if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
  1755. !mnt->mnt_sb->s_subtype)
  1756. mnt = fs_set_subtype(mnt, fstype);
  1757. put_filesystem(type);
  1758. if (IS_ERR(mnt))
  1759. return PTR_ERR(mnt);
  1760. err = do_add_mount(real_mount(mnt), path, mnt_flags);
  1761. if (err)
  1762. mntput(mnt);
  1763. return err;
  1764. }
  1765. int finish_automount(struct vfsmount *m, struct path *path)
  1766. {
  1767. struct mount *mnt = real_mount(m);
  1768. int err;
  1769. /* The new mount record should have at least 2 refs to prevent it being
  1770. * expired before we get a chance to add it
  1771. */
  1772. BUG_ON(mnt_get_count(mnt) < 2);
  1773. if (m->mnt_sb == path->mnt->mnt_sb &&
  1774. m->mnt_root == path->dentry) {
  1775. err = -ELOOP;
  1776. goto fail;
  1777. }
  1778. err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
  1779. if (!err)
  1780. return 0;
  1781. fail:
  1782. /* remove m from any expiration list it may be on */
  1783. if (!list_empty(&mnt->mnt_expire)) {
  1784. namespace_lock();
  1785. br_write_lock(&vfsmount_lock);
  1786. list_del_init(&mnt->mnt_expire);
  1787. br_write_unlock(&vfsmount_lock);
  1788. namespace_unlock();
  1789. }
  1790. mntput(m);
  1791. mntput(m);
  1792. return err;
  1793. }
  1794. /**
  1795. * mnt_set_expiry - Put a mount on an expiration list
  1796. * @mnt: The mount to list.
  1797. * @expiry_list: The list to add the mount to.
  1798. */
  1799. void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
  1800. {
  1801. namespace_lock();
  1802. br_write_lock(&vfsmount_lock);
  1803. list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
  1804. br_write_unlock(&vfsmount_lock);
  1805. namespace_unlock();
  1806. }
  1807. EXPORT_SYMBOL(mnt_set_expiry);
  1808. /*
  1809. * process a list of expirable mountpoints with the intent of discarding any
  1810. * mountpoints that aren't in use and haven't been touched since last we came
  1811. * here
  1812. */
  1813. void mark_mounts_for_expiry(struct list_head *mounts)
  1814. {
  1815. struct mount *mnt, *next;
  1816. LIST_HEAD(graveyard);
  1817. if (list_empty(mounts))
  1818. return;
  1819. namespace_lock();
  1820. br_write_lock(&vfsmount_lock);
  1821. /* extract from the expiration list every vfsmount that matches the
  1822. * following criteria:
  1823. * - only referenced by its parent vfsmount
  1824. * - still marked for expiry (marked on the last call here; marks are
  1825. * cleared by mntput())
  1826. */
  1827. list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
  1828. if (!xchg(&mnt->mnt_expiry_mark, 1) ||
  1829. propagate_mount_busy(mnt, 1))
  1830. continue;
  1831. list_move(&mnt->mnt_expire, &graveyard);
  1832. }
  1833. while (!list_empty(&graveyard)) {
  1834. mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
  1835. touch_mnt_namespace(mnt->mnt_ns);
  1836. umount_tree(mnt, 1);
  1837. }
  1838. br_write_unlock(&vfsmount_lock);
  1839. namespace_unlock();
  1840. }
  1841. EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
  1842. /*
  1843. * Ripoff of 'select_parent()'
  1844. *
  1845. * search the list of submounts for a given mountpoint, and move any
  1846. * shrinkable submounts to the 'graveyard' list.
  1847. */
  1848. static int select_submounts(struct mount *parent, struct list_head *graveyard)
  1849. {
  1850. struct mount *this_parent = parent;
  1851. struct list_head *next;
  1852. int found = 0;
  1853. repeat:
  1854. next = this_parent->mnt_mounts.next;
  1855. resume:
  1856. while (next != &this_parent->mnt_mounts) {
  1857. struct list_head *tmp = next;
  1858. struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
  1859. next = tmp->next;
  1860. if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
  1861. continue;
  1862. /*
  1863. * Descend a level if the d_mounts list is non-empty.
  1864. */
  1865. if (!list_empty(&mnt->mnt_mounts)) {
  1866. this_parent = mnt;
  1867. goto repeat;
  1868. }
  1869. if (!propagate_mount_busy(mnt, 1)) {
  1870. list_move_tail(&mnt->mnt_expire, graveyard);
  1871. found++;
  1872. }
  1873. }
  1874. /*
  1875. * All done at this level ... ascend and resume the search
  1876. */
  1877. if (this_parent != parent) {
  1878. next = this_parent->mnt_child.next;
  1879. this_parent = this_parent->mnt_parent;
  1880. goto resume;
  1881. }
  1882. return found;
  1883. }
  1884. /*
  1885. * process a list of expirable mountpoints with the intent of discarding any
  1886. * submounts of a specific parent mountpoint
  1887. *
  1888. * vfsmount_lock must be held for write
  1889. */
  1890. static void shrink_submounts(struct mount *mnt)
  1891. {
  1892. LIST_HEAD(graveyard);
  1893. struct mount *m;
  1894. /* extract submounts of 'mountpoint' from the expiration list */
  1895. while (select_submounts(mnt, &graveyard)) {
  1896. while (!list_empty(&graveyard)) {
  1897. m = list_first_entry(&graveyard, struct mount,
  1898. mnt_expire);
  1899. touch_mnt_namespace(m->mnt_ns);
  1900. umount_tree(m, 1);
  1901. }
  1902. }
  1903. }
  1904. /*
  1905. * Some copy_from_user() implementations do not return the exact number of
  1906. * bytes remaining to copy on a fault. But copy_mount_options() requires that.
  1907. * Note that this function differs from copy_from_user() in that it will oops
  1908. * on bad values of `to', rather than returning a short copy.
  1909. */
  1910. static long exact_copy_from_user(void *to, const void __user * from,
  1911. unsigned long n)
  1912. {
  1913. char *t = to;
  1914. const char __user *f = from;
  1915. char c;
  1916. if (!access_ok(VERIFY_READ, from, n))
  1917. return n;
  1918. while (n) {
  1919. if (__get_user(c, f)) {
  1920. memset(t, 0, n);
  1921. break;
  1922. }
  1923. *t++ = c;
  1924. f++;
  1925. n--;
  1926. }
  1927. return n;
  1928. }
  1929. int copy_mount_options(const void __user * data, unsigned long *where)
  1930. {
  1931. int i;
  1932. unsigned long page;
  1933. unsigned long size;
  1934. *where = 0;
  1935. if (!data)
  1936. return 0;
  1937. if (!(page = __get_free_page(GFP_KERNEL)))
  1938. return -ENOMEM;
  1939. /* We only care that *some* data at the address the user
  1940. * gave us is valid. Just in case, we'll zero
  1941. * the remainder of the page.
  1942. */
  1943. /* copy_from_user cannot cross TASK_SIZE ! */
  1944. size = TASK_SIZE - (unsigned long)data;
  1945. if (size > PAGE_SIZE)
  1946. size = PAGE_SIZE;
  1947. i = size - exact_copy_from_user((void *)page, data, size);
  1948. if (!i) {
  1949. free_page(page);
  1950. return -EFAULT;
  1951. }
  1952. if (i != PAGE_SIZE)
  1953. memset((char *)page + i, 0, PAGE_SIZE - i);
  1954. *where = page;
  1955. return 0;
  1956. }
  1957. int copy_mount_string(const void __user *data, char **where)
  1958. {
  1959. char *tmp;
  1960. if (!data) {
  1961. *where = NULL;
  1962. return 0;
  1963. }
  1964. tmp = strndup_user(data, PAGE_SIZE);
  1965. if (IS_ERR(tmp))
  1966. return PTR_ERR(tmp);
  1967. *where = tmp;
  1968. return 0;
  1969. }
  1970. /*
  1971. * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
  1972. * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
  1973. *
  1974. * data is a (void *) that can point to any structure up to
  1975. * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
  1976. * information (or be NULL).
  1977. *
  1978. * Pre-0.97 versions of mount() didn't have a flags word.
  1979. * When the flags word was introduced its top half was required
  1980. * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
  1981. * Therefore, if this magic number is present, it carries no information
  1982. * and must be discarded.
  1983. */
  1984. long do_mount(const char *dev_name, const char *dir_name,
  1985. const char *type_page, unsigned long flags, void *data_page)
  1986. {
  1987. struct path path;
  1988. int retval = 0;
  1989. int mnt_flags = 0;
  1990. /* Discard magic */
  1991. if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
  1992. flags &= ~MS_MGC_MSK;
  1993. /* Basic sanity checks */
  1994. if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
  1995. return -EINVAL;
  1996. if (data_page)
  1997. ((char *)data_page)[PAGE_SIZE - 1] = 0;
  1998. /* ... and get the mountpoint */
  1999. retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
  2000. if (retval)
  2001. return retval;
  2002. retval = security_sb_mount(dev_name, &path,
  2003. type_page, flags, data_page);
  2004. if (!retval && !may_mount())
  2005. retval = -EPERM;
  2006. if (retval)
  2007. goto dput_out;
  2008. /* Default to relatime unless overriden */
  2009. if (!(flags & MS_NOATIME))
  2010. mnt_flags |= MNT_RELATIME;
  2011. /* Separate the per-mountpoint flags */
  2012. if (flags & MS_NOSUID)
  2013. mnt_flags |= MNT_NOSUID;
  2014. if (flags & MS_NODEV)
  2015. mnt_flags |= MNT_NODEV;
  2016. if (flags & MS_NOEXEC)
  2017. mnt_flags |= MNT_NOEXEC;
  2018. if (flags & MS_NOATIME)
  2019. mnt_flags |= MNT_NOATIME;
  2020. if (flags & MS_NODIRATIME)
  2021. mnt_flags |= MNT_NODIRATIME;
  2022. if (flags & MS_STRICTATIME)
  2023. mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
  2024. if (flags & MS_RDONLY)
  2025. mnt_flags |= MNT_READONLY;
  2026. flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
  2027. MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
  2028. MS_STRICTATIME);
  2029. if (flags & MS_REMOUNT)
  2030. retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
  2031. data_page);
  2032. else if (flags & MS_BIND)
  2033. retval = do_loopback(&path, dev_name, flags & MS_REC);
  2034. else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  2035. retval = do_change_type(&path, flags);
  2036. else if (flags & MS_MOVE)
  2037. retval = do_move_mount(&path, dev_name);
  2038. else
  2039. retval = do_new_mount(&path, type_page, flags, mnt_flags,
  2040. dev_name, data_page);
  2041. dput_out:
  2042. path_put(&path);
  2043. return retval;
  2044. }
  2045. static void free_mnt_ns(struct mnt_namespace *ns)
  2046. {
  2047. proc_free_inum(ns->proc_inum);
  2048. put_user_ns(ns->user_ns);
  2049. kfree(ns);
  2050. }
  2051. /*
  2052. * Assign a sequence number so we can detect when we attempt to bind
  2053. * mount a reference to an older mount namespace into the current
  2054. * mount namespace, preventing reference counting loops. A 64bit
  2055. * number incrementing at 10Ghz will take 12,427 years to wrap which
  2056. * is effectively never, so we can ignore the possibility.
  2057. */
  2058. static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
  2059. static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
  2060. {
  2061. struct mnt_namespace *new_ns;
  2062. int ret;
  2063. new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
  2064. if (!new_ns)
  2065. return ERR_PTR(-ENOMEM);
  2066. ret = proc_alloc_inum(&new_ns->proc_inum);
  2067. if (ret) {
  2068. kfree(new_ns);
  2069. return ERR_PTR(ret);
  2070. }
  2071. new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
  2072. atomic_set(&new_ns->count, 1);
  2073. new_ns->root = NULL;
  2074. INIT_LIST_HEAD(&new_ns->list);
  2075. init_waitqueue_head(&new_ns->poll);
  2076. new_ns->event = 0;
  2077. new_ns->user_ns = get_user_ns(user_ns);
  2078. return new_ns;
  2079. }
  2080. /*
  2081. * Allocate a new namespace structure and populate it with contents
  2082. * copied from the namespace of the passed in task structure.
  2083. */
  2084. static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
  2085. struct user_namespace *user_ns, struct fs_struct *fs)
  2086. {
  2087. struct mnt_namespace *new_ns;
  2088. struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
  2089. struct mount *p, *q;
  2090. struct mount *old = mnt_ns->root;
  2091. struct mount *new;
  2092. int copy_flags;
  2093. new_ns = alloc_mnt_ns(user_ns);
  2094. if (IS_ERR(new_ns))
  2095. return new_ns;
  2096. namespace_lock();
  2097. /* First pass: copy the tree topology */
  2098. copy_flags = CL_COPY_ALL | CL_EXPIRE;
  2099. if (user_ns != mnt_ns->user_ns)
  2100. copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
  2101. new = copy_tree(old, old->mnt.mnt_root, copy_flags);
  2102. if (IS_ERR(new)) {
  2103. namespace_unlock();
  2104. free_mnt_ns(new_ns);
  2105. return ERR_CAST(new);
  2106. }
  2107. new_ns->root = new;
  2108. br_write_lock(&vfsmount_lock);
  2109. list_add_tail(&new_ns->list, &new->mnt_list);
  2110. br_write_unlock(&vfsmount_lock);
  2111. /*
  2112. * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
  2113. * as belonging to new namespace. We have already acquired a private
  2114. * fs_struct, so tsk->fs->lock is not needed.
  2115. */
  2116. p = old;
  2117. q = new;
  2118. while (p) {
  2119. q->mnt_ns = new_ns;
  2120. if (fs) {
  2121. if (&p->mnt == fs->root.mnt) {
  2122. fs->root.mnt = mntget(&q->mnt);
  2123. rootmnt = &p->mnt;
  2124. }
  2125. if (&p->mnt == fs->pwd.mnt) {
  2126. fs->pwd.mnt = mntget(&q->mnt);
  2127. pwdmnt = &p->mnt;
  2128. }
  2129. }
  2130. p = next_mnt(p, old);
  2131. q = next_mnt(q, new);
  2132. }
  2133. namespace_unlock();
  2134. if (rootmnt)
  2135. mntput(rootmnt);
  2136. if (pwdmnt)
  2137. mntput(pwdmnt);
  2138. return new_ns;
  2139. }
  2140. struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
  2141. struct user_namespace *user_ns, struct fs_struct *new_fs)
  2142. {
  2143. struct mnt_namespace *new_ns;
  2144. BUG_ON(!ns);
  2145. get_mnt_ns(ns);
  2146. if (!(flags & CLONE_NEWNS))
  2147. return ns;
  2148. new_ns = dup_mnt_ns(ns, user_ns, new_fs);
  2149. put_mnt_ns(ns);
  2150. return new_ns;
  2151. }
  2152. /**
  2153. * create_mnt_ns - creates a private namespace and adds a root filesystem
  2154. * @mnt: pointer to the new root filesystem mountpoint
  2155. */
  2156. static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
  2157. {
  2158. struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
  2159. if (!IS_ERR(new_ns)) {
  2160. struct mount *mnt = real_mount(m);
  2161. mnt->mnt_ns = new_ns;
  2162. new_ns->root = mnt;
  2163. list_add(&mnt->mnt_list, &new_ns->list);
  2164. } else {
  2165. mntput(m);
  2166. }
  2167. return new_ns;
  2168. }
  2169. struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
  2170. {
  2171. struct mnt_namespace *ns;
  2172. struct super_block *s;
  2173. struct path path;
  2174. int err;
  2175. ns = create_mnt_ns(mnt);
  2176. if (IS_ERR(ns))
  2177. return ERR_CAST(ns);
  2178. err = vfs_path_lookup(mnt->mnt_root, mnt,
  2179. name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
  2180. put_mnt_ns(ns);
  2181. if (err)
  2182. return ERR_PTR(err);
  2183. /* trade a vfsmount reference for active sb one */
  2184. s = path.mnt->mnt_sb;
  2185. atomic_inc(&s->s_active);
  2186. mntput(path.mnt);
  2187. /* lock the sucker */
  2188. down_write(&s->s_umount);
  2189. /* ... and return the root of (sub)tree on it */
  2190. return path.dentry;
  2191. }
  2192. EXPORT_SYMBOL(mount_subtree);
  2193. SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
  2194. char __user *, type, unsigned long, flags, void __user *, data)
  2195. {
  2196. int ret;
  2197. char *kernel_type;
  2198. struct filename *kernel_dir;
  2199. char *kernel_dev;
  2200. unsigned long data_page;
  2201. ret = copy_mount_string(type, &kernel_type);
  2202. if (ret < 0)
  2203. goto out_type;
  2204. kernel_dir = getname(dir_name);
  2205. if (IS_ERR(kernel_dir)) {
  2206. ret = PTR_ERR(kernel_dir);
  2207. goto out_dir;
  2208. }
  2209. ret = copy_mount_string(dev_name, &kernel_dev);
  2210. if (ret < 0)
  2211. goto out_dev;
  2212. ret = copy_mount_options(data, &data_page);
  2213. if (ret < 0)
  2214. goto out_data;
  2215. ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags,
  2216. (void *) data_page);
  2217. free_page(data_page);
  2218. out_data:
  2219. kfree(kernel_dev);
  2220. out_dev:
  2221. putname(kernel_dir);
  2222. out_dir:
  2223. kfree(kernel_type);
  2224. out_type:
  2225. return ret;
  2226. }
  2227. /*
  2228. * Return true if path is reachable from root
  2229. *
  2230. * namespace_sem or vfsmount_lock is held
  2231. */
  2232. bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
  2233. const struct path *root)
  2234. {
  2235. while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
  2236. dentry = mnt->mnt_mountpoint;
  2237. mnt = mnt->mnt_parent;
  2238. }
  2239. return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
  2240. }
  2241. int path_is_under(struct path *path1, struct path *path2)
  2242. {
  2243. int res;
  2244. br_read_lock(&vfsmount_lock);
  2245. res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
  2246. br_read_unlock(&vfsmount_lock);
  2247. return res;
  2248. }
  2249. EXPORT_SYMBOL(path_is_under);
  2250. /*
  2251. * pivot_root Semantics:
  2252. * Moves the root file system of the current process to the directory put_old,
  2253. * makes new_root as the new root file system of the current process, and sets
  2254. * root/cwd of all processes which had them on the current root to new_root.
  2255. *
  2256. * Restrictions:
  2257. * The new_root and put_old must be directories, and must not be on the
  2258. * same file system as the current process root. The put_old must be
  2259. * underneath new_root, i.e. adding a non-zero number of /.. to the string
  2260. * pointed to by put_old must yield the same directory as new_root. No other
  2261. * file system may be mounted on put_old. After all, new_root is a mountpoint.
  2262. *
  2263. * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
  2264. * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
  2265. * in this situation.
  2266. *
  2267. * Notes:
  2268. * - we don't move root/cwd if they are not at the root (reason: if something
  2269. * cared enough to change them, it's probably wrong to force them elsewhere)
  2270. * - it's okay to pick a root that isn't the root of a file system, e.g.
  2271. * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
  2272. * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
  2273. * first.
  2274. */
  2275. SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
  2276. const char __user *, put_old)
  2277. {
  2278. struct path new, old, parent_path, root_parent, root;
  2279. struct mount *new_mnt, *root_mnt, *old_mnt;
  2280. struct mountpoint *old_mp, *root_mp;
  2281. int error;
  2282. if (!may_mount())
  2283. return -EPERM;
  2284. error = user_path_dir(new_root, &new);
  2285. if (error)
  2286. goto out0;
  2287. error = user_path_dir(put_old, &old);
  2288. if (error)
  2289. goto out1;
  2290. error = security_sb_pivotroot(&old, &new);
  2291. if (error)
  2292. goto out2;
  2293. get_fs_root(current->fs, &root);
  2294. old_mp = lock_mount(&old);
  2295. error = PTR_ERR(old_mp);
  2296. if (IS_ERR(old_mp))
  2297. goto out3;
  2298. error = -EINVAL;
  2299. new_mnt = real_mount(new.mnt);
  2300. root_mnt = real_mount(root.mnt);
  2301. old_mnt = real_mount(old.mnt);
  2302. if (IS_MNT_SHARED(old_mnt) ||
  2303. IS_MNT_SHARED(new_mnt->mnt_parent) ||
  2304. IS_MNT_SHARED(root_mnt->mnt_parent))
  2305. goto out4;
  2306. if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
  2307. goto out4;
  2308. error = -ENOENT;
  2309. if (d_unlinked(new.dentry))
  2310. goto out4;
  2311. error = -EBUSY;
  2312. if (new_mnt == root_mnt || old_mnt == root_mnt)
  2313. goto out4; /* loop, on the same file system */
  2314. error = -EINVAL;
  2315. if (root.mnt->mnt_root != root.dentry)
  2316. goto out4; /* not a mountpoint */
  2317. if (!mnt_has_parent(root_mnt))
  2318. goto out4; /* not attached */
  2319. root_mp = root_mnt->mnt_mp;
  2320. if (new.mnt->mnt_root != new.dentry)
  2321. goto out4; /* not a mountpoint */
  2322. if (!mnt_has_parent(new_mnt))
  2323. goto out4; /* not attached */
  2324. /* make sure we can reach put_old from new_root */
  2325. if (!is_path_reachable(old_mnt, old.dentry, &new))
  2326. goto out4;
  2327. root_mp->m_count++; /* pin it so it won't go away */
  2328. br_write_lock(&vfsmount_lock);
  2329. detach_mnt(new_mnt, &parent_path);
  2330. detach_mnt(root_mnt, &root_parent);
  2331. /* mount old root on put_old */
  2332. attach_mnt(root_mnt, old_mnt, old_mp);
  2333. /* mount new_root on / */
  2334. attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
  2335. touch_mnt_namespace(current->nsproxy->mnt_ns);
  2336. br_write_unlock(&vfsmount_lock);
  2337. chroot_fs_refs(&root, &new);
  2338. put_mountpoint(root_mp);
  2339. error = 0;
  2340. out4:
  2341. unlock_mount(old_mp);
  2342. if (!error) {
  2343. path_put(&root_parent);
  2344. path_put(&parent_path);
  2345. }
  2346. out3:
  2347. path_put(&root);
  2348. out2:
  2349. path_put(&old);
  2350. out1:
  2351. path_put(&new);
  2352. out0:
  2353. return error;
  2354. }
  2355. static void __init init_mount_tree(void)
  2356. {
  2357. struct vfsmount *mnt;
  2358. struct mnt_namespace *ns;
  2359. struct path root;
  2360. struct file_system_type *type;
  2361. type = get_fs_type("rootfs");
  2362. if (!type)
  2363. panic("Can't find rootfs type");
  2364. mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
  2365. put_filesystem(type);
  2366. if (IS_ERR(mnt))
  2367. panic("Can't create rootfs");
  2368. ns = create_mnt_ns(mnt);
  2369. if (IS_ERR(ns))
  2370. panic("Can't allocate initial namespace");
  2371. init_task.nsproxy->mnt_ns = ns;
  2372. get_mnt_ns(ns);
  2373. root.mnt = mnt;
  2374. root.dentry = mnt->mnt_root;
  2375. set_fs_pwd(current->fs, &root);
  2376. set_fs_root(current->fs, &root);
  2377. }
  2378. void __init mnt_init(void)
  2379. {
  2380. unsigned u;
  2381. int err;
  2382. init_rwsem(&namespace_sem);
  2383. mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
  2384. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  2385. mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
  2386. mountpoint_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
  2387. if (!mount_hashtable || !mountpoint_hashtable)
  2388. panic("Failed to allocate mount hash table\n");
  2389. printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
  2390. for (u = 0; u < HASH_SIZE; u++)
  2391. INIT_LIST_HEAD(&mount_hashtable[u]);
  2392. for (u = 0; u < HASH_SIZE; u++)
  2393. INIT_LIST_HEAD(&mountpoint_hashtable[u]);
  2394. br_lock_init(&vfsmount_lock);
  2395. err = sysfs_init();
  2396. if (err)
  2397. printk(KERN_WARNING "%s: sysfs_init error: %d\n",
  2398. __func__, err);
  2399. fs_kobj = kobject_create_and_add("fs", NULL);
  2400. if (!fs_kobj)
  2401. printk(KERN_WARNING "%s: kobj create error\n", __func__);
  2402. init_rootfs();
  2403. init_mount_tree();
  2404. }
  2405. void put_mnt_ns(struct mnt_namespace *ns)
  2406. {
  2407. if (!atomic_dec_and_test(&ns->count))
  2408. return;
  2409. namespace_lock();
  2410. br_write_lock(&vfsmount_lock);
  2411. umount_tree(ns->root, 0);
  2412. br_write_unlock(&vfsmount_lock);
  2413. namespace_unlock();
  2414. free_mnt_ns(ns);
  2415. }
  2416. struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
  2417. {
  2418. struct vfsmount *mnt;
  2419. mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
  2420. if (!IS_ERR(mnt)) {
  2421. /*
  2422. * it is a longterm mount, don't release mnt until
  2423. * we unmount before file sys is unregistered
  2424. */
  2425. real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
  2426. }
  2427. return mnt;
  2428. }
  2429. EXPORT_SYMBOL_GPL(kern_mount_data);
  2430. void kern_unmount(struct vfsmount *mnt)
  2431. {
  2432. /* release long term mount so mount point can be released */
  2433. if (!IS_ERR_OR_NULL(mnt)) {
  2434. br_write_lock(&vfsmount_lock);
  2435. real_mount(mnt)->mnt_ns = NULL;
  2436. br_write_unlock(&vfsmount_lock);
  2437. mntput(mnt);
  2438. }
  2439. }
  2440. EXPORT_SYMBOL(kern_unmount);
  2441. bool our_mnt(struct vfsmount *mnt)
  2442. {
  2443. return check_mnt(real_mount(mnt));
  2444. }
  2445. bool current_chrooted(void)
  2446. {
  2447. /* Does the current process have a non-standard root */
  2448. struct path ns_root;
  2449. struct path fs_root;
  2450. bool chrooted;
  2451. /* Find the namespace root */
  2452. ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
  2453. ns_root.dentry = ns_root.mnt->mnt_root;
  2454. path_get(&ns_root);
  2455. while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
  2456. ;
  2457. get_fs_root(current->fs, &fs_root);
  2458. chrooted = !path_equal(&fs_root, &ns_root);
  2459. path_put(&fs_root);
  2460. path_put(&ns_root);
  2461. return chrooted;
  2462. }
  2463. void update_mnt_policy(struct user_namespace *userns)
  2464. {
  2465. struct mnt_namespace *ns = current->nsproxy->mnt_ns;
  2466. struct mount *mnt;
  2467. down_read(&namespace_sem);
  2468. list_for_each_entry(mnt, &ns->list, mnt_list) {
  2469. switch (mnt->mnt.mnt_sb->s_magic) {
  2470. case SYSFS_MAGIC:
  2471. userns->may_mount_sysfs = true;
  2472. break;
  2473. case PROC_SUPER_MAGIC:
  2474. userns->may_mount_proc = true;
  2475. break;
  2476. }
  2477. if (userns->may_mount_sysfs && userns->may_mount_proc)
  2478. break;
  2479. }
  2480. up_read(&namespace_sem);
  2481. }
  2482. static void *mntns_get(struct task_struct *task)
  2483. {
  2484. struct mnt_namespace *ns = NULL;
  2485. struct nsproxy *nsproxy;
  2486. rcu_read_lock();
  2487. nsproxy = task_nsproxy(task);
  2488. if (nsproxy) {
  2489. ns = nsproxy->mnt_ns;
  2490. get_mnt_ns(ns);
  2491. }
  2492. rcu_read_unlock();
  2493. return ns;
  2494. }
  2495. static void mntns_put(void *ns)
  2496. {
  2497. put_mnt_ns(ns);
  2498. }
  2499. static int mntns_install(struct nsproxy *nsproxy, void *ns)
  2500. {
  2501. struct fs_struct *fs = current->fs;
  2502. struct mnt_namespace *mnt_ns = ns;
  2503. struct path root;
  2504. if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
  2505. !nsown_capable(CAP_SYS_CHROOT) ||
  2506. !nsown_capable(CAP_SYS_ADMIN))
  2507. return -EPERM;
  2508. if (fs->users != 1)
  2509. return -EINVAL;
  2510. get_mnt_ns(mnt_ns);
  2511. put_mnt_ns(nsproxy->mnt_ns);
  2512. nsproxy->mnt_ns = mnt_ns;
  2513. /* Find the root */
  2514. root.mnt = &mnt_ns->root->mnt;
  2515. root.dentry = mnt_ns->root->mnt.mnt_root;
  2516. path_get(&root);
  2517. while(d_mountpoint(root.dentry) && follow_down_one(&root))
  2518. ;
  2519. /* Update the pwd and root */
  2520. set_fs_pwd(fs, &root);
  2521. set_fs_root(fs, &root);
  2522. path_put(&root);
  2523. return 0;
  2524. }
  2525. static unsigned int mntns_inum(void *ns)
  2526. {
  2527. struct mnt_namespace *mnt_ns = ns;
  2528. return mnt_ns->proc_inum;
  2529. }
  2530. const struct proc_ns_operations mntns_operations = {
  2531. .name = "mnt",
  2532. .type = CLONE_NEWNS,
  2533. .get = mntns_get,
  2534. .put = mntns_put,
  2535. .install = mntns_install,
  2536. .inum = mntns_inum,
  2537. };