recovery.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446
  1. /*
  2. * fs/f2fs/recovery.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include "f2fs.h"
  14. #include "node.h"
  15. #include "segment.h"
  16. static struct kmem_cache *fsync_entry_slab;
  17. bool space_for_roll_forward(struct f2fs_sb_info *sbi)
  18. {
  19. if (sbi->last_valid_block_count + sbi->alloc_valid_block_count
  20. > sbi->user_block_count)
  21. return false;
  22. return true;
  23. }
  24. static struct fsync_inode_entry *get_fsync_inode(struct list_head *head,
  25. nid_t ino)
  26. {
  27. struct list_head *this;
  28. struct fsync_inode_entry *entry;
  29. list_for_each(this, head) {
  30. entry = list_entry(this, struct fsync_inode_entry, list);
  31. if (entry->inode->i_ino == ino)
  32. return entry;
  33. }
  34. return NULL;
  35. }
  36. static int recover_dentry(struct page *ipage, struct inode *inode)
  37. {
  38. void *kaddr = page_address(ipage);
  39. struct f2fs_node *raw_node = (struct f2fs_node *)kaddr;
  40. struct f2fs_inode *raw_inode = &(raw_node->i);
  41. nid_t pino = le32_to_cpu(raw_inode->i_pino);
  42. struct f2fs_dir_entry *de;
  43. struct qstr name;
  44. struct page *page;
  45. struct inode *dir, *einode;
  46. int err = 0;
  47. dir = check_dirty_dir_inode(F2FS_SB(inode->i_sb), pino);
  48. if (!dir) {
  49. dir = f2fs_iget(inode->i_sb, pino);
  50. if (IS_ERR(dir)) {
  51. err = PTR_ERR(dir);
  52. goto out;
  53. }
  54. set_inode_flag(F2FS_I(dir), FI_DELAY_IPUT);
  55. add_dirty_dir_inode(dir);
  56. }
  57. name.len = le32_to_cpu(raw_inode->i_namelen);
  58. name.name = raw_inode->i_name;
  59. retry:
  60. de = f2fs_find_entry(dir, &name, &page);
  61. if (de && inode->i_ino == le32_to_cpu(de->ino)) {
  62. kunmap(page);
  63. f2fs_put_page(page, 0);
  64. goto out;
  65. }
  66. if (de) {
  67. einode = f2fs_iget(inode->i_sb, le32_to_cpu(de->ino));
  68. if (IS_ERR(einode)) {
  69. WARN_ON(1);
  70. if (PTR_ERR(einode) == -ENOENT)
  71. err = -EEXIST;
  72. goto out;
  73. }
  74. f2fs_delete_entry(de, page, einode);
  75. iput(einode);
  76. goto retry;
  77. }
  78. err = __f2fs_add_link(dir, &name, inode);
  79. out:
  80. f2fs_msg(inode->i_sb, KERN_NOTICE, "recover_inode and its dentry: "
  81. "ino = %x, name = %s, dir = %lx, err = %d",
  82. ino_of_node(ipage), raw_inode->i_name,
  83. IS_ERR(dir) ? 0 : dir->i_ino, err);
  84. return err;
  85. }
  86. static int recover_inode(struct inode *inode, struct page *node_page)
  87. {
  88. void *kaddr = page_address(node_page);
  89. struct f2fs_node *raw_node = (struct f2fs_node *)kaddr;
  90. struct f2fs_inode *raw_inode = &(raw_node->i);
  91. if (!IS_INODE(node_page))
  92. return 0;
  93. inode->i_mode = le16_to_cpu(raw_inode->i_mode);
  94. i_size_write(inode, le64_to_cpu(raw_inode->i_size));
  95. inode->i_atime.tv_sec = le64_to_cpu(raw_inode->i_mtime);
  96. inode->i_ctime.tv_sec = le64_to_cpu(raw_inode->i_ctime);
  97. inode->i_mtime.tv_sec = le64_to_cpu(raw_inode->i_mtime);
  98. inode->i_atime.tv_nsec = le32_to_cpu(raw_inode->i_mtime_nsec);
  99. inode->i_ctime.tv_nsec = le32_to_cpu(raw_inode->i_ctime_nsec);
  100. inode->i_mtime.tv_nsec = le32_to_cpu(raw_inode->i_mtime_nsec);
  101. if (is_dent_dnode(node_page))
  102. return recover_dentry(node_page, inode);
  103. f2fs_msg(inode->i_sb, KERN_NOTICE, "recover_inode: ino = %x, name = %s",
  104. ino_of_node(node_page), raw_inode->i_name);
  105. return 0;
  106. }
  107. static int find_fsync_dnodes(struct f2fs_sb_info *sbi, struct list_head *head)
  108. {
  109. unsigned long long cp_ver = le64_to_cpu(sbi->ckpt->checkpoint_ver);
  110. struct curseg_info *curseg;
  111. struct page *page;
  112. block_t blkaddr;
  113. int err = 0;
  114. /* get node pages in the current segment */
  115. curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
  116. blkaddr = START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff;
  117. /* read node page */
  118. page = alloc_page(GFP_F2FS_ZERO);
  119. if (IS_ERR(page))
  120. return PTR_ERR(page);
  121. lock_page(page);
  122. while (1) {
  123. struct fsync_inode_entry *entry;
  124. err = f2fs_readpage(sbi, page, blkaddr, READ_SYNC);
  125. if (err)
  126. goto out;
  127. lock_page(page);
  128. if (cp_ver != cpver_of_node(page))
  129. break;
  130. if (!is_fsync_dnode(page))
  131. goto next;
  132. entry = get_fsync_inode(head, ino_of_node(page));
  133. if (entry) {
  134. if (IS_INODE(page) && is_dent_dnode(page))
  135. set_inode_flag(F2FS_I(entry->inode),
  136. FI_INC_LINK);
  137. } else {
  138. if (IS_INODE(page) && is_dent_dnode(page)) {
  139. err = recover_inode_page(sbi, page);
  140. if (err)
  141. break;
  142. }
  143. /* add this fsync inode to the list */
  144. entry = kmem_cache_alloc(fsync_entry_slab, GFP_NOFS);
  145. if (!entry) {
  146. err = -ENOMEM;
  147. break;
  148. }
  149. entry->inode = f2fs_iget(sbi->sb, ino_of_node(page));
  150. if (IS_ERR(entry->inode)) {
  151. err = PTR_ERR(entry->inode);
  152. kmem_cache_free(fsync_entry_slab, entry);
  153. break;
  154. }
  155. list_add_tail(&entry->list, head);
  156. }
  157. entry->blkaddr = blkaddr;
  158. err = recover_inode(entry->inode, page);
  159. if (err && err != -ENOENT)
  160. break;
  161. next:
  162. /* check next segment */
  163. blkaddr = next_blkaddr_of_node(page);
  164. }
  165. unlock_page(page);
  166. out:
  167. __free_pages(page, 0);
  168. return err;
  169. }
  170. static void destroy_fsync_dnodes(struct list_head *head)
  171. {
  172. struct fsync_inode_entry *entry, *tmp;
  173. list_for_each_entry_safe(entry, tmp, head, list) {
  174. iput(entry->inode);
  175. list_del(&entry->list);
  176. kmem_cache_free(fsync_entry_slab, entry);
  177. }
  178. }
  179. static int check_index_in_prev_nodes(struct f2fs_sb_info *sbi,
  180. block_t blkaddr, struct dnode_of_data *dn)
  181. {
  182. struct seg_entry *sentry;
  183. unsigned int segno = GET_SEGNO(sbi, blkaddr);
  184. unsigned short blkoff = GET_SEGOFF_FROM_SEG0(sbi, blkaddr) &
  185. (sbi->blocks_per_seg - 1);
  186. struct f2fs_summary sum;
  187. nid_t ino, nid;
  188. void *kaddr;
  189. struct inode *inode;
  190. struct page *node_page;
  191. block_t bidx;
  192. int i;
  193. sentry = get_seg_entry(sbi, segno);
  194. if (!f2fs_test_bit(blkoff, sentry->cur_valid_map))
  195. return 0;
  196. /* Get the previous summary */
  197. for (i = CURSEG_WARM_DATA; i <= CURSEG_COLD_DATA; i++) {
  198. struct curseg_info *curseg = CURSEG_I(sbi, i);
  199. if (curseg->segno == segno) {
  200. sum = curseg->sum_blk->entries[blkoff];
  201. break;
  202. }
  203. }
  204. if (i > CURSEG_COLD_DATA) {
  205. struct page *sum_page = get_sum_page(sbi, segno);
  206. struct f2fs_summary_block *sum_node;
  207. kaddr = page_address(sum_page);
  208. sum_node = (struct f2fs_summary_block *)kaddr;
  209. sum = sum_node->entries[blkoff];
  210. f2fs_put_page(sum_page, 1);
  211. }
  212. /* Use the locked dnode page and inode */
  213. nid = le32_to_cpu(sum.nid);
  214. if (dn->inode->i_ino == nid) {
  215. struct dnode_of_data tdn = *dn;
  216. tdn.nid = nid;
  217. tdn.node_page = dn->inode_page;
  218. tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node);
  219. truncate_data_blocks_range(&tdn, 1);
  220. return 0;
  221. } else if (dn->nid == nid) {
  222. struct dnode_of_data tdn = *dn;
  223. tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node);
  224. truncate_data_blocks_range(&tdn, 1);
  225. return 0;
  226. }
  227. /* Get the node page */
  228. node_page = get_node_page(sbi, nid);
  229. if (IS_ERR(node_page))
  230. return PTR_ERR(node_page);
  231. bidx = start_bidx_of_node(ofs_of_node(node_page)) +
  232. le16_to_cpu(sum.ofs_in_node);
  233. ino = ino_of_node(node_page);
  234. f2fs_put_page(node_page, 1);
  235. /* Deallocate previous index in the node page */
  236. inode = f2fs_iget(sbi->sb, ino);
  237. if (IS_ERR(inode))
  238. return PTR_ERR(inode);
  239. truncate_hole(inode, bidx, bidx + 1);
  240. iput(inode);
  241. return 0;
  242. }
  243. static int do_recover_data(struct f2fs_sb_info *sbi, struct inode *inode,
  244. struct page *page, block_t blkaddr)
  245. {
  246. unsigned int start, end;
  247. struct dnode_of_data dn;
  248. struct f2fs_summary sum;
  249. struct node_info ni;
  250. int err = 0, recovered = 0;
  251. int ilock;
  252. start = start_bidx_of_node(ofs_of_node(page));
  253. if (IS_INODE(page))
  254. end = start + ADDRS_PER_INODE;
  255. else
  256. end = start + ADDRS_PER_BLOCK;
  257. ilock = mutex_lock_op(sbi);
  258. set_new_dnode(&dn, inode, NULL, NULL, 0);
  259. err = get_dnode_of_data(&dn, start, ALLOC_NODE);
  260. if (err) {
  261. mutex_unlock_op(sbi, ilock);
  262. return err;
  263. }
  264. wait_on_page_writeback(dn.node_page);
  265. get_node_info(sbi, dn.nid, &ni);
  266. BUG_ON(ni.ino != ino_of_node(page));
  267. BUG_ON(ofs_of_node(dn.node_page) != ofs_of_node(page));
  268. for (; start < end; start++) {
  269. block_t src, dest;
  270. src = datablock_addr(dn.node_page, dn.ofs_in_node);
  271. dest = datablock_addr(page, dn.ofs_in_node);
  272. if (src != dest && dest != NEW_ADDR && dest != NULL_ADDR) {
  273. if (src == NULL_ADDR) {
  274. int err = reserve_new_block(&dn);
  275. /* We should not get -ENOSPC */
  276. BUG_ON(err);
  277. }
  278. /* Check the previous node page having this index */
  279. err = check_index_in_prev_nodes(sbi, dest, &dn);
  280. if (err)
  281. goto err;
  282. set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version);
  283. /* write dummy data page */
  284. recover_data_page(sbi, NULL, &sum, src, dest);
  285. update_extent_cache(dest, &dn);
  286. recovered++;
  287. }
  288. dn.ofs_in_node++;
  289. }
  290. /* write node page in place */
  291. set_summary(&sum, dn.nid, 0, 0);
  292. if (IS_INODE(dn.node_page))
  293. sync_inode_page(&dn);
  294. copy_node_footer(dn.node_page, page);
  295. fill_node_footer(dn.node_page, dn.nid, ni.ino,
  296. ofs_of_node(page), false);
  297. set_page_dirty(dn.node_page);
  298. recover_node_page(sbi, dn.node_page, &sum, &ni, blkaddr);
  299. err:
  300. f2fs_put_dnode(&dn);
  301. mutex_unlock_op(sbi, ilock);
  302. f2fs_msg(sbi->sb, KERN_NOTICE, "recover_data: ino = %lx, "
  303. "recovered_data = %d blocks, err = %d",
  304. inode->i_ino, recovered, err);
  305. return err;
  306. }
  307. static int recover_data(struct f2fs_sb_info *sbi,
  308. struct list_head *head, int type)
  309. {
  310. unsigned long long cp_ver = le64_to_cpu(sbi->ckpt->checkpoint_ver);
  311. struct curseg_info *curseg;
  312. struct page *page;
  313. int err = 0;
  314. block_t blkaddr;
  315. /* get node pages in the current segment */
  316. curseg = CURSEG_I(sbi, type);
  317. blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
  318. /* read node page */
  319. page = alloc_page(GFP_NOFS | __GFP_ZERO);
  320. if (IS_ERR(page))
  321. return -ENOMEM;
  322. lock_page(page);
  323. while (1) {
  324. struct fsync_inode_entry *entry;
  325. err = f2fs_readpage(sbi, page, blkaddr, READ_SYNC);
  326. if (err)
  327. goto out;
  328. lock_page(page);
  329. if (cp_ver != cpver_of_node(page))
  330. break;
  331. entry = get_fsync_inode(head, ino_of_node(page));
  332. if (!entry)
  333. goto next;
  334. err = do_recover_data(sbi, entry->inode, page, blkaddr);
  335. if (err)
  336. break;
  337. if (entry->blkaddr == blkaddr) {
  338. iput(entry->inode);
  339. list_del(&entry->list);
  340. kmem_cache_free(fsync_entry_slab, entry);
  341. }
  342. next:
  343. /* check next segment */
  344. blkaddr = next_blkaddr_of_node(page);
  345. }
  346. unlock_page(page);
  347. out:
  348. __free_pages(page, 0);
  349. if (!err)
  350. allocate_new_segments(sbi);
  351. return err;
  352. }
  353. int recover_fsync_data(struct f2fs_sb_info *sbi)
  354. {
  355. struct list_head inode_list;
  356. int err;
  357. fsync_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_inode_entry",
  358. sizeof(struct fsync_inode_entry), NULL);
  359. if (unlikely(!fsync_entry_slab))
  360. return -ENOMEM;
  361. INIT_LIST_HEAD(&inode_list);
  362. /* step #1: find fsynced inode numbers */
  363. sbi->por_doing = 1;
  364. err = find_fsync_dnodes(sbi, &inode_list);
  365. if (err)
  366. goto out;
  367. if (list_empty(&inode_list))
  368. goto out;
  369. /* step #2: recover data */
  370. err = recover_data(sbi, &inode_list, CURSEG_WARM_NODE);
  371. BUG_ON(!list_empty(&inode_list));
  372. out:
  373. destroy_fsync_dnodes(&inode_list);
  374. kmem_cache_destroy(fsync_entry_slab);
  375. sbi->por_doing = 0;
  376. if (!err)
  377. write_checkpoint(sbi, false);
  378. return err;
  379. }