super.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507
  1. /*
  2. * linux/fs/hfs/super.c
  3. *
  4. * Copyright (C) 1995-1997 Paul H. Hargrove
  5. * (C) 2003 Ardis Technologies <roman@ardistech.com>
  6. * This file may be distributed under the terms of the GNU General Public License.
  7. *
  8. * This file contains hfs_read_super(), some of the super_ops and
  9. * init_hfs_fs() and exit_hfs_fs(). The remaining super_ops are in
  10. * inode.c since they deal with inodes.
  11. *
  12. * Based on the minix file system code, (C) 1991, 1992 by Linus Torvalds
  13. */
  14. #include <linux/module.h>
  15. #include <linux/blkdev.h>
  16. #include <linux/mount.h>
  17. #include <linux/init.h>
  18. #include <linux/nls.h>
  19. #include <linux/parser.h>
  20. #include <linux/seq_file.h>
  21. #include <linux/slab.h>
  22. #include <linux/vfs.h>
  23. #include "hfs_fs.h"
  24. #include "btree.h"
  25. static struct kmem_cache *hfs_inode_cachep;
  26. MODULE_LICENSE("GPL");
  27. static int hfs_sync_fs(struct super_block *sb, int wait)
  28. {
  29. hfs_mdb_commit(sb);
  30. return 0;
  31. }
  32. /*
  33. * hfs_put_super()
  34. *
  35. * This is the put_super() entry in the super_operations structure for
  36. * HFS filesystems. The purpose is to release the resources
  37. * associated with the superblock sb.
  38. */
  39. static void hfs_put_super(struct super_block *sb)
  40. {
  41. cancel_delayed_work_sync(&HFS_SB(sb)->mdb_work);
  42. hfs_mdb_close(sb);
  43. /* release the MDB's resources */
  44. hfs_mdb_put(sb);
  45. }
  46. static void flush_mdb(struct work_struct *work)
  47. {
  48. struct hfs_sb_info *sbi;
  49. struct super_block *sb;
  50. sbi = container_of(work, struct hfs_sb_info, mdb_work.work);
  51. sb = sbi->sb;
  52. spin_lock(&sbi->work_lock);
  53. sbi->work_queued = 0;
  54. spin_unlock(&sbi->work_lock);
  55. hfs_mdb_commit(sb);
  56. }
  57. void hfs_mark_mdb_dirty(struct super_block *sb)
  58. {
  59. struct hfs_sb_info *sbi = HFS_SB(sb);
  60. unsigned long delay;
  61. if (sb->s_flags & MS_RDONLY)
  62. return;
  63. spin_lock(&sbi->work_lock);
  64. if (!sbi->work_queued) {
  65. delay = msecs_to_jiffies(dirty_writeback_interval * 10);
  66. queue_delayed_work(system_long_wq, &sbi->mdb_work, delay);
  67. sbi->work_queued = 1;
  68. }
  69. spin_unlock(&sbi->work_lock);
  70. }
  71. /*
  72. * hfs_statfs()
  73. *
  74. * This is the statfs() entry in the super_operations structure for
  75. * HFS filesystems. The purpose is to return various data about the
  76. * filesystem.
  77. *
  78. * changed f_files/f_ffree to reflect the fs_ablock/free_ablocks.
  79. */
  80. static int hfs_statfs(struct dentry *dentry, struct kstatfs *buf)
  81. {
  82. struct super_block *sb = dentry->d_sb;
  83. u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
  84. buf->f_type = HFS_SUPER_MAGIC;
  85. buf->f_bsize = sb->s_blocksize;
  86. buf->f_blocks = (u32)HFS_SB(sb)->fs_ablocks * HFS_SB(sb)->fs_div;
  87. buf->f_bfree = (u32)HFS_SB(sb)->free_ablocks * HFS_SB(sb)->fs_div;
  88. buf->f_bavail = buf->f_bfree;
  89. buf->f_files = HFS_SB(sb)->fs_ablocks;
  90. buf->f_ffree = HFS_SB(sb)->free_ablocks;
  91. buf->f_fsid.val[0] = (u32)id;
  92. buf->f_fsid.val[1] = (u32)(id >> 32);
  93. buf->f_namelen = HFS_NAMELEN;
  94. return 0;
  95. }
  96. static int hfs_remount(struct super_block *sb, int *flags, char *data)
  97. {
  98. *flags |= MS_NODIRATIME;
  99. if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
  100. return 0;
  101. if (!(*flags & MS_RDONLY)) {
  102. if (!(HFS_SB(sb)->mdb->drAtrb & cpu_to_be16(HFS_SB_ATTRIB_UNMNT))) {
  103. pr_warn("filesystem was not cleanly unmounted, running fsck.hfs is recommended. leaving read-only.\n");
  104. sb->s_flags |= MS_RDONLY;
  105. *flags |= MS_RDONLY;
  106. } else if (HFS_SB(sb)->mdb->drAtrb & cpu_to_be16(HFS_SB_ATTRIB_SLOCK)) {
  107. pr_warn("filesystem is marked locked, leaving read-only.\n");
  108. sb->s_flags |= MS_RDONLY;
  109. *flags |= MS_RDONLY;
  110. }
  111. }
  112. return 0;
  113. }
  114. static int hfs_show_options(struct seq_file *seq, struct dentry *root)
  115. {
  116. struct hfs_sb_info *sbi = HFS_SB(root->d_sb);
  117. if (sbi->s_creator != cpu_to_be32(0x3f3f3f3f))
  118. seq_printf(seq, ",creator=%.4s", (char *)&sbi->s_creator);
  119. if (sbi->s_type != cpu_to_be32(0x3f3f3f3f))
  120. seq_printf(seq, ",type=%.4s", (char *)&sbi->s_type);
  121. seq_printf(seq, ",uid=%u,gid=%u",
  122. from_kuid_munged(&init_user_ns, sbi->s_uid),
  123. from_kgid_munged(&init_user_ns, sbi->s_gid));
  124. if (sbi->s_file_umask != 0133)
  125. seq_printf(seq, ",file_umask=%o", sbi->s_file_umask);
  126. if (sbi->s_dir_umask != 0022)
  127. seq_printf(seq, ",dir_umask=%o", sbi->s_dir_umask);
  128. if (sbi->part >= 0)
  129. seq_printf(seq, ",part=%u", sbi->part);
  130. if (sbi->session >= 0)
  131. seq_printf(seq, ",session=%u", sbi->session);
  132. if (sbi->nls_disk)
  133. seq_printf(seq, ",codepage=%s", sbi->nls_disk->charset);
  134. if (sbi->nls_io)
  135. seq_printf(seq, ",iocharset=%s", sbi->nls_io->charset);
  136. if (sbi->s_quiet)
  137. seq_printf(seq, ",quiet");
  138. return 0;
  139. }
  140. static struct inode *hfs_alloc_inode(struct super_block *sb)
  141. {
  142. struct hfs_inode_info *i;
  143. i = kmem_cache_alloc(hfs_inode_cachep, GFP_KERNEL);
  144. return i ? &i->vfs_inode : NULL;
  145. }
  146. static void hfs_i_callback(struct rcu_head *head)
  147. {
  148. struct inode *inode = container_of(head, struct inode, i_rcu);
  149. kmem_cache_free(hfs_inode_cachep, HFS_I(inode));
  150. }
  151. static void hfs_destroy_inode(struct inode *inode)
  152. {
  153. call_rcu(&inode->i_rcu, hfs_i_callback);
  154. }
  155. static const struct super_operations hfs_super_operations = {
  156. .alloc_inode = hfs_alloc_inode,
  157. .destroy_inode = hfs_destroy_inode,
  158. .write_inode = hfs_write_inode,
  159. .evict_inode = hfs_evict_inode,
  160. .put_super = hfs_put_super,
  161. .sync_fs = hfs_sync_fs,
  162. .statfs = hfs_statfs,
  163. .remount_fs = hfs_remount,
  164. .show_options = hfs_show_options,
  165. };
  166. enum {
  167. opt_uid, opt_gid, opt_umask, opt_file_umask, opt_dir_umask,
  168. opt_part, opt_session, opt_type, opt_creator, opt_quiet,
  169. opt_codepage, opt_iocharset,
  170. opt_err
  171. };
  172. static const match_table_t tokens = {
  173. { opt_uid, "uid=%u" },
  174. { opt_gid, "gid=%u" },
  175. { opt_umask, "umask=%o" },
  176. { opt_file_umask, "file_umask=%o" },
  177. { opt_dir_umask, "dir_umask=%o" },
  178. { opt_part, "part=%u" },
  179. { opt_session, "session=%u" },
  180. { opt_type, "type=%s" },
  181. { opt_creator, "creator=%s" },
  182. { opt_quiet, "quiet" },
  183. { opt_codepage, "codepage=%s" },
  184. { opt_iocharset, "iocharset=%s" },
  185. { opt_err, NULL }
  186. };
  187. static inline int match_fourchar(substring_t *arg, u32 *result)
  188. {
  189. if (arg->to - arg->from != 4)
  190. return -EINVAL;
  191. memcpy(result, arg->from, 4);
  192. return 0;
  193. }
  194. /*
  195. * parse_options()
  196. *
  197. * adapted from linux/fs/msdos/inode.c written 1992,93 by Werner Almesberger
  198. * This function is called by hfs_read_super() to parse the mount options.
  199. */
  200. static int parse_options(char *options, struct hfs_sb_info *hsb)
  201. {
  202. char *p;
  203. substring_t args[MAX_OPT_ARGS];
  204. int tmp, token;
  205. /* initialize the sb with defaults */
  206. hsb->s_uid = current_uid();
  207. hsb->s_gid = current_gid();
  208. hsb->s_file_umask = 0133;
  209. hsb->s_dir_umask = 0022;
  210. hsb->s_type = hsb->s_creator = cpu_to_be32(0x3f3f3f3f); /* == '????' */
  211. hsb->s_quiet = 0;
  212. hsb->part = -1;
  213. hsb->session = -1;
  214. if (!options)
  215. return 1;
  216. while ((p = strsep(&options, ",")) != NULL) {
  217. if (!*p)
  218. continue;
  219. token = match_token(p, tokens, args);
  220. switch (token) {
  221. case opt_uid:
  222. if (match_int(&args[0], &tmp)) {
  223. pr_err("uid requires an argument\n");
  224. return 0;
  225. }
  226. hsb->s_uid = make_kuid(current_user_ns(), (uid_t)tmp);
  227. if (!uid_valid(hsb->s_uid)) {
  228. pr_err("invalid uid %d\n", tmp);
  229. return 0;
  230. }
  231. break;
  232. case opt_gid:
  233. if (match_int(&args[0], &tmp)) {
  234. pr_err("gid requires an argument\n");
  235. return 0;
  236. }
  237. hsb->s_gid = make_kgid(current_user_ns(), (gid_t)tmp);
  238. if (!gid_valid(hsb->s_gid)) {
  239. pr_err("invalid gid %d\n", tmp);
  240. return 0;
  241. }
  242. break;
  243. case opt_umask:
  244. if (match_octal(&args[0], &tmp)) {
  245. pr_err("umask requires a value\n");
  246. return 0;
  247. }
  248. hsb->s_file_umask = (umode_t)tmp;
  249. hsb->s_dir_umask = (umode_t)tmp;
  250. break;
  251. case opt_file_umask:
  252. if (match_octal(&args[0], &tmp)) {
  253. pr_err("file_umask requires a value\n");
  254. return 0;
  255. }
  256. hsb->s_file_umask = (umode_t)tmp;
  257. break;
  258. case opt_dir_umask:
  259. if (match_octal(&args[0], &tmp)) {
  260. pr_err("dir_umask requires a value\n");
  261. return 0;
  262. }
  263. hsb->s_dir_umask = (umode_t)tmp;
  264. break;
  265. case opt_part:
  266. if (match_int(&args[0], &hsb->part)) {
  267. pr_err("part requires an argument\n");
  268. return 0;
  269. }
  270. break;
  271. case opt_session:
  272. if (match_int(&args[0], &hsb->session)) {
  273. pr_err("session requires an argument\n");
  274. return 0;
  275. }
  276. break;
  277. case opt_type:
  278. if (match_fourchar(&args[0], &hsb->s_type)) {
  279. pr_err("type requires a 4 character value\n");
  280. return 0;
  281. }
  282. break;
  283. case opt_creator:
  284. if (match_fourchar(&args[0], &hsb->s_creator)) {
  285. pr_err("creator requires a 4 character value\n");
  286. return 0;
  287. }
  288. break;
  289. case opt_quiet:
  290. hsb->s_quiet = 1;
  291. break;
  292. case opt_codepage:
  293. if (hsb->nls_disk) {
  294. pr_err("unable to change codepage\n");
  295. return 0;
  296. }
  297. p = match_strdup(&args[0]);
  298. if (p)
  299. hsb->nls_disk = load_nls(p);
  300. if (!hsb->nls_disk) {
  301. pr_err("unable to load codepage \"%s\"\n", p);
  302. kfree(p);
  303. return 0;
  304. }
  305. kfree(p);
  306. break;
  307. case opt_iocharset:
  308. if (hsb->nls_io) {
  309. pr_err("unable to change iocharset\n");
  310. return 0;
  311. }
  312. p = match_strdup(&args[0]);
  313. if (p)
  314. hsb->nls_io = load_nls(p);
  315. if (!hsb->nls_io) {
  316. pr_err("unable to load iocharset \"%s\"\n", p);
  317. kfree(p);
  318. return 0;
  319. }
  320. kfree(p);
  321. break;
  322. default:
  323. return 0;
  324. }
  325. }
  326. if (hsb->nls_disk && !hsb->nls_io) {
  327. hsb->nls_io = load_nls_default();
  328. if (!hsb->nls_io) {
  329. pr_err("unable to load default iocharset\n");
  330. return 0;
  331. }
  332. }
  333. hsb->s_dir_umask &= 0777;
  334. hsb->s_file_umask &= 0577;
  335. return 1;
  336. }
  337. /*
  338. * hfs_read_super()
  339. *
  340. * This is the function that is responsible for mounting an HFS
  341. * filesystem. It performs all the tasks necessary to get enough data
  342. * from the disk to read the root inode. This includes parsing the
  343. * mount options, dealing with Macintosh partitions, reading the
  344. * superblock and the allocation bitmap blocks, calling
  345. * hfs_btree_init() to get the necessary data about the extents and
  346. * catalog B-trees and, finally, reading the root inode into memory.
  347. */
  348. static int hfs_fill_super(struct super_block *sb, void *data, int silent)
  349. {
  350. struct hfs_sb_info *sbi;
  351. struct hfs_find_data fd;
  352. hfs_cat_rec rec;
  353. struct inode *root_inode;
  354. int res;
  355. sbi = kzalloc(sizeof(struct hfs_sb_info), GFP_KERNEL);
  356. if (!sbi)
  357. return -ENOMEM;
  358. sbi->sb = sb;
  359. sb->s_fs_info = sbi;
  360. spin_lock_init(&sbi->work_lock);
  361. INIT_DELAYED_WORK(&sbi->mdb_work, flush_mdb);
  362. res = -EINVAL;
  363. if (!parse_options((char *)data, sbi)) {
  364. pr_err("unable to parse mount options\n");
  365. goto bail;
  366. }
  367. sb->s_op = &hfs_super_operations;
  368. sb->s_flags |= MS_NODIRATIME;
  369. mutex_init(&sbi->bitmap_lock);
  370. res = hfs_mdb_get(sb);
  371. if (res) {
  372. if (!silent)
  373. pr_warn("can't find a HFS filesystem on dev %s\n",
  374. hfs_mdb_name(sb));
  375. res = -EINVAL;
  376. goto bail;
  377. }
  378. /* try to get the root inode */
  379. res = hfs_find_init(HFS_SB(sb)->cat_tree, &fd);
  380. if (res)
  381. goto bail_no_root;
  382. res = hfs_cat_find_brec(sb, HFS_ROOT_CNID, &fd);
  383. if (!res) {
  384. if (fd.entrylength > sizeof(rec) || fd.entrylength < 0) {
  385. res = -EIO;
  386. goto bail;
  387. }
  388. hfs_bnode_read(fd.bnode, &rec, fd.entryoffset, fd.entrylength);
  389. }
  390. if (res) {
  391. hfs_find_exit(&fd);
  392. goto bail_no_root;
  393. }
  394. res = -EINVAL;
  395. root_inode = hfs_iget(sb, &fd.search_key->cat, &rec);
  396. hfs_find_exit(&fd);
  397. if (!root_inode)
  398. goto bail_no_root;
  399. sb->s_d_op = &hfs_dentry_operations;
  400. res = -ENOMEM;
  401. sb->s_root = d_make_root(root_inode);
  402. if (!sb->s_root)
  403. goto bail_no_root;
  404. /* everything's okay */
  405. return 0;
  406. bail_no_root:
  407. pr_err("get root inode failed\n");
  408. bail:
  409. hfs_mdb_put(sb);
  410. return res;
  411. }
  412. static struct dentry *hfs_mount(struct file_system_type *fs_type,
  413. int flags, const char *dev_name, void *data)
  414. {
  415. return mount_bdev(fs_type, flags, dev_name, data, hfs_fill_super);
  416. }
  417. static struct file_system_type hfs_fs_type = {
  418. .owner = THIS_MODULE,
  419. .name = "hfs",
  420. .mount = hfs_mount,
  421. .kill_sb = kill_block_super,
  422. .fs_flags = FS_REQUIRES_DEV,
  423. };
  424. MODULE_ALIAS_FS("hfs");
  425. static void hfs_init_once(void *p)
  426. {
  427. struct hfs_inode_info *i = p;
  428. inode_init_once(&i->vfs_inode);
  429. }
  430. static int __init init_hfs_fs(void)
  431. {
  432. int err;
  433. hfs_inode_cachep = kmem_cache_create("hfs_inode_cache",
  434. sizeof(struct hfs_inode_info), 0, SLAB_HWCACHE_ALIGN,
  435. hfs_init_once);
  436. if (!hfs_inode_cachep)
  437. return -ENOMEM;
  438. err = register_filesystem(&hfs_fs_type);
  439. if (err)
  440. kmem_cache_destroy(hfs_inode_cachep);
  441. return err;
  442. }
  443. static void __exit exit_hfs_fs(void)
  444. {
  445. unregister_filesystem(&hfs_fs_type);
  446. /*
  447. * Make sure all delayed rcu free inodes are flushed before we
  448. * destroy cache.
  449. */
  450. rcu_barrier();
  451. kmem_cache_destroy(hfs_inode_cachep);
  452. }
  453. module_init(init_hfs_fs)
  454. module_exit(exit_hfs_fs)