inode.c 7.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272
  1. /*
  2. * fs/f2fs/inode.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/buffer_head.h>
  14. #include <linux/writeback.h>
  15. #include "f2fs.h"
  16. #include "node.h"
  17. #include <trace/events/f2fs.h>
  18. void f2fs_set_inode_flags(struct inode *inode)
  19. {
  20. unsigned int flags = F2FS_I(inode)->i_flags;
  21. inode->i_flags &= ~(S_SYNC | S_APPEND | S_IMMUTABLE |
  22. S_NOATIME | S_DIRSYNC);
  23. if (flags & FS_SYNC_FL)
  24. inode->i_flags |= S_SYNC;
  25. if (flags & FS_APPEND_FL)
  26. inode->i_flags |= S_APPEND;
  27. if (flags & FS_IMMUTABLE_FL)
  28. inode->i_flags |= S_IMMUTABLE;
  29. if (flags & FS_NOATIME_FL)
  30. inode->i_flags |= S_NOATIME;
  31. if (flags & FS_DIRSYNC_FL)
  32. inode->i_flags |= S_DIRSYNC;
  33. }
  34. static int do_read_inode(struct inode *inode)
  35. {
  36. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  37. struct f2fs_inode_info *fi = F2FS_I(inode);
  38. struct page *node_page;
  39. struct f2fs_node *rn;
  40. struct f2fs_inode *ri;
  41. /* Check if ino is within scope */
  42. if (check_nid_range(sbi, inode->i_ino)) {
  43. f2fs_msg(inode->i_sb, KERN_ERR, "bad inode number: %lu",
  44. (unsigned long) inode->i_ino);
  45. return -EINVAL;
  46. }
  47. node_page = get_node_page(sbi, inode->i_ino);
  48. if (IS_ERR(node_page))
  49. return PTR_ERR(node_page);
  50. rn = page_address(node_page);
  51. ri = &(rn->i);
  52. inode->i_mode = le16_to_cpu(ri->i_mode);
  53. i_uid_write(inode, le32_to_cpu(ri->i_uid));
  54. i_gid_write(inode, le32_to_cpu(ri->i_gid));
  55. set_nlink(inode, le32_to_cpu(ri->i_links));
  56. inode->i_size = le64_to_cpu(ri->i_size);
  57. inode->i_blocks = le64_to_cpu(ri->i_blocks);
  58. inode->i_atime.tv_sec = le64_to_cpu(ri->i_atime);
  59. inode->i_ctime.tv_sec = le64_to_cpu(ri->i_ctime);
  60. inode->i_mtime.tv_sec = le64_to_cpu(ri->i_mtime);
  61. inode->i_atime.tv_nsec = le32_to_cpu(ri->i_atime_nsec);
  62. inode->i_ctime.tv_nsec = le32_to_cpu(ri->i_ctime_nsec);
  63. inode->i_mtime.tv_nsec = le32_to_cpu(ri->i_mtime_nsec);
  64. inode->i_generation = le32_to_cpu(ri->i_generation);
  65. if (ri->i_addr[0])
  66. inode->i_rdev = old_decode_dev(le32_to_cpu(ri->i_addr[0]));
  67. else
  68. inode->i_rdev = new_decode_dev(le32_to_cpu(ri->i_addr[1]));
  69. fi->i_current_depth = le32_to_cpu(ri->i_current_depth);
  70. fi->i_xattr_nid = le32_to_cpu(ri->i_xattr_nid);
  71. fi->i_flags = le32_to_cpu(ri->i_flags);
  72. fi->flags = 0;
  73. fi->i_advise = ri->i_advise;
  74. fi->i_pino = le32_to_cpu(ri->i_pino);
  75. get_extent_info(&fi->ext, ri->i_ext);
  76. f2fs_put_page(node_page, 1);
  77. return 0;
  78. }
  79. struct inode *f2fs_iget(struct super_block *sb, unsigned long ino)
  80. {
  81. struct f2fs_sb_info *sbi = F2FS_SB(sb);
  82. struct inode *inode;
  83. int ret = 0;
  84. inode = iget_locked(sb, ino);
  85. if (!inode)
  86. return ERR_PTR(-ENOMEM);
  87. if (!(inode->i_state & I_NEW)) {
  88. trace_f2fs_iget(inode);
  89. return inode;
  90. }
  91. if (ino == F2FS_NODE_INO(sbi) || ino == F2FS_META_INO(sbi))
  92. goto make_now;
  93. ret = do_read_inode(inode);
  94. if (ret)
  95. goto bad_inode;
  96. make_now:
  97. if (ino == F2FS_NODE_INO(sbi)) {
  98. inode->i_mapping->a_ops = &f2fs_node_aops;
  99. mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_ZERO);
  100. } else if (ino == F2FS_META_INO(sbi)) {
  101. inode->i_mapping->a_ops = &f2fs_meta_aops;
  102. mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_ZERO);
  103. } else if (S_ISREG(inode->i_mode)) {
  104. inode->i_op = &f2fs_file_inode_operations;
  105. inode->i_fop = &f2fs_file_operations;
  106. inode->i_mapping->a_ops = &f2fs_dblock_aops;
  107. } else if (S_ISDIR(inode->i_mode)) {
  108. inode->i_op = &f2fs_dir_inode_operations;
  109. inode->i_fop = &f2fs_dir_operations;
  110. inode->i_mapping->a_ops = &f2fs_dblock_aops;
  111. mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_ZERO);
  112. } else if (S_ISLNK(inode->i_mode)) {
  113. inode->i_op = &f2fs_symlink_inode_operations;
  114. inode->i_mapping->a_ops = &f2fs_dblock_aops;
  115. } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
  116. S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
  117. inode->i_op = &f2fs_special_inode_operations;
  118. init_special_inode(inode, inode->i_mode, inode->i_rdev);
  119. } else {
  120. ret = -EIO;
  121. goto bad_inode;
  122. }
  123. unlock_new_inode(inode);
  124. trace_f2fs_iget(inode);
  125. return inode;
  126. bad_inode:
  127. iget_failed(inode);
  128. trace_f2fs_iget_exit(inode, ret);
  129. return ERR_PTR(ret);
  130. }
  131. void update_inode(struct inode *inode, struct page *node_page)
  132. {
  133. struct f2fs_node *rn;
  134. struct f2fs_inode *ri;
  135. wait_on_page_writeback(node_page);
  136. rn = page_address(node_page);
  137. ri = &(rn->i);
  138. ri->i_mode = cpu_to_le16(inode->i_mode);
  139. ri->i_advise = F2FS_I(inode)->i_advise;
  140. ri->i_uid = cpu_to_le32(i_uid_read(inode));
  141. ri->i_gid = cpu_to_le32(i_gid_read(inode));
  142. ri->i_links = cpu_to_le32(inode->i_nlink);
  143. ri->i_size = cpu_to_le64(i_size_read(inode));
  144. ri->i_blocks = cpu_to_le64(inode->i_blocks);
  145. set_raw_extent(&F2FS_I(inode)->ext, &ri->i_ext);
  146. ri->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
  147. ri->i_ctime = cpu_to_le64(inode->i_ctime.tv_sec);
  148. ri->i_mtime = cpu_to_le64(inode->i_mtime.tv_sec);
  149. ri->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
  150. ri->i_ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
  151. ri->i_mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
  152. ri->i_current_depth = cpu_to_le32(F2FS_I(inode)->i_current_depth);
  153. ri->i_xattr_nid = cpu_to_le32(F2FS_I(inode)->i_xattr_nid);
  154. ri->i_flags = cpu_to_le32(F2FS_I(inode)->i_flags);
  155. ri->i_pino = cpu_to_le32(F2FS_I(inode)->i_pino);
  156. ri->i_generation = cpu_to_le32(inode->i_generation);
  157. if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
  158. if (old_valid_dev(inode->i_rdev)) {
  159. ri->i_addr[0] =
  160. cpu_to_le32(old_encode_dev(inode->i_rdev));
  161. ri->i_addr[1] = 0;
  162. } else {
  163. ri->i_addr[0] = 0;
  164. ri->i_addr[1] =
  165. cpu_to_le32(new_encode_dev(inode->i_rdev));
  166. ri->i_addr[2] = 0;
  167. }
  168. }
  169. set_cold_node(inode, node_page);
  170. set_page_dirty(node_page);
  171. clear_inode_flag(F2FS_I(inode), FI_DIRTY_INODE);
  172. }
  173. int update_inode_page(struct inode *inode)
  174. {
  175. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  176. struct page *node_page;
  177. node_page = get_node_page(sbi, inode->i_ino);
  178. if (IS_ERR(node_page))
  179. return PTR_ERR(node_page);
  180. update_inode(inode, node_page);
  181. f2fs_put_page(node_page, 1);
  182. return 0;
  183. }
  184. int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc)
  185. {
  186. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  187. int ret, ilock;
  188. if (inode->i_ino == F2FS_NODE_INO(sbi) ||
  189. inode->i_ino == F2FS_META_INO(sbi))
  190. return 0;
  191. if (!is_inode_flag_set(F2FS_I(inode), FI_DIRTY_INODE))
  192. return 0;
  193. if (wbc)
  194. f2fs_balance_fs(sbi);
  195. /*
  196. * We need to lock here to prevent from producing dirty node pages
  197. * during the urgent cleaning time when runing out of free sections.
  198. */
  199. ilock = mutex_lock_op(sbi);
  200. ret = update_inode_page(inode);
  201. mutex_unlock_op(sbi, ilock);
  202. return ret;
  203. }
  204. /*
  205. * Called at the last iput() if i_nlink is zero
  206. */
  207. void f2fs_evict_inode(struct inode *inode)
  208. {
  209. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  210. int ilock;
  211. trace_f2fs_evict_inode(inode);
  212. truncate_inode_pages(&inode->i_data, 0);
  213. if (inode->i_ino == F2FS_NODE_INO(sbi) ||
  214. inode->i_ino == F2FS_META_INO(sbi))
  215. goto no_delete;
  216. BUG_ON(atomic_read(&F2FS_I(inode)->dirty_dents));
  217. remove_dirty_dir_inode(inode);
  218. if (inode->i_nlink || is_bad_inode(inode))
  219. goto no_delete;
  220. sb_start_intwrite(inode->i_sb);
  221. set_inode_flag(F2FS_I(inode), FI_NO_ALLOC);
  222. i_size_write(inode, 0);
  223. if (F2FS_HAS_BLOCKS(inode))
  224. f2fs_truncate(inode);
  225. ilock = mutex_lock_op(sbi);
  226. remove_inode_page(inode);
  227. mutex_unlock_op(sbi, ilock);
  228. sb_end_intwrite(inode->i_sb);
  229. no_delete:
  230. clear_inode(inode);
  231. }