extents_status.c 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059
  1. /*
  2. * fs/ext4/extents_status.c
  3. *
  4. * Written by Yongqiang Yang <xiaoqiangnk@gmail.com>
  5. * Modified by
  6. * Allison Henderson <achender@linux.vnet.ibm.com>
  7. * Hugh Dickins <hughd@google.com>
  8. * Zheng Liu <wenqing.lz@taobao.com>
  9. *
  10. * Ext4 extents status tree core functions.
  11. */
  12. #include <linux/rbtree.h>
  13. #include <linux/list_sort.h>
  14. #include "ext4.h"
  15. #include "extents_status.h"
  16. #include "ext4_extents.h"
  17. #include <trace/events/ext4.h>
  18. /*
  19. * According to previous discussion in Ext4 Developer Workshop, we
  20. * will introduce a new structure called io tree to track all extent
  21. * status in order to solve some problems that we have met
  22. * (e.g. Reservation space warning), and provide extent-level locking.
  23. * Delay extent tree is the first step to achieve this goal. It is
  24. * original built by Yongqiang Yang. At that time it is called delay
  25. * extent tree, whose goal is only track delayed extents in memory to
  26. * simplify the implementation of fiemap and bigalloc, and introduce
  27. * lseek SEEK_DATA/SEEK_HOLE support. That is why it is still called
  28. * delay extent tree at the first commit. But for better understand
  29. * what it does, it has been rename to extent status tree.
  30. *
  31. * Step1:
  32. * Currently the first step has been done. All delayed extents are
  33. * tracked in the tree. It maintains the delayed extent when a delayed
  34. * allocation is issued, and the delayed extent is written out or
  35. * invalidated. Therefore the implementation of fiemap and bigalloc
  36. * are simplified, and SEEK_DATA/SEEK_HOLE are introduced.
  37. *
  38. * The following comment describes the implemenmtation of extent
  39. * status tree and future works.
  40. *
  41. * Step2:
  42. * In this step all extent status are tracked by extent status tree.
  43. * Thus, we can first try to lookup a block mapping in this tree before
  44. * finding it in extent tree. Hence, single extent cache can be removed
  45. * because extent status tree can do a better job. Extents in status
  46. * tree are loaded on-demand. Therefore, the extent status tree may not
  47. * contain all of the extents in a file. Meanwhile we define a shrinker
  48. * to reclaim memory from extent status tree because fragmented extent
  49. * tree will make status tree cost too much memory. written/unwritten/-
  50. * hole extents in the tree will be reclaimed by this shrinker when we
  51. * are under high memory pressure. Delayed extents will not be
  52. * reclimed because fiemap, bigalloc, and seek_data/hole need it.
  53. */
  54. /*
  55. * Extent status tree implementation for ext4.
  56. *
  57. *
  58. * ==========================================================================
  59. * Extent status tree tracks all extent status.
  60. *
  61. * 1. Why we need to implement extent status tree?
  62. *
  63. * Without extent status tree, ext4 identifies a delayed extent by looking
  64. * up page cache, this has several deficiencies - complicated, buggy,
  65. * and inefficient code.
  66. *
  67. * FIEMAP, SEEK_HOLE/DATA, bigalloc, and writeout all need to know if a
  68. * block or a range of blocks are belonged to a delayed extent.
  69. *
  70. * Let us have a look at how they do without extent status tree.
  71. * -- FIEMAP
  72. * FIEMAP looks up page cache to identify delayed allocations from holes.
  73. *
  74. * -- SEEK_HOLE/DATA
  75. * SEEK_HOLE/DATA has the same problem as FIEMAP.
  76. *
  77. * -- bigalloc
  78. * bigalloc looks up page cache to figure out if a block is
  79. * already under delayed allocation or not to determine whether
  80. * quota reserving is needed for the cluster.
  81. *
  82. * -- writeout
  83. * Writeout looks up whole page cache to see if a buffer is
  84. * mapped, If there are not very many delayed buffers, then it is
  85. * time comsuming.
  86. *
  87. * With extent status tree implementation, FIEMAP, SEEK_HOLE/DATA,
  88. * bigalloc and writeout can figure out if a block or a range of
  89. * blocks is under delayed allocation(belonged to a delayed extent) or
  90. * not by searching the extent tree.
  91. *
  92. *
  93. * ==========================================================================
  94. * 2. Ext4 extent status tree impelmentation
  95. *
  96. * -- extent
  97. * A extent is a range of blocks which are contiguous logically and
  98. * physically. Unlike extent in extent tree, this extent in ext4 is
  99. * a in-memory struct, there is no corresponding on-disk data. There
  100. * is no limit on length of extent, so an extent can contain as many
  101. * blocks as they are contiguous logically and physically.
  102. *
  103. * -- extent status tree
  104. * Every inode has an extent status tree and all allocation blocks
  105. * are added to the tree with different status. The extent in the
  106. * tree are ordered by logical block no.
  107. *
  108. * -- operations on a extent status tree
  109. * There are three important operations on a delayed extent tree: find
  110. * next extent, adding a extent(a range of blocks) and removing a extent.
  111. *
  112. * -- race on a extent status tree
  113. * Extent status tree is protected by inode->i_es_lock.
  114. *
  115. * -- memory consumption
  116. * Fragmented extent tree will make extent status tree cost too much
  117. * memory. Hence, we will reclaim written/unwritten/hole extents from
  118. * the tree under a heavy memory pressure.
  119. *
  120. *
  121. * ==========================================================================
  122. * 3. Performance analysis
  123. *
  124. * -- overhead
  125. * 1. There is a cache extent for write access, so if writes are
  126. * not very random, adding space operaions are in O(1) time.
  127. *
  128. * -- gain
  129. * 2. Code is much simpler, more readable, more maintainable and
  130. * more efficient.
  131. *
  132. *
  133. * ==========================================================================
  134. * 4. TODO list
  135. *
  136. * -- Refactor delayed space reservation
  137. *
  138. * -- Extent-level locking
  139. */
  140. static struct kmem_cache *ext4_es_cachep;
  141. static int __es_insert_extent(struct inode *inode, struct extent_status *newes);
  142. static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
  143. ext4_lblk_t end);
  144. static int __es_try_to_reclaim_extents(struct ext4_inode_info *ei,
  145. int nr_to_scan);
  146. static int __ext4_es_shrink(struct ext4_sb_info *sbi, int nr_to_scan,
  147. struct ext4_inode_info *locked_ei);
  148. int __init ext4_init_es(void)
  149. {
  150. ext4_es_cachep = kmem_cache_create("ext4_extent_status",
  151. sizeof(struct extent_status),
  152. 0, (SLAB_RECLAIM_ACCOUNT), NULL);
  153. if (ext4_es_cachep == NULL)
  154. return -ENOMEM;
  155. return 0;
  156. }
  157. void ext4_exit_es(void)
  158. {
  159. if (ext4_es_cachep)
  160. kmem_cache_destroy(ext4_es_cachep);
  161. }
  162. void ext4_es_init_tree(struct ext4_es_tree *tree)
  163. {
  164. tree->root = RB_ROOT;
  165. tree->cache_es = NULL;
  166. }
  167. #ifdef ES_DEBUG__
  168. static void ext4_es_print_tree(struct inode *inode)
  169. {
  170. struct ext4_es_tree *tree;
  171. struct rb_node *node;
  172. printk(KERN_DEBUG "status extents for inode %lu:", inode->i_ino);
  173. tree = &EXT4_I(inode)->i_es_tree;
  174. node = rb_first(&tree->root);
  175. while (node) {
  176. struct extent_status *es;
  177. es = rb_entry(node, struct extent_status, rb_node);
  178. printk(KERN_DEBUG " [%u/%u) %llu %llx",
  179. es->es_lblk, es->es_len,
  180. ext4_es_pblock(es), ext4_es_status(es));
  181. node = rb_next(node);
  182. }
  183. printk(KERN_DEBUG "\n");
  184. }
  185. #else
  186. #define ext4_es_print_tree(inode)
  187. #endif
  188. static inline ext4_lblk_t ext4_es_end(struct extent_status *es)
  189. {
  190. BUG_ON(es->es_lblk + es->es_len < es->es_lblk);
  191. return es->es_lblk + es->es_len - 1;
  192. }
  193. /*
  194. * search through the tree for an delayed extent with a given offset. If
  195. * it can't be found, try to find next extent.
  196. */
  197. static struct extent_status *__es_tree_search(struct rb_root *root,
  198. ext4_lblk_t lblk)
  199. {
  200. struct rb_node *node = root->rb_node;
  201. struct extent_status *es = NULL;
  202. while (node) {
  203. es = rb_entry(node, struct extent_status, rb_node);
  204. if (lblk < es->es_lblk)
  205. node = node->rb_left;
  206. else if (lblk > ext4_es_end(es))
  207. node = node->rb_right;
  208. else
  209. return es;
  210. }
  211. if (es && lblk < es->es_lblk)
  212. return es;
  213. if (es && lblk > ext4_es_end(es)) {
  214. node = rb_next(&es->rb_node);
  215. return node ? rb_entry(node, struct extent_status, rb_node) :
  216. NULL;
  217. }
  218. return NULL;
  219. }
  220. /*
  221. * ext4_es_find_delayed_extent_range: find the 1st delayed extent covering
  222. * @es->lblk if it exists, otherwise, the next extent after @es->lblk.
  223. *
  224. * @inode: the inode which owns delayed extents
  225. * @lblk: the offset where we start to search
  226. * @end: the offset where we stop to search
  227. * @es: delayed extent that we found
  228. */
  229. void ext4_es_find_delayed_extent_range(struct inode *inode,
  230. ext4_lblk_t lblk, ext4_lblk_t end,
  231. struct extent_status *es)
  232. {
  233. struct ext4_es_tree *tree = NULL;
  234. struct extent_status *es1 = NULL;
  235. struct rb_node *node;
  236. BUG_ON(es == NULL);
  237. BUG_ON(end < lblk);
  238. trace_ext4_es_find_delayed_extent_range_enter(inode, lblk);
  239. read_lock(&EXT4_I(inode)->i_es_lock);
  240. tree = &EXT4_I(inode)->i_es_tree;
  241. /* find extent in cache firstly */
  242. es->es_lblk = es->es_len = es->es_pblk = 0;
  243. if (tree->cache_es) {
  244. es1 = tree->cache_es;
  245. if (in_range(lblk, es1->es_lblk, es1->es_len)) {
  246. es_debug("%u cached by [%u/%u) %llu %llx\n",
  247. lblk, es1->es_lblk, es1->es_len,
  248. ext4_es_pblock(es1), ext4_es_status(es1));
  249. goto out;
  250. }
  251. }
  252. es1 = __es_tree_search(&tree->root, lblk);
  253. out:
  254. if (es1 && !ext4_es_is_delayed(es1)) {
  255. while ((node = rb_next(&es1->rb_node)) != NULL) {
  256. es1 = rb_entry(node, struct extent_status, rb_node);
  257. if (es1->es_lblk > end) {
  258. es1 = NULL;
  259. break;
  260. }
  261. if (ext4_es_is_delayed(es1))
  262. break;
  263. }
  264. }
  265. if (es1 && ext4_es_is_delayed(es1)) {
  266. tree->cache_es = es1;
  267. es->es_lblk = es1->es_lblk;
  268. es->es_len = es1->es_len;
  269. es->es_pblk = es1->es_pblk;
  270. }
  271. read_unlock(&EXT4_I(inode)->i_es_lock);
  272. trace_ext4_es_find_delayed_extent_range_exit(inode, es);
  273. }
  274. static struct extent_status *
  275. ext4_es_alloc_extent(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t len,
  276. ext4_fsblk_t pblk)
  277. {
  278. struct extent_status *es;
  279. es = kmem_cache_alloc(ext4_es_cachep, GFP_ATOMIC);
  280. if (es == NULL)
  281. return NULL;
  282. es->es_lblk = lblk;
  283. es->es_len = len;
  284. es->es_pblk = pblk;
  285. /*
  286. * We don't count delayed extent because we never try to reclaim them
  287. */
  288. if (!ext4_es_is_delayed(es)) {
  289. EXT4_I(inode)->i_es_lru_nr++;
  290. percpu_counter_inc(&EXT4_SB(inode->i_sb)->s_extent_cache_cnt);
  291. }
  292. return es;
  293. }
  294. static void ext4_es_free_extent(struct inode *inode, struct extent_status *es)
  295. {
  296. /* Decrease the lru counter when this es is not delayed */
  297. if (!ext4_es_is_delayed(es)) {
  298. BUG_ON(EXT4_I(inode)->i_es_lru_nr == 0);
  299. EXT4_I(inode)->i_es_lru_nr--;
  300. percpu_counter_dec(&EXT4_SB(inode->i_sb)->s_extent_cache_cnt);
  301. }
  302. kmem_cache_free(ext4_es_cachep, es);
  303. }
  304. /*
  305. * Check whether or not two extents can be merged
  306. * Condition:
  307. * - logical block number is contiguous
  308. * - physical block number is contiguous
  309. * - status is equal
  310. */
  311. static int ext4_es_can_be_merged(struct extent_status *es1,
  312. struct extent_status *es2)
  313. {
  314. if (ext4_es_status(es1) != ext4_es_status(es2))
  315. return 0;
  316. if (((__u64) es1->es_len) + es2->es_len > 0xFFFFFFFFULL)
  317. return 0;
  318. if (((__u64) es1->es_lblk) + es1->es_len != es2->es_lblk)
  319. return 0;
  320. if ((ext4_es_is_written(es1) || ext4_es_is_unwritten(es1)) &&
  321. (ext4_es_pblock(es1) + es1->es_len == ext4_es_pblock(es2)))
  322. return 1;
  323. if (ext4_es_is_hole(es1))
  324. return 1;
  325. /* we need to check delayed extent is without unwritten status */
  326. if (ext4_es_is_delayed(es1) && !ext4_es_is_unwritten(es1))
  327. return 1;
  328. return 0;
  329. }
  330. static struct extent_status *
  331. ext4_es_try_to_merge_left(struct inode *inode, struct extent_status *es)
  332. {
  333. struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
  334. struct extent_status *es1;
  335. struct rb_node *node;
  336. node = rb_prev(&es->rb_node);
  337. if (!node)
  338. return es;
  339. es1 = rb_entry(node, struct extent_status, rb_node);
  340. if (ext4_es_can_be_merged(es1, es)) {
  341. es1->es_len += es->es_len;
  342. rb_erase(&es->rb_node, &tree->root);
  343. ext4_es_free_extent(inode, es);
  344. es = es1;
  345. }
  346. return es;
  347. }
  348. static struct extent_status *
  349. ext4_es_try_to_merge_right(struct inode *inode, struct extent_status *es)
  350. {
  351. struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
  352. struct extent_status *es1;
  353. struct rb_node *node;
  354. node = rb_next(&es->rb_node);
  355. if (!node)
  356. return es;
  357. es1 = rb_entry(node, struct extent_status, rb_node);
  358. if (ext4_es_can_be_merged(es, es1)) {
  359. es->es_len += es1->es_len;
  360. rb_erase(node, &tree->root);
  361. ext4_es_free_extent(inode, es1);
  362. }
  363. return es;
  364. }
  365. #ifdef ES_AGGRESSIVE_TEST
  366. static void ext4_es_insert_extent_ext_check(struct inode *inode,
  367. struct extent_status *es)
  368. {
  369. struct ext4_ext_path *path = NULL;
  370. struct ext4_extent *ex;
  371. ext4_lblk_t ee_block;
  372. ext4_fsblk_t ee_start;
  373. unsigned short ee_len;
  374. int depth, ee_status, es_status;
  375. path = ext4_ext_find_extent(inode, es->es_lblk, NULL);
  376. if (IS_ERR(path))
  377. return;
  378. depth = ext_depth(inode);
  379. ex = path[depth].p_ext;
  380. if (ex) {
  381. ee_block = le32_to_cpu(ex->ee_block);
  382. ee_start = ext4_ext_pblock(ex);
  383. ee_len = ext4_ext_get_actual_len(ex);
  384. ee_status = ext4_ext_is_uninitialized(ex) ? 1 : 0;
  385. es_status = ext4_es_is_unwritten(es) ? 1 : 0;
  386. /*
  387. * Make sure ex and es are not overlap when we try to insert
  388. * a delayed/hole extent.
  389. */
  390. if (!ext4_es_is_written(es) && !ext4_es_is_unwritten(es)) {
  391. if (in_range(es->es_lblk, ee_block, ee_len)) {
  392. pr_warn("ES insert assertion failed for "
  393. "inode: %lu we can find an extent "
  394. "at block [%d/%d/%llu/%c], but we "
  395. "want to add an delayed/hole extent "
  396. "[%d/%d/%llu/%llx]\n",
  397. inode->i_ino, ee_block, ee_len,
  398. ee_start, ee_status ? 'u' : 'w',
  399. es->es_lblk, es->es_len,
  400. ext4_es_pblock(es), ext4_es_status(es));
  401. }
  402. goto out;
  403. }
  404. /*
  405. * We don't check ee_block == es->es_lblk, etc. because es
  406. * might be a part of whole extent, vice versa.
  407. */
  408. if (es->es_lblk < ee_block ||
  409. ext4_es_pblock(es) != ee_start + es->es_lblk - ee_block) {
  410. pr_warn("ES insert assertion failed for inode: %lu "
  411. "ex_status [%d/%d/%llu/%c] != "
  412. "es_status [%d/%d/%llu/%c]\n", inode->i_ino,
  413. ee_block, ee_len, ee_start,
  414. ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
  415. ext4_es_pblock(es), es_status ? 'u' : 'w');
  416. goto out;
  417. }
  418. if (ee_status ^ es_status) {
  419. pr_warn("ES insert assertion failed for inode: %lu "
  420. "ex_status [%d/%d/%llu/%c] != "
  421. "es_status [%d/%d/%llu/%c]\n", inode->i_ino,
  422. ee_block, ee_len, ee_start,
  423. ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
  424. ext4_es_pblock(es), es_status ? 'u' : 'w');
  425. }
  426. } else {
  427. /*
  428. * We can't find an extent on disk. So we need to make sure
  429. * that we don't want to add an written/unwritten extent.
  430. */
  431. if (!ext4_es_is_delayed(es) && !ext4_es_is_hole(es)) {
  432. pr_warn("ES insert assertion failed for inode: %lu "
  433. "can't find an extent at block %d but we want "
  434. "to add an written/unwritten extent "
  435. "[%d/%d/%llu/%llx]\n", inode->i_ino,
  436. es->es_lblk, es->es_lblk, es->es_len,
  437. ext4_es_pblock(es), ext4_es_status(es));
  438. }
  439. }
  440. out:
  441. if (path) {
  442. ext4_ext_drop_refs(path);
  443. kfree(path);
  444. }
  445. }
  446. static void ext4_es_insert_extent_ind_check(struct inode *inode,
  447. struct extent_status *es)
  448. {
  449. struct ext4_map_blocks map;
  450. int retval;
  451. /*
  452. * Here we call ext4_ind_map_blocks to lookup a block mapping because
  453. * 'Indirect' structure is defined in indirect.c. So we couldn't
  454. * access direct/indirect tree from outside. It is too dirty to define
  455. * this function in indirect.c file.
  456. */
  457. map.m_lblk = es->es_lblk;
  458. map.m_len = es->es_len;
  459. retval = ext4_ind_map_blocks(NULL, inode, &map, 0);
  460. if (retval > 0) {
  461. if (ext4_es_is_delayed(es) || ext4_es_is_hole(es)) {
  462. /*
  463. * We want to add a delayed/hole extent but this
  464. * block has been allocated.
  465. */
  466. pr_warn("ES insert assertion failed for inode: %lu "
  467. "We can find blocks but we want to add a "
  468. "delayed/hole extent [%d/%d/%llu/%llx]\n",
  469. inode->i_ino, es->es_lblk, es->es_len,
  470. ext4_es_pblock(es), ext4_es_status(es));
  471. return;
  472. } else if (ext4_es_is_written(es)) {
  473. if (retval != es->es_len) {
  474. pr_warn("ES insert assertion failed for "
  475. "inode: %lu retval %d != es_len %d\n",
  476. inode->i_ino, retval, es->es_len);
  477. return;
  478. }
  479. if (map.m_pblk != ext4_es_pblock(es)) {
  480. pr_warn("ES insert assertion failed for "
  481. "inode: %lu m_pblk %llu != "
  482. "es_pblk %llu\n",
  483. inode->i_ino, map.m_pblk,
  484. ext4_es_pblock(es));
  485. return;
  486. }
  487. } else {
  488. /*
  489. * We don't need to check unwritten extent because
  490. * indirect-based file doesn't have it.
  491. */
  492. BUG_ON(1);
  493. }
  494. } else if (retval == 0) {
  495. if (ext4_es_is_written(es)) {
  496. pr_warn("ES insert assertion failed for inode: %lu "
  497. "We can't find the block but we want to add "
  498. "an written extent [%d/%d/%llu/%llx]\n",
  499. inode->i_ino, es->es_lblk, es->es_len,
  500. ext4_es_pblock(es), ext4_es_status(es));
  501. return;
  502. }
  503. }
  504. }
  505. static inline void ext4_es_insert_extent_check(struct inode *inode,
  506. struct extent_status *es)
  507. {
  508. /*
  509. * We don't need to worry about the race condition because
  510. * caller takes i_data_sem locking.
  511. */
  512. BUG_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem));
  513. if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
  514. ext4_es_insert_extent_ext_check(inode, es);
  515. else
  516. ext4_es_insert_extent_ind_check(inode, es);
  517. }
  518. #else
  519. static inline void ext4_es_insert_extent_check(struct inode *inode,
  520. struct extent_status *es)
  521. {
  522. }
  523. #endif
  524. static int __es_insert_extent(struct inode *inode, struct extent_status *newes)
  525. {
  526. struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
  527. struct rb_node **p = &tree->root.rb_node;
  528. struct rb_node *parent = NULL;
  529. struct extent_status *es;
  530. while (*p) {
  531. parent = *p;
  532. es = rb_entry(parent, struct extent_status, rb_node);
  533. if (newes->es_lblk < es->es_lblk) {
  534. if (ext4_es_can_be_merged(newes, es)) {
  535. /*
  536. * Here we can modify es_lblk directly
  537. * because it isn't overlapped.
  538. */
  539. es->es_lblk = newes->es_lblk;
  540. es->es_len += newes->es_len;
  541. if (ext4_es_is_written(es) ||
  542. ext4_es_is_unwritten(es))
  543. ext4_es_store_pblock(es,
  544. newes->es_pblk);
  545. es = ext4_es_try_to_merge_left(inode, es);
  546. goto out;
  547. }
  548. p = &(*p)->rb_left;
  549. } else if (newes->es_lblk > ext4_es_end(es)) {
  550. if (ext4_es_can_be_merged(es, newes)) {
  551. es->es_len += newes->es_len;
  552. es = ext4_es_try_to_merge_right(inode, es);
  553. goto out;
  554. }
  555. p = &(*p)->rb_right;
  556. } else {
  557. BUG_ON(1);
  558. return -EINVAL;
  559. }
  560. }
  561. es = ext4_es_alloc_extent(inode, newes->es_lblk, newes->es_len,
  562. newes->es_pblk);
  563. if (!es)
  564. return -ENOMEM;
  565. rb_link_node(&es->rb_node, parent, p);
  566. rb_insert_color(&es->rb_node, &tree->root);
  567. out:
  568. tree->cache_es = es;
  569. return 0;
  570. }
  571. /*
  572. * ext4_es_insert_extent() adds information to an inode's extent
  573. * status tree.
  574. *
  575. * Return 0 on success, error code on failure.
  576. */
  577. int ext4_es_insert_extent(struct inode *inode, ext4_lblk_t lblk,
  578. ext4_lblk_t len, ext4_fsblk_t pblk,
  579. unsigned long long status)
  580. {
  581. struct extent_status newes;
  582. ext4_lblk_t end = lblk + len - 1;
  583. int err = 0;
  584. es_debug("add [%u/%u) %llu %llx to extent status tree of inode %lu\n",
  585. lblk, len, pblk, status, inode->i_ino);
  586. if (!len)
  587. return 0;
  588. BUG_ON(end < lblk);
  589. newes.es_lblk = lblk;
  590. newes.es_len = len;
  591. ext4_es_store_pblock(&newes, pblk);
  592. ext4_es_store_status(&newes, status);
  593. trace_ext4_es_insert_extent(inode, &newes);
  594. ext4_es_insert_extent_check(inode, &newes);
  595. write_lock(&EXT4_I(inode)->i_es_lock);
  596. err = __es_remove_extent(inode, lblk, end);
  597. if (err != 0)
  598. goto error;
  599. retry:
  600. err = __es_insert_extent(inode, &newes);
  601. if (err == -ENOMEM && __ext4_es_shrink(EXT4_SB(inode->i_sb), 1,
  602. EXT4_I(inode)))
  603. goto retry;
  604. if (err == -ENOMEM && !ext4_es_is_delayed(&newes))
  605. err = 0;
  606. error:
  607. write_unlock(&EXT4_I(inode)->i_es_lock);
  608. ext4_es_print_tree(inode);
  609. return err;
  610. }
  611. /*
  612. * ext4_es_lookup_extent() looks up an extent in extent status tree.
  613. *
  614. * ext4_es_lookup_extent is called by ext4_map_blocks/ext4_da_map_blocks.
  615. *
  616. * Return: 1 on found, 0 on not
  617. */
  618. int ext4_es_lookup_extent(struct inode *inode, ext4_lblk_t lblk,
  619. struct extent_status *es)
  620. {
  621. struct ext4_es_tree *tree;
  622. struct extent_status *es1 = NULL;
  623. struct rb_node *node;
  624. int found = 0;
  625. trace_ext4_es_lookup_extent_enter(inode, lblk);
  626. es_debug("lookup extent in block %u\n", lblk);
  627. tree = &EXT4_I(inode)->i_es_tree;
  628. read_lock(&EXT4_I(inode)->i_es_lock);
  629. /* find extent in cache firstly */
  630. es->es_lblk = es->es_len = es->es_pblk = 0;
  631. if (tree->cache_es) {
  632. es1 = tree->cache_es;
  633. if (in_range(lblk, es1->es_lblk, es1->es_len)) {
  634. es_debug("%u cached by [%u/%u)\n",
  635. lblk, es1->es_lblk, es1->es_len);
  636. found = 1;
  637. goto out;
  638. }
  639. }
  640. node = tree->root.rb_node;
  641. while (node) {
  642. es1 = rb_entry(node, struct extent_status, rb_node);
  643. if (lblk < es1->es_lblk)
  644. node = node->rb_left;
  645. else if (lblk > ext4_es_end(es1))
  646. node = node->rb_right;
  647. else {
  648. found = 1;
  649. break;
  650. }
  651. }
  652. out:
  653. if (found) {
  654. BUG_ON(!es1);
  655. es->es_lblk = es1->es_lblk;
  656. es->es_len = es1->es_len;
  657. es->es_pblk = es1->es_pblk;
  658. }
  659. read_unlock(&EXT4_I(inode)->i_es_lock);
  660. trace_ext4_es_lookup_extent_exit(inode, es, found);
  661. return found;
  662. }
  663. static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
  664. ext4_lblk_t end)
  665. {
  666. struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
  667. struct rb_node *node;
  668. struct extent_status *es;
  669. struct extent_status orig_es;
  670. ext4_lblk_t len1, len2;
  671. ext4_fsblk_t block;
  672. int err;
  673. retry:
  674. err = 0;
  675. es = __es_tree_search(&tree->root, lblk);
  676. if (!es)
  677. goto out;
  678. if (es->es_lblk > end)
  679. goto out;
  680. /* Simply invalidate cache_es. */
  681. tree->cache_es = NULL;
  682. orig_es.es_lblk = es->es_lblk;
  683. orig_es.es_len = es->es_len;
  684. orig_es.es_pblk = es->es_pblk;
  685. len1 = lblk > es->es_lblk ? lblk - es->es_lblk : 0;
  686. len2 = ext4_es_end(es) > end ? ext4_es_end(es) - end : 0;
  687. if (len1 > 0)
  688. es->es_len = len1;
  689. if (len2 > 0) {
  690. if (len1 > 0) {
  691. struct extent_status newes;
  692. newes.es_lblk = end + 1;
  693. newes.es_len = len2;
  694. if (ext4_es_is_written(&orig_es) ||
  695. ext4_es_is_unwritten(&orig_es)) {
  696. block = ext4_es_pblock(&orig_es) +
  697. orig_es.es_len - len2;
  698. ext4_es_store_pblock(&newes, block);
  699. }
  700. ext4_es_store_status(&newes, ext4_es_status(&orig_es));
  701. err = __es_insert_extent(inode, &newes);
  702. if (err) {
  703. es->es_lblk = orig_es.es_lblk;
  704. es->es_len = orig_es.es_len;
  705. if ((err == -ENOMEM) &&
  706. __ext4_es_shrink(EXT4_SB(inode->i_sb), 1,
  707. EXT4_I(inode)))
  708. goto retry;
  709. goto out;
  710. }
  711. } else {
  712. es->es_lblk = end + 1;
  713. es->es_len = len2;
  714. if (ext4_es_is_written(es) ||
  715. ext4_es_is_unwritten(es)) {
  716. block = orig_es.es_pblk + orig_es.es_len - len2;
  717. ext4_es_store_pblock(es, block);
  718. }
  719. }
  720. goto out;
  721. }
  722. if (len1 > 0) {
  723. node = rb_next(&es->rb_node);
  724. if (node)
  725. es = rb_entry(node, struct extent_status, rb_node);
  726. else
  727. es = NULL;
  728. }
  729. while (es && ext4_es_end(es) <= end) {
  730. node = rb_next(&es->rb_node);
  731. rb_erase(&es->rb_node, &tree->root);
  732. ext4_es_free_extent(inode, es);
  733. if (!node) {
  734. es = NULL;
  735. break;
  736. }
  737. es = rb_entry(node, struct extent_status, rb_node);
  738. }
  739. if (es && es->es_lblk < end + 1) {
  740. ext4_lblk_t orig_len = es->es_len;
  741. len1 = ext4_es_end(es) - end;
  742. es->es_lblk = end + 1;
  743. es->es_len = len1;
  744. if (ext4_es_is_written(es) || ext4_es_is_unwritten(es)) {
  745. block = es->es_pblk + orig_len - len1;
  746. ext4_es_store_pblock(es, block);
  747. }
  748. }
  749. out:
  750. return err;
  751. }
  752. /*
  753. * ext4_es_remove_extent() removes a space from a extent status tree.
  754. *
  755. * Return 0 on success, error code on failure.
  756. */
  757. int ext4_es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
  758. ext4_lblk_t len)
  759. {
  760. ext4_lblk_t end;
  761. int err = 0;
  762. trace_ext4_es_remove_extent(inode, lblk, len);
  763. es_debug("remove [%u/%u) from extent status tree of inode %lu\n",
  764. lblk, len, inode->i_ino);
  765. if (!len)
  766. return err;
  767. end = lblk + len - 1;
  768. BUG_ON(end < lblk);
  769. write_lock(&EXT4_I(inode)->i_es_lock);
  770. err = __es_remove_extent(inode, lblk, end);
  771. write_unlock(&EXT4_I(inode)->i_es_lock);
  772. ext4_es_print_tree(inode);
  773. return err;
  774. }
  775. int ext4_es_zeroout(struct inode *inode, struct ext4_extent *ex)
  776. {
  777. ext4_lblk_t ee_block;
  778. ext4_fsblk_t ee_pblock;
  779. unsigned int ee_len;
  780. ee_block = le32_to_cpu(ex->ee_block);
  781. ee_len = ext4_ext_get_actual_len(ex);
  782. ee_pblock = ext4_ext_pblock(ex);
  783. if (ee_len == 0)
  784. return 0;
  785. return ext4_es_insert_extent(inode, ee_block, ee_len, ee_pblock,
  786. EXTENT_STATUS_WRITTEN);
  787. }
  788. static int ext4_inode_touch_time_cmp(void *priv, struct list_head *a,
  789. struct list_head *b)
  790. {
  791. struct ext4_inode_info *eia, *eib;
  792. eia = list_entry(a, struct ext4_inode_info, i_es_lru);
  793. eib = list_entry(b, struct ext4_inode_info, i_es_lru);
  794. if (eia->i_touch_when == eib->i_touch_when)
  795. return 0;
  796. if (time_after(eia->i_touch_when, eib->i_touch_when))
  797. return 1;
  798. else
  799. return -1;
  800. }
  801. static int __ext4_es_shrink(struct ext4_sb_info *sbi, int nr_to_scan,
  802. struct ext4_inode_info *locked_ei)
  803. {
  804. struct ext4_inode_info *ei;
  805. struct list_head *cur, *tmp;
  806. LIST_HEAD(skiped);
  807. int ret, nr_shrunk = 0;
  808. spin_lock(&sbi->s_es_lru_lock);
  809. /*
  810. * If the inode that is at the head of LRU list is newer than
  811. * last_sorted time, that means that we need to sort this list.
  812. */
  813. ei = list_first_entry(&sbi->s_es_lru, struct ext4_inode_info, i_es_lru);
  814. if (sbi->s_es_last_sorted < ei->i_touch_when) {
  815. list_sort(NULL, &sbi->s_es_lru, ext4_inode_touch_time_cmp);
  816. sbi->s_es_last_sorted = jiffies;
  817. }
  818. list_for_each_safe(cur, tmp, &sbi->s_es_lru) {
  819. /*
  820. * If we have already reclaimed all extents from extent
  821. * status tree, just stop the loop immediately.
  822. */
  823. if (percpu_counter_read_positive(&sbi->s_extent_cache_cnt) == 0)
  824. break;
  825. ei = list_entry(cur, struct ext4_inode_info, i_es_lru);
  826. /* Skip the inode that is newer than the last_sorted time */
  827. if (sbi->s_es_last_sorted < ei->i_touch_when) {
  828. list_move_tail(cur, &skiped);
  829. continue;
  830. }
  831. if (ei->i_es_lru_nr == 0 || ei == locked_ei)
  832. continue;
  833. write_lock(&ei->i_es_lock);
  834. ret = __es_try_to_reclaim_extents(ei, nr_to_scan);
  835. if (ei->i_es_lru_nr == 0)
  836. list_del_init(&ei->i_es_lru);
  837. write_unlock(&ei->i_es_lock);
  838. nr_shrunk += ret;
  839. nr_to_scan -= ret;
  840. if (nr_to_scan == 0)
  841. break;
  842. }
  843. /* Move the newer inodes into the tail of the LRU list. */
  844. list_splice_tail(&skiped, &sbi->s_es_lru);
  845. spin_unlock(&sbi->s_es_lru_lock);
  846. if (locked_ei && nr_shrunk == 0)
  847. nr_shrunk = __es_try_to_reclaim_extents(ei, nr_to_scan);
  848. return nr_shrunk;
  849. }
  850. static int ext4_es_shrink(struct shrinker *shrink, struct shrink_control *sc)
  851. {
  852. struct ext4_sb_info *sbi = container_of(shrink,
  853. struct ext4_sb_info, s_es_shrinker);
  854. int nr_to_scan = sc->nr_to_scan;
  855. int ret, nr_shrunk;
  856. ret = percpu_counter_read_positive(&sbi->s_extent_cache_cnt);
  857. trace_ext4_es_shrink_enter(sbi->s_sb, nr_to_scan, ret);
  858. if (!nr_to_scan)
  859. return ret;
  860. nr_shrunk = __ext4_es_shrink(sbi, nr_to_scan, NULL);
  861. ret = percpu_counter_read_positive(&sbi->s_extent_cache_cnt);
  862. trace_ext4_es_shrink_exit(sbi->s_sb, nr_shrunk, ret);
  863. return ret;
  864. }
  865. void ext4_es_register_shrinker(struct ext4_sb_info *sbi)
  866. {
  867. INIT_LIST_HEAD(&sbi->s_es_lru);
  868. spin_lock_init(&sbi->s_es_lru_lock);
  869. sbi->s_es_last_sorted = 0;
  870. sbi->s_es_shrinker.shrink = ext4_es_shrink;
  871. sbi->s_es_shrinker.seeks = DEFAULT_SEEKS;
  872. register_shrinker(&sbi->s_es_shrinker);
  873. }
  874. void ext4_es_unregister_shrinker(struct ext4_sb_info *sbi)
  875. {
  876. unregister_shrinker(&sbi->s_es_shrinker);
  877. }
  878. void ext4_es_lru_add(struct inode *inode)
  879. {
  880. struct ext4_inode_info *ei = EXT4_I(inode);
  881. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  882. ei->i_touch_when = jiffies;
  883. if (!list_empty(&ei->i_es_lru))
  884. return;
  885. spin_lock(&sbi->s_es_lru_lock);
  886. if (list_empty(&ei->i_es_lru))
  887. list_add_tail(&ei->i_es_lru, &sbi->s_es_lru);
  888. spin_unlock(&sbi->s_es_lru_lock);
  889. }
  890. void ext4_es_lru_del(struct inode *inode)
  891. {
  892. struct ext4_inode_info *ei = EXT4_I(inode);
  893. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  894. spin_lock(&sbi->s_es_lru_lock);
  895. if (!list_empty(&ei->i_es_lru))
  896. list_del_init(&ei->i_es_lru);
  897. spin_unlock(&sbi->s_es_lru_lock);
  898. }
  899. static int __es_try_to_reclaim_extents(struct ext4_inode_info *ei,
  900. int nr_to_scan)
  901. {
  902. struct inode *inode = &ei->vfs_inode;
  903. struct ext4_es_tree *tree = &ei->i_es_tree;
  904. struct rb_node *node;
  905. struct extent_status *es;
  906. int nr_shrunk = 0;
  907. if (ei->i_es_lru_nr == 0)
  908. return 0;
  909. node = rb_first(&tree->root);
  910. while (node != NULL) {
  911. es = rb_entry(node, struct extent_status, rb_node);
  912. node = rb_next(&es->rb_node);
  913. /*
  914. * We can't reclaim delayed extent from status tree because
  915. * fiemap, bigallic, and seek_data/hole need to use it.
  916. */
  917. if (!ext4_es_is_delayed(es)) {
  918. rb_erase(&es->rb_node, &tree->root);
  919. ext4_es_free_extent(inode, es);
  920. nr_shrunk++;
  921. if (--nr_to_scan == 0)
  922. break;
  923. }
  924. }
  925. tree->cache_es = NULL;
  926. return nr_shrunk;
  927. }