mds_client.c 89 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523
  1. #include <linux/ceph/ceph_debug.h>
  2. #include <linux/fs.h>
  3. #include <linux/wait.h>
  4. #include <linux/slab.h>
  5. #include <linux/sched.h>
  6. #include <linux/debugfs.h>
  7. #include <linux/seq_file.h>
  8. #include "super.h"
  9. #include "mds_client.h"
  10. #include <linux/ceph/ceph_features.h>
  11. #include <linux/ceph/messenger.h>
  12. #include <linux/ceph/decode.h>
  13. #include <linux/ceph/pagelist.h>
  14. #include <linux/ceph/auth.h>
  15. #include <linux/ceph/debugfs.h>
  16. /*
  17. * A cluster of MDS (metadata server) daemons is responsible for
  18. * managing the file system namespace (the directory hierarchy and
  19. * inodes) and for coordinating shared access to storage. Metadata is
  20. * partitioning hierarchically across a number of servers, and that
  21. * partition varies over time as the cluster adjusts the distribution
  22. * in order to balance load.
  23. *
  24. * The MDS client is primarily responsible to managing synchronous
  25. * metadata requests for operations like open, unlink, and so forth.
  26. * If there is a MDS failure, we find out about it when we (possibly
  27. * request and) receive a new MDS map, and can resubmit affected
  28. * requests.
  29. *
  30. * For the most part, though, we take advantage of a lossless
  31. * communications channel to the MDS, and do not need to worry about
  32. * timing out or resubmitting requests.
  33. *
  34. * We maintain a stateful "session" with each MDS we interact with.
  35. * Within each session, we sent periodic heartbeat messages to ensure
  36. * any capabilities or leases we have been issues remain valid. If
  37. * the session times out and goes stale, our leases and capabilities
  38. * are no longer valid.
  39. */
  40. struct ceph_reconnect_state {
  41. struct ceph_pagelist *pagelist;
  42. bool flock;
  43. };
  44. static void __wake_requests(struct ceph_mds_client *mdsc,
  45. struct list_head *head);
  46. static const struct ceph_connection_operations mds_con_ops;
  47. /*
  48. * mds reply parsing
  49. */
  50. /*
  51. * parse individual inode info
  52. */
  53. static int parse_reply_info_in(void **p, void *end,
  54. struct ceph_mds_reply_info_in *info,
  55. int features)
  56. {
  57. int err = -EIO;
  58. info->in = *p;
  59. *p += sizeof(struct ceph_mds_reply_inode) +
  60. sizeof(*info->in->fragtree.splits) *
  61. le32_to_cpu(info->in->fragtree.nsplits);
  62. ceph_decode_32_safe(p, end, info->symlink_len, bad);
  63. ceph_decode_need(p, end, info->symlink_len, bad);
  64. info->symlink = *p;
  65. *p += info->symlink_len;
  66. if (features & CEPH_FEATURE_DIRLAYOUTHASH)
  67. ceph_decode_copy_safe(p, end, &info->dir_layout,
  68. sizeof(info->dir_layout), bad);
  69. else
  70. memset(&info->dir_layout, 0, sizeof(info->dir_layout));
  71. ceph_decode_32_safe(p, end, info->xattr_len, bad);
  72. ceph_decode_need(p, end, info->xattr_len, bad);
  73. info->xattr_data = *p;
  74. *p += info->xattr_len;
  75. return 0;
  76. bad:
  77. return err;
  78. }
  79. /*
  80. * parse a normal reply, which may contain a (dir+)dentry and/or a
  81. * target inode.
  82. */
  83. static int parse_reply_info_trace(void **p, void *end,
  84. struct ceph_mds_reply_info_parsed *info,
  85. int features)
  86. {
  87. int err;
  88. if (info->head->is_dentry) {
  89. err = parse_reply_info_in(p, end, &info->diri, features);
  90. if (err < 0)
  91. goto out_bad;
  92. if (unlikely(*p + sizeof(*info->dirfrag) > end))
  93. goto bad;
  94. info->dirfrag = *p;
  95. *p += sizeof(*info->dirfrag) +
  96. sizeof(u32)*le32_to_cpu(info->dirfrag->ndist);
  97. if (unlikely(*p > end))
  98. goto bad;
  99. ceph_decode_32_safe(p, end, info->dname_len, bad);
  100. ceph_decode_need(p, end, info->dname_len, bad);
  101. info->dname = *p;
  102. *p += info->dname_len;
  103. info->dlease = *p;
  104. *p += sizeof(*info->dlease);
  105. }
  106. if (info->head->is_target) {
  107. err = parse_reply_info_in(p, end, &info->targeti, features);
  108. if (err < 0)
  109. goto out_bad;
  110. }
  111. if (unlikely(*p != end))
  112. goto bad;
  113. return 0;
  114. bad:
  115. err = -EIO;
  116. out_bad:
  117. pr_err("problem parsing mds trace %d\n", err);
  118. return err;
  119. }
  120. /*
  121. * parse readdir results
  122. */
  123. static int parse_reply_info_dir(void **p, void *end,
  124. struct ceph_mds_reply_info_parsed *info,
  125. int features)
  126. {
  127. u32 num, i = 0;
  128. int err;
  129. info->dir_dir = *p;
  130. if (*p + sizeof(*info->dir_dir) > end)
  131. goto bad;
  132. *p += sizeof(*info->dir_dir) +
  133. sizeof(u32)*le32_to_cpu(info->dir_dir->ndist);
  134. if (*p > end)
  135. goto bad;
  136. ceph_decode_need(p, end, sizeof(num) + 2, bad);
  137. num = ceph_decode_32(p);
  138. info->dir_end = ceph_decode_8(p);
  139. info->dir_complete = ceph_decode_8(p);
  140. if (num == 0)
  141. goto done;
  142. /* alloc large array */
  143. info->dir_nr = num;
  144. info->dir_in = kcalloc(num, sizeof(*info->dir_in) +
  145. sizeof(*info->dir_dname) +
  146. sizeof(*info->dir_dname_len) +
  147. sizeof(*info->dir_dlease),
  148. GFP_NOFS);
  149. if (info->dir_in == NULL) {
  150. err = -ENOMEM;
  151. goto out_bad;
  152. }
  153. info->dir_dname = (void *)(info->dir_in + num);
  154. info->dir_dname_len = (void *)(info->dir_dname + num);
  155. info->dir_dlease = (void *)(info->dir_dname_len + num);
  156. while (num) {
  157. /* dentry */
  158. ceph_decode_need(p, end, sizeof(u32)*2, bad);
  159. info->dir_dname_len[i] = ceph_decode_32(p);
  160. ceph_decode_need(p, end, info->dir_dname_len[i], bad);
  161. info->dir_dname[i] = *p;
  162. *p += info->dir_dname_len[i];
  163. dout("parsed dir dname '%.*s'\n", info->dir_dname_len[i],
  164. info->dir_dname[i]);
  165. info->dir_dlease[i] = *p;
  166. *p += sizeof(struct ceph_mds_reply_lease);
  167. /* inode */
  168. err = parse_reply_info_in(p, end, &info->dir_in[i], features);
  169. if (err < 0)
  170. goto out_bad;
  171. i++;
  172. num--;
  173. }
  174. done:
  175. if (*p != end)
  176. goto bad;
  177. return 0;
  178. bad:
  179. err = -EIO;
  180. out_bad:
  181. pr_err("problem parsing dir contents %d\n", err);
  182. return err;
  183. }
  184. /*
  185. * parse fcntl F_GETLK results
  186. */
  187. static int parse_reply_info_filelock(void **p, void *end,
  188. struct ceph_mds_reply_info_parsed *info,
  189. int features)
  190. {
  191. if (*p + sizeof(*info->filelock_reply) > end)
  192. goto bad;
  193. info->filelock_reply = *p;
  194. *p += sizeof(*info->filelock_reply);
  195. if (unlikely(*p != end))
  196. goto bad;
  197. return 0;
  198. bad:
  199. return -EIO;
  200. }
  201. /*
  202. * parse create results
  203. */
  204. static int parse_reply_info_create(void **p, void *end,
  205. struct ceph_mds_reply_info_parsed *info,
  206. int features)
  207. {
  208. if (features & CEPH_FEATURE_REPLY_CREATE_INODE) {
  209. if (*p == end) {
  210. info->has_create_ino = false;
  211. } else {
  212. info->has_create_ino = true;
  213. info->ino = ceph_decode_64(p);
  214. }
  215. }
  216. if (unlikely(*p != end))
  217. goto bad;
  218. return 0;
  219. bad:
  220. return -EIO;
  221. }
  222. /*
  223. * parse extra results
  224. */
  225. static int parse_reply_info_extra(void **p, void *end,
  226. struct ceph_mds_reply_info_parsed *info,
  227. int features)
  228. {
  229. if (info->head->op == CEPH_MDS_OP_GETFILELOCK)
  230. return parse_reply_info_filelock(p, end, info, features);
  231. else if (info->head->op == CEPH_MDS_OP_READDIR ||
  232. info->head->op == CEPH_MDS_OP_LSSNAP)
  233. return parse_reply_info_dir(p, end, info, features);
  234. else if (info->head->op == CEPH_MDS_OP_CREATE)
  235. return parse_reply_info_create(p, end, info, features);
  236. else
  237. return -EIO;
  238. }
  239. /*
  240. * parse entire mds reply
  241. */
  242. static int parse_reply_info(struct ceph_msg *msg,
  243. struct ceph_mds_reply_info_parsed *info,
  244. int features)
  245. {
  246. void *p, *end;
  247. u32 len;
  248. int err;
  249. info->head = msg->front.iov_base;
  250. p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head);
  251. end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head);
  252. /* trace */
  253. ceph_decode_32_safe(&p, end, len, bad);
  254. if (len > 0) {
  255. ceph_decode_need(&p, end, len, bad);
  256. err = parse_reply_info_trace(&p, p+len, info, features);
  257. if (err < 0)
  258. goto out_bad;
  259. }
  260. /* extra */
  261. ceph_decode_32_safe(&p, end, len, bad);
  262. if (len > 0) {
  263. ceph_decode_need(&p, end, len, bad);
  264. err = parse_reply_info_extra(&p, p+len, info, features);
  265. if (err < 0)
  266. goto out_bad;
  267. }
  268. /* snap blob */
  269. ceph_decode_32_safe(&p, end, len, bad);
  270. info->snapblob_len = len;
  271. info->snapblob = p;
  272. p += len;
  273. if (p != end)
  274. goto bad;
  275. return 0;
  276. bad:
  277. err = -EIO;
  278. out_bad:
  279. pr_err("mds parse_reply err %d\n", err);
  280. return err;
  281. }
  282. static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info)
  283. {
  284. kfree(info->dir_in);
  285. }
  286. /*
  287. * sessions
  288. */
  289. static const char *session_state_name(int s)
  290. {
  291. switch (s) {
  292. case CEPH_MDS_SESSION_NEW: return "new";
  293. case CEPH_MDS_SESSION_OPENING: return "opening";
  294. case CEPH_MDS_SESSION_OPEN: return "open";
  295. case CEPH_MDS_SESSION_HUNG: return "hung";
  296. case CEPH_MDS_SESSION_CLOSING: return "closing";
  297. case CEPH_MDS_SESSION_RESTARTING: return "restarting";
  298. case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting";
  299. default: return "???";
  300. }
  301. }
  302. static struct ceph_mds_session *get_session(struct ceph_mds_session *s)
  303. {
  304. if (atomic_inc_not_zero(&s->s_ref)) {
  305. dout("mdsc get_session %p %d -> %d\n", s,
  306. atomic_read(&s->s_ref)-1, atomic_read(&s->s_ref));
  307. return s;
  308. } else {
  309. dout("mdsc get_session %p 0 -- FAIL", s);
  310. return NULL;
  311. }
  312. }
  313. void ceph_put_mds_session(struct ceph_mds_session *s)
  314. {
  315. dout("mdsc put_session %p %d -> %d\n", s,
  316. atomic_read(&s->s_ref), atomic_read(&s->s_ref)-1);
  317. if (atomic_dec_and_test(&s->s_ref)) {
  318. if (s->s_auth.authorizer)
  319. ceph_auth_destroy_authorizer(
  320. s->s_mdsc->fsc->client->monc.auth,
  321. s->s_auth.authorizer);
  322. kfree(s);
  323. }
  324. }
  325. /*
  326. * called under mdsc->mutex
  327. */
  328. struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc,
  329. int mds)
  330. {
  331. struct ceph_mds_session *session;
  332. if (mds >= mdsc->max_sessions || mdsc->sessions[mds] == NULL)
  333. return NULL;
  334. session = mdsc->sessions[mds];
  335. dout("lookup_mds_session %p %d\n", session,
  336. atomic_read(&session->s_ref));
  337. get_session(session);
  338. return session;
  339. }
  340. static bool __have_session(struct ceph_mds_client *mdsc, int mds)
  341. {
  342. if (mds >= mdsc->max_sessions)
  343. return false;
  344. return mdsc->sessions[mds];
  345. }
  346. static int __verify_registered_session(struct ceph_mds_client *mdsc,
  347. struct ceph_mds_session *s)
  348. {
  349. if (s->s_mds >= mdsc->max_sessions ||
  350. mdsc->sessions[s->s_mds] != s)
  351. return -ENOENT;
  352. return 0;
  353. }
  354. /*
  355. * create+register a new session for given mds.
  356. * called under mdsc->mutex.
  357. */
  358. static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc,
  359. int mds)
  360. {
  361. struct ceph_mds_session *s;
  362. s = kzalloc(sizeof(*s), GFP_NOFS);
  363. if (!s)
  364. return ERR_PTR(-ENOMEM);
  365. s->s_mdsc = mdsc;
  366. s->s_mds = mds;
  367. s->s_state = CEPH_MDS_SESSION_NEW;
  368. s->s_ttl = 0;
  369. s->s_seq = 0;
  370. mutex_init(&s->s_mutex);
  371. ceph_con_init(&s->s_con, s, &mds_con_ops, &mdsc->fsc->client->msgr);
  372. spin_lock_init(&s->s_gen_ttl_lock);
  373. s->s_cap_gen = 0;
  374. s->s_cap_ttl = jiffies - 1;
  375. spin_lock_init(&s->s_cap_lock);
  376. s->s_renew_requested = 0;
  377. s->s_renew_seq = 0;
  378. INIT_LIST_HEAD(&s->s_caps);
  379. s->s_nr_caps = 0;
  380. s->s_trim_caps = 0;
  381. atomic_set(&s->s_ref, 1);
  382. INIT_LIST_HEAD(&s->s_waiting);
  383. INIT_LIST_HEAD(&s->s_unsafe);
  384. s->s_num_cap_releases = 0;
  385. s->s_cap_iterator = NULL;
  386. INIT_LIST_HEAD(&s->s_cap_releases);
  387. INIT_LIST_HEAD(&s->s_cap_releases_done);
  388. INIT_LIST_HEAD(&s->s_cap_flushing);
  389. INIT_LIST_HEAD(&s->s_cap_snaps_flushing);
  390. dout("register_session mds%d\n", mds);
  391. if (mds >= mdsc->max_sessions) {
  392. int newmax = 1 << get_count_order(mds+1);
  393. struct ceph_mds_session **sa;
  394. dout("register_session realloc to %d\n", newmax);
  395. sa = kcalloc(newmax, sizeof(void *), GFP_NOFS);
  396. if (sa == NULL)
  397. goto fail_realloc;
  398. if (mdsc->sessions) {
  399. memcpy(sa, mdsc->sessions,
  400. mdsc->max_sessions * sizeof(void *));
  401. kfree(mdsc->sessions);
  402. }
  403. mdsc->sessions = sa;
  404. mdsc->max_sessions = newmax;
  405. }
  406. mdsc->sessions[mds] = s;
  407. atomic_inc(&s->s_ref); /* one ref to sessions[], one to caller */
  408. ceph_con_open(&s->s_con, CEPH_ENTITY_TYPE_MDS, mds,
  409. ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
  410. return s;
  411. fail_realloc:
  412. kfree(s);
  413. return ERR_PTR(-ENOMEM);
  414. }
  415. /*
  416. * called under mdsc->mutex
  417. */
  418. static void __unregister_session(struct ceph_mds_client *mdsc,
  419. struct ceph_mds_session *s)
  420. {
  421. dout("__unregister_session mds%d %p\n", s->s_mds, s);
  422. BUG_ON(mdsc->sessions[s->s_mds] != s);
  423. mdsc->sessions[s->s_mds] = NULL;
  424. ceph_con_close(&s->s_con);
  425. ceph_put_mds_session(s);
  426. }
  427. /*
  428. * drop session refs in request.
  429. *
  430. * should be last request ref, or hold mdsc->mutex
  431. */
  432. static void put_request_session(struct ceph_mds_request *req)
  433. {
  434. if (req->r_session) {
  435. ceph_put_mds_session(req->r_session);
  436. req->r_session = NULL;
  437. }
  438. }
  439. void ceph_mdsc_release_request(struct kref *kref)
  440. {
  441. struct ceph_mds_request *req = container_of(kref,
  442. struct ceph_mds_request,
  443. r_kref);
  444. if (req->r_request)
  445. ceph_msg_put(req->r_request);
  446. if (req->r_reply) {
  447. ceph_msg_put(req->r_reply);
  448. destroy_reply_info(&req->r_reply_info);
  449. }
  450. if (req->r_inode) {
  451. ceph_put_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
  452. iput(req->r_inode);
  453. }
  454. if (req->r_locked_dir)
  455. ceph_put_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
  456. if (req->r_target_inode)
  457. iput(req->r_target_inode);
  458. if (req->r_dentry)
  459. dput(req->r_dentry);
  460. if (req->r_old_dentry) {
  461. /*
  462. * track (and drop pins for) r_old_dentry_dir
  463. * separately, since r_old_dentry's d_parent may have
  464. * changed between the dir mutex being dropped and
  465. * this request being freed.
  466. */
  467. ceph_put_cap_refs(ceph_inode(req->r_old_dentry_dir),
  468. CEPH_CAP_PIN);
  469. dput(req->r_old_dentry);
  470. iput(req->r_old_dentry_dir);
  471. }
  472. kfree(req->r_path1);
  473. kfree(req->r_path2);
  474. put_request_session(req);
  475. ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation);
  476. kfree(req);
  477. }
  478. /*
  479. * lookup session, bump ref if found.
  480. *
  481. * called under mdsc->mutex.
  482. */
  483. static struct ceph_mds_request *__lookup_request(struct ceph_mds_client *mdsc,
  484. u64 tid)
  485. {
  486. struct ceph_mds_request *req;
  487. struct rb_node *n = mdsc->request_tree.rb_node;
  488. while (n) {
  489. req = rb_entry(n, struct ceph_mds_request, r_node);
  490. if (tid < req->r_tid)
  491. n = n->rb_left;
  492. else if (tid > req->r_tid)
  493. n = n->rb_right;
  494. else {
  495. ceph_mdsc_get_request(req);
  496. return req;
  497. }
  498. }
  499. return NULL;
  500. }
  501. static void __insert_request(struct ceph_mds_client *mdsc,
  502. struct ceph_mds_request *new)
  503. {
  504. struct rb_node **p = &mdsc->request_tree.rb_node;
  505. struct rb_node *parent = NULL;
  506. struct ceph_mds_request *req = NULL;
  507. while (*p) {
  508. parent = *p;
  509. req = rb_entry(parent, struct ceph_mds_request, r_node);
  510. if (new->r_tid < req->r_tid)
  511. p = &(*p)->rb_left;
  512. else if (new->r_tid > req->r_tid)
  513. p = &(*p)->rb_right;
  514. else
  515. BUG();
  516. }
  517. rb_link_node(&new->r_node, parent, p);
  518. rb_insert_color(&new->r_node, &mdsc->request_tree);
  519. }
  520. /*
  521. * Register an in-flight request, and assign a tid. Link to directory
  522. * are modifying (if any).
  523. *
  524. * Called under mdsc->mutex.
  525. */
  526. static void __register_request(struct ceph_mds_client *mdsc,
  527. struct ceph_mds_request *req,
  528. struct inode *dir)
  529. {
  530. req->r_tid = ++mdsc->last_tid;
  531. if (req->r_num_caps)
  532. ceph_reserve_caps(mdsc, &req->r_caps_reservation,
  533. req->r_num_caps);
  534. dout("__register_request %p tid %lld\n", req, req->r_tid);
  535. ceph_mdsc_get_request(req);
  536. __insert_request(mdsc, req);
  537. req->r_uid = current_fsuid();
  538. req->r_gid = current_fsgid();
  539. if (dir) {
  540. struct ceph_inode_info *ci = ceph_inode(dir);
  541. ihold(dir);
  542. spin_lock(&ci->i_unsafe_lock);
  543. req->r_unsafe_dir = dir;
  544. list_add_tail(&req->r_unsafe_dir_item, &ci->i_unsafe_dirops);
  545. spin_unlock(&ci->i_unsafe_lock);
  546. }
  547. }
  548. static void __unregister_request(struct ceph_mds_client *mdsc,
  549. struct ceph_mds_request *req)
  550. {
  551. dout("__unregister_request %p tid %lld\n", req, req->r_tid);
  552. rb_erase(&req->r_node, &mdsc->request_tree);
  553. RB_CLEAR_NODE(&req->r_node);
  554. if (req->r_unsafe_dir) {
  555. struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir);
  556. spin_lock(&ci->i_unsafe_lock);
  557. list_del_init(&req->r_unsafe_dir_item);
  558. spin_unlock(&ci->i_unsafe_lock);
  559. iput(req->r_unsafe_dir);
  560. req->r_unsafe_dir = NULL;
  561. }
  562. ceph_mdsc_put_request(req);
  563. }
  564. /*
  565. * Choose mds to send request to next. If there is a hint set in the
  566. * request (e.g., due to a prior forward hint from the mds), use that.
  567. * Otherwise, consult frag tree and/or caps to identify the
  568. * appropriate mds. If all else fails, choose randomly.
  569. *
  570. * Called under mdsc->mutex.
  571. */
  572. static struct dentry *get_nonsnap_parent(struct dentry *dentry)
  573. {
  574. /*
  575. * we don't need to worry about protecting the d_parent access
  576. * here because we never renaming inside the snapped namespace
  577. * except to resplice to another snapdir, and either the old or new
  578. * result is a valid result.
  579. */
  580. while (!IS_ROOT(dentry) && ceph_snap(dentry->d_inode) != CEPH_NOSNAP)
  581. dentry = dentry->d_parent;
  582. return dentry;
  583. }
  584. static int __choose_mds(struct ceph_mds_client *mdsc,
  585. struct ceph_mds_request *req)
  586. {
  587. struct inode *inode;
  588. struct ceph_inode_info *ci;
  589. struct ceph_cap *cap;
  590. int mode = req->r_direct_mode;
  591. int mds = -1;
  592. u32 hash = req->r_direct_hash;
  593. bool is_hash = req->r_direct_is_hash;
  594. /*
  595. * is there a specific mds we should try? ignore hint if we have
  596. * no session and the mds is not up (active or recovering).
  597. */
  598. if (req->r_resend_mds >= 0 &&
  599. (__have_session(mdsc, req->r_resend_mds) ||
  600. ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) {
  601. dout("choose_mds using resend_mds mds%d\n",
  602. req->r_resend_mds);
  603. return req->r_resend_mds;
  604. }
  605. if (mode == USE_RANDOM_MDS)
  606. goto random;
  607. inode = NULL;
  608. if (req->r_inode) {
  609. inode = req->r_inode;
  610. } else if (req->r_dentry) {
  611. /* ignore race with rename; old or new d_parent is okay */
  612. struct dentry *parent = req->r_dentry->d_parent;
  613. struct inode *dir = parent->d_inode;
  614. if (dir->i_sb != mdsc->fsc->sb) {
  615. /* not this fs! */
  616. inode = req->r_dentry->d_inode;
  617. } else if (ceph_snap(dir) != CEPH_NOSNAP) {
  618. /* direct snapped/virtual snapdir requests
  619. * based on parent dir inode */
  620. struct dentry *dn = get_nonsnap_parent(parent);
  621. inode = dn->d_inode;
  622. dout("__choose_mds using nonsnap parent %p\n", inode);
  623. } else if (req->r_dentry->d_inode) {
  624. /* dentry target */
  625. inode = req->r_dentry->d_inode;
  626. } else {
  627. /* dir + name */
  628. inode = dir;
  629. hash = ceph_dentry_hash(dir, req->r_dentry);
  630. is_hash = true;
  631. }
  632. }
  633. dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash,
  634. (int)hash, mode);
  635. if (!inode)
  636. goto random;
  637. ci = ceph_inode(inode);
  638. if (is_hash && S_ISDIR(inode->i_mode)) {
  639. struct ceph_inode_frag frag;
  640. int found;
  641. ceph_choose_frag(ci, hash, &frag, &found);
  642. if (found) {
  643. if (mode == USE_ANY_MDS && frag.ndist > 0) {
  644. u8 r;
  645. /* choose a random replica */
  646. get_random_bytes(&r, 1);
  647. r %= frag.ndist;
  648. mds = frag.dist[r];
  649. dout("choose_mds %p %llx.%llx "
  650. "frag %u mds%d (%d/%d)\n",
  651. inode, ceph_vinop(inode),
  652. frag.frag, mds,
  653. (int)r, frag.ndist);
  654. if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
  655. CEPH_MDS_STATE_ACTIVE)
  656. return mds;
  657. }
  658. /* since this file/dir wasn't known to be
  659. * replicated, then we want to look for the
  660. * authoritative mds. */
  661. mode = USE_AUTH_MDS;
  662. if (frag.mds >= 0) {
  663. /* choose auth mds */
  664. mds = frag.mds;
  665. dout("choose_mds %p %llx.%llx "
  666. "frag %u mds%d (auth)\n",
  667. inode, ceph_vinop(inode), frag.frag, mds);
  668. if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
  669. CEPH_MDS_STATE_ACTIVE)
  670. return mds;
  671. }
  672. }
  673. }
  674. spin_lock(&ci->i_ceph_lock);
  675. cap = NULL;
  676. if (mode == USE_AUTH_MDS)
  677. cap = ci->i_auth_cap;
  678. if (!cap && !RB_EMPTY_ROOT(&ci->i_caps))
  679. cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node);
  680. if (!cap) {
  681. spin_unlock(&ci->i_ceph_lock);
  682. goto random;
  683. }
  684. mds = cap->session->s_mds;
  685. dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n",
  686. inode, ceph_vinop(inode), mds,
  687. cap == ci->i_auth_cap ? "auth " : "", cap);
  688. spin_unlock(&ci->i_ceph_lock);
  689. return mds;
  690. random:
  691. mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap);
  692. dout("choose_mds chose random mds%d\n", mds);
  693. return mds;
  694. }
  695. /*
  696. * session messages
  697. */
  698. static struct ceph_msg *create_session_msg(u32 op, u64 seq)
  699. {
  700. struct ceph_msg *msg;
  701. struct ceph_mds_session_head *h;
  702. msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS,
  703. false);
  704. if (!msg) {
  705. pr_err("create_session_msg ENOMEM creating msg\n");
  706. return NULL;
  707. }
  708. h = msg->front.iov_base;
  709. h->op = cpu_to_le32(op);
  710. h->seq = cpu_to_le64(seq);
  711. return msg;
  712. }
  713. /*
  714. * send session open request.
  715. *
  716. * called under mdsc->mutex
  717. */
  718. static int __open_session(struct ceph_mds_client *mdsc,
  719. struct ceph_mds_session *session)
  720. {
  721. struct ceph_msg *msg;
  722. int mstate;
  723. int mds = session->s_mds;
  724. /* wait for mds to go active? */
  725. mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds);
  726. dout("open_session to mds%d (%s)\n", mds,
  727. ceph_mds_state_name(mstate));
  728. session->s_state = CEPH_MDS_SESSION_OPENING;
  729. session->s_renew_requested = jiffies;
  730. /* send connect message */
  731. msg = create_session_msg(CEPH_SESSION_REQUEST_OPEN, session->s_seq);
  732. if (!msg)
  733. return -ENOMEM;
  734. ceph_con_send(&session->s_con, msg);
  735. return 0;
  736. }
  737. /*
  738. * open sessions for any export targets for the given mds
  739. *
  740. * called under mdsc->mutex
  741. */
  742. static void __open_export_target_sessions(struct ceph_mds_client *mdsc,
  743. struct ceph_mds_session *session)
  744. {
  745. struct ceph_mds_info *mi;
  746. struct ceph_mds_session *ts;
  747. int i, mds = session->s_mds;
  748. int target;
  749. if (mds >= mdsc->mdsmap->m_max_mds)
  750. return;
  751. mi = &mdsc->mdsmap->m_info[mds];
  752. dout("open_export_target_sessions for mds%d (%d targets)\n",
  753. session->s_mds, mi->num_export_targets);
  754. for (i = 0; i < mi->num_export_targets; i++) {
  755. target = mi->export_targets[i];
  756. ts = __ceph_lookup_mds_session(mdsc, target);
  757. if (!ts) {
  758. ts = register_session(mdsc, target);
  759. if (IS_ERR(ts))
  760. return;
  761. }
  762. if (session->s_state == CEPH_MDS_SESSION_NEW ||
  763. session->s_state == CEPH_MDS_SESSION_CLOSING)
  764. __open_session(mdsc, session);
  765. else
  766. dout(" mds%d target mds%d %p is %s\n", session->s_mds,
  767. i, ts, session_state_name(ts->s_state));
  768. ceph_put_mds_session(ts);
  769. }
  770. }
  771. void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc,
  772. struct ceph_mds_session *session)
  773. {
  774. mutex_lock(&mdsc->mutex);
  775. __open_export_target_sessions(mdsc, session);
  776. mutex_unlock(&mdsc->mutex);
  777. }
  778. /*
  779. * session caps
  780. */
  781. /*
  782. * Free preallocated cap messages assigned to this session
  783. */
  784. static void cleanup_cap_releases(struct ceph_mds_session *session)
  785. {
  786. struct ceph_msg *msg;
  787. spin_lock(&session->s_cap_lock);
  788. while (!list_empty(&session->s_cap_releases)) {
  789. msg = list_first_entry(&session->s_cap_releases,
  790. struct ceph_msg, list_head);
  791. list_del_init(&msg->list_head);
  792. ceph_msg_put(msg);
  793. }
  794. while (!list_empty(&session->s_cap_releases_done)) {
  795. msg = list_first_entry(&session->s_cap_releases_done,
  796. struct ceph_msg, list_head);
  797. list_del_init(&msg->list_head);
  798. ceph_msg_put(msg);
  799. }
  800. spin_unlock(&session->s_cap_lock);
  801. }
  802. /*
  803. * Helper to safely iterate over all caps associated with a session, with
  804. * special care taken to handle a racing __ceph_remove_cap().
  805. *
  806. * Caller must hold session s_mutex.
  807. */
  808. static int iterate_session_caps(struct ceph_mds_session *session,
  809. int (*cb)(struct inode *, struct ceph_cap *,
  810. void *), void *arg)
  811. {
  812. struct list_head *p;
  813. struct ceph_cap *cap;
  814. struct inode *inode, *last_inode = NULL;
  815. struct ceph_cap *old_cap = NULL;
  816. int ret;
  817. dout("iterate_session_caps %p mds%d\n", session, session->s_mds);
  818. spin_lock(&session->s_cap_lock);
  819. p = session->s_caps.next;
  820. while (p != &session->s_caps) {
  821. cap = list_entry(p, struct ceph_cap, session_caps);
  822. inode = igrab(&cap->ci->vfs_inode);
  823. if (!inode) {
  824. p = p->next;
  825. continue;
  826. }
  827. session->s_cap_iterator = cap;
  828. spin_unlock(&session->s_cap_lock);
  829. if (last_inode) {
  830. iput(last_inode);
  831. last_inode = NULL;
  832. }
  833. if (old_cap) {
  834. ceph_put_cap(session->s_mdsc, old_cap);
  835. old_cap = NULL;
  836. }
  837. ret = cb(inode, cap, arg);
  838. last_inode = inode;
  839. spin_lock(&session->s_cap_lock);
  840. p = p->next;
  841. if (cap->ci == NULL) {
  842. dout("iterate_session_caps finishing cap %p removal\n",
  843. cap);
  844. BUG_ON(cap->session != session);
  845. list_del_init(&cap->session_caps);
  846. session->s_nr_caps--;
  847. cap->session = NULL;
  848. old_cap = cap; /* put_cap it w/o locks held */
  849. }
  850. if (ret < 0)
  851. goto out;
  852. }
  853. ret = 0;
  854. out:
  855. session->s_cap_iterator = NULL;
  856. spin_unlock(&session->s_cap_lock);
  857. if (last_inode)
  858. iput(last_inode);
  859. if (old_cap)
  860. ceph_put_cap(session->s_mdsc, old_cap);
  861. return ret;
  862. }
  863. static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap,
  864. void *arg)
  865. {
  866. struct ceph_inode_info *ci = ceph_inode(inode);
  867. int drop = 0;
  868. dout("removing cap %p, ci is %p, inode is %p\n",
  869. cap, ci, &ci->vfs_inode);
  870. spin_lock(&ci->i_ceph_lock);
  871. __ceph_remove_cap(cap);
  872. if (!__ceph_is_any_real_caps(ci)) {
  873. struct ceph_mds_client *mdsc =
  874. ceph_sb_to_client(inode->i_sb)->mdsc;
  875. spin_lock(&mdsc->cap_dirty_lock);
  876. if (!list_empty(&ci->i_dirty_item)) {
  877. pr_info(" dropping dirty %s state for %p %lld\n",
  878. ceph_cap_string(ci->i_dirty_caps),
  879. inode, ceph_ino(inode));
  880. ci->i_dirty_caps = 0;
  881. list_del_init(&ci->i_dirty_item);
  882. drop = 1;
  883. }
  884. if (!list_empty(&ci->i_flushing_item)) {
  885. pr_info(" dropping dirty+flushing %s state for %p %lld\n",
  886. ceph_cap_string(ci->i_flushing_caps),
  887. inode, ceph_ino(inode));
  888. ci->i_flushing_caps = 0;
  889. list_del_init(&ci->i_flushing_item);
  890. mdsc->num_cap_flushing--;
  891. drop = 1;
  892. }
  893. if (drop && ci->i_wrbuffer_ref) {
  894. pr_info(" dropping dirty data for %p %lld\n",
  895. inode, ceph_ino(inode));
  896. ci->i_wrbuffer_ref = 0;
  897. ci->i_wrbuffer_ref_head = 0;
  898. drop++;
  899. }
  900. spin_unlock(&mdsc->cap_dirty_lock);
  901. }
  902. spin_unlock(&ci->i_ceph_lock);
  903. while (drop--)
  904. iput(inode);
  905. return 0;
  906. }
  907. /*
  908. * caller must hold session s_mutex
  909. */
  910. static void remove_session_caps(struct ceph_mds_session *session)
  911. {
  912. dout("remove_session_caps on %p\n", session);
  913. iterate_session_caps(session, remove_session_caps_cb, NULL);
  914. BUG_ON(session->s_nr_caps > 0);
  915. BUG_ON(!list_empty(&session->s_cap_flushing));
  916. cleanup_cap_releases(session);
  917. }
  918. /*
  919. * wake up any threads waiting on this session's caps. if the cap is
  920. * old (didn't get renewed on the client reconnect), remove it now.
  921. *
  922. * caller must hold s_mutex.
  923. */
  924. static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap,
  925. void *arg)
  926. {
  927. struct ceph_inode_info *ci = ceph_inode(inode);
  928. wake_up_all(&ci->i_cap_wq);
  929. if (arg) {
  930. spin_lock(&ci->i_ceph_lock);
  931. ci->i_wanted_max_size = 0;
  932. ci->i_requested_max_size = 0;
  933. spin_unlock(&ci->i_ceph_lock);
  934. }
  935. return 0;
  936. }
  937. static void wake_up_session_caps(struct ceph_mds_session *session,
  938. int reconnect)
  939. {
  940. dout("wake_up_session_caps %p mds%d\n", session, session->s_mds);
  941. iterate_session_caps(session, wake_up_session_cb,
  942. (void *)(unsigned long)reconnect);
  943. }
  944. /*
  945. * Send periodic message to MDS renewing all currently held caps. The
  946. * ack will reset the expiration for all caps from this session.
  947. *
  948. * caller holds s_mutex
  949. */
  950. static int send_renew_caps(struct ceph_mds_client *mdsc,
  951. struct ceph_mds_session *session)
  952. {
  953. struct ceph_msg *msg;
  954. int state;
  955. if (time_after_eq(jiffies, session->s_cap_ttl) &&
  956. time_after_eq(session->s_cap_ttl, session->s_renew_requested))
  957. pr_info("mds%d caps stale\n", session->s_mds);
  958. session->s_renew_requested = jiffies;
  959. /* do not try to renew caps until a recovering mds has reconnected
  960. * with its clients. */
  961. state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds);
  962. if (state < CEPH_MDS_STATE_RECONNECT) {
  963. dout("send_renew_caps ignoring mds%d (%s)\n",
  964. session->s_mds, ceph_mds_state_name(state));
  965. return 0;
  966. }
  967. dout("send_renew_caps to mds%d (%s)\n", session->s_mds,
  968. ceph_mds_state_name(state));
  969. msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS,
  970. ++session->s_renew_seq);
  971. if (!msg)
  972. return -ENOMEM;
  973. ceph_con_send(&session->s_con, msg);
  974. return 0;
  975. }
  976. /*
  977. * Note new cap ttl, and any transition from stale -> not stale (fresh?).
  978. *
  979. * Called under session->s_mutex
  980. */
  981. static void renewed_caps(struct ceph_mds_client *mdsc,
  982. struct ceph_mds_session *session, int is_renew)
  983. {
  984. int was_stale;
  985. int wake = 0;
  986. spin_lock(&session->s_cap_lock);
  987. was_stale = is_renew && time_after_eq(jiffies, session->s_cap_ttl);
  988. session->s_cap_ttl = session->s_renew_requested +
  989. mdsc->mdsmap->m_session_timeout*HZ;
  990. if (was_stale) {
  991. if (time_before(jiffies, session->s_cap_ttl)) {
  992. pr_info("mds%d caps renewed\n", session->s_mds);
  993. wake = 1;
  994. } else {
  995. pr_info("mds%d caps still stale\n", session->s_mds);
  996. }
  997. }
  998. dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n",
  999. session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh",
  1000. time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh");
  1001. spin_unlock(&session->s_cap_lock);
  1002. if (wake)
  1003. wake_up_session_caps(session, 0);
  1004. }
  1005. /*
  1006. * send a session close request
  1007. */
  1008. static int request_close_session(struct ceph_mds_client *mdsc,
  1009. struct ceph_mds_session *session)
  1010. {
  1011. struct ceph_msg *msg;
  1012. dout("request_close_session mds%d state %s seq %lld\n",
  1013. session->s_mds, session_state_name(session->s_state),
  1014. session->s_seq);
  1015. msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq);
  1016. if (!msg)
  1017. return -ENOMEM;
  1018. ceph_con_send(&session->s_con, msg);
  1019. return 0;
  1020. }
  1021. /*
  1022. * Called with s_mutex held.
  1023. */
  1024. static int __close_session(struct ceph_mds_client *mdsc,
  1025. struct ceph_mds_session *session)
  1026. {
  1027. if (session->s_state >= CEPH_MDS_SESSION_CLOSING)
  1028. return 0;
  1029. session->s_state = CEPH_MDS_SESSION_CLOSING;
  1030. return request_close_session(mdsc, session);
  1031. }
  1032. /*
  1033. * Trim old(er) caps.
  1034. *
  1035. * Because we can't cache an inode without one or more caps, we do
  1036. * this indirectly: if a cap is unused, we prune its aliases, at which
  1037. * point the inode will hopefully get dropped to.
  1038. *
  1039. * Yes, this is a bit sloppy. Our only real goal here is to respond to
  1040. * memory pressure from the MDS, though, so it needn't be perfect.
  1041. */
  1042. static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg)
  1043. {
  1044. struct ceph_mds_session *session = arg;
  1045. struct ceph_inode_info *ci = ceph_inode(inode);
  1046. int used, oissued, mine;
  1047. if (session->s_trim_caps <= 0)
  1048. return -1;
  1049. spin_lock(&ci->i_ceph_lock);
  1050. mine = cap->issued | cap->implemented;
  1051. used = __ceph_caps_used(ci);
  1052. oissued = __ceph_caps_issued_other(ci, cap);
  1053. dout("trim_caps_cb %p cap %p mine %s oissued %s used %s\n",
  1054. inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued),
  1055. ceph_cap_string(used));
  1056. if (ci->i_dirty_caps)
  1057. goto out; /* dirty caps */
  1058. if ((used & ~oissued) & mine)
  1059. goto out; /* we need these caps */
  1060. session->s_trim_caps--;
  1061. if (oissued) {
  1062. /* we aren't the only cap.. just remove us */
  1063. __queue_cap_release(session, ceph_ino(inode), cap->cap_id,
  1064. cap->mseq, cap->issue_seq);
  1065. __ceph_remove_cap(cap);
  1066. } else {
  1067. /* try to drop referring dentries */
  1068. spin_unlock(&ci->i_ceph_lock);
  1069. d_prune_aliases(inode);
  1070. dout("trim_caps_cb %p cap %p pruned, count now %d\n",
  1071. inode, cap, atomic_read(&inode->i_count));
  1072. return 0;
  1073. }
  1074. out:
  1075. spin_unlock(&ci->i_ceph_lock);
  1076. return 0;
  1077. }
  1078. /*
  1079. * Trim session cap count down to some max number.
  1080. */
  1081. static int trim_caps(struct ceph_mds_client *mdsc,
  1082. struct ceph_mds_session *session,
  1083. int max_caps)
  1084. {
  1085. int trim_caps = session->s_nr_caps - max_caps;
  1086. dout("trim_caps mds%d start: %d / %d, trim %d\n",
  1087. session->s_mds, session->s_nr_caps, max_caps, trim_caps);
  1088. if (trim_caps > 0) {
  1089. session->s_trim_caps = trim_caps;
  1090. iterate_session_caps(session, trim_caps_cb, session);
  1091. dout("trim_caps mds%d done: %d / %d, trimmed %d\n",
  1092. session->s_mds, session->s_nr_caps, max_caps,
  1093. trim_caps - session->s_trim_caps);
  1094. session->s_trim_caps = 0;
  1095. }
  1096. return 0;
  1097. }
  1098. /*
  1099. * Allocate cap_release messages. If there is a partially full message
  1100. * in the queue, try to allocate enough to cover it's remainder, so that
  1101. * we can send it immediately.
  1102. *
  1103. * Called under s_mutex.
  1104. */
  1105. int ceph_add_cap_releases(struct ceph_mds_client *mdsc,
  1106. struct ceph_mds_session *session)
  1107. {
  1108. struct ceph_msg *msg, *partial = NULL;
  1109. struct ceph_mds_cap_release *head;
  1110. int err = -ENOMEM;
  1111. int extra = mdsc->fsc->mount_options->cap_release_safety;
  1112. int num;
  1113. dout("add_cap_releases %p mds%d extra %d\n", session, session->s_mds,
  1114. extra);
  1115. spin_lock(&session->s_cap_lock);
  1116. if (!list_empty(&session->s_cap_releases)) {
  1117. msg = list_first_entry(&session->s_cap_releases,
  1118. struct ceph_msg,
  1119. list_head);
  1120. head = msg->front.iov_base;
  1121. num = le32_to_cpu(head->num);
  1122. if (num) {
  1123. dout(" partial %p with (%d/%d)\n", msg, num,
  1124. (int)CEPH_CAPS_PER_RELEASE);
  1125. extra += CEPH_CAPS_PER_RELEASE - num;
  1126. partial = msg;
  1127. }
  1128. }
  1129. while (session->s_num_cap_releases < session->s_nr_caps + extra) {
  1130. spin_unlock(&session->s_cap_lock);
  1131. msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE, PAGE_CACHE_SIZE,
  1132. GFP_NOFS, false);
  1133. if (!msg)
  1134. goto out_unlocked;
  1135. dout("add_cap_releases %p msg %p now %d\n", session, msg,
  1136. (int)msg->front.iov_len);
  1137. head = msg->front.iov_base;
  1138. head->num = cpu_to_le32(0);
  1139. msg->front.iov_len = sizeof(*head);
  1140. spin_lock(&session->s_cap_lock);
  1141. list_add(&msg->list_head, &session->s_cap_releases);
  1142. session->s_num_cap_releases += CEPH_CAPS_PER_RELEASE;
  1143. }
  1144. if (partial) {
  1145. head = partial->front.iov_base;
  1146. num = le32_to_cpu(head->num);
  1147. dout(" queueing partial %p with %d/%d\n", partial, num,
  1148. (int)CEPH_CAPS_PER_RELEASE);
  1149. list_move_tail(&partial->list_head,
  1150. &session->s_cap_releases_done);
  1151. session->s_num_cap_releases -= CEPH_CAPS_PER_RELEASE - num;
  1152. }
  1153. err = 0;
  1154. spin_unlock(&session->s_cap_lock);
  1155. out_unlocked:
  1156. return err;
  1157. }
  1158. /*
  1159. * flush all dirty inode data to disk.
  1160. *
  1161. * returns true if we've flushed through want_flush_seq
  1162. */
  1163. static int check_cap_flush(struct ceph_mds_client *mdsc, u64 want_flush_seq)
  1164. {
  1165. int mds, ret = 1;
  1166. dout("check_cap_flush want %lld\n", want_flush_seq);
  1167. mutex_lock(&mdsc->mutex);
  1168. for (mds = 0; ret && mds < mdsc->max_sessions; mds++) {
  1169. struct ceph_mds_session *session = mdsc->sessions[mds];
  1170. if (!session)
  1171. continue;
  1172. get_session(session);
  1173. mutex_unlock(&mdsc->mutex);
  1174. mutex_lock(&session->s_mutex);
  1175. if (!list_empty(&session->s_cap_flushing)) {
  1176. struct ceph_inode_info *ci =
  1177. list_entry(session->s_cap_flushing.next,
  1178. struct ceph_inode_info,
  1179. i_flushing_item);
  1180. struct inode *inode = &ci->vfs_inode;
  1181. spin_lock(&ci->i_ceph_lock);
  1182. if (ci->i_cap_flush_seq <= want_flush_seq) {
  1183. dout("check_cap_flush still flushing %p "
  1184. "seq %lld <= %lld to mds%d\n", inode,
  1185. ci->i_cap_flush_seq, want_flush_seq,
  1186. session->s_mds);
  1187. ret = 0;
  1188. }
  1189. spin_unlock(&ci->i_ceph_lock);
  1190. }
  1191. mutex_unlock(&session->s_mutex);
  1192. ceph_put_mds_session(session);
  1193. if (!ret)
  1194. return ret;
  1195. mutex_lock(&mdsc->mutex);
  1196. }
  1197. mutex_unlock(&mdsc->mutex);
  1198. dout("check_cap_flush ok, flushed thru %lld\n", want_flush_seq);
  1199. return ret;
  1200. }
  1201. /*
  1202. * called under s_mutex
  1203. */
  1204. void ceph_send_cap_releases(struct ceph_mds_client *mdsc,
  1205. struct ceph_mds_session *session)
  1206. {
  1207. struct ceph_msg *msg;
  1208. dout("send_cap_releases mds%d\n", session->s_mds);
  1209. spin_lock(&session->s_cap_lock);
  1210. while (!list_empty(&session->s_cap_releases_done)) {
  1211. msg = list_first_entry(&session->s_cap_releases_done,
  1212. struct ceph_msg, list_head);
  1213. list_del_init(&msg->list_head);
  1214. spin_unlock(&session->s_cap_lock);
  1215. msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
  1216. dout("send_cap_releases mds%d %p\n", session->s_mds, msg);
  1217. ceph_con_send(&session->s_con, msg);
  1218. spin_lock(&session->s_cap_lock);
  1219. }
  1220. spin_unlock(&session->s_cap_lock);
  1221. }
  1222. static void discard_cap_releases(struct ceph_mds_client *mdsc,
  1223. struct ceph_mds_session *session)
  1224. {
  1225. struct ceph_msg *msg;
  1226. struct ceph_mds_cap_release *head;
  1227. unsigned num;
  1228. dout("discard_cap_releases mds%d\n", session->s_mds);
  1229. spin_lock(&session->s_cap_lock);
  1230. /* zero out the in-progress message */
  1231. msg = list_first_entry(&session->s_cap_releases,
  1232. struct ceph_msg, list_head);
  1233. head = msg->front.iov_base;
  1234. num = le32_to_cpu(head->num);
  1235. dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg, num);
  1236. head->num = cpu_to_le32(0);
  1237. msg->front.iov_len = sizeof(*head);
  1238. session->s_num_cap_releases += num;
  1239. /* requeue completed messages */
  1240. while (!list_empty(&session->s_cap_releases_done)) {
  1241. msg = list_first_entry(&session->s_cap_releases_done,
  1242. struct ceph_msg, list_head);
  1243. list_del_init(&msg->list_head);
  1244. head = msg->front.iov_base;
  1245. num = le32_to_cpu(head->num);
  1246. dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg,
  1247. num);
  1248. session->s_num_cap_releases += num;
  1249. head->num = cpu_to_le32(0);
  1250. msg->front.iov_len = sizeof(*head);
  1251. list_add(&msg->list_head, &session->s_cap_releases);
  1252. }
  1253. spin_unlock(&session->s_cap_lock);
  1254. }
  1255. /*
  1256. * requests
  1257. */
  1258. /*
  1259. * Create an mds request.
  1260. */
  1261. struct ceph_mds_request *
  1262. ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode)
  1263. {
  1264. struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS);
  1265. if (!req)
  1266. return ERR_PTR(-ENOMEM);
  1267. mutex_init(&req->r_fill_mutex);
  1268. req->r_mdsc = mdsc;
  1269. req->r_started = jiffies;
  1270. req->r_resend_mds = -1;
  1271. INIT_LIST_HEAD(&req->r_unsafe_dir_item);
  1272. req->r_fmode = -1;
  1273. kref_init(&req->r_kref);
  1274. INIT_LIST_HEAD(&req->r_wait);
  1275. init_completion(&req->r_completion);
  1276. init_completion(&req->r_safe_completion);
  1277. INIT_LIST_HEAD(&req->r_unsafe_item);
  1278. req->r_op = op;
  1279. req->r_direct_mode = mode;
  1280. return req;
  1281. }
  1282. /*
  1283. * return oldest (lowest) request, tid in request tree, 0 if none.
  1284. *
  1285. * called under mdsc->mutex.
  1286. */
  1287. static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc)
  1288. {
  1289. if (RB_EMPTY_ROOT(&mdsc->request_tree))
  1290. return NULL;
  1291. return rb_entry(rb_first(&mdsc->request_tree),
  1292. struct ceph_mds_request, r_node);
  1293. }
  1294. static u64 __get_oldest_tid(struct ceph_mds_client *mdsc)
  1295. {
  1296. struct ceph_mds_request *req = __get_oldest_req(mdsc);
  1297. if (req)
  1298. return req->r_tid;
  1299. return 0;
  1300. }
  1301. /*
  1302. * Build a dentry's path. Allocate on heap; caller must kfree. Based
  1303. * on build_path_from_dentry in fs/cifs/dir.c.
  1304. *
  1305. * If @stop_on_nosnap, generate path relative to the first non-snapped
  1306. * inode.
  1307. *
  1308. * Encode hidden .snap dirs as a double /, i.e.
  1309. * foo/.snap/bar -> foo//bar
  1310. */
  1311. char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base,
  1312. int stop_on_nosnap)
  1313. {
  1314. struct dentry *temp;
  1315. char *path;
  1316. int len, pos;
  1317. unsigned seq;
  1318. if (dentry == NULL)
  1319. return ERR_PTR(-EINVAL);
  1320. retry:
  1321. len = 0;
  1322. seq = read_seqbegin(&rename_lock);
  1323. rcu_read_lock();
  1324. for (temp = dentry; !IS_ROOT(temp);) {
  1325. struct inode *inode = temp->d_inode;
  1326. if (inode && ceph_snap(inode) == CEPH_SNAPDIR)
  1327. len++; /* slash only */
  1328. else if (stop_on_nosnap && inode &&
  1329. ceph_snap(inode) == CEPH_NOSNAP)
  1330. break;
  1331. else
  1332. len += 1 + temp->d_name.len;
  1333. temp = temp->d_parent;
  1334. }
  1335. rcu_read_unlock();
  1336. if (len)
  1337. len--; /* no leading '/' */
  1338. path = kmalloc(len+1, GFP_NOFS);
  1339. if (path == NULL)
  1340. return ERR_PTR(-ENOMEM);
  1341. pos = len;
  1342. path[pos] = 0; /* trailing null */
  1343. rcu_read_lock();
  1344. for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) {
  1345. struct inode *inode;
  1346. spin_lock(&temp->d_lock);
  1347. inode = temp->d_inode;
  1348. if (inode && ceph_snap(inode) == CEPH_SNAPDIR) {
  1349. dout("build_path path+%d: %p SNAPDIR\n",
  1350. pos, temp);
  1351. } else if (stop_on_nosnap && inode &&
  1352. ceph_snap(inode) == CEPH_NOSNAP) {
  1353. spin_unlock(&temp->d_lock);
  1354. break;
  1355. } else {
  1356. pos -= temp->d_name.len;
  1357. if (pos < 0) {
  1358. spin_unlock(&temp->d_lock);
  1359. break;
  1360. }
  1361. strncpy(path + pos, temp->d_name.name,
  1362. temp->d_name.len);
  1363. }
  1364. spin_unlock(&temp->d_lock);
  1365. if (pos)
  1366. path[--pos] = '/';
  1367. temp = temp->d_parent;
  1368. }
  1369. rcu_read_unlock();
  1370. if (pos != 0 || read_seqretry(&rename_lock, seq)) {
  1371. pr_err("build_path did not end path lookup where "
  1372. "expected, namelen is %d, pos is %d\n", len, pos);
  1373. /* presumably this is only possible if racing with a
  1374. rename of one of the parent directories (we can not
  1375. lock the dentries above us to prevent this, but
  1376. retrying should be harmless) */
  1377. kfree(path);
  1378. goto retry;
  1379. }
  1380. *base = ceph_ino(temp->d_inode);
  1381. *plen = len;
  1382. dout("build_path on %p %d built %llx '%.*s'\n",
  1383. dentry, d_count(dentry), *base, len, path);
  1384. return path;
  1385. }
  1386. static int build_dentry_path(struct dentry *dentry,
  1387. const char **ppath, int *ppathlen, u64 *pino,
  1388. int *pfreepath)
  1389. {
  1390. char *path;
  1391. if (ceph_snap(dentry->d_parent->d_inode) == CEPH_NOSNAP) {
  1392. *pino = ceph_ino(dentry->d_parent->d_inode);
  1393. *ppath = dentry->d_name.name;
  1394. *ppathlen = dentry->d_name.len;
  1395. return 0;
  1396. }
  1397. path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
  1398. if (IS_ERR(path))
  1399. return PTR_ERR(path);
  1400. *ppath = path;
  1401. *pfreepath = 1;
  1402. return 0;
  1403. }
  1404. static int build_inode_path(struct inode *inode,
  1405. const char **ppath, int *ppathlen, u64 *pino,
  1406. int *pfreepath)
  1407. {
  1408. struct dentry *dentry;
  1409. char *path;
  1410. if (ceph_snap(inode) == CEPH_NOSNAP) {
  1411. *pino = ceph_ino(inode);
  1412. *ppathlen = 0;
  1413. return 0;
  1414. }
  1415. dentry = d_find_alias(inode);
  1416. path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
  1417. dput(dentry);
  1418. if (IS_ERR(path))
  1419. return PTR_ERR(path);
  1420. *ppath = path;
  1421. *pfreepath = 1;
  1422. return 0;
  1423. }
  1424. /*
  1425. * request arguments may be specified via an inode *, a dentry *, or
  1426. * an explicit ino+path.
  1427. */
  1428. static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry,
  1429. const char *rpath, u64 rino,
  1430. const char **ppath, int *pathlen,
  1431. u64 *ino, int *freepath)
  1432. {
  1433. int r = 0;
  1434. if (rinode) {
  1435. r = build_inode_path(rinode, ppath, pathlen, ino, freepath);
  1436. dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode),
  1437. ceph_snap(rinode));
  1438. } else if (rdentry) {
  1439. r = build_dentry_path(rdentry, ppath, pathlen, ino, freepath);
  1440. dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen,
  1441. *ppath);
  1442. } else if (rpath || rino) {
  1443. *ino = rino;
  1444. *ppath = rpath;
  1445. *pathlen = rpath ? strlen(rpath) : 0;
  1446. dout(" path %.*s\n", *pathlen, rpath);
  1447. }
  1448. return r;
  1449. }
  1450. /*
  1451. * called under mdsc->mutex
  1452. */
  1453. static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc,
  1454. struct ceph_mds_request *req,
  1455. int mds)
  1456. {
  1457. struct ceph_msg *msg;
  1458. struct ceph_mds_request_head *head;
  1459. const char *path1 = NULL;
  1460. const char *path2 = NULL;
  1461. u64 ino1 = 0, ino2 = 0;
  1462. int pathlen1 = 0, pathlen2 = 0;
  1463. int freepath1 = 0, freepath2 = 0;
  1464. int len;
  1465. u16 releases;
  1466. void *p, *end;
  1467. int ret;
  1468. ret = set_request_path_attr(req->r_inode, req->r_dentry,
  1469. req->r_path1, req->r_ino1.ino,
  1470. &path1, &pathlen1, &ino1, &freepath1);
  1471. if (ret < 0) {
  1472. msg = ERR_PTR(ret);
  1473. goto out;
  1474. }
  1475. ret = set_request_path_attr(NULL, req->r_old_dentry,
  1476. req->r_path2, req->r_ino2.ino,
  1477. &path2, &pathlen2, &ino2, &freepath2);
  1478. if (ret < 0) {
  1479. msg = ERR_PTR(ret);
  1480. goto out_free1;
  1481. }
  1482. len = sizeof(*head) +
  1483. pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64));
  1484. /* calculate (max) length for cap releases */
  1485. len += sizeof(struct ceph_mds_request_release) *
  1486. (!!req->r_inode_drop + !!req->r_dentry_drop +
  1487. !!req->r_old_inode_drop + !!req->r_old_dentry_drop);
  1488. if (req->r_dentry_drop)
  1489. len += req->r_dentry->d_name.len;
  1490. if (req->r_old_dentry_drop)
  1491. len += req->r_old_dentry->d_name.len;
  1492. msg = ceph_msg_new(CEPH_MSG_CLIENT_REQUEST, len, GFP_NOFS, false);
  1493. if (!msg) {
  1494. msg = ERR_PTR(-ENOMEM);
  1495. goto out_free2;
  1496. }
  1497. msg->hdr.tid = cpu_to_le64(req->r_tid);
  1498. head = msg->front.iov_base;
  1499. p = msg->front.iov_base + sizeof(*head);
  1500. end = msg->front.iov_base + msg->front.iov_len;
  1501. head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch);
  1502. head->op = cpu_to_le32(req->r_op);
  1503. head->caller_uid = cpu_to_le32(from_kuid(&init_user_ns, req->r_uid));
  1504. head->caller_gid = cpu_to_le32(from_kgid(&init_user_ns, req->r_gid));
  1505. head->args = req->r_args;
  1506. ceph_encode_filepath(&p, end, ino1, path1);
  1507. ceph_encode_filepath(&p, end, ino2, path2);
  1508. /* make note of release offset, in case we need to replay */
  1509. req->r_request_release_offset = p - msg->front.iov_base;
  1510. /* cap releases */
  1511. releases = 0;
  1512. if (req->r_inode_drop)
  1513. releases += ceph_encode_inode_release(&p,
  1514. req->r_inode ? req->r_inode : req->r_dentry->d_inode,
  1515. mds, req->r_inode_drop, req->r_inode_unless, 0);
  1516. if (req->r_dentry_drop)
  1517. releases += ceph_encode_dentry_release(&p, req->r_dentry,
  1518. mds, req->r_dentry_drop, req->r_dentry_unless);
  1519. if (req->r_old_dentry_drop)
  1520. releases += ceph_encode_dentry_release(&p, req->r_old_dentry,
  1521. mds, req->r_old_dentry_drop, req->r_old_dentry_unless);
  1522. if (req->r_old_inode_drop)
  1523. releases += ceph_encode_inode_release(&p,
  1524. req->r_old_dentry->d_inode,
  1525. mds, req->r_old_inode_drop, req->r_old_inode_unless, 0);
  1526. head->num_releases = cpu_to_le16(releases);
  1527. BUG_ON(p > end);
  1528. msg->front.iov_len = p - msg->front.iov_base;
  1529. msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
  1530. if (req->r_data_len) {
  1531. /* outbound data set only by ceph_sync_setxattr() */
  1532. BUG_ON(!req->r_pages);
  1533. ceph_msg_data_add_pages(msg, req->r_pages, req->r_data_len, 0);
  1534. }
  1535. msg->hdr.data_len = cpu_to_le32(req->r_data_len);
  1536. msg->hdr.data_off = cpu_to_le16(0);
  1537. out_free2:
  1538. if (freepath2)
  1539. kfree((char *)path2);
  1540. out_free1:
  1541. if (freepath1)
  1542. kfree((char *)path1);
  1543. out:
  1544. return msg;
  1545. }
  1546. /*
  1547. * called under mdsc->mutex if error, under no mutex if
  1548. * success.
  1549. */
  1550. static void complete_request(struct ceph_mds_client *mdsc,
  1551. struct ceph_mds_request *req)
  1552. {
  1553. if (req->r_callback)
  1554. req->r_callback(mdsc, req);
  1555. else
  1556. complete_all(&req->r_completion);
  1557. }
  1558. /*
  1559. * called under mdsc->mutex
  1560. */
  1561. static int __prepare_send_request(struct ceph_mds_client *mdsc,
  1562. struct ceph_mds_request *req,
  1563. int mds)
  1564. {
  1565. struct ceph_mds_request_head *rhead;
  1566. struct ceph_msg *msg;
  1567. int flags = 0;
  1568. req->r_attempts++;
  1569. if (req->r_inode) {
  1570. struct ceph_cap *cap =
  1571. ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds);
  1572. if (cap)
  1573. req->r_sent_on_mseq = cap->mseq;
  1574. else
  1575. req->r_sent_on_mseq = -1;
  1576. }
  1577. dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req,
  1578. req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts);
  1579. if (req->r_got_unsafe) {
  1580. /*
  1581. * Replay. Do not regenerate message (and rebuild
  1582. * paths, etc.); just use the original message.
  1583. * Rebuilding paths will break for renames because
  1584. * d_move mangles the src name.
  1585. */
  1586. msg = req->r_request;
  1587. rhead = msg->front.iov_base;
  1588. flags = le32_to_cpu(rhead->flags);
  1589. flags |= CEPH_MDS_FLAG_REPLAY;
  1590. rhead->flags = cpu_to_le32(flags);
  1591. if (req->r_target_inode)
  1592. rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode));
  1593. rhead->num_retry = req->r_attempts - 1;
  1594. /* remove cap/dentry releases from message */
  1595. rhead->num_releases = 0;
  1596. msg->hdr.front_len = cpu_to_le32(req->r_request_release_offset);
  1597. msg->front.iov_len = req->r_request_release_offset;
  1598. return 0;
  1599. }
  1600. if (req->r_request) {
  1601. ceph_msg_put(req->r_request);
  1602. req->r_request = NULL;
  1603. }
  1604. msg = create_request_message(mdsc, req, mds);
  1605. if (IS_ERR(msg)) {
  1606. req->r_err = PTR_ERR(msg);
  1607. complete_request(mdsc, req);
  1608. return PTR_ERR(msg);
  1609. }
  1610. req->r_request = msg;
  1611. rhead = msg->front.iov_base;
  1612. rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc));
  1613. if (req->r_got_unsafe)
  1614. flags |= CEPH_MDS_FLAG_REPLAY;
  1615. if (req->r_locked_dir)
  1616. flags |= CEPH_MDS_FLAG_WANT_DENTRY;
  1617. rhead->flags = cpu_to_le32(flags);
  1618. rhead->num_fwd = req->r_num_fwd;
  1619. rhead->num_retry = req->r_attempts - 1;
  1620. rhead->ino = 0;
  1621. dout(" r_locked_dir = %p\n", req->r_locked_dir);
  1622. return 0;
  1623. }
  1624. /*
  1625. * send request, or put it on the appropriate wait list.
  1626. */
  1627. static int __do_request(struct ceph_mds_client *mdsc,
  1628. struct ceph_mds_request *req)
  1629. {
  1630. struct ceph_mds_session *session = NULL;
  1631. int mds = -1;
  1632. int err = -EAGAIN;
  1633. if (req->r_err || req->r_got_result)
  1634. goto out;
  1635. if (req->r_timeout &&
  1636. time_after_eq(jiffies, req->r_started + req->r_timeout)) {
  1637. dout("do_request timed out\n");
  1638. err = -EIO;
  1639. goto finish;
  1640. }
  1641. put_request_session(req);
  1642. mds = __choose_mds(mdsc, req);
  1643. if (mds < 0 ||
  1644. ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) {
  1645. dout("do_request no mds or not active, waiting for map\n");
  1646. list_add(&req->r_wait, &mdsc->waiting_for_map);
  1647. goto out;
  1648. }
  1649. /* get, open session */
  1650. session = __ceph_lookup_mds_session(mdsc, mds);
  1651. if (!session) {
  1652. session = register_session(mdsc, mds);
  1653. if (IS_ERR(session)) {
  1654. err = PTR_ERR(session);
  1655. goto finish;
  1656. }
  1657. }
  1658. req->r_session = get_session(session);
  1659. dout("do_request mds%d session %p state %s\n", mds, session,
  1660. session_state_name(session->s_state));
  1661. if (session->s_state != CEPH_MDS_SESSION_OPEN &&
  1662. session->s_state != CEPH_MDS_SESSION_HUNG) {
  1663. if (session->s_state == CEPH_MDS_SESSION_NEW ||
  1664. session->s_state == CEPH_MDS_SESSION_CLOSING)
  1665. __open_session(mdsc, session);
  1666. list_add(&req->r_wait, &session->s_waiting);
  1667. goto out_session;
  1668. }
  1669. /* send request */
  1670. req->r_resend_mds = -1; /* forget any previous mds hint */
  1671. if (req->r_request_started == 0) /* note request start time */
  1672. req->r_request_started = jiffies;
  1673. err = __prepare_send_request(mdsc, req, mds);
  1674. if (!err) {
  1675. ceph_msg_get(req->r_request);
  1676. ceph_con_send(&session->s_con, req->r_request);
  1677. }
  1678. out_session:
  1679. ceph_put_mds_session(session);
  1680. out:
  1681. return err;
  1682. finish:
  1683. req->r_err = err;
  1684. complete_request(mdsc, req);
  1685. goto out;
  1686. }
  1687. /*
  1688. * called under mdsc->mutex
  1689. */
  1690. static void __wake_requests(struct ceph_mds_client *mdsc,
  1691. struct list_head *head)
  1692. {
  1693. struct ceph_mds_request *req;
  1694. LIST_HEAD(tmp_list);
  1695. list_splice_init(head, &tmp_list);
  1696. while (!list_empty(&tmp_list)) {
  1697. req = list_entry(tmp_list.next,
  1698. struct ceph_mds_request, r_wait);
  1699. list_del_init(&req->r_wait);
  1700. dout(" wake request %p tid %llu\n", req, req->r_tid);
  1701. __do_request(mdsc, req);
  1702. }
  1703. }
  1704. /*
  1705. * Wake up threads with requests pending for @mds, so that they can
  1706. * resubmit their requests to a possibly different mds.
  1707. */
  1708. static void kick_requests(struct ceph_mds_client *mdsc, int mds)
  1709. {
  1710. struct ceph_mds_request *req;
  1711. struct rb_node *p;
  1712. dout("kick_requests mds%d\n", mds);
  1713. for (p = rb_first(&mdsc->request_tree); p; p = rb_next(p)) {
  1714. req = rb_entry(p, struct ceph_mds_request, r_node);
  1715. if (req->r_got_unsafe)
  1716. continue;
  1717. if (req->r_session &&
  1718. req->r_session->s_mds == mds) {
  1719. dout(" kicking tid %llu\n", req->r_tid);
  1720. __do_request(mdsc, req);
  1721. }
  1722. }
  1723. }
  1724. void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc,
  1725. struct ceph_mds_request *req)
  1726. {
  1727. dout("submit_request on %p\n", req);
  1728. mutex_lock(&mdsc->mutex);
  1729. __register_request(mdsc, req, NULL);
  1730. __do_request(mdsc, req);
  1731. mutex_unlock(&mdsc->mutex);
  1732. }
  1733. /*
  1734. * Synchrously perform an mds request. Take care of all of the
  1735. * session setup, forwarding, retry details.
  1736. */
  1737. int ceph_mdsc_do_request(struct ceph_mds_client *mdsc,
  1738. struct inode *dir,
  1739. struct ceph_mds_request *req)
  1740. {
  1741. int err;
  1742. dout("do_request on %p\n", req);
  1743. /* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */
  1744. if (req->r_inode)
  1745. ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
  1746. if (req->r_locked_dir)
  1747. ceph_get_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
  1748. if (req->r_old_dentry)
  1749. ceph_get_cap_refs(ceph_inode(req->r_old_dentry_dir),
  1750. CEPH_CAP_PIN);
  1751. /* issue */
  1752. mutex_lock(&mdsc->mutex);
  1753. __register_request(mdsc, req, dir);
  1754. __do_request(mdsc, req);
  1755. if (req->r_err) {
  1756. err = req->r_err;
  1757. __unregister_request(mdsc, req);
  1758. dout("do_request early error %d\n", err);
  1759. goto out;
  1760. }
  1761. /* wait */
  1762. mutex_unlock(&mdsc->mutex);
  1763. dout("do_request waiting\n");
  1764. if (req->r_timeout) {
  1765. err = (long)wait_for_completion_killable_timeout(
  1766. &req->r_completion, req->r_timeout);
  1767. if (err == 0)
  1768. err = -EIO;
  1769. } else {
  1770. err = wait_for_completion_killable(&req->r_completion);
  1771. }
  1772. dout("do_request waited, got %d\n", err);
  1773. mutex_lock(&mdsc->mutex);
  1774. /* only abort if we didn't race with a real reply */
  1775. if (req->r_got_result) {
  1776. err = le32_to_cpu(req->r_reply_info.head->result);
  1777. } else if (err < 0) {
  1778. dout("aborted request %lld with %d\n", req->r_tid, err);
  1779. /*
  1780. * ensure we aren't running concurrently with
  1781. * ceph_fill_trace or ceph_readdir_prepopulate, which
  1782. * rely on locks (dir mutex) held by our caller.
  1783. */
  1784. mutex_lock(&req->r_fill_mutex);
  1785. req->r_err = err;
  1786. req->r_aborted = true;
  1787. mutex_unlock(&req->r_fill_mutex);
  1788. if (req->r_locked_dir &&
  1789. (req->r_op & CEPH_MDS_OP_WRITE))
  1790. ceph_invalidate_dir_request(req);
  1791. } else {
  1792. err = req->r_err;
  1793. }
  1794. out:
  1795. mutex_unlock(&mdsc->mutex);
  1796. dout("do_request %p done, result %d\n", req, err);
  1797. return err;
  1798. }
  1799. /*
  1800. * Invalidate dir's completeness, dentry lease state on an aborted MDS
  1801. * namespace request.
  1802. */
  1803. void ceph_invalidate_dir_request(struct ceph_mds_request *req)
  1804. {
  1805. struct inode *inode = req->r_locked_dir;
  1806. dout("invalidate_dir_request %p (complete, lease(s))\n", inode);
  1807. ceph_dir_clear_complete(inode);
  1808. if (req->r_dentry)
  1809. ceph_invalidate_dentry_lease(req->r_dentry);
  1810. if (req->r_old_dentry)
  1811. ceph_invalidate_dentry_lease(req->r_old_dentry);
  1812. }
  1813. /*
  1814. * Handle mds reply.
  1815. *
  1816. * We take the session mutex and parse and process the reply immediately.
  1817. * This preserves the logical ordering of replies, capabilities, etc., sent
  1818. * by the MDS as they are applied to our local cache.
  1819. */
  1820. static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg)
  1821. {
  1822. struct ceph_mds_client *mdsc = session->s_mdsc;
  1823. struct ceph_mds_request *req;
  1824. struct ceph_mds_reply_head *head = msg->front.iov_base;
  1825. struct ceph_mds_reply_info_parsed *rinfo; /* parsed reply info */
  1826. u64 tid;
  1827. int err, result;
  1828. int mds = session->s_mds;
  1829. if (msg->front.iov_len < sizeof(*head)) {
  1830. pr_err("mdsc_handle_reply got corrupt (short) reply\n");
  1831. ceph_msg_dump(msg);
  1832. return;
  1833. }
  1834. /* get request, session */
  1835. tid = le64_to_cpu(msg->hdr.tid);
  1836. mutex_lock(&mdsc->mutex);
  1837. req = __lookup_request(mdsc, tid);
  1838. if (!req) {
  1839. dout("handle_reply on unknown tid %llu\n", tid);
  1840. mutex_unlock(&mdsc->mutex);
  1841. return;
  1842. }
  1843. dout("handle_reply %p\n", req);
  1844. /* correct session? */
  1845. if (req->r_session != session) {
  1846. pr_err("mdsc_handle_reply got %llu on session mds%d"
  1847. " not mds%d\n", tid, session->s_mds,
  1848. req->r_session ? req->r_session->s_mds : -1);
  1849. mutex_unlock(&mdsc->mutex);
  1850. goto out;
  1851. }
  1852. /* dup? */
  1853. if ((req->r_got_unsafe && !head->safe) ||
  1854. (req->r_got_safe && head->safe)) {
  1855. pr_warning("got a dup %s reply on %llu from mds%d\n",
  1856. head->safe ? "safe" : "unsafe", tid, mds);
  1857. mutex_unlock(&mdsc->mutex);
  1858. goto out;
  1859. }
  1860. if (req->r_got_safe && !head->safe) {
  1861. pr_warning("got unsafe after safe on %llu from mds%d\n",
  1862. tid, mds);
  1863. mutex_unlock(&mdsc->mutex);
  1864. goto out;
  1865. }
  1866. result = le32_to_cpu(head->result);
  1867. /*
  1868. * Handle an ESTALE
  1869. * if we're not talking to the authority, send to them
  1870. * if the authority has changed while we weren't looking,
  1871. * send to new authority
  1872. * Otherwise we just have to return an ESTALE
  1873. */
  1874. if (result == -ESTALE) {
  1875. dout("got ESTALE on request %llu", req->r_tid);
  1876. if (!req->r_inode) {
  1877. /* do nothing; not an authority problem */
  1878. } else if (req->r_direct_mode != USE_AUTH_MDS) {
  1879. dout("not using auth, setting for that now");
  1880. req->r_direct_mode = USE_AUTH_MDS;
  1881. __do_request(mdsc, req);
  1882. mutex_unlock(&mdsc->mutex);
  1883. goto out;
  1884. } else {
  1885. struct ceph_inode_info *ci = ceph_inode(req->r_inode);
  1886. struct ceph_cap *cap = NULL;
  1887. if (req->r_session)
  1888. cap = ceph_get_cap_for_mds(ci,
  1889. req->r_session->s_mds);
  1890. dout("already using auth");
  1891. if ((!cap || cap != ci->i_auth_cap) ||
  1892. (cap->mseq != req->r_sent_on_mseq)) {
  1893. dout("but cap changed, so resending");
  1894. __do_request(mdsc, req);
  1895. mutex_unlock(&mdsc->mutex);
  1896. goto out;
  1897. }
  1898. }
  1899. dout("have to return ESTALE on request %llu", req->r_tid);
  1900. }
  1901. if (head->safe) {
  1902. req->r_got_safe = true;
  1903. __unregister_request(mdsc, req);
  1904. complete_all(&req->r_safe_completion);
  1905. if (req->r_got_unsafe) {
  1906. /*
  1907. * We already handled the unsafe response, now do the
  1908. * cleanup. No need to examine the response; the MDS
  1909. * doesn't include any result info in the safe
  1910. * response. And even if it did, there is nothing
  1911. * useful we could do with a revised return value.
  1912. */
  1913. dout("got safe reply %llu, mds%d\n", tid, mds);
  1914. list_del_init(&req->r_unsafe_item);
  1915. /* last unsafe request during umount? */
  1916. if (mdsc->stopping && !__get_oldest_req(mdsc))
  1917. complete_all(&mdsc->safe_umount_waiters);
  1918. mutex_unlock(&mdsc->mutex);
  1919. goto out;
  1920. }
  1921. } else {
  1922. req->r_got_unsafe = true;
  1923. list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe);
  1924. }
  1925. dout("handle_reply tid %lld result %d\n", tid, result);
  1926. rinfo = &req->r_reply_info;
  1927. err = parse_reply_info(msg, rinfo, session->s_con.peer_features);
  1928. mutex_unlock(&mdsc->mutex);
  1929. mutex_lock(&session->s_mutex);
  1930. if (err < 0) {
  1931. pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds, tid);
  1932. ceph_msg_dump(msg);
  1933. goto out_err;
  1934. }
  1935. /* snap trace */
  1936. if (rinfo->snapblob_len) {
  1937. down_write(&mdsc->snap_rwsem);
  1938. ceph_update_snap_trace(mdsc, rinfo->snapblob,
  1939. rinfo->snapblob + rinfo->snapblob_len,
  1940. le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP);
  1941. downgrade_write(&mdsc->snap_rwsem);
  1942. } else {
  1943. down_read(&mdsc->snap_rwsem);
  1944. }
  1945. /* insert trace into our cache */
  1946. mutex_lock(&req->r_fill_mutex);
  1947. err = ceph_fill_trace(mdsc->fsc->sb, req, req->r_session);
  1948. if (err == 0) {
  1949. if (result == 0 && (req->r_op == CEPH_MDS_OP_READDIR ||
  1950. req->r_op == CEPH_MDS_OP_LSSNAP) &&
  1951. rinfo->dir_nr)
  1952. ceph_readdir_prepopulate(req, req->r_session);
  1953. ceph_unreserve_caps(mdsc, &req->r_caps_reservation);
  1954. }
  1955. mutex_unlock(&req->r_fill_mutex);
  1956. up_read(&mdsc->snap_rwsem);
  1957. out_err:
  1958. mutex_lock(&mdsc->mutex);
  1959. if (!req->r_aborted) {
  1960. if (err) {
  1961. req->r_err = err;
  1962. } else {
  1963. req->r_reply = msg;
  1964. ceph_msg_get(msg);
  1965. req->r_got_result = true;
  1966. }
  1967. } else {
  1968. dout("reply arrived after request %lld was aborted\n", tid);
  1969. }
  1970. mutex_unlock(&mdsc->mutex);
  1971. ceph_add_cap_releases(mdsc, req->r_session);
  1972. mutex_unlock(&session->s_mutex);
  1973. /* kick calling process */
  1974. complete_request(mdsc, req);
  1975. out:
  1976. ceph_mdsc_put_request(req);
  1977. return;
  1978. }
  1979. /*
  1980. * handle mds notification that our request has been forwarded.
  1981. */
  1982. static void handle_forward(struct ceph_mds_client *mdsc,
  1983. struct ceph_mds_session *session,
  1984. struct ceph_msg *msg)
  1985. {
  1986. struct ceph_mds_request *req;
  1987. u64 tid = le64_to_cpu(msg->hdr.tid);
  1988. u32 next_mds;
  1989. u32 fwd_seq;
  1990. int err = -EINVAL;
  1991. void *p = msg->front.iov_base;
  1992. void *end = p + msg->front.iov_len;
  1993. ceph_decode_need(&p, end, 2*sizeof(u32), bad);
  1994. next_mds = ceph_decode_32(&p);
  1995. fwd_seq = ceph_decode_32(&p);
  1996. mutex_lock(&mdsc->mutex);
  1997. req = __lookup_request(mdsc, tid);
  1998. if (!req) {
  1999. dout("forward tid %llu to mds%d - req dne\n", tid, next_mds);
  2000. goto out; /* dup reply? */
  2001. }
  2002. if (req->r_aborted) {
  2003. dout("forward tid %llu aborted, unregistering\n", tid);
  2004. __unregister_request(mdsc, req);
  2005. } else if (fwd_seq <= req->r_num_fwd) {
  2006. dout("forward tid %llu to mds%d - old seq %d <= %d\n",
  2007. tid, next_mds, req->r_num_fwd, fwd_seq);
  2008. } else {
  2009. /* resend. forward race not possible; mds would drop */
  2010. dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds);
  2011. BUG_ON(req->r_err);
  2012. BUG_ON(req->r_got_result);
  2013. req->r_num_fwd = fwd_seq;
  2014. req->r_resend_mds = next_mds;
  2015. put_request_session(req);
  2016. __do_request(mdsc, req);
  2017. }
  2018. ceph_mdsc_put_request(req);
  2019. out:
  2020. mutex_unlock(&mdsc->mutex);
  2021. return;
  2022. bad:
  2023. pr_err("mdsc_handle_forward decode error err=%d\n", err);
  2024. }
  2025. /*
  2026. * handle a mds session control message
  2027. */
  2028. static void handle_session(struct ceph_mds_session *session,
  2029. struct ceph_msg *msg)
  2030. {
  2031. struct ceph_mds_client *mdsc = session->s_mdsc;
  2032. u32 op;
  2033. u64 seq;
  2034. int mds = session->s_mds;
  2035. struct ceph_mds_session_head *h = msg->front.iov_base;
  2036. int wake = 0;
  2037. /* decode */
  2038. if (msg->front.iov_len != sizeof(*h))
  2039. goto bad;
  2040. op = le32_to_cpu(h->op);
  2041. seq = le64_to_cpu(h->seq);
  2042. mutex_lock(&mdsc->mutex);
  2043. if (op == CEPH_SESSION_CLOSE)
  2044. __unregister_session(mdsc, session);
  2045. /* FIXME: this ttl calculation is generous */
  2046. session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose;
  2047. mutex_unlock(&mdsc->mutex);
  2048. mutex_lock(&session->s_mutex);
  2049. dout("handle_session mds%d %s %p state %s seq %llu\n",
  2050. mds, ceph_session_op_name(op), session,
  2051. session_state_name(session->s_state), seq);
  2052. if (session->s_state == CEPH_MDS_SESSION_HUNG) {
  2053. session->s_state = CEPH_MDS_SESSION_OPEN;
  2054. pr_info("mds%d came back\n", session->s_mds);
  2055. }
  2056. switch (op) {
  2057. case CEPH_SESSION_OPEN:
  2058. if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
  2059. pr_info("mds%d reconnect success\n", session->s_mds);
  2060. session->s_state = CEPH_MDS_SESSION_OPEN;
  2061. renewed_caps(mdsc, session, 0);
  2062. wake = 1;
  2063. if (mdsc->stopping)
  2064. __close_session(mdsc, session);
  2065. break;
  2066. case CEPH_SESSION_RENEWCAPS:
  2067. if (session->s_renew_seq == seq)
  2068. renewed_caps(mdsc, session, 1);
  2069. break;
  2070. case CEPH_SESSION_CLOSE:
  2071. if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
  2072. pr_info("mds%d reconnect denied\n", session->s_mds);
  2073. remove_session_caps(session);
  2074. wake = 1; /* for good measure */
  2075. wake_up_all(&mdsc->session_close_wq);
  2076. kick_requests(mdsc, mds);
  2077. break;
  2078. case CEPH_SESSION_STALE:
  2079. pr_info("mds%d caps went stale, renewing\n",
  2080. session->s_mds);
  2081. spin_lock(&session->s_gen_ttl_lock);
  2082. session->s_cap_gen++;
  2083. session->s_cap_ttl = jiffies - 1;
  2084. spin_unlock(&session->s_gen_ttl_lock);
  2085. send_renew_caps(mdsc, session);
  2086. break;
  2087. case CEPH_SESSION_RECALL_STATE:
  2088. trim_caps(mdsc, session, le32_to_cpu(h->max_caps));
  2089. break;
  2090. default:
  2091. pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds);
  2092. WARN_ON(1);
  2093. }
  2094. mutex_unlock(&session->s_mutex);
  2095. if (wake) {
  2096. mutex_lock(&mdsc->mutex);
  2097. __wake_requests(mdsc, &session->s_waiting);
  2098. mutex_unlock(&mdsc->mutex);
  2099. }
  2100. return;
  2101. bad:
  2102. pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds,
  2103. (int)msg->front.iov_len);
  2104. ceph_msg_dump(msg);
  2105. return;
  2106. }
  2107. /*
  2108. * called under session->mutex.
  2109. */
  2110. static void replay_unsafe_requests(struct ceph_mds_client *mdsc,
  2111. struct ceph_mds_session *session)
  2112. {
  2113. struct ceph_mds_request *req, *nreq;
  2114. int err;
  2115. dout("replay_unsafe_requests mds%d\n", session->s_mds);
  2116. mutex_lock(&mdsc->mutex);
  2117. list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) {
  2118. err = __prepare_send_request(mdsc, req, session->s_mds);
  2119. if (!err) {
  2120. ceph_msg_get(req->r_request);
  2121. ceph_con_send(&session->s_con, req->r_request);
  2122. }
  2123. }
  2124. mutex_unlock(&mdsc->mutex);
  2125. }
  2126. /*
  2127. * Encode information about a cap for a reconnect with the MDS.
  2128. */
  2129. static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap,
  2130. void *arg)
  2131. {
  2132. union {
  2133. struct ceph_mds_cap_reconnect v2;
  2134. struct ceph_mds_cap_reconnect_v1 v1;
  2135. } rec;
  2136. size_t reclen;
  2137. struct ceph_inode_info *ci;
  2138. struct ceph_reconnect_state *recon_state = arg;
  2139. struct ceph_pagelist *pagelist = recon_state->pagelist;
  2140. char *path;
  2141. int pathlen, err;
  2142. u64 pathbase;
  2143. struct dentry *dentry;
  2144. ci = cap->ci;
  2145. dout(" adding %p ino %llx.%llx cap %p %lld %s\n",
  2146. inode, ceph_vinop(inode), cap, cap->cap_id,
  2147. ceph_cap_string(cap->issued));
  2148. err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode));
  2149. if (err)
  2150. return err;
  2151. dentry = d_find_alias(inode);
  2152. if (dentry) {
  2153. path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 0);
  2154. if (IS_ERR(path)) {
  2155. err = PTR_ERR(path);
  2156. goto out_dput;
  2157. }
  2158. } else {
  2159. path = NULL;
  2160. pathlen = 0;
  2161. }
  2162. err = ceph_pagelist_encode_string(pagelist, path, pathlen);
  2163. if (err)
  2164. goto out_free;
  2165. spin_lock(&ci->i_ceph_lock);
  2166. cap->seq = 0; /* reset cap seq */
  2167. cap->issue_seq = 0; /* and issue_seq */
  2168. cap->mseq = 0; /* and migrate_seq */
  2169. if (recon_state->flock) {
  2170. rec.v2.cap_id = cpu_to_le64(cap->cap_id);
  2171. rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
  2172. rec.v2.issued = cpu_to_le32(cap->issued);
  2173. rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
  2174. rec.v2.pathbase = cpu_to_le64(pathbase);
  2175. rec.v2.flock_len = 0;
  2176. reclen = sizeof(rec.v2);
  2177. } else {
  2178. rec.v1.cap_id = cpu_to_le64(cap->cap_id);
  2179. rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
  2180. rec.v1.issued = cpu_to_le32(cap->issued);
  2181. rec.v1.size = cpu_to_le64(inode->i_size);
  2182. ceph_encode_timespec(&rec.v1.mtime, &inode->i_mtime);
  2183. ceph_encode_timespec(&rec.v1.atime, &inode->i_atime);
  2184. rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
  2185. rec.v1.pathbase = cpu_to_le64(pathbase);
  2186. reclen = sizeof(rec.v1);
  2187. }
  2188. spin_unlock(&ci->i_ceph_lock);
  2189. if (recon_state->flock) {
  2190. int num_fcntl_locks, num_flock_locks;
  2191. struct ceph_filelock *flocks;
  2192. encode_again:
  2193. spin_lock(&inode->i_lock);
  2194. ceph_count_locks(inode, &num_fcntl_locks, &num_flock_locks);
  2195. spin_unlock(&inode->i_lock);
  2196. flocks = kmalloc((num_fcntl_locks+num_flock_locks) *
  2197. sizeof(struct ceph_filelock), GFP_NOFS);
  2198. if (!flocks) {
  2199. err = -ENOMEM;
  2200. goto out_free;
  2201. }
  2202. spin_lock(&inode->i_lock);
  2203. err = ceph_encode_locks_to_buffer(inode, flocks,
  2204. num_fcntl_locks,
  2205. num_flock_locks);
  2206. spin_unlock(&inode->i_lock);
  2207. if (err) {
  2208. kfree(flocks);
  2209. if (err == -ENOSPC)
  2210. goto encode_again;
  2211. goto out_free;
  2212. }
  2213. /*
  2214. * number of encoded locks is stable, so copy to pagelist
  2215. */
  2216. rec.v2.flock_len = cpu_to_le32(2*sizeof(u32) +
  2217. (num_fcntl_locks+num_flock_locks) *
  2218. sizeof(struct ceph_filelock));
  2219. err = ceph_pagelist_append(pagelist, &rec, reclen);
  2220. if (!err)
  2221. err = ceph_locks_to_pagelist(flocks, pagelist,
  2222. num_fcntl_locks,
  2223. num_flock_locks);
  2224. kfree(flocks);
  2225. } else {
  2226. err = ceph_pagelist_append(pagelist, &rec, reclen);
  2227. }
  2228. out_free:
  2229. kfree(path);
  2230. out_dput:
  2231. dput(dentry);
  2232. return err;
  2233. }
  2234. /*
  2235. * If an MDS fails and recovers, clients need to reconnect in order to
  2236. * reestablish shared state. This includes all caps issued through
  2237. * this session _and_ the snap_realm hierarchy. Because it's not
  2238. * clear which snap realms the mds cares about, we send everything we
  2239. * know about.. that ensures we'll then get any new info the
  2240. * recovering MDS might have.
  2241. *
  2242. * This is a relatively heavyweight operation, but it's rare.
  2243. *
  2244. * called with mdsc->mutex held.
  2245. */
  2246. static void send_mds_reconnect(struct ceph_mds_client *mdsc,
  2247. struct ceph_mds_session *session)
  2248. {
  2249. struct ceph_msg *reply;
  2250. struct rb_node *p;
  2251. int mds = session->s_mds;
  2252. int err = -ENOMEM;
  2253. struct ceph_pagelist *pagelist;
  2254. struct ceph_reconnect_state recon_state;
  2255. pr_info("mds%d reconnect start\n", mds);
  2256. pagelist = kmalloc(sizeof(*pagelist), GFP_NOFS);
  2257. if (!pagelist)
  2258. goto fail_nopagelist;
  2259. ceph_pagelist_init(pagelist);
  2260. reply = ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT, 0, GFP_NOFS, false);
  2261. if (!reply)
  2262. goto fail_nomsg;
  2263. mutex_lock(&session->s_mutex);
  2264. session->s_state = CEPH_MDS_SESSION_RECONNECTING;
  2265. session->s_seq = 0;
  2266. ceph_con_close(&session->s_con);
  2267. ceph_con_open(&session->s_con,
  2268. CEPH_ENTITY_TYPE_MDS, mds,
  2269. ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
  2270. /* replay unsafe requests */
  2271. replay_unsafe_requests(mdsc, session);
  2272. down_read(&mdsc->snap_rwsem);
  2273. dout("session %p state %s\n", session,
  2274. session_state_name(session->s_state));
  2275. /* drop old cap expires; we're about to reestablish that state */
  2276. discard_cap_releases(mdsc, session);
  2277. /* traverse this session's caps */
  2278. err = ceph_pagelist_encode_32(pagelist, session->s_nr_caps);
  2279. if (err)
  2280. goto fail;
  2281. recon_state.pagelist = pagelist;
  2282. recon_state.flock = session->s_con.peer_features & CEPH_FEATURE_FLOCK;
  2283. err = iterate_session_caps(session, encode_caps_cb, &recon_state);
  2284. if (err < 0)
  2285. goto fail;
  2286. /*
  2287. * snaprealms. we provide mds with the ino, seq (version), and
  2288. * parent for all of our realms. If the mds has any newer info,
  2289. * it will tell us.
  2290. */
  2291. for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) {
  2292. struct ceph_snap_realm *realm =
  2293. rb_entry(p, struct ceph_snap_realm, node);
  2294. struct ceph_mds_snaprealm_reconnect sr_rec;
  2295. dout(" adding snap realm %llx seq %lld parent %llx\n",
  2296. realm->ino, realm->seq, realm->parent_ino);
  2297. sr_rec.ino = cpu_to_le64(realm->ino);
  2298. sr_rec.seq = cpu_to_le64(realm->seq);
  2299. sr_rec.parent = cpu_to_le64(realm->parent_ino);
  2300. err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec));
  2301. if (err)
  2302. goto fail;
  2303. }
  2304. if (recon_state.flock)
  2305. reply->hdr.version = cpu_to_le16(2);
  2306. if (pagelist->length) {
  2307. /* set up outbound data if we have any */
  2308. reply->hdr.data_len = cpu_to_le32(pagelist->length);
  2309. ceph_msg_data_add_pagelist(reply, pagelist);
  2310. }
  2311. ceph_con_send(&session->s_con, reply);
  2312. mutex_unlock(&session->s_mutex);
  2313. mutex_lock(&mdsc->mutex);
  2314. __wake_requests(mdsc, &session->s_waiting);
  2315. mutex_unlock(&mdsc->mutex);
  2316. up_read(&mdsc->snap_rwsem);
  2317. return;
  2318. fail:
  2319. ceph_msg_put(reply);
  2320. up_read(&mdsc->snap_rwsem);
  2321. mutex_unlock(&session->s_mutex);
  2322. fail_nomsg:
  2323. ceph_pagelist_release(pagelist);
  2324. kfree(pagelist);
  2325. fail_nopagelist:
  2326. pr_err("error %d preparing reconnect for mds%d\n", err, mds);
  2327. return;
  2328. }
  2329. /*
  2330. * compare old and new mdsmaps, kicking requests
  2331. * and closing out old connections as necessary
  2332. *
  2333. * called under mdsc->mutex.
  2334. */
  2335. static void check_new_map(struct ceph_mds_client *mdsc,
  2336. struct ceph_mdsmap *newmap,
  2337. struct ceph_mdsmap *oldmap)
  2338. {
  2339. int i;
  2340. int oldstate, newstate;
  2341. struct ceph_mds_session *s;
  2342. dout("check_new_map new %u old %u\n",
  2343. newmap->m_epoch, oldmap->m_epoch);
  2344. for (i = 0; i < oldmap->m_max_mds && i < mdsc->max_sessions; i++) {
  2345. if (mdsc->sessions[i] == NULL)
  2346. continue;
  2347. s = mdsc->sessions[i];
  2348. oldstate = ceph_mdsmap_get_state(oldmap, i);
  2349. newstate = ceph_mdsmap_get_state(newmap, i);
  2350. dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n",
  2351. i, ceph_mds_state_name(oldstate),
  2352. ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "",
  2353. ceph_mds_state_name(newstate),
  2354. ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "",
  2355. session_state_name(s->s_state));
  2356. if (i >= newmap->m_max_mds ||
  2357. memcmp(ceph_mdsmap_get_addr(oldmap, i),
  2358. ceph_mdsmap_get_addr(newmap, i),
  2359. sizeof(struct ceph_entity_addr))) {
  2360. if (s->s_state == CEPH_MDS_SESSION_OPENING) {
  2361. /* the session never opened, just close it
  2362. * out now */
  2363. __wake_requests(mdsc, &s->s_waiting);
  2364. __unregister_session(mdsc, s);
  2365. } else {
  2366. /* just close it */
  2367. mutex_unlock(&mdsc->mutex);
  2368. mutex_lock(&s->s_mutex);
  2369. mutex_lock(&mdsc->mutex);
  2370. ceph_con_close(&s->s_con);
  2371. mutex_unlock(&s->s_mutex);
  2372. s->s_state = CEPH_MDS_SESSION_RESTARTING;
  2373. }
  2374. /* kick any requests waiting on the recovering mds */
  2375. kick_requests(mdsc, i);
  2376. } else if (oldstate == newstate) {
  2377. continue; /* nothing new with this mds */
  2378. }
  2379. /*
  2380. * send reconnect?
  2381. */
  2382. if (s->s_state == CEPH_MDS_SESSION_RESTARTING &&
  2383. newstate >= CEPH_MDS_STATE_RECONNECT) {
  2384. mutex_unlock(&mdsc->mutex);
  2385. send_mds_reconnect(mdsc, s);
  2386. mutex_lock(&mdsc->mutex);
  2387. }
  2388. /*
  2389. * kick request on any mds that has gone active.
  2390. */
  2391. if (oldstate < CEPH_MDS_STATE_ACTIVE &&
  2392. newstate >= CEPH_MDS_STATE_ACTIVE) {
  2393. if (oldstate != CEPH_MDS_STATE_CREATING &&
  2394. oldstate != CEPH_MDS_STATE_STARTING)
  2395. pr_info("mds%d recovery completed\n", s->s_mds);
  2396. kick_requests(mdsc, i);
  2397. ceph_kick_flushing_caps(mdsc, s);
  2398. wake_up_session_caps(s, 1);
  2399. }
  2400. }
  2401. for (i = 0; i < newmap->m_max_mds && i < mdsc->max_sessions; i++) {
  2402. s = mdsc->sessions[i];
  2403. if (!s)
  2404. continue;
  2405. if (!ceph_mdsmap_is_laggy(newmap, i))
  2406. continue;
  2407. if (s->s_state == CEPH_MDS_SESSION_OPEN ||
  2408. s->s_state == CEPH_MDS_SESSION_HUNG ||
  2409. s->s_state == CEPH_MDS_SESSION_CLOSING) {
  2410. dout(" connecting to export targets of laggy mds%d\n",
  2411. i);
  2412. __open_export_target_sessions(mdsc, s);
  2413. }
  2414. }
  2415. }
  2416. /*
  2417. * leases
  2418. */
  2419. /*
  2420. * caller must hold session s_mutex, dentry->d_lock
  2421. */
  2422. void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry)
  2423. {
  2424. struct ceph_dentry_info *di = ceph_dentry(dentry);
  2425. ceph_put_mds_session(di->lease_session);
  2426. di->lease_session = NULL;
  2427. }
  2428. static void handle_lease(struct ceph_mds_client *mdsc,
  2429. struct ceph_mds_session *session,
  2430. struct ceph_msg *msg)
  2431. {
  2432. struct super_block *sb = mdsc->fsc->sb;
  2433. struct inode *inode;
  2434. struct dentry *parent, *dentry;
  2435. struct ceph_dentry_info *di;
  2436. int mds = session->s_mds;
  2437. struct ceph_mds_lease *h = msg->front.iov_base;
  2438. u32 seq;
  2439. struct ceph_vino vino;
  2440. struct qstr dname;
  2441. int release = 0;
  2442. dout("handle_lease from mds%d\n", mds);
  2443. /* decode */
  2444. if (msg->front.iov_len < sizeof(*h) + sizeof(u32))
  2445. goto bad;
  2446. vino.ino = le64_to_cpu(h->ino);
  2447. vino.snap = CEPH_NOSNAP;
  2448. seq = le32_to_cpu(h->seq);
  2449. dname.name = (void *)h + sizeof(*h) + sizeof(u32);
  2450. dname.len = msg->front.iov_len - sizeof(*h) - sizeof(u32);
  2451. if (dname.len != get_unaligned_le32(h+1))
  2452. goto bad;
  2453. mutex_lock(&session->s_mutex);
  2454. session->s_seq++;
  2455. /* lookup inode */
  2456. inode = ceph_find_inode(sb, vino);
  2457. dout("handle_lease %s, ino %llx %p %.*s\n",
  2458. ceph_lease_op_name(h->action), vino.ino, inode,
  2459. dname.len, dname.name);
  2460. if (inode == NULL) {
  2461. dout("handle_lease no inode %llx\n", vino.ino);
  2462. goto release;
  2463. }
  2464. /* dentry */
  2465. parent = d_find_alias(inode);
  2466. if (!parent) {
  2467. dout("no parent dentry on inode %p\n", inode);
  2468. WARN_ON(1);
  2469. goto release; /* hrm... */
  2470. }
  2471. dname.hash = full_name_hash(dname.name, dname.len);
  2472. dentry = d_lookup(parent, &dname);
  2473. dput(parent);
  2474. if (!dentry)
  2475. goto release;
  2476. spin_lock(&dentry->d_lock);
  2477. di = ceph_dentry(dentry);
  2478. switch (h->action) {
  2479. case CEPH_MDS_LEASE_REVOKE:
  2480. if (di->lease_session == session) {
  2481. if (ceph_seq_cmp(di->lease_seq, seq) > 0)
  2482. h->seq = cpu_to_le32(di->lease_seq);
  2483. __ceph_mdsc_drop_dentry_lease(dentry);
  2484. }
  2485. release = 1;
  2486. break;
  2487. case CEPH_MDS_LEASE_RENEW:
  2488. if (di->lease_session == session &&
  2489. di->lease_gen == session->s_cap_gen &&
  2490. di->lease_renew_from &&
  2491. di->lease_renew_after == 0) {
  2492. unsigned long duration =
  2493. le32_to_cpu(h->duration_ms) * HZ / 1000;
  2494. di->lease_seq = seq;
  2495. dentry->d_time = di->lease_renew_from + duration;
  2496. di->lease_renew_after = di->lease_renew_from +
  2497. (duration >> 1);
  2498. di->lease_renew_from = 0;
  2499. }
  2500. break;
  2501. }
  2502. spin_unlock(&dentry->d_lock);
  2503. dput(dentry);
  2504. if (!release)
  2505. goto out;
  2506. release:
  2507. /* let's just reuse the same message */
  2508. h->action = CEPH_MDS_LEASE_REVOKE_ACK;
  2509. ceph_msg_get(msg);
  2510. ceph_con_send(&session->s_con, msg);
  2511. out:
  2512. iput(inode);
  2513. mutex_unlock(&session->s_mutex);
  2514. return;
  2515. bad:
  2516. pr_err("corrupt lease message\n");
  2517. ceph_msg_dump(msg);
  2518. }
  2519. void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session,
  2520. struct inode *inode,
  2521. struct dentry *dentry, char action,
  2522. u32 seq)
  2523. {
  2524. struct ceph_msg *msg;
  2525. struct ceph_mds_lease *lease;
  2526. int len = sizeof(*lease) + sizeof(u32);
  2527. int dnamelen = 0;
  2528. dout("lease_send_msg inode %p dentry %p %s to mds%d\n",
  2529. inode, dentry, ceph_lease_op_name(action), session->s_mds);
  2530. dnamelen = dentry->d_name.len;
  2531. len += dnamelen;
  2532. msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS, false);
  2533. if (!msg)
  2534. return;
  2535. lease = msg->front.iov_base;
  2536. lease->action = action;
  2537. lease->ino = cpu_to_le64(ceph_vino(inode).ino);
  2538. lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap);
  2539. lease->seq = cpu_to_le32(seq);
  2540. put_unaligned_le32(dnamelen, lease + 1);
  2541. memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen);
  2542. /*
  2543. * if this is a preemptive lease RELEASE, no need to
  2544. * flush request stream, since the actual request will
  2545. * soon follow.
  2546. */
  2547. msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE);
  2548. ceph_con_send(&session->s_con, msg);
  2549. }
  2550. /*
  2551. * Preemptively release a lease we expect to invalidate anyway.
  2552. * Pass @inode always, @dentry is optional.
  2553. */
  2554. void ceph_mdsc_lease_release(struct ceph_mds_client *mdsc, struct inode *inode,
  2555. struct dentry *dentry)
  2556. {
  2557. struct ceph_dentry_info *di;
  2558. struct ceph_mds_session *session;
  2559. u32 seq;
  2560. BUG_ON(inode == NULL);
  2561. BUG_ON(dentry == NULL);
  2562. /* is dentry lease valid? */
  2563. spin_lock(&dentry->d_lock);
  2564. di = ceph_dentry(dentry);
  2565. if (!di || !di->lease_session ||
  2566. di->lease_session->s_mds < 0 ||
  2567. di->lease_gen != di->lease_session->s_cap_gen ||
  2568. !time_before(jiffies, dentry->d_time)) {
  2569. dout("lease_release inode %p dentry %p -- "
  2570. "no lease\n",
  2571. inode, dentry);
  2572. spin_unlock(&dentry->d_lock);
  2573. return;
  2574. }
  2575. /* we do have a lease on this dentry; note mds and seq */
  2576. session = ceph_get_mds_session(di->lease_session);
  2577. seq = di->lease_seq;
  2578. __ceph_mdsc_drop_dentry_lease(dentry);
  2579. spin_unlock(&dentry->d_lock);
  2580. dout("lease_release inode %p dentry %p to mds%d\n",
  2581. inode, dentry, session->s_mds);
  2582. ceph_mdsc_lease_send_msg(session, inode, dentry,
  2583. CEPH_MDS_LEASE_RELEASE, seq);
  2584. ceph_put_mds_session(session);
  2585. }
  2586. /*
  2587. * drop all leases (and dentry refs) in preparation for umount
  2588. */
  2589. static void drop_leases(struct ceph_mds_client *mdsc)
  2590. {
  2591. int i;
  2592. dout("drop_leases\n");
  2593. mutex_lock(&mdsc->mutex);
  2594. for (i = 0; i < mdsc->max_sessions; i++) {
  2595. struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
  2596. if (!s)
  2597. continue;
  2598. mutex_unlock(&mdsc->mutex);
  2599. mutex_lock(&s->s_mutex);
  2600. mutex_unlock(&s->s_mutex);
  2601. ceph_put_mds_session(s);
  2602. mutex_lock(&mdsc->mutex);
  2603. }
  2604. mutex_unlock(&mdsc->mutex);
  2605. }
  2606. /*
  2607. * delayed work -- periodically trim expired leases, renew caps with mds
  2608. */
  2609. static void schedule_delayed(struct ceph_mds_client *mdsc)
  2610. {
  2611. int delay = 5;
  2612. unsigned hz = round_jiffies_relative(HZ * delay);
  2613. schedule_delayed_work(&mdsc->delayed_work, hz);
  2614. }
  2615. static void delayed_work(struct work_struct *work)
  2616. {
  2617. int i;
  2618. struct ceph_mds_client *mdsc =
  2619. container_of(work, struct ceph_mds_client, delayed_work.work);
  2620. int renew_interval;
  2621. int renew_caps;
  2622. dout("mdsc delayed_work\n");
  2623. ceph_check_delayed_caps(mdsc);
  2624. mutex_lock(&mdsc->mutex);
  2625. renew_interval = mdsc->mdsmap->m_session_timeout >> 2;
  2626. renew_caps = time_after_eq(jiffies, HZ*renew_interval +
  2627. mdsc->last_renew_caps);
  2628. if (renew_caps)
  2629. mdsc->last_renew_caps = jiffies;
  2630. for (i = 0; i < mdsc->max_sessions; i++) {
  2631. struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
  2632. if (s == NULL)
  2633. continue;
  2634. if (s->s_state == CEPH_MDS_SESSION_CLOSING) {
  2635. dout("resending session close request for mds%d\n",
  2636. s->s_mds);
  2637. request_close_session(mdsc, s);
  2638. ceph_put_mds_session(s);
  2639. continue;
  2640. }
  2641. if (s->s_ttl && time_after(jiffies, s->s_ttl)) {
  2642. if (s->s_state == CEPH_MDS_SESSION_OPEN) {
  2643. s->s_state = CEPH_MDS_SESSION_HUNG;
  2644. pr_info("mds%d hung\n", s->s_mds);
  2645. }
  2646. }
  2647. if (s->s_state < CEPH_MDS_SESSION_OPEN) {
  2648. /* this mds is failed or recovering, just wait */
  2649. ceph_put_mds_session(s);
  2650. continue;
  2651. }
  2652. mutex_unlock(&mdsc->mutex);
  2653. mutex_lock(&s->s_mutex);
  2654. if (renew_caps)
  2655. send_renew_caps(mdsc, s);
  2656. else
  2657. ceph_con_keepalive(&s->s_con);
  2658. ceph_add_cap_releases(mdsc, s);
  2659. if (s->s_state == CEPH_MDS_SESSION_OPEN ||
  2660. s->s_state == CEPH_MDS_SESSION_HUNG)
  2661. ceph_send_cap_releases(mdsc, s);
  2662. mutex_unlock(&s->s_mutex);
  2663. ceph_put_mds_session(s);
  2664. mutex_lock(&mdsc->mutex);
  2665. }
  2666. mutex_unlock(&mdsc->mutex);
  2667. schedule_delayed(mdsc);
  2668. }
  2669. int ceph_mdsc_init(struct ceph_fs_client *fsc)
  2670. {
  2671. struct ceph_mds_client *mdsc;
  2672. mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS);
  2673. if (!mdsc)
  2674. return -ENOMEM;
  2675. mdsc->fsc = fsc;
  2676. fsc->mdsc = mdsc;
  2677. mutex_init(&mdsc->mutex);
  2678. mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS);
  2679. if (mdsc->mdsmap == NULL) {
  2680. kfree(mdsc);
  2681. return -ENOMEM;
  2682. }
  2683. init_completion(&mdsc->safe_umount_waiters);
  2684. init_waitqueue_head(&mdsc->session_close_wq);
  2685. INIT_LIST_HEAD(&mdsc->waiting_for_map);
  2686. mdsc->sessions = NULL;
  2687. mdsc->max_sessions = 0;
  2688. mdsc->stopping = 0;
  2689. init_rwsem(&mdsc->snap_rwsem);
  2690. mdsc->snap_realms = RB_ROOT;
  2691. INIT_LIST_HEAD(&mdsc->snap_empty);
  2692. spin_lock_init(&mdsc->snap_empty_lock);
  2693. mdsc->last_tid = 0;
  2694. mdsc->request_tree = RB_ROOT;
  2695. INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work);
  2696. mdsc->last_renew_caps = jiffies;
  2697. INIT_LIST_HEAD(&mdsc->cap_delay_list);
  2698. spin_lock_init(&mdsc->cap_delay_lock);
  2699. INIT_LIST_HEAD(&mdsc->snap_flush_list);
  2700. spin_lock_init(&mdsc->snap_flush_lock);
  2701. mdsc->cap_flush_seq = 0;
  2702. INIT_LIST_HEAD(&mdsc->cap_dirty);
  2703. INIT_LIST_HEAD(&mdsc->cap_dirty_migrating);
  2704. mdsc->num_cap_flushing = 0;
  2705. spin_lock_init(&mdsc->cap_dirty_lock);
  2706. init_waitqueue_head(&mdsc->cap_flushing_wq);
  2707. spin_lock_init(&mdsc->dentry_lru_lock);
  2708. INIT_LIST_HEAD(&mdsc->dentry_lru);
  2709. ceph_caps_init(mdsc);
  2710. ceph_adjust_min_caps(mdsc, fsc->min_caps);
  2711. return 0;
  2712. }
  2713. /*
  2714. * Wait for safe replies on open mds requests. If we time out, drop
  2715. * all requests from the tree to avoid dangling dentry refs.
  2716. */
  2717. static void wait_requests(struct ceph_mds_client *mdsc)
  2718. {
  2719. struct ceph_mds_request *req;
  2720. struct ceph_fs_client *fsc = mdsc->fsc;
  2721. mutex_lock(&mdsc->mutex);
  2722. if (__get_oldest_req(mdsc)) {
  2723. mutex_unlock(&mdsc->mutex);
  2724. dout("wait_requests waiting for requests\n");
  2725. wait_for_completion_timeout(&mdsc->safe_umount_waiters,
  2726. fsc->client->options->mount_timeout * HZ);
  2727. /* tear down remaining requests */
  2728. mutex_lock(&mdsc->mutex);
  2729. while ((req = __get_oldest_req(mdsc))) {
  2730. dout("wait_requests timed out on tid %llu\n",
  2731. req->r_tid);
  2732. __unregister_request(mdsc, req);
  2733. }
  2734. }
  2735. mutex_unlock(&mdsc->mutex);
  2736. dout("wait_requests done\n");
  2737. }
  2738. /*
  2739. * called before mount is ro, and before dentries are torn down.
  2740. * (hmm, does this still race with new lookups?)
  2741. */
  2742. void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc)
  2743. {
  2744. dout("pre_umount\n");
  2745. mdsc->stopping = 1;
  2746. drop_leases(mdsc);
  2747. ceph_flush_dirty_caps(mdsc);
  2748. wait_requests(mdsc);
  2749. /*
  2750. * wait for reply handlers to drop their request refs and
  2751. * their inode/dcache refs
  2752. */
  2753. ceph_msgr_flush();
  2754. }
  2755. /*
  2756. * wait for all write mds requests to flush.
  2757. */
  2758. static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid)
  2759. {
  2760. struct ceph_mds_request *req = NULL, *nextreq;
  2761. struct rb_node *n;
  2762. mutex_lock(&mdsc->mutex);
  2763. dout("wait_unsafe_requests want %lld\n", want_tid);
  2764. restart:
  2765. req = __get_oldest_req(mdsc);
  2766. while (req && req->r_tid <= want_tid) {
  2767. /* find next request */
  2768. n = rb_next(&req->r_node);
  2769. if (n)
  2770. nextreq = rb_entry(n, struct ceph_mds_request, r_node);
  2771. else
  2772. nextreq = NULL;
  2773. if ((req->r_op & CEPH_MDS_OP_WRITE)) {
  2774. /* write op */
  2775. ceph_mdsc_get_request(req);
  2776. if (nextreq)
  2777. ceph_mdsc_get_request(nextreq);
  2778. mutex_unlock(&mdsc->mutex);
  2779. dout("wait_unsafe_requests wait on %llu (want %llu)\n",
  2780. req->r_tid, want_tid);
  2781. wait_for_completion(&req->r_safe_completion);
  2782. mutex_lock(&mdsc->mutex);
  2783. ceph_mdsc_put_request(req);
  2784. if (!nextreq)
  2785. break; /* next dne before, so we're done! */
  2786. if (RB_EMPTY_NODE(&nextreq->r_node)) {
  2787. /* next request was removed from tree */
  2788. ceph_mdsc_put_request(nextreq);
  2789. goto restart;
  2790. }
  2791. ceph_mdsc_put_request(nextreq); /* won't go away */
  2792. }
  2793. req = nextreq;
  2794. }
  2795. mutex_unlock(&mdsc->mutex);
  2796. dout("wait_unsafe_requests done\n");
  2797. }
  2798. void ceph_mdsc_sync(struct ceph_mds_client *mdsc)
  2799. {
  2800. u64 want_tid, want_flush;
  2801. if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN)
  2802. return;
  2803. dout("sync\n");
  2804. mutex_lock(&mdsc->mutex);
  2805. want_tid = mdsc->last_tid;
  2806. want_flush = mdsc->cap_flush_seq;
  2807. mutex_unlock(&mdsc->mutex);
  2808. dout("sync want tid %lld flush_seq %lld\n", want_tid, want_flush);
  2809. ceph_flush_dirty_caps(mdsc);
  2810. wait_unsafe_requests(mdsc, want_tid);
  2811. wait_event(mdsc->cap_flushing_wq, check_cap_flush(mdsc, want_flush));
  2812. }
  2813. /*
  2814. * true if all sessions are closed, or we force unmount
  2815. */
  2816. static bool done_closing_sessions(struct ceph_mds_client *mdsc)
  2817. {
  2818. int i, n = 0;
  2819. if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN)
  2820. return true;
  2821. mutex_lock(&mdsc->mutex);
  2822. for (i = 0; i < mdsc->max_sessions; i++)
  2823. if (mdsc->sessions[i])
  2824. n++;
  2825. mutex_unlock(&mdsc->mutex);
  2826. return n == 0;
  2827. }
  2828. /*
  2829. * called after sb is ro.
  2830. */
  2831. void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc)
  2832. {
  2833. struct ceph_mds_session *session;
  2834. int i;
  2835. struct ceph_fs_client *fsc = mdsc->fsc;
  2836. unsigned long timeout = fsc->client->options->mount_timeout * HZ;
  2837. dout("close_sessions\n");
  2838. /* close sessions */
  2839. mutex_lock(&mdsc->mutex);
  2840. for (i = 0; i < mdsc->max_sessions; i++) {
  2841. session = __ceph_lookup_mds_session(mdsc, i);
  2842. if (!session)
  2843. continue;
  2844. mutex_unlock(&mdsc->mutex);
  2845. mutex_lock(&session->s_mutex);
  2846. __close_session(mdsc, session);
  2847. mutex_unlock(&session->s_mutex);
  2848. ceph_put_mds_session(session);
  2849. mutex_lock(&mdsc->mutex);
  2850. }
  2851. mutex_unlock(&mdsc->mutex);
  2852. dout("waiting for sessions to close\n");
  2853. wait_event_timeout(mdsc->session_close_wq, done_closing_sessions(mdsc),
  2854. timeout);
  2855. /* tear down remaining sessions */
  2856. mutex_lock(&mdsc->mutex);
  2857. for (i = 0; i < mdsc->max_sessions; i++) {
  2858. if (mdsc->sessions[i]) {
  2859. session = get_session(mdsc->sessions[i]);
  2860. __unregister_session(mdsc, session);
  2861. mutex_unlock(&mdsc->mutex);
  2862. mutex_lock(&session->s_mutex);
  2863. remove_session_caps(session);
  2864. mutex_unlock(&session->s_mutex);
  2865. ceph_put_mds_session(session);
  2866. mutex_lock(&mdsc->mutex);
  2867. }
  2868. }
  2869. WARN_ON(!list_empty(&mdsc->cap_delay_list));
  2870. mutex_unlock(&mdsc->mutex);
  2871. ceph_cleanup_empty_realms(mdsc);
  2872. cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
  2873. dout("stopped\n");
  2874. }
  2875. static void ceph_mdsc_stop(struct ceph_mds_client *mdsc)
  2876. {
  2877. dout("stop\n");
  2878. cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
  2879. if (mdsc->mdsmap)
  2880. ceph_mdsmap_destroy(mdsc->mdsmap);
  2881. kfree(mdsc->sessions);
  2882. ceph_caps_finalize(mdsc);
  2883. }
  2884. void ceph_mdsc_destroy(struct ceph_fs_client *fsc)
  2885. {
  2886. struct ceph_mds_client *mdsc = fsc->mdsc;
  2887. dout("mdsc_destroy %p\n", mdsc);
  2888. ceph_mdsc_stop(mdsc);
  2889. /* flush out any connection work with references to us */
  2890. ceph_msgr_flush();
  2891. fsc->mdsc = NULL;
  2892. kfree(mdsc);
  2893. dout("mdsc_destroy %p done\n", mdsc);
  2894. }
  2895. /*
  2896. * handle mds map update.
  2897. */
  2898. void ceph_mdsc_handle_map(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
  2899. {
  2900. u32 epoch;
  2901. u32 maplen;
  2902. void *p = msg->front.iov_base;
  2903. void *end = p + msg->front.iov_len;
  2904. struct ceph_mdsmap *newmap, *oldmap;
  2905. struct ceph_fsid fsid;
  2906. int err = -EINVAL;
  2907. ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad);
  2908. ceph_decode_copy(&p, &fsid, sizeof(fsid));
  2909. if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0)
  2910. return;
  2911. epoch = ceph_decode_32(&p);
  2912. maplen = ceph_decode_32(&p);
  2913. dout("handle_map epoch %u len %d\n", epoch, (int)maplen);
  2914. /* do we need it? */
  2915. ceph_monc_got_mdsmap(&mdsc->fsc->client->monc, epoch);
  2916. mutex_lock(&mdsc->mutex);
  2917. if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) {
  2918. dout("handle_map epoch %u <= our %u\n",
  2919. epoch, mdsc->mdsmap->m_epoch);
  2920. mutex_unlock(&mdsc->mutex);
  2921. return;
  2922. }
  2923. newmap = ceph_mdsmap_decode(&p, end);
  2924. if (IS_ERR(newmap)) {
  2925. err = PTR_ERR(newmap);
  2926. goto bad_unlock;
  2927. }
  2928. /* swap into place */
  2929. if (mdsc->mdsmap) {
  2930. oldmap = mdsc->mdsmap;
  2931. mdsc->mdsmap = newmap;
  2932. check_new_map(mdsc, newmap, oldmap);
  2933. ceph_mdsmap_destroy(oldmap);
  2934. } else {
  2935. mdsc->mdsmap = newmap; /* first mds map */
  2936. }
  2937. mdsc->fsc->sb->s_maxbytes = mdsc->mdsmap->m_max_file_size;
  2938. __wake_requests(mdsc, &mdsc->waiting_for_map);
  2939. mutex_unlock(&mdsc->mutex);
  2940. schedule_delayed(mdsc);
  2941. return;
  2942. bad_unlock:
  2943. mutex_unlock(&mdsc->mutex);
  2944. bad:
  2945. pr_err("error decoding mdsmap %d\n", err);
  2946. return;
  2947. }
  2948. static struct ceph_connection *con_get(struct ceph_connection *con)
  2949. {
  2950. struct ceph_mds_session *s = con->private;
  2951. if (get_session(s)) {
  2952. dout("mdsc con_get %p ok (%d)\n", s, atomic_read(&s->s_ref));
  2953. return con;
  2954. }
  2955. dout("mdsc con_get %p FAIL\n", s);
  2956. return NULL;
  2957. }
  2958. static void con_put(struct ceph_connection *con)
  2959. {
  2960. struct ceph_mds_session *s = con->private;
  2961. dout("mdsc con_put %p (%d)\n", s, atomic_read(&s->s_ref) - 1);
  2962. ceph_put_mds_session(s);
  2963. }
  2964. /*
  2965. * if the client is unresponsive for long enough, the mds will kill
  2966. * the session entirely.
  2967. */
  2968. static void peer_reset(struct ceph_connection *con)
  2969. {
  2970. struct ceph_mds_session *s = con->private;
  2971. struct ceph_mds_client *mdsc = s->s_mdsc;
  2972. pr_warning("mds%d closed our session\n", s->s_mds);
  2973. send_mds_reconnect(mdsc, s);
  2974. }
  2975. static void dispatch(struct ceph_connection *con, struct ceph_msg *msg)
  2976. {
  2977. struct ceph_mds_session *s = con->private;
  2978. struct ceph_mds_client *mdsc = s->s_mdsc;
  2979. int type = le16_to_cpu(msg->hdr.type);
  2980. mutex_lock(&mdsc->mutex);
  2981. if (__verify_registered_session(mdsc, s) < 0) {
  2982. mutex_unlock(&mdsc->mutex);
  2983. goto out;
  2984. }
  2985. mutex_unlock(&mdsc->mutex);
  2986. switch (type) {
  2987. case CEPH_MSG_MDS_MAP:
  2988. ceph_mdsc_handle_map(mdsc, msg);
  2989. break;
  2990. case CEPH_MSG_CLIENT_SESSION:
  2991. handle_session(s, msg);
  2992. break;
  2993. case CEPH_MSG_CLIENT_REPLY:
  2994. handle_reply(s, msg);
  2995. break;
  2996. case CEPH_MSG_CLIENT_REQUEST_FORWARD:
  2997. handle_forward(mdsc, s, msg);
  2998. break;
  2999. case CEPH_MSG_CLIENT_CAPS:
  3000. ceph_handle_caps(s, msg);
  3001. break;
  3002. case CEPH_MSG_CLIENT_SNAP:
  3003. ceph_handle_snap(mdsc, s, msg);
  3004. break;
  3005. case CEPH_MSG_CLIENT_LEASE:
  3006. handle_lease(mdsc, s, msg);
  3007. break;
  3008. default:
  3009. pr_err("received unknown message type %d %s\n", type,
  3010. ceph_msg_type_name(type));
  3011. }
  3012. out:
  3013. ceph_msg_put(msg);
  3014. }
  3015. /*
  3016. * authentication
  3017. */
  3018. /*
  3019. * Note: returned pointer is the address of a structure that's
  3020. * managed separately. Caller must *not* attempt to free it.
  3021. */
  3022. static struct ceph_auth_handshake *get_authorizer(struct ceph_connection *con,
  3023. int *proto, int force_new)
  3024. {
  3025. struct ceph_mds_session *s = con->private;
  3026. struct ceph_mds_client *mdsc = s->s_mdsc;
  3027. struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
  3028. struct ceph_auth_handshake *auth = &s->s_auth;
  3029. if (force_new && auth->authorizer) {
  3030. ceph_auth_destroy_authorizer(ac, auth->authorizer);
  3031. auth->authorizer = NULL;
  3032. }
  3033. if (!auth->authorizer) {
  3034. int ret = ceph_auth_create_authorizer(ac, CEPH_ENTITY_TYPE_MDS,
  3035. auth);
  3036. if (ret)
  3037. return ERR_PTR(ret);
  3038. } else {
  3039. int ret = ceph_auth_update_authorizer(ac, CEPH_ENTITY_TYPE_MDS,
  3040. auth);
  3041. if (ret)
  3042. return ERR_PTR(ret);
  3043. }
  3044. *proto = ac->protocol;
  3045. return auth;
  3046. }
  3047. static int verify_authorizer_reply(struct ceph_connection *con, int len)
  3048. {
  3049. struct ceph_mds_session *s = con->private;
  3050. struct ceph_mds_client *mdsc = s->s_mdsc;
  3051. struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
  3052. return ceph_auth_verify_authorizer_reply(ac, s->s_auth.authorizer, len);
  3053. }
  3054. static int invalidate_authorizer(struct ceph_connection *con)
  3055. {
  3056. struct ceph_mds_session *s = con->private;
  3057. struct ceph_mds_client *mdsc = s->s_mdsc;
  3058. struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
  3059. ceph_auth_invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS);
  3060. return ceph_monc_validate_auth(&mdsc->fsc->client->monc);
  3061. }
  3062. static struct ceph_msg *mds_alloc_msg(struct ceph_connection *con,
  3063. struct ceph_msg_header *hdr, int *skip)
  3064. {
  3065. struct ceph_msg *msg;
  3066. int type = (int) le16_to_cpu(hdr->type);
  3067. int front_len = (int) le32_to_cpu(hdr->front_len);
  3068. if (con->in_msg)
  3069. return con->in_msg;
  3070. *skip = 0;
  3071. msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
  3072. if (!msg) {
  3073. pr_err("unable to allocate msg type %d len %d\n",
  3074. type, front_len);
  3075. return NULL;
  3076. }
  3077. return msg;
  3078. }
  3079. static const struct ceph_connection_operations mds_con_ops = {
  3080. .get = con_get,
  3081. .put = con_put,
  3082. .dispatch = dispatch,
  3083. .get_authorizer = get_authorizer,
  3084. .verify_authorizer_reply = verify_authorizer_reply,
  3085. .invalidate_authorizer = invalidate_authorizer,
  3086. .peer_reset = peer_reset,
  3087. .alloc_msg = mds_alloc_msg,
  3088. };
  3089. /* eof */