caps.c 86 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144
  1. #include <linux/ceph/ceph_debug.h>
  2. #include <linux/fs.h>
  3. #include <linux/kernel.h>
  4. #include <linux/sched.h>
  5. #include <linux/slab.h>
  6. #include <linux/vmalloc.h>
  7. #include <linux/wait.h>
  8. #include <linux/writeback.h>
  9. #include "super.h"
  10. #include "mds_client.h"
  11. #include <linux/ceph/decode.h>
  12. #include <linux/ceph/messenger.h>
  13. /*
  14. * Capability management
  15. *
  16. * The Ceph metadata servers control client access to inode metadata
  17. * and file data by issuing capabilities, granting clients permission
  18. * to read and/or write both inode field and file data to OSDs
  19. * (storage nodes). Each capability consists of a set of bits
  20. * indicating which operations are allowed.
  21. *
  22. * If the client holds a *_SHARED cap, the client has a coherent value
  23. * that can be safely read from the cached inode.
  24. *
  25. * In the case of a *_EXCL (exclusive) or FILE_WR capabilities, the
  26. * client is allowed to change inode attributes (e.g., file size,
  27. * mtime), note its dirty state in the ceph_cap, and asynchronously
  28. * flush that metadata change to the MDS.
  29. *
  30. * In the event of a conflicting operation (perhaps by another
  31. * client), the MDS will revoke the conflicting client capabilities.
  32. *
  33. * In order for a client to cache an inode, it must hold a capability
  34. * with at least one MDS server. When inodes are released, release
  35. * notifications are batched and periodically sent en masse to the MDS
  36. * cluster to release server state.
  37. */
  38. /*
  39. * Generate readable cap strings for debugging output.
  40. */
  41. #define MAX_CAP_STR 20
  42. static char cap_str[MAX_CAP_STR][40];
  43. static DEFINE_SPINLOCK(cap_str_lock);
  44. static int last_cap_str;
  45. static char *gcap_string(char *s, int c)
  46. {
  47. if (c & CEPH_CAP_GSHARED)
  48. *s++ = 's';
  49. if (c & CEPH_CAP_GEXCL)
  50. *s++ = 'x';
  51. if (c & CEPH_CAP_GCACHE)
  52. *s++ = 'c';
  53. if (c & CEPH_CAP_GRD)
  54. *s++ = 'r';
  55. if (c & CEPH_CAP_GWR)
  56. *s++ = 'w';
  57. if (c & CEPH_CAP_GBUFFER)
  58. *s++ = 'b';
  59. if (c & CEPH_CAP_GLAZYIO)
  60. *s++ = 'l';
  61. return s;
  62. }
  63. const char *ceph_cap_string(int caps)
  64. {
  65. int i;
  66. char *s;
  67. int c;
  68. spin_lock(&cap_str_lock);
  69. i = last_cap_str++;
  70. if (last_cap_str == MAX_CAP_STR)
  71. last_cap_str = 0;
  72. spin_unlock(&cap_str_lock);
  73. s = cap_str[i];
  74. if (caps & CEPH_CAP_PIN)
  75. *s++ = 'p';
  76. c = (caps >> CEPH_CAP_SAUTH) & 3;
  77. if (c) {
  78. *s++ = 'A';
  79. s = gcap_string(s, c);
  80. }
  81. c = (caps >> CEPH_CAP_SLINK) & 3;
  82. if (c) {
  83. *s++ = 'L';
  84. s = gcap_string(s, c);
  85. }
  86. c = (caps >> CEPH_CAP_SXATTR) & 3;
  87. if (c) {
  88. *s++ = 'X';
  89. s = gcap_string(s, c);
  90. }
  91. c = caps >> CEPH_CAP_SFILE;
  92. if (c) {
  93. *s++ = 'F';
  94. s = gcap_string(s, c);
  95. }
  96. if (s == cap_str[i])
  97. *s++ = '-';
  98. *s = 0;
  99. return cap_str[i];
  100. }
  101. void ceph_caps_init(struct ceph_mds_client *mdsc)
  102. {
  103. INIT_LIST_HEAD(&mdsc->caps_list);
  104. spin_lock_init(&mdsc->caps_list_lock);
  105. }
  106. void ceph_caps_finalize(struct ceph_mds_client *mdsc)
  107. {
  108. struct ceph_cap *cap;
  109. spin_lock(&mdsc->caps_list_lock);
  110. while (!list_empty(&mdsc->caps_list)) {
  111. cap = list_first_entry(&mdsc->caps_list,
  112. struct ceph_cap, caps_item);
  113. list_del(&cap->caps_item);
  114. kmem_cache_free(ceph_cap_cachep, cap);
  115. }
  116. mdsc->caps_total_count = 0;
  117. mdsc->caps_avail_count = 0;
  118. mdsc->caps_use_count = 0;
  119. mdsc->caps_reserve_count = 0;
  120. mdsc->caps_min_count = 0;
  121. spin_unlock(&mdsc->caps_list_lock);
  122. }
  123. void ceph_adjust_min_caps(struct ceph_mds_client *mdsc, int delta)
  124. {
  125. spin_lock(&mdsc->caps_list_lock);
  126. mdsc->caps_min_count += delta;
  127. BUG_ON(mdsc->caps_min_count < 0);
  128. spin_unlock(&mdsc->caps_list_lock);
  129. }
  130. void ceph_reserve_caps(struct ceph_mds_client *mdsc,
  131. struct ceph_cap_reservation *ctx, int need)
  132. {
  133. int i;
  134. struct ceph_cap *cap;
  135. int have;
  136. int alloc = 0;
  137. LIST_HEAD(newcaps);
  138. dout("reserve caps ctx=%p need=%d\n", ctx, need);
  139. /* first reserve any caps that are already allocated */
  140. spin_lock(&mdsc->caps_list_lock);
  141. if (mdsc->caps_avail_count >= need)
  142. have = need;
  143. else
  144. have = mdsc->caps_avail_count;
  145. mdsc->caps_avail_count -= have;
  146. mdsc->caps_reserve_count += have;
  147. BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
  148. mdsc->caps_reserve_count +
  149. mdsc->caps_avail_count);
  150. spin_unlock(&mdsc->caps_list_lock);
  151. for (i = have; i < need; i++) {
  152. cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS);
  153. if (!cap)
  154. break;
  155. list_add(&cap->caps_item, &newcaps);
  156. alloc++;
  157. }
  158. /* we didn't manage to reserve as much as we needed */
  159. if (have + alloc != need)
  160. pr_warn("reserve caps ctx=%p ENOMEM need=%d got=%d\n",
  161. ctx, need, have + alloc);
  162. spin_lock(&mdsc->caps_list_lock);
  163. mdsc->caps_total_count += alloc;
  164. mdsc->caps_reserve_count += alloc;
  165. list_splice(&newcaps, &mdsc->caps_list);
  166. BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
  167. mdsc->caps_reserve_count +
  168. mdsc->caps_avail_count);
  169. spin_unlock(&mdsc->caps_list_lock);
  170. ctx->count = need;
  171. dout("reserve caps ctx=%p %d = %d used + %d resv + %d avail\n",
  172. ctx, mdsc->caps_total_count, mdsc->caps_use_count,
  173. mdsc->caps_reserve_count, mdsc->caps_avail_count);
  174. }
  175. int ceph_unreserve_caps(struct ceph_mds_client *mdsc,
  176. struct ceph_cap_reservation *ctx)
  177. {
  178. dout("unreserve caps ctx=%p count=%d\n", ctx, ctx->count);
  179. if (ctx->count) {
  180. spin_lock(&mdsc->caps_list_lock);
  181. BUG_ON(mdsc->caps_reserve_count < ctx->count);
  182. mdsc->caps_reserve_count -= ctx->count;
  183. mdsc->caps_avail_count += ctx->count;
  184. ctx->count = 0;
  185. dout("unreserve caps %d = %d used + %d resv + %d avail\n",
  186. mdsc->caps_total_count, mdsc->caps_use_count,
  187. mdsc->caps_reserve_count, mdsc->caps_avail_count);
  188. BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
  189. mdsc->caps_reserve_count +
  190. mdsc->caps_avail_count);
  191. spin_unlock(&mdsc->caps_list_lock);
  192. }
  193. return 0;
  194. }
  195. static struct ceph_cap *get_cap(struct ceph_mds_client *mdsc,
  196. struct ceph_cap_reservation *ctx)
  197. {
  198. struct ceph_cap *cap = NULL;
  199. /* temporary, until we do something about cap import/export */
  200. if (!ctx) {
  201. cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS);
  202. if (cap) {
  203. spin_lock(&mdsc->caps_list_lock);
  204. mdsc->caps_use_count++;
  205. mdsc->caps_total_count++;
  206. spin_unlock(&mdsc->caps_list_lock);
  207. }
  208. return cap;
  209. }
  210. spin_lock(&mdsc->caps_list_lock);
  211. dout("get_cap ctx=%p (%d) %d = %d used + %d resv + %d avail\n",
  212. ctx, ctx->count, mdsc->caps_total_count, mdsc->caps_use_count,
  213. mdsc->caps_reserve_count, mdsc->caps_avail_count);
  214. BUG_ON(!ctx->count);
  215. BUG_ON(ctx->count > mdsc->caps_reserve_count);
  216. BUG_ON(list_empty(&mdsc->caps_list));
  217. ctx->count--;
  218. mdsc->caps_reserve_count--;
  219. mdsc->caps_use_count++;
  220. cap = list_first_entry(&mdsc->caps_list, struct ceph_cap, caps_item);
  221. list_del(&cap->caps_item);
  222. BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
  223. mdsc->caps_reserve_count + mdsc->caps_avail_count);
  224. spin_unlock(&mdsc->caps_list_lock);
  225. return cap;
  226. }
  227. void ceph_put_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap)
  228. {
  229. spin_lock(&mdsc->caps_list_lock);
  230. dout("put_cap %p %d = %d used + %d resv + %d avail\n",
  231. cap, mdsc->caps_total_count, mdsc->caps_use_count,
  232. mdsc->caps_reserve_count, mdsc->caps_avail_count);
  233. mdsc->caps_use_count--;
  234. /*
  235. * Keep some preallocated caps around (ceph_min_count), to
  236. * avoid lots of free/alloc churn.
  237. */
  238. if (mdsc->caps_avail_count >= mdsc->caps_reserve_count +
  239. mdsc->caps_min_count) {
  240. mdsc->caps_total_count--;
  241. kmem_cache_free(ceph_cap_cachep, cap);
  242. } else {
  243. mdsc->caps_avail_count++;
  244. list_add(&cap->caps_item, &mdsc->caps_list);
  245. }
  246. BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
  247. mdsc->caps_reserve_count + mdsc->caps_avail_count);
  248. spin_unlock(&mdsc->caps_list_lock);
  249. }
  250. void ceph_reservation_status(struct ceph_fs_client *fsc,
  251. int *total, int *avail, int *used, int *reserved,
  252. int *min)
  253. {
  254. struct ceph_mds_client *mdsc = fsc->mdsc;
  255. if (total)
  256. *total = mdsc->caps_total_count;
  257. if (avail)
  258. *avail = mdsc->caps_avail_count;
  259. if (used)
  260. *used = mdsc->caps_use_count;
  261. if (reserved)
  262. *reserved = mdsc->caps_reserve_count;
  263. if (min)
  264. *min = mdsc->caps_min_count;
  265. }
  266. /*
  267. * Find ceph_cap for given mds, if any.
  268. *
  269. * Called with i_ceph_lock held.
  270. */
  271. static struct ceph_cap *__get_cap_for_mds(struct ceph_inode_info *ci, int mds)
  272. {
  273. struct ceph_cap *cap;
  274. struct rb_node *n = ci->i_caps.rb_node;
  275. while (n) {
  276. cap = rb_entry(n, struct ceph_cap, ci_node);
  277. if (mds < cap->mds)
  278. n = n->rb_left;
  279. else if (mds > cap->mds)
  280. n = n->rb_right;
  281. else
  282. return cap;
  283. }
  284. return NULL;
  285. }
  286. struct ceph_cap *ceph_get_cap_for_mds(struct ceph_inode_info *ci, int mds)
  287. {
  288. struct ceph_cap *cap;
  289. spin_lock(&ci->i_ceph_lock);
  290. cap = __get_cap_for_mds(ci, mds);
  291. spin_unlock(&ci->i_ceph_lock);
  292. return cap;
  293. }
  294. /*
  295. * Return id of any MDS with a cap, preferably FILE_WR|BUFFER|EXCL, else -1.
  296. */
  297. static int __ceph_get_cap_mds(struct ceph_inode_info *ci)
  298. {
  299. struct ceph_cap *cap;
  300. int mds = -1;
  301. struct rb_node *p;
  302. /* prefer mds with WR|BUFFER|EXCL caps */
  303. for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
  304. cap = rb_entry(p, struct ceph_cap, ci_node);
  305. mds = cap->mds;
  306. if (cap->issued & (CEPH_CAP_FILE_WR |
  307. CEPH_CAP_FILE_BUFFER |
  308. CEPH_CAP_FILE_EXCL))
  309. break;
  310. }
  311. return mds;
  312. }
  313. int ceph_get_cap_mds(struct inode *inode)
  314. {
  315. struct ceph_inode_info *ci = ceph_inode(inode);
  316. int mds;
  317. spin_lock(&ci->i_ceph_lock);
  318. mds = __ceph_get_cap_mds(ceph_inode(inode));
  319. spin_unlock(&ci->i_ceph_lock);
  320. return mds;
  321. }
  322. /*
  323. * Called under i_ceph_lock.
  324. */
  325. static void __insert_cap_node(struct ceph_inode_info *ci,
  326. struct ceph_cap *new)
  327. {
  328. struct rb_node **p = &ci->i_caps.rb_node;
  329. struct rb_node *parent = NULL;
  330. struct ceph_cap *cap = NULL;
  331. while (*p) {
  332. parent = *p;
  333. cap = rb_entry(parent, struct ceph_cap, ci_node);
  334. if (new->mds < cap->mds)
  335. p = &(*p)->rb_left;
  336. else if (new->mds > cap->mds)
  337. p = &(*p)->rb_right;
  338. else
  339. BUG();
  340. }
  341. rb_link_node(&new->ci_node, parent, p);
  342. rb_insert_color(&new->ci_node, &ci->i_caps);
  343. }
  344. /*
  345. * (re)set cap hold timeouts, which control the delayed release
  346. * of unused caps back to the MDS. Should be called on cap use.
  347. */
  348. static void __cap_set_timeouts(struct ceph_mds_client *mdsc,
  349. struct ceph_inode_info *ci)
  350. {
  351. struct ceph_mount_options *ma = mdsc->fsc->mount_options;
  352. ci->i_hold_caps_min = round_jiffies(jiffies +
  353. ma->caps_wanted_delay_min * HZ);
  354. ci->i_hold_caps_max = round_jiffies(jiffies +
  355. ma->caps_wanted_delay_max * HZ);
  356. dout("__cap_set_timeouts %p min %lu max %lu\n", &ci->vfs_inode,
  357. ci->i_hold_caps_min - jiffies, ci->i_hold_caps_max - jiffies);
  358. }
  359. /*
  360. * (Re)queue cap at the end of the delayed cap release list.
  361. *
  362. * If I_FLUSH is set, leave the inode at the front of the list.
  363. *
  364. * Caller holds i_ceph_lock
  365. * -> we take mdsc->cap_delay_lock
  366. */
  367. static void __cap_delay_requeue(struct ceph_mds_client *mdsc,
  368. struct ceph_inode_info *ci)
  369. {
  370. __cap_set_timeouts(mdsc, ci);
  371. dout("__cap_delay_requeue %p flags %d at %lu\n", &ci->vfs_inode,
  372. ci->i_ceph_flags, ci->i_hold_caps_max);
  373. if (!mdsc->stopping) {
  374. spin_lock(&mdsc->cap_delay_lock);
  375. if (!list_empty(&ci->i_cap_delay_list)) {
  376. if (ci->i_ceph_flags & CEPH_I_FLUSH)
  377. goto no_change;
  378. list_del_init(&ci->i_cap_delay_list);
  379. }
  380. list_add_tail(&ci->i_cap_delay_list, &mdsc->cap_delay_list);
  381. no_change:
  382. spin_unlock(&mdsc->cap_delay_lock);
  383. }
  384. }
  385. /*
  386. * Queue an inode for immediate writeback. Mark inode with I_FLUSH,
  387. * indicating we should send a cap message to flush dirty metadata
  388. * asap, and move to the front of the delayed cap list.
  389. */
  390. static void __cap_delay_requeue_front(struct ceph_mds_client *mdsc,
  391. struct ceph_inode_info *ci)
  392. {
  393. dout("__cap_delay_requeue_front %p\n", &ci->vfs_inode);
  394. spin_lock(&mdsc->cap_delay_lock);
  395. ci->i_ceph_flags |= CEPH_I_FLUSH;
  396. if (!list_empty(&ci->i_cap_delay_list))
  397. list_del_init(&ci->i_cap_delay_list);
  398. list_add(&ci->i_cap_delay_list, &mdsc->cap_delay_list);
  399. spin_unlock(&mdsc->cap_delay_lock);
  400. }
  401. /*
  402. * Cancel delayed work on cap.
  403. *
  404. * Caller must hold i_ceph_lock.
  405. */
  406. static void __cap_delay_cancel(struct ceph_mds_client *mdsc,
  407. struct ceph_inode_info *ci)
  408. {
  409. dout("__cap_delay_cancel %p\n", &ci->vfs_inode);
  410. if (list_empty(&ci->i_cap_delay_list))
  411. return;
  412. spin_lock(&mdsc->cap_delay_lock);
  413. list_del_init(&ci->i_cap_delay_list);
  414. spin_unlock(&mdsc->cap_delay_lock);
  415. }
  416. /*
  417. * Common issue checks for add_cap, handle_cap_grant.
  418. */
  419. static void __check_cap_issue(struct ceph_inode_info *ci, struct ceph_cap *cap,
  420. unsigned issued)
  421. {
  422. unsigned had = __ceph_caps_issued(ci, NULL);
  423. /*
  424. * Each time we receive FILE_CACHE anew, we increment
  425. * i_rdcache_gen.
  426. */
  427. if ((issued & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) &&
  428. (had & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) == 0)
  429. ci->i_rdcache_gen++;
  430. /*
  431. * if we are newly issued FILE_SHARED, mark dir not complete; we
  432. * don't know what happened to this directory while we didn't
  433. * have the cap.
  434. */
  435. if ((issued & CEPH_CAP_FILE_SHARED) &&
  436. (had & CEPH_CAP_FILE_SHARED) == 0) {
  437. ci->i_shared_gen++;
  438. if (S_ISDIR(ci->vfs_inode.i_mode)) {
  439. dout(" marking %p NOT complete\n", &ci->vfs_inode);
  440. __ceph_dir_clear_complete(ci);
  441. }
  442. }
  443. }
  444. /*
  445. * Add a capability under the given MDS session.
  446. *
  447. * Caller should hold session snap_rwsem (read) and s_mutex.
  448. *
  449. * @fmode is the open file mode, if we are opening a file, otherwise
  450. * it is < 0. (This is so we can atomically add the cap and add an
  451. * open file reference to it.)
  452. */
  453. int ceph_add_cap(struct inode *inode,
  454. struct ceph_mds_session *session, u64 cap_id,
  455. int fmode, unsigned issued, unsigned wanted,
  456. unsigned seq, unsigned mseq, u64 realmino, int flags,
  457. struct ceph_cap_reservation *caps_reservation)
  458. {
  459. struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
  460. struct ceph_inode_info *ci = ceph_inode(inode);
  461. struct ceph_cap *new_cap = NULL;
  462. struct ceph_cap *cap;
  463. int mds = session->s_mds;
  464. int actual_wanted;
  465. dout("add_cap %p mds%d cap %llx %s seq %d\n", inode,
  466. session->s_mds, cap_id, ceph_cap_string(issued), seq);
  467. /*
  468. * If we are opening the file, include file mode wanted bits
  469. * in wanted.
  470. */
  471. if (fmode >= 0)
  472. wanted |= ceph_caps_for_mode(fmode);
  473. retry:
  474. spin_lock(&ci->i_ceph_lock);
  475. cap = __get_cap_for_mds(ci, mds);
  476. if (!cap) {
  477. if (new_cap) {
  478. cap = new_cap;
  479. new_cap = NULL;
  480. } else {
  481. spin_unlock(&ci->i_ceph_lock);
  482. new_cap = get_cap(mdsc, caps_reservation);
  483. if (new_cap == NULL)
  484. return -ENOMEM;
  485. goto retry;
  486. }
  487. cap->issued = 0;
  488. cap->implemented = 0;
  489. cap->mds = mds;
  490. cap->mds_wanted = 0;
  491. cap->mseq = 0;
  492. cap->ci = ci;
  493. __insert_cap_node(ci, cap);
  494. /* clear out old exporting info? (i.e. on cap import) */
  495. if (ci->i_cap_exporting_mds == mds) {
  496. ci->i_cap_exporting_issued = 0;
  497. ci->i_cap_exporting_mseq = 0;
  498. ci->i_cap_exporting_mds = -1;
  499. }
  500. /* add to session cap list */
  501. cap->session = session;
  502. spin_lock(&session->s_cap_lock);
  503. list_add_tail(&cap->session_caps, &session->s_caps);
  504. session->s_nr_caps++;
  505. spin_unlock(&session->s_cap_lock);
  506. } else if (new_cap)
  507. ceph_put_cap(mdsc, new_cap);
  508. if (!ci->i_snap_realm) {
  509. /*
  510. * add this inode to the appropriate snap realm
  511. */
  512. struct ceph_snap_realm *realm = ceph_lookup_snap_realm(mdsc,
  513. realmino);
  514. if (realm) {
  515. ceph_get_snap_realm(mdsc, realm);
  516. spin_lock(&realm->inodes_with_caps_lock);
  517. ci->i_snap_realm = realm;
  518. list_add(&ci->i_snap_realm_item,
  519. &realm->inodes_with_caps);
  520. spin_unlock(&realm->inodes_with_caps_lock);
  521. } else {
  522. pr_err("ceph_add_cap: couldn't find snap realm %llx\n",
  523. realmino);
  524. WARN_ON(!realm);
  525. }
  526. }
  527. __check_cap_issue(ci, cap, issued);
  528. /*
  529. * If we are issued caps we don't want, or the mds' wanted
  530. * value appears to be off, queue a check so we'll release
  531. * later and/or update the mds wanted value.
  532. */
  533. actual_wanted = __ceph_caps_wanted(ci);
  534. if ((wanted & ~actual_wanted) ||
  535. (issued & ~actual_wanted & CEPH_CAP_ANY_WR)) {
  536. dout(" issued %s, mds wanted %s, actual %s, queueing\n",
  537. ceph_cap_string(issued), ceph_cap_string(wanted),
  538. ceph_cap_string(actual_wanted));
  539. __cap_delay_requeue(mdsc, ci);
  540. }
  541. if (flags & CEPH_CAP_FLAG_AUTH) {
  542. if (ci->i_auth_cap == NULL ||
  543. ceph_seq_cmp(ci->i_auth_cap->mseq, mseq) < 0)
  544. ci->i_auth_cap = cap;
  545. } else if (ci->i_auth_cap == cap) {
  546. ci->i_auth_cap = NULL;
  547. spin_lock(&mdsc->cap_dirty_lock);
  548. if (!list_empty(&ci->i_dirty_item)) {
  549. dout(" moving %p to cap_dirty_migrating\n", inode);
  550. list_move(&ci->i_dirty_item,
  551. &mdsc->cap_dirty_migrating);
  552. }
  553. spin_unlock(&mdsc->cap_dirty_lock);
  554. }
  555. dout("add_cap inode %p (%llx.%llx) cap %p %s now %s seq %d mds%d\n",
  556. inode, ceph_vinop(inode), cap, ceph_cap_string(issued),
  557. ceph_cap_string(issued|cap->issued), seq, mds);
  558. cap->cap_id = cap_id;
  559. cap->issued = issued;
  560. cap->implemented |= issued;
  561. if (mseq > cap->mseq)
  562. cap->mds_wanted = wanted;
  563. else
  564. cap->mds_wanted |= wanted;
  565. cap->seq = seq;
  566. cap->issue_seq = seq;
  567. cap->mseq = mseq;
  568. cap->cap_gen = session->s_cap_gen;
  569. if (fmode >= 0)
  570. __ceph_get_fmode(ci, fmode);
  571. spin_unlock(&ci->i_ceph_lock);
  572. wake_up_all(&ci->i_cap_wq);
  573. return 0;
  574. }
  575. /*
  576. * Return true if cap has not timed out and belongs to the current
  577. * generation of the MDS session (i.e. has not gone 'stale' due to
  578. * us losing touch with the mds).
  579. */
  580. static int __cap_is_valid(struct ceph_cap *cap)
  581. {
  582. unsigned long ttl;
  583. u32 gen;
  584. spin_lock(&cap->session->s_gen_ttl_lock);
  585. gen = cap->session->s_cap_gen;
  586. ttl = cap->session->s_cap_ttl;
  587. spin_unlock(&cap->session->s_gen_ttl_lock);
  588. if (cap->cap_gen < gen || time_after_eq(jiffies, ttl)) {
  589. dout("__cap_is_valid %p cap %p issued %s "
  590. "but STALE (gen %u vs %u)\n", &cap->ci->vfs_inode,
  591. cap, ceph_cap_string(cap->issued), cap->cap_gen, gen);
  592. return 0;
  593. }
  594. return 1;
  595. }
  596. /*
  597. * Return set of valid cap bits issued to us. Note that caps time
  598. * out, and may be invalidated in bulk if the client session times out
  599. * and session->s_cap_gen is bumped.
  600. */
  601. int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented)
  602. {
  603. int have = ci->i_snap_caps | ci->i_cap_exporting_issued;
  604. struct ceph_cap *cap;
  605. struct rb_node *p;
  606. if (implemented)
  607. *implemented = 0;
  608. for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
  609. cap = rb_entry(p, struct ceph_cap, ci_node);
  610. if (!__cap_is_valid(cap))
  611. continue;
  612. dout("__ceph_caps_issued %p cap %p issued %s\n",
  613. &ci->vfs_inode, cap, ceph_cap_string(cap->issued));
  614. have |= cap->issued;
  615. if (implemented)
  616. *implemented |= cap->implemented;
  617. }
  618. /*
  619. * exclude caps issued by non-auth MDS, but are been revoking
  620. * by the auth MDS. The non-auth MDS should be revoking/exporting
  621. * these caps, but the message is delayed.
  622. */
  623. if (ci->i_auth_cap) {
  624. cap = ci->i_auth_cap;
  625. have &= ~cap->implemented | cap->issued;
  626. }
  627. return have;
  628. }
  629. /*
  630. * Get cap bits issued by caps other than @ocap
  631. */
  632. int __ceph_caps_issued_other(struct ceph_inode_info *ci, struct ceph_cap *ocap)
  633. {
  634. int have = ci->i_snap_caps;
  635. struct ceph_cap *cap;
  636. struct rb_node *p;
  637. for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
  638. cap = rb_entry(p, struct ceph_cap, ci_node);
  639. if (cap == ocap)
  640. continue;
  641. if (!__cap_is_valid(cap))
  642. continue;
  643. have |= cap->issued;
  644. }
  645. return have;
  646. }
  647. /*
  648. * Move a cap to the end of the LRU (oldest caps at list head, newest
  649. * at list tail).
  650. */
  651. static void __touch_cap(struct ceph_cap *cap)
  652. {
  653. struct ceph_mds_session *s = cap->session;
  654. spin_lock(&s->s_cap_lock);
  655. if (s->s_cap_iterator == NULL) {
  656. dout("__touch_cap %p cap %p mds%d\n", &cap->ci->vfs_inode, cap,
  657. s->s_mds);
  658. list_move_tail(&cap->session_caps, &s->s_caps);
  659. } else {
  660. dout("__touch_cap %p cap %p mds%d NOP, iterating over caps\n",
  661. &cap->ci->vfs_inode, cap, s->s_mds);
  662. }
  663. spin_unlock(&s->s_cap_lock);
  664. }
  665. /*
  666. * Check if we hold the given mask. If so, move the cap(s) to the
  667. * front of their respective LRUs. (This is the preferred way for
  668. * callers to check for caps they want.)
  669. */
  670. int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int touch)
  671. {
  672. struct ceph_cap *cap;
  673. struct rb_node *p;
  674. int have = ci->i_snap_caps;
  675. if ((have & mask) == mask) {
  676. dout("__ceph_caps_issued_mask %p snap issued %s"
  677. " (mask %s)\n", &ci->vfs_inode,
  678. ceph_cap_string(have),
  679. ceph_cap_string(mask));
  680. return 1;
  681. }
  682. for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
  683. cap = rb_entry(p, struct ceph_cap, ci_node);
  684. if (!__cap_is_valid(cap))
  685. continue;
  686. if ((cap->issued & mask) == mask) {
  687. dout("__ceph_caps_issued_mask %p cap %p issued %s"
  688. " (mask %s)\n", &ci->vfs_inode, cap,
  689. ceph_cap_string(cap->issued),
  690. ceph_cap_string(mask));
  691. if (touch)
  692. __touch_cap(cap);
  693. return 1;
  694. }
  695. /* does a combination of caps satisfy mask? */
  696. have |= cap->issued;
  697. if ((have & mask) == mask) {
  698. dout("__ceph_caps_issued_mask %p combo issued %s"
  699. " (mask %s)\n", &ci->vfs_inode,
  700. ceph_cap_string(cap->issued),
  701. ceph_cap_string(mask));
  702. if (touch) {
  703. struct rb_node *q;
  704. /* touch this + preceding caps */
  705. __touch_cap(cap);
  706. for (q = rb_first(&ci->i_caps); q != p;
  707. q = rb_next(q)) {
  708. cap = rb_entry(q, struct ceph_cap,
  709. ci_node);
  710. if (!__cap_is_valid(cap))
  711. continue;
  712. __touch_cap(cap);
  713. }
  714. }
  715. return 1;
  716. }
  717. }
  718. return 0;
  719. }
  720. /*
  721. * Return true if mask caps are currently being revoked by an MDS.
  722. */
  723. int __ceph_caps_revoking_other(struct ceph_inode_info *ci,
  724. struct ceph_cap *ocap, int mask)
  725. {
  726. struct ceph_cap *cap;
  727. struct rb_node *p;
  728. for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
  729. cap = rb_entry(p, struct ceph_cap, ci_node);
  730. if (cap != ocap && __cap_is_valid(cap) &&
  731. (cap->implemented & ~cap->issued & mask))
  732. return 1;
  733. }
  734. return 0;
  735. }
  736. int ceph_caps_revoking(struct ceph_inode_info *ci, int mask)
  737. {
  738. struct inode *inode = &ci->vfs_inode;
  739. int ret;
  740. spin_lock(&ci->i_ceph_lock);
  741. ret = __ceph_caps_revoking_other(ci, NULL, mask);
  742. spin_unlock(&ci->i_ceph_lock);
  743. dout("ceph_caps_revoking %p %s = %d\n", inode,
  744. ceph_cap_string(mask), ret);
  745. return ret;
  746. }
  747. int __ceph_caps_used(struct ceph_inode_info *ci)
  748. {
  749. int used = 0;
  750. if (ci->i_pin_ref)
  751. used |= CEPH_CAP_PIN;
  752. if (ci->i_rd_ref)
  753. used |= CEPH_CAP_FILE_RD;
  754. if (ci->i_rdcache_ref || ci->vfs_inode.i_data.nrpages)
  755. used |= CEPH_CAP_FILE_CACHE;
  756. if (ci->i_wr_ref)
  757. used |= CEPH_CAP_FILE_WR;
  758. if (ci->i_wb_ref || ci->i_wrbuffer_ref)
  759. used |= CEPH_CAP_FILE_BUFFER;
  760. return used;
  761. }
  762. /*
  763. * wanted, by virtue of open file modes
  764. */
  765. int __ceph_caps_file_wanted(struct ceph_inode_info *ci)
  766. {
  767. int want = 0;
  768. int mode;
  769. for (mode = 0; mode < CEPH_FILE_MODE_NUM; mode++)
  770. if (ci->i_nr_by_mode[mode])
  771. want |= ceph_caps_for_mode(mode);
  772. return want;
  773. }
  774. /*
  775. * Return caps we have registered with the MDS(s) as 'wanted'.
  776. */
  777. int __ceph_caps_mds_wanted(struct ceph_inode_info *ci)
  778. {
  779. struct ceph_cap *cap;
  780. struct rb_node *p;
  781. int mds_wanted = 0;
  782. for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
  783. cap = rb_entry(p, struct ceph_cap, ci_node);
  784. if (!__cap_is_valid(cap))
  785. continue;
  786. mds_wanted |= cap->mds_wanted;
  787. }
  788. return mds_wanted;
  789. }
  790. /*
  791. * called under i_ceph_lock
  792. */
  793. static int __ceph_is_any_caps(struct ceph_inode_info *ci)
  794. {
  795. return !RB_EMPTY_ROOT(&ci->i_caps) || ci->i_cap_exporting_mds >= 0;
  796. }
  797. /*
  798. * Remove a cap. Take steps to deal with a racing iterate_session_caps.
  799. *
  800. * caller should hold i_ceph_lock.
  801. * caller will not hold session s_mutex if called from destroy_inode.
  802. */
  803. void __ceph_remove_cap(struct ceph_cap *cap)
  804. {
  805. struct ceph_mds_session *session = cap->session;
  806. struct ceph_inode_info *ci = cap->ci;
  807. struct ceph_mds_client *mdsc =
  808. ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc;
  809. int removed = 0;
  810. dout("__ceph_remove_cap %p from %p\n", cap, &ci->vfs_inode);
  811. /* remove from session list */
  812. spin_lock(&session->s_cap_lock);
  813. if (session->s_cap_iterator == cap) {
  814. /* not yet, we are iterating over this very cap */
  815. dout("__ceph_remove_cap delaying %p removal from session %p\n",
  816. cap, cap->session);
  817. } else {
  818. list_del_init(&cap->session_caps);
  819. session->s_nr_caps--;
  820. cap->session = NULL;
  821. removed = 1;
  822. }
  823. /* protect backpointer with s_cap_lock: see iterate_session_caps */
  824. cap->ci = NULL;
  825. spin_unlock(&session->s_cap_lock);
  826. /* remove from inode list */
  827. rb_erase(&cap->ci_node, &ci->i_caps);
  828. if (ci->i_auth_cap == cap)
  829. ci->i_auth_cap = NULL;
  830. if (removed)
  831. ceph_put_cap(mdsc, cap);
  832. if (!__ceph_is_any_caps(ci) && ci->i_snap_realm) {
  833. struct ceph_snap_realm *realm = ci->i_snap_realm;
  834. spin_lock(&realm->inodes_with_caps_lock);
  835. list_del_init(&ci->i_snap_realm_item);
  836. ci->i_snap_realm_counter++;
  837. ci->i_snap_realm = NULL;
  838. spin_unlock(&realm->inodes_with_caps_lock);
  839. ceph_put_snap_realm(mdsc, realm);
  840. }
  841. if (!__ceph_is_any_real_caps(ci))
  842. __cap_delay_cancel(mdsc, ci);
  843. }
  844. /*
  845. * Build and send a cap message to the given MDS.
  846. *
  847. * Caller should be holding s_mutex.
  848. */
  849. static int send_cap_msg(struct ceph_mds_session *session,
  850. u64 ino, u64 cid, int op,
  851. int caps, int wanted, int dirty,
  852. u32 seq, u64 flush_tid, u32 issue_seq, u32 mseq,
  853. u64 size, u64 max_size,
  854. struct timespec *mtime, struct timespec *atime,
  855. u64 time_warp_seq,
  856. kuid_t uid, kgid_t gid, umode_t mode,
  857. u64 xattr_version,
  858. struct ceph_buffer *xattrs_buf,
  859. u64 follows)
  860. {
  861. struct ceph_mds_caps *fc;
  862. struct ceph_msg *msg;
  863. dout("send_cap_msg %s %llx %llx caps %s wanted %s dirty %s"
  864. " seq %u/%u mseq %u follows %lld size %llu/%llu"
  865. " xattr_ver %llu xattr_len %d\n", ceph_cap_op_name(op),
  866. cid, ino, ceph_cap_string(caps), ceph_cap_string(wanted),
  867. ceph_cap_string(dirty),
  868. seq, issue_seq, mseq, follows, size, max_size,
  869. xattr_version, xattrs_buf ? (int)xattrs_buf->vec.iov_len : 0);
  870. msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPS, sizeof(*fc), GFP_NOFS, false);
  871. if (!msg)
  872. return -ENOMEM;
  873. msg->hdr.tid = cpu_to_le64(flush_tid);
  874. fc = msg->front.iov_base;
  875. memset(fc, 0, sizeof(*fc));
  876. fc->cap_id = cpu_to_le64(cid);
  877. fc->op = cpu_to_le32(op);
  878. fc->seq = cpu_to_le32(seq);
  879. fc->issue_seq = cpu_to_le32(issue_seq);
  880. fc->migrate_seq = cpu_to_le32(mseq);
  881. fc->caps = cpu_to_le32(caps);
  882. fc->wanted = cpu_to_le32(wanted);
  883. fc->dirty = cpu_to_le32(dirty);
  884. fc->ino = cpu_to_le64(ino);
  885. fc->snap_follows = cpu_to_le64(follows);
  886. fc->size = cpu_to_le64(size);
  887. fc->max_size = cpu_to_le64(max_size);
  888. if (mtime)
  889. ceph_encode_timespec(&fc->mtime, mtime);
  890. if (atime)
  891. ceph_encode_timespec(&fc->atime, atime);
  892. fc->time_warp_seq = cpu_to_le32(time_warp_seq);
  893. fc->uid = cpu_to_le32(from_kuid(&init_user_ns, uid));
  894. fc->gid = cpu_to_le32(from_kgid(&init_user_ns, gid));
  895. fc->mode = cpu_to_le32(mode);
  896. fc->xattr_version = cpu_to_le64(xattr_version);
  897. if (xattrs_buf) {
  898. msg->middle = ceph_buffer_get(xattrs_buf);
  899. fc->xattr_len = cpu_to_le32(xattrs_buf->vec.iov_len);
  900. msg->hdr.middle_len = cpu_to_le32(xattrs_buf->vec.iov_len);
  901. }
  902. ceph_con_send(&session->s_con, msg);
  903. return 0;
  904. }
  905. void __queue_cap_release(struct ceph_mds_session *session,
  906. u64 ino, u64 cap_id, u32 migrate_seq,
  907. u32 issue_seq)
  908. {
  909. struct ceph_msg *msg;
  910. struct ceph_mds_cap_release *head;
  911. struct ceph_mds_cap_item *item;
  912. spin_lock(&session->s_cap_lock);
  913. BUG_ON(!session->s_num_cap_releases);
  914. msg = list_first_entry(&session->s_cap_releases,
  915. struct ceph_msg, list_head);
  916. dout(" adding %llx release to mds%d msg %p (%d left)\n",
  917. ino, session->s_mds, msg, session->s_num_cap_releases);
  918. BUG_ON(msg->front.iov_len + sizeof(*item) > PAGE_CACHE_SIZE);
  919. head = msg->front.iov_base;
  920. le32_add_cpu(&head->num, 1);
  921. item = msg->front.iov_base + msg->front.iov_len;
  922. item->ino = cpu_to_le64(ino);
  923. item->cap_id = cpu_to_le64(cap_id);
  924. item->migrate_seq = cpu_to_le32(migrate_seq);
  925. item->seq = cpu_to_le32(issue_seq);
  926. session->s_num_cap_releases--;
  927. msg->front.iov_len += sizeof(*item);
  928. if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) {
  929. dout(" release msg %p full\n", msg);
  930. list_move_tail(&msg->list_head, &session->s_cap_releases_done);
  931. } else {
  932. dout(" release msg %p at %d/%d (%d)\n", msg,
  933. (int)le32_to_cpu(head->num),
  934. (int)CEPH_CAPS_PER_RELEASE,
  935. (int)msg->front.iov_len);
  936. }
  937. spin_unlock(&session->s_cap_lock);
  938. }
  939. /*
  940. * Queue cap releases when an inode is dropped from our cache. Since
  941. * inode is about to be destroyed, there is no need for i_ceph_lock.
  942. */
  943. void ceph_queue_caps_release(struct inode *inode)
  944. {
  945. struct ceph_inode_info *ci = ceph_inode(inode);
  946. struct rb_node *p;
  947. p = rb_first(&ci->i_caps);
  948. while (p) {
  949. struct ceph_cap *cap = rb_entry(p, struct ceph_cap, ci_node);
  950. struct ceph_mds_session *session = cap->session;
  951. __queue_cap_release(session, ceph_ino(inode), cap->cap_id,
  952. cap->mseq, cap->issue_seq);
  953. p = rb_next(p);
  954. __ceph_remove_cap(cap);
  955. }
  956. }
  957. /*
  958. * Send a cap msg on the given inode. Update our caps state, then
  959. * drop i_ceph_lock and send the message.
  960. *
  961. * Make note of max_size reported/requested from mds, revoked caps
  962. * that have now been implemented.
  963. *
  964. * Make half-hearted attempt ot to invalidate page cache if we are
  965. * dropping RDCACHE. Note that this will leave behind locked pages
  966. * that we'll then need to deal with elsewhere.
  967. *
  968. * Return non-zero if delayed release, or we experienced an error
  969. * such that the caller should requeue + retry later.
  970. *
  971. * called with i_ceph_lock, then drops it.
  972. * caller should hold snap_rwsem (read), s_mutex.
  973. */
  974. static int __send_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap,
  975. int op, int used, int want, int retain, int flushing,
  976. unsigned *pflush_tid)
  977. __releases(cap->ci->i_ceph_lock)
  978. {
  979. struct ceph_inode_info *ci = cap->ci;
  980. struct inode *inode = &ci->vfs_inode;
  981. u64 cap_id = cap->cap_id;
  982. int held, revoking, dropping, keep;
  983. u64 seq, issue_seq, mseq, time_warp_seq, follows;
  984. u64 size, max_size;
  985. struct timespec mtime, atime;
  986. int wake = 0;
  987. umode_t mode;
  988. kuid_t uid;
  989. kgid_t gid;
  990. struct ceph_mds_session *session;
  991. u64 xattr_version = 0;
  992. struct ceph_buffer *xattr_blob = NULL;
  993. int delayed = 0;
  994. u64 flush_tid = 0;
  995. int i;
  996. int ret;
  997. held = cap->issued | cap->implemented;
  998. revoking = cap->implemented & ~cap->issued;
  999. retain &= ~revoking;
  1000. dropping = cap->issued & ~retain;
  1001. dout("__send_cap %p cap %p session %p %s -> %s (revoking %s)\n",
  1002. inode, cap, cap->session,
  1003. ceph_cap_string(held), ceph_cap_string(held & retain),
  1004. ceph_cap_string(revoking));
  1005. BUG_ON((retain & CEPH_CAP_PIN) == 0);
  1006. session = cap->session;
  1007. /* don't release wanted unless we've waited a bit. */
  1008. if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 &&
  1009. time_before(jiffies, ci->i_hold_caps_min)) {
  1010. dout(" delaying issued %s -> %s, wanted %s -> %s on send\n",
  1011. ceph_cap_string(cap->issued),
  1012. ceph_cap_string(cap->issued & retain),
  1013. ceph_cap_string(cap->mds_wanted),
  1014. ceph_cap_string(want));
  1015. want |= cap->mds_wanted;
  1016. retain |= cap->issued;
  1017. delayed = 1;
  1018. }
  1019. ci->i_ceph_flags &= ~(CEPH_I_NODELAY | CEPH_I_FLUSH);
  1020. cap->issued &= retain; /* drop bits we don't want */
  1021. if (cap->implemented & ~cap->issued) {
  1022. /*
  1023. * Wake up any waiters on wanted -> needed transition.
  1024. * This is due to the weird transition from buffered
  1025. * to sync IO... we need to flush dirty pages _before_
  1026. * allowing sync writes to avoid reordering.
  1027. */
  1028. wake = 1;
  1029. }
  1030. cap->implemented &= cap->issued | used;
  1031. cap->mds_wanted = want;
  1032. if (flushing) {
  1033. /*
  1034. * assign a tid for flush operations so we can avoid
  1035. * flush1 -> dirty1 -> flush2 -> flushack1 -> mark
  1036. * clean type races. track latest tid for every bit
  1037. * so we can handle flush AxFw, flush Fw, and have the
  1038. * first ack clean Ax.
  1039. */
  1040. flush_tid = ++ci->i_cap_flush_last_tid;
  1041. if (pflush_tid)
  1042. *pflush_tid = flush_tid;
  1043. dout(" cap_flush_tid %d\n", (int)flush_tid);
  1044. for (i = 0; i < CEPH_CAP_BITS; i++)
  1045. if (flushing & (1 << i))
  1046. ci->i_cap_flush_tid[i] = flush_tid;
  1047. follows = ci->i_head_snapc->seq;
  1048. } else {
  1049. follows = 0;
  1050. }
  1051. keep = cap->implemented;
  1052. seq = cap->seq;
  1053. issue_seq = cap->issue_seq;
  1054. mseq = cap->mseq;
  1055. size = inode->i_size;
  1056. ci->i_reported_size = size;
  1057. max_size = ci->i_wanted_max_size;
  1058. ci->i_requested_max_size = max_size;
  1059. mtime = inode->i_mtime;
  1060. atime = inode->i_atime;
  1061. time_warp_seq = ci->i_time_warp_seq;
  1062. uid = inode->i_uid;
  1063. gid = inode->i_gid;
  1064. mode = inode->i_mode;
  1065. if (flushing & CEPH_CAP_XATTR_EXCL) {
  1066. __ceph_build_xattrs_blob(ci);
  1067. xattr_blob = ci->i_xattrs.blob;
  1068. xattr_version = ci->i_xattrs.version;
  1069. }
  1070. spin_unlock(&ci->i_ceph_lock);
  1071. ret = send_cap_msg(session, ceph_vino(inode).ino, cap_id,
  1072. op, keep, want, flushing, seq, flush_tid, issue_seq, mseq,
  1073. size, max_size, &mtime, &atime, time_warp_seq,
  1074. uid, gid, mode, xattr_version, xattr_blob,
  1075. follows);
  1076. if (ret < 0) {
  1077. dout("error sending cap msg, must requeue %p\n", inode);
  1078. delayed = 1;
  1079. }
  1080. if (wake)
  1081. wake_up_all(&ci->i_cap_wq);
  1082. return delayed;
  1083. }
  1084. /*
  1085. * When a snapshot is taken, clients accumulate dirty metadata on
  1086. * inodes with capabilities in ceph_cap_snaps to describe the file
  1087. * state at the time the snapshot was taken. This must be flushed
  1088. * asynchronously back to the MDS once sync writes complete and dirty
  1089. * data is written out.
  1090. *
  1091. * Unless @again is true, skip cap_snaps that were already sent to
  1092. * the MDS (i.e., during this session).
  1093. *
  1094. * Called under i_ceph_lock. Takes s_mutex as needed.
  1095. */
  1096. void __ceph_flush_snaps(struct ceph_inode_info *ci,
  1097. struct ceph_mds_session **psession,
  1098. int again)
  1099. __releases(ci->i_ceph_lock)
  1100. __acquires(ci->i_ceph_lock)
  1101. {
  1102. struct inode *inode = &ci->vfs_inode;
  1103. int mds;
  1104. struct ceph_cap_snap *capsnap;
  1105. u32 mseq;
  1106. struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
  1107. struct ceph_mds_session *session = NULL; /* if session != NULL, we hold
  1108. session->s_mutex */
  1109. u64 next_follows = 0; /* keep track of how far we've gotten through the
  1110. i_cap_snaps list, and skip these entries next time
  1111. around to avoid an infinite loop */
  1112. if (psession)
  1113. session = *psession;
  1114. dout("__flush_snaps %p\n", inode);
  1115. retry:
  1116. list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
  1117. /* avoid an infiniute loop after retry */
  1118. if (capsnap->follows < next_follows)
  1119. continue;
  1120. /*
  1121. * we need to wait for sync writes to complete and for dirty
  1122. * pages to be written out.
  1123. */
  1124. if (capsnap->dirty_pages || capsnap->writing)
  1125. break;
  1126. /*
  1127. * if cap writeback already occurred, we should have dropped
  1128. * the capsnap in ceph_put_wrbuffer_cap_refs.
  1129. */
  1130. BUG_ON(capsnap->dirty == 0);
  1131. /* pick mds, take s_mutex */
  1132. if (ci->i_auth_cap == NULL) {
  1133. dout("no auth cap (migrating?), doing nothing\n");
  1134. goto out;
  1135. }
  1136. /* only flush each capsnap once */
  1137. if (!again && !list_empty(&capsnap->flushing_item)) {
  1138. dout("already flushed %p, skipping\n", capsnap);
  1139. continue;
  1140. }
  1141. mds = ci->i_auth_cap->session->s_mds;
  1142. mseq = ci->i_auth_cap->mseq;
  1143. if (session && session->s_mds != mds) {
  1144. dout("oops, wrong session %p mutex\n", session);
  1145. mutex_unlock(&session->s_mutex);
  1146. ceph_put_mds_session(session);
  1147. session = NULL;
  1148. }
  1149. if (!session) {
  1150. spin_unlock(&ci->i_ceph_lock);
  1151. mutex_lock(&mdsc->mutex);
  1152. session = __ceph_lookup_mds_session(mdsc, mds);
  1153. mutex_unlock(&mdsc->mutex);
  1154. if (session) {
  1155. dout("inverting session/ino locks on %p\n",
  1156. session);
  1157. mutex_lock(&session->s_mutex);
  1158. }
  1159. /*
  1160. * if session == NULL, we raced against a cap
  1161. * deletion or migration. retry, and we'll
  1162. * get a better @mds value next time.
  1163. */
  1164. spin_lock(&ci->i_ceph_lock);
  1165. goto retry;
  1166. }
  1167. capsnap->flush_tid = ++ci->i_cap_flush_last_tid;
  1168. atomic_inc(&capsnap->nref);
  1169. if (!list_empty(&capsnap->flushing_item))
  1170. list_del_init(&capsnap->flushing_item);
  1171. list_add_tail(&capsnap->flushing_item,
  1172. &session->s_cap_snaps_flushing);
  1173. spin_unlock(&ci->i_ceph_lock);
  1174. dout("flush_snaps %p cap_snap %p follows %lld tid %llu\n",
  1175. inode, capsnap, capsnap->follows, capsnap->flush_tid);
  1176. send_cap_msg(session, ceph_vino(inode).ino, 0,
  1177. CEPH_CAP_OP_FLUSHSNAP, capsnap->issued, 0,
  1178. capsnap->dirty, 0, capsnap->flush_tid, 0, mseq,
  1179. capsnap->size, 0,
  1180. &capsnap->mtime, &capsnap->atime,
  1181. capsnap->time_warp_seq,
  1182. capsnap->uid, capsnap->gid, capsnap->mode,
  1183. capsnap->xattr_version, capsnap->xattr_blob,
  1184. capsnap->follows);
  1185. next_follows = capsnap->follows + 1;
  1186. ceph_put_cap_snap(capsnap);
  1187. spin_lock(&ci->i_ceph_lock);
  1188. goto retry;
  1189. }
  1190. /* we flushed them all; remove this inode from the queue */
  1191. spin_lock(&mdsc->snap_flush_lock);
  1192. list_del_init(&ci->i_snap_flush_item);
  1193. spin_unlock(&mdsc->snap_flush_lock);
  1194. out:
  1195. if (psession)
  1196. *psession = session;
  1197. else if (session) {
  1198. mutex_unlock(&session->s_mutex);
  1199. ceph_put_mds_session(session);
  1200. }
  1201. }
  1202. static void ceph_flush_snaps(struct ceph_inode_info *ci)
  1203. {
  1204. spin_lock(&ci->i_ceph_lock);
  1205. __ceph_flush_snaps(ci, NULL, 0);
  1206. spin_unlock(&ci->i_ceph_lock);
  1207. }
  1208. /*
  1209. * Mark caps dirty. If inode is newly dirty, return the dirty flags.
  1210. * Caller is then responsible for calling __mark_inode_dirty with the
  1211. * returned flags value.
  1212. */
  1213. int __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask)
  1214. {
  1215. struct ceph_mds_client *mdsc =
  1216. ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc;
  1217. struct inode *inode = &ci->vfs_inode;
  1218. int was = ci->i_dirty_caps;
  1219. int dirty = 0;
  1220. dout("__mark_dirty_caps %p %s dirty %s -> %s\n", &ci->vfs_inode,
  1221. ceph_cap_string(mask), ceph_cap_string(was),
  1222. ceph_cap_string(was | mask));
  1223. ci->i_dirty_caps |= mask;
  1224. if (was == 0) {
  1225. if (!ci->i_head_snapc)
  1226. ci->i_head_snapc = ceph_get_snap_context(
  1227. ci->i_snap_realm->cached_context);
  1228. dout(" inode %p now dirty snapc %p auth cap %p\n",
  1229. &ci->vfs_inode, ci->i_head_snapc, ci->i_auth_cap);
  1230. BUG_ON(!list_empty(&ci->i_dirty_item));
  1231. spin_lock(&mdsc->cap_dirty_lock);
  1232. if (ci->i_auth_cap)
  1233. list_add(&ci->i_dirty_item, &mdsc->cap_dirty);
  1234. else
  1235. list_add(&ci->i_dirty_item,
  1236. &mdsc->cap_dirty_migrating);
  1237. spin_unlock(&mdsc->cap_dirty_lock);
  1238. if (ci->i_flushing_caps == 0) {
  1239. ihold(inode);
  1240. dirty |= I_DIRTY_SYNC;
  1241. }
  1242. }
  1243. BUG_ON(list_empty(&ci->i_dirty_item));
  1244. if (((was | ci->i_flushing_caps) & CEPH_CAP_FILE_BUFFER) &&
  1245. (mask & CEPH_CAP_FILE_BUFFER))
  1246. dirty |= I_DIRTY_DATASYNC;
  1247. __cap_delay_requeue(mdsc, ci);
  1248. return dirty;
  1249. }
  1250. /*
  1251. * Add dirty inode to the flushing list. Assigned a seq number so we
  1252. * can wait for caps to flush without starving.
  1253. *
  1254. * Called under i_ceph_lock.
  1255. */
  1256. static int __mark_caps_flushing(struct inode *inode,
  1257. struct ceph_mds_session *session)
  1258. {
  1259. struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
  1260. struct ceph_inode_info *ci = ceph_inode(inode);
  1261. int flushing;
  1262. BUG_ON(ci->i_dirty_caps == 0);
  1263. BUG_ON(list_empty(&ci->i_dirty_item));
  1264. flushing = ci->i_dirty_caps;
  1265. dout("__mark_caps_flushing flushing %s, flushing_caps %s -> %s\n",
  1266. ceph_cap_string(flushing),
  1267. ceph_cap_string(ci->i_flushing_caps),
  1268. ceph_cap_string(ci->i_flushing_caps | flushing));
  1269. ci->i_flushing_caps |= flushing;
  1270. ci->i_dirty_caps = 0;
  1271. dout(" inode %p now !dirty\n", inode);
  1272. spin_lock(&mdsc->cap_dirty_lock);
  1273. list_del_init(&ci->i_dirty_item);
  1274. ci->i_cap_flush_seq = ++mdsc->cap_flush_seq;
  1275. if (list_empty(&ci->i_flushing_item)) {
  1276. list_add_tail(&ci->i_flushing_item, &session->s_cap_flushing);
  1277. mdsc->num_cap_flushing++;
  1278. dout(" inode %p now flushing seq %lld\n", inode,
  1279. ci->i_cap_flush_seq);
  1280. } else {
  1281. list_move_tail(&ci->i_flushing_item, &session->s_cap_flushing);
  1282. dout(" inode %p now flushing (more) seq %lld\n", inode,
  1283. ci->i_cap_flush_seq);
  1284. }
  1285. spin_unlock(&mdsc->cap_dirty_lock);
  1286. return flushing;
  1287. }
  1288. /*
  1289. * try to invalidate mapping pages without blocking.
  1290. */
  1291. static int try_nonblocking_invalidate(struct inode *inode)
  1292. {
  1293. struct ceph_inode_info *ci = ceph_inode(inode);
  1294. u32 invalidating_gen = ci->i_rdcache_gen;
  1295. spin_unlock(&ci->i_ceph_lock);
  1296. invalidate_mapping_pages(&inode->i_data, 0, -1);
  1297. spin_lock(&ci->i_ceph_lock);
  1298. if (inode->i_data.nrpages == 0 &&
  1299. invalidating_gen == ci->i_rdcache_gen) {
  1300. /* success. */
  1301. dout("try_nonblocking_invalidate %p success\n", inode);
  1302. /* save any racing async invalidate some trouble */
  1303. ci->i_rdcache_revoking = ci->i_rdcache_gen - 1;
  1304. return 0;
  1305. }
  1306. dout("try_nonblocking_invalidate %p failed\n", inode);
  1307. return -1;
  1308. }
  1309. /*
  1310. * Swiss army knife function to examine currently used and wanted
  1311. * versus held caps. Release, flush, ack revoked caps to mds as
  1312. * appropriate.
  1313. *
  1314. * CHECK_CAPS_NODELAY - caller is delayed work and we should not delay
  1315. * cap release further.
  1316. * CHECK_CAPS_AUTHONLY - we should only check the auth cap
  1317. * CHECK_CAPS_FLUSH - we should flush any dirty caps immediately, without
  1318. * further delay.
  1319. */
  1320. void ceph_check_caps(struct ceph_inode_info *ci, int flags,
  1321. struct ceph_mds_session *session)
  1322. {
  1323. struct ceph_fs_client *fsc = ceph_inode_to_client(&ci->vfs_inode);
  1324. struct ceph_mds_client *mdsc = fsc->mdsc;
  1325. struct inode *inode = &ci->vfs_inode;
  1326. struct ceph_cap *cap;
  1327. int file_wanted, used, cap_used;
  1328. int took_snap_rwsem = 0; /* true if mdsc->snap_rwsem held */
  1329. int issued, implemented, want, retain, revoking, flushing = 0;
  1330. int mds = -1; /* keep track of how far we've gone through i_caps list
  1331. to avoid an infinite loop on retry */
  1332. struct rb_node *p;
  1333. int tried_invalidate = 0;
  1334. int delayed = 0, sent = 0, force_requeue = 0, num;
  1335. int queue_invalidate = 0;
  1336. int is_delayed = flags & CHECK_CAPS_NODELAY;
  1337. /* if we are unmounting, flush any unused caps immediately. */
  1338. if (mdsc->stopping)
  1339. is_delayed = 1;
  1340. spin_lock(&ci->i_ceph_lock);
  1341. if (ci->i_ceph_flags & CEPH_I_FLUSH)
  1342. flags |= CHECK_CAPS_FLUSH;
  1343. /* flush snaps first time around only */
  1344. if (!list_empty(&ci->i_cap_snaps))
  1345. __ceph_flush_snaps(ci, &session, 0);
  1346. goto retry_locked;
  1347. retry:
  1348. spin_lock(&ci->i_ceph_lock);
  1349. retry_locked:
  1350. file_wanted = __ceph_caps_file_wanted(ci);
  1351. used = __ceph_caps_used(ci);
  1352. want = file_wanted | used;
  1353. issued = __ceph_caps_issued(ci, &implemented);
  1354. revoking = implemented & ~issued;
  1355. retain = want | CEPH_CAP_PIN;
  1356. if (!mdsc->stopping && inode->i_nlink > 0) {
  1357. if (want) {
  1358. retain |= CEPH_CAP_ANY; /* be greedy */
  1359. } else {
  1360. retain |= CEPH_CAP_ANY_SHARED;
  1361. /*
  1362. * keep RD only if we didn't have the file open RW,
  1363. * because then the mds would revoke it anyway to
  1364. * journal max_size=0.
  1365. */
  1366. if (ci->i_max_size == 0)
  1367. retain |= CEPH_CAP_ANY_RD;
  1368. }
  1369. }
  1370. dout("check_caps %p file_want %s used %s dirty %s flushing %s"
  1371. " issued %s revoking %s retain %s %s%s%s\n", inode,
  1372. ceph_cap_string(file_wanted),
  1373. ceph_cap_string(used), ceph_cap_string(ci->i_dirty_caps),
  1374. ceph_cap_string(ci->i_flushing_caps),
  1375. ceph_cap_string(issued), ceph_cap_string(revoking),
  1376. ceph_cap_string(retain),
  1377. (flags & CHECK_CAPS_AUTHONLY) ? " AUTHONLY" : "",
  1378. (flags & CHECK_CAPS_NODELAY) ? " NODELAY" : "",
  1379. (flags & CHECK_CAPS_FLUSH) ? " FLUSH" : "");
  1380. /*
  1381. * If we no longer need to hold onto old our caps, and we may
  1382. * have cached pages, but don't want them, then try to invalidate.
  1383. * If we fail, it's because pages are locked.... try again later.
  1384. */
  1385. if ((!is_delayed || mdsc->stopping) &&
  1386. ci->i_wrbuffer_ref == 0 && /* no dirty pages... */
  1387. inode->i_data.nrpages && /* have cached pages */
  1388. (file_wanted == 0 || /* no open files */
  1389. (revoking & (CEPH_CAP_FILE_CACHE|
  1390. CEPH_CAP_FILE_LAZYIO))) && /* or revoking cache */
  1391. !tried_invalidate) {
  1392. dout("check_caps trying to invalidate on %p\n", inode);
  1393. if (try_nonblocking_invalidate(inode) < 0) {
  1394. if (revoking & (CEPH_CAP_FILE_CACHE|
  1395. CEPH_CAP_FILE_LAZYIO)) {
  1396. dout("check_caps queuing invalidate\n");
  1397. queue_invalidate = 1;
  1398. ci->i_rdcache_revoking = ci->i_rdcache_gen;
  1399. } else {
  1400. dout("check_caps failed to invalidate pages\n");
  1401. /* we failed to invalidate pages. check these
  1402. caps again later. */
  1403. force_requeue = 1;
  1404. __cap_set_timeouts(mdsc, ci);
  1405. }
  1406. }
  1407. tried_invalidate = 1;
  1408. goto retry_locked;
  1409. }
  1410. num = 0;
  1411. for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
  1412. cap = rb_entry(p, struct ceph_cap, ci_node);
  1413. num++;
  1414. /* avoid looping forever */
  1415. if (mds >= cap->mds ||
  1416. ((flags & CHECK_CAPS_AUTHONLY) && cap != ci->i_auth_cap))
  1417. continue;
  1418. /* NOTE: no side-effects allowed, until we take s_mutex */
  1419. cap_used = used;
  1420. if (ci->i_auth_cap && cap != ci->i_auth_cap)
  1421. cap_used &= ~ci->i_auth_cap->issued;
  1422. revoking = cap->implemented & ~cap->issued;
  1423. dout(" mds%d cap %p used %s issued %s implemented %s revoking %s\n",
  1424. cap->mds, cap, ceph_cap_string(cap->issued),
  1425. ceph_cap_string(cap_used),
  1426. ceph_cap_string(cap->implemented),
  1427. ceph_cap_string(revoking));
  1428. if (cap == ci->i_auth_cap &&
  1429. (cap->issued & CEPH_CAP_FILE_WR)) {
  1430. /* request larger max_size from MDS? */
  1431. if (ci->i_wanted_max_size > ci->i_max_size &&
  1432. ci->i_wanted_max_size > ci->i_requested_max_size) {
  1433. dout("requesting new max_size\n");
  1434. goto ack;
  1435. }
  1436. /* approaching file_max? */
  1437. if ((inode->i_size << 1) >= ci->i_max_size &&
  1438. (ci->i_reported_size << 1) < ci->i_max_size) {
  1439. dout("i_size approaching max_size\n");
  1440. goto ack;
  1441. }
  1442. }
  1443. /* flush anything dirty? */
  1444. if (cap == ci->i_auth_cap && (flags & CHECK_CAPS_FLUSH) &&
  1445. ci->i_dirty_caps) {
  1446. dout("flushing dirty caps\n");
  1447. goto ack;
  1448. }
  1449. /* completed revocation? going down and there are no caps? */
  1450. if (revoking && (revoking & cap_used) == 0) {
  1451. dout("completed revocation of %s\n",
  1452. ceph_cap_string(cap->implemented & ~cap->issued));
  1453. goto ack;
  1454. }
  1455. /* want more caps from mds? */
  1456. if (want & ~(cap->mds_wanted | cap->issued))
  1457. goto ack;
  1458. /* things we might delay */
  1459. if ((cap->issued & ~retain) == 0 &&
  1460. cap->mds_wanted == want)
  1461. continue; /* nope, all good */
  1462. if (is_delayed)
  1463. goto ack;
  1464. /* delay? */
  1465. if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 &&
  1466. time_before(jiffies, ci->i_hold_caps_max)) {
  1467. dout(" delaying issued %s -> %s, wanted %s -> %s\n",
  1468. ceph_cap_string(cap->issued),
  1469. ceph_cap_string(cap->issued & retain),
  1470. ceph_cap_string(cap->mds_wanted),
  1471. ceph_cap_string(want));
  1472. delayed++;
  1473. continue;
  1474. }
  1475. ack:
  1476. if (ci->i_ceph_flags & CEPH_I_NOFLUSH) {
  1477. dout(" skipping %p I_NOFLUSH set\n", inode);
  1478. continue;
  1479. }
  1480. if (session && session != cap->session) {
  1481. dout("oops, wrong session %p mutex\n", session);
  1482. mutex_unlock(&session->s_mutex);
  1483. session = NULL;
  1484. }
  1485. if (!session) {
  1486. session = cap->session;
  1487. if (mutex_trylock(&session->s_mutex) == 0) {
  1488. dout("inverting session/ino locks on %p\n",
  1489. session);
  1490. spin_unlock(&ci->i_ceph_lock);
  1491. if (took_snap_rwsem) {
  1492. up_read(&mdsc->snap_rwsem);
  1493. took_snap_rwsem = 0;
  1494. }
  1495. mutex_lock(&session->s_mutex);
  1496. goto retry;
  1497. }
  1498. }
  1499. /* take snap_rwsem after session mutex */
  1500. if (!took_snap_rwsem) {
  1501. if (down_read_trylock(&mdsc->snap_rwsem) == 0) {
  1502. dout("inverting snap/in locks on %p\n",
  1503. inode);
  1504. spin_unlock(&ci->i_ceph_lock);
  1505. down_read(&mdsc->snap_rwsem);
  1506. took_snap_rwsem = 1;
  1507. goto retry;
  1508. }
  1509. took_snap_rwsem = 1;
  1510. }
  1511. if (cap == ci->i_auth_cap && ci->i_dirty_caps)
  1512. flushing = __mark_caps_flushing(inode, session);
  1513. else
  1514. flushing = 0;
  1515. mds = cap->mds; /* remember mds, so we don't repeat */
  1516. sent++;
  1517. /* __send_cap drops i_ceph_lock */
  1518. delayed += __send_cap(mdsc, cap, CEPH_CAP_OP_UPDATE, cap_used,
  1519. want, retain, flushing, NULL);
  1520. goto retry; /* retake i_ceph_lock and restart our cap scan. */
  1521. }
  1522. /*
  1523. * Reschedule delayed caps release if we delayed anything,
  1524. * otherwise cancel.
  1525. */
  1526. if (delayed && is_delayed)
  1527. force_requeue = 1; /* __send_cap delayed release; requeue */
  1528. if (!delayed && !is_delayed)
  1529. __cap_delay_cancel(mdsc, ci);
  1530. else if (!is_delayed || force_requeue)
  1531. __cap_delay_requeue(mdsc, ci);
  1532. spin_unlock(&ci->i_ceph_lock);
  1533. if (queue_invalidate)
  1534. ceph_queue_invalidate(inode);
  1535. if (session)
  1536. mutex_unlock(&session->s_mutex);
  1537. if (took_snap_rwsem)
  1538. up_read(&mdsc->snap_rwsem);
  1539. }
  1540. /*
  1541. * Try to flush dirty caps back to the auth mds.
  1542. */
  1543. static int try_flush_caps(struct inode *inode, struct ceph_mds_session *session,
  1544. unsigned *flush_tid)
  1545. {
  1546. struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
  1547. struct ceph_inode_info *ci = ceph_inode(inode);
  1548. int unlock_session = session ? 0 : 1;
  1549. int flushing = 0;
  1550. retry:
  1551. spin_lock(&ci->i_ceph_lock);
  1552. if (ci->i_ceph_flags & CEPH_I_NOFLUSH) {
  1553. dout("try_flush_caps skipping %p I_NOFLUSH set\n", inode);
  1554. goto out;
  1555. }
  1556. if (ci->i_dirty_caps && ci->i_auth_cap) {
  1557. struct ceph_cap *cap = ci->i_auth_cap;
  1558. int used = __ceph_caps_used(ci);
  1559. int want = __ceph_caps_wanted(ci);
  1560. int delayed;
  1561. if (!session) {
  1562. spin_unlock(&ci->i_ceph_lock);
  1563. session = cap->session;
  1564. mutex_lock(&session->s_mutex);
  1565. goto retry;
  1566. }
  1567. BUG_ON(session != cap->session);
  1568. if (cap->session->s_state < CEPH_MDS_SESSION_OPEN)
  1569. goto out;
  1570. flushing = __mark_caps_flushing(inode, session);
  1571. /* __send_cap drops i_ceph_lock */
  1572. delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, used, want,
  1573. cap->issued | cap->implemented, flushing,
  1574. flush_tid);
  1575. if (!delayed)
  1576. goto out_unlocked;
  1577. spin_lock(&ci->i_ceph_lock);
  1578. __cap_delay_requeue(mdsc, ci);
  1579. }
  1580. out:
  1581. spin_unlock(&ci->i_ceph_lock);
  1582. out_unlocked:
  1583. if (session && unlock_session)
  1584. mutex_unlock(&session->s_mutex);
  1585. return flushing;
  1586. }
  1587. /*
  1588. * Return true if we've flushed caps through the given flush_tid.
  1589. */
  1590. static int caps_are_flushed(struct inode *inode, unsigned tid)
  1591. {
  1592. struct ceph_inode_info *ci = ceph_inode(inode);
  1593. int i, ret = 1;
  1594. spin_lock(&ci->i_ceph_lock);
  1595. for (i = 0; i < CEPH_CAP_BITS; i++)
  1596. if ((ci->i_flushing_caps & (1 << i)) &&
  1597. ci->i_cap_flush_tid[i] <= tid) {
  1598. /* still flushing this bit */
  1599. ret = 0;
  1600. break;
  1601. }
  1602. spin_unlock(&ci->i_ceph_lock);
  1603. return ret;
  1604. }
  1605. /*
  1606. * Wait on any unsafe replies for the given inode. First wait on the
  1607. * newest request, and make that the upper bound. Then, if there are
  1608. * more requests, keep waiting on the oldest as long as it is still older
  1609. * than the original request.
  1610. */
  1611. static void sync_write_wait(struct inode *inode)
  1612. {
  1613. struct ceph_inode_info *ci = ceph_inode(inode);
  1614. struct list_head *head = &ci->i_unsafe_writes;
  1615. struct ceph_osd_request *req;
  1616. u64 last_tid;
  1617. spin_lock(&ci->i_unsafe_lock);
  1618. if (list_empty(head))
  1619. goto out;
  1620. /* set upper bound as _last_ entry in chain */
  1621. req = list_entry(head->prev, struct ceph_osd_request,
  1622. r_unsafe_item);
  1623. last_tid = req->r_tid;
  1624. do {
  1625. ceph_osdc_get_request(req);
  1626. spin_unlock(&ci->i_unsafe_lock);
  1627. dout("sync_write_wait on tid %llu (until %llu)\n",
  1628. req->r_tid, last_tid);
  1629. wait_for_completion(&req->r_safe_completion);
  1630. spin_lock(&ci->i_unsafe_lock);
  1631. ceph_osdc_put_request(req);
  1632. /*
  1633. * from here on look at first entry in chain, since we
  1634. * only want to wait for anything older than last_tid
  1635. */
  1636. if (list_empty(head))
  1637. break;
  1638. req = list_entry(head->next, struct ceph_osd_request,
  1639. r_unsafe_item);
  1640. } while (req->r_tid < last_tid);
  1641. out:
  1642. spin_unlock(&ci->i_unsafe_lock);
  1643. }
  1644. int ceph_fsync(struct file *file, loff_t start, loff_t end, int datasync)
  1645. {
  1646. struct inode *inode = file->f_mapping->host;
  1647. struct ceph_inode_info *ci = ceph_inode(inode);
  1648. unsigned flush_tid;
  1649. int ret;
  1650. int dirty;
  1651. dout("fsync %p%s\n", inode, datasync ? " datasync" : "");
  1652. sync_write_wait(inode);
  1653. ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
  1654. if (ret < 0)
  1655. return ret;
  1656. mutex_lock(&inode->i_mutex);
  1657. dirty = try_flush_caps(inode, NULL, &flush_tid);
  1658. dout("fsync dirty caps are %s\n", ceph_cap_string(dirty));
  1659. /*
  1660. * only wait on non-file metadata writeback (the mds
  1661. * can recover size and mtime, so we don't need to
  1662. * wait for that)
  1663. */
  1664. if (!datasync && (dirty & ~CEPH_CAP_ANY_FILE_WR)) {
  1665. dout("fsync waiting for flush_tid %u\n", flush_tid);
  1666. ret = wait_event_interruptible(ci->i_cap_wq,
  1667. caps_are_flushed(inode, flush_tid));
  1668. }
  1669. dout("fsync %p%s done\n", inode, datasync ? " datasync" : "");
  1670. mutex_unlock(&inode->i_mutex);
  1671. return ret;
  1672. }
  1673. /*
  1674. * Flush any dirty caps back to the mds. If we aren't asked to wait,
  1675. * queue inode for flush but don't do so immediately, because we can
  1676. * get by with fewer MDS messages if we wait for data writeback to
  1677. * complete first.
  1678. */
  1679. int ceph_write_inode(struct inode *inode, struct writeback_control *wbc)
  1680. {
  1681. struct ceph_inode_info *ci = ceph_inode(inode);
  1682. unsigned flush_tid;
  1683. int err = 0;
  1684. int dirty;
  1685. int wait = wbc->sync_mode == WB_SYNC_ALL;
  1686. dout("write_inode %p wait=%d\n", inode, wait);
  1687. if (wait) {
  1688. dirty = try_flush_caps(inode, NULL, &flush_tid);
  1689. if (dirty)
  1690. err = wait_event_interruptible(ci->i_cap_wq,
  1691. caps_are_flushed(inode, flush_tid));
  1692. } else {
  1693. struct ceph_mds_client *mdsc =
  1694. ceph_sb_to_client(inode->i_sb)->mdsc;
  1695. spin_lock(&ci->i_ceph_lock);
  1696. if (__ceph_caps_dirty(ci))
  1697. __cap_delay_requeue_front(mdsc, ci);
  1698. spin_unlock(&ci->i_ceph_lock);
  1699. }
  1700. return err;
  1701. }
  1702. /*
  1703. * After a recovering MDS goes active, we need to resend any caps
  1704. * we were flushing.
  1705. *
  1706. * Caller holds session->s_mutex.
  1707. */
  1708. static void kick_flushing_capsnaps(struct ceph_mds_client *mdsc,
  1709. struct ceph_mds_session *session)
  1710. {
  1711. struct ceph_cap_snap *capsnap;
  1712. dout("kick_flushing_capsnaps mds%d\n", session->s_mds);
  1713. list_for_each_entry(capsnap, &session->s_cap_snaps_flushing,
  1714. flushing_item) {
  1715. struct ceph_inode_info *ci = capsnap->ci;
  1716. struct inode *inode = &ci->vfs_inode;
  1717. struct ceph_cap *cap;
  1718. spin_lock(&ci->i_ceph_lock);
  1719. cap = ci->i_auth_cap;
  1720. if (cap && cap->session == session) {
  1721. dout("kick_flushing_caps %p cap %p capsnap %p\n", inode,
  1722. cap, capsnap);
  1723. __ceph_flush_snaps(ci, &session, 1);
  1724. } else {
  1725. pr_err("%p auth cap %p not mds%d ???\n", inode,
  1726. cap, session->s_mds);
  1727. }
  1728. spin_unlock(&ci->i_ceph_lock);
  1729. }
  1730. }
  1731. void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc,
  1732. struct ceph_mds_session *session)
  1733. {
  1734. struct ceph_inode_info *ci;
  1735. kick_flushing_capsnaps(mdsc, session);
  1736. dout("kick_flushing_caps mds%d\n", session->s_mds);
  1737. list_for_each_entry(ci, &session->s_cap_flushing, i_flushing_item) {
  1738. struct inode *inode = &ci->vfs_inode;
  1739. struct ceph_cap *cap;
  1740. int delayed = 0;
  1741. spin_lock(&ci->i_ceph_lock);
  1742. cap = ci->i_auth_cap;
  1743. if (cap && cap->session == session) {
  1744. dout("kick_flushing_caps %p cap %p %s\n", inode,
  1745. cap, ceph_cap_string(ci->i_flushing_caps));
  1746. delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH,
  1747. __ceph_caps_used(ci),
  1748. __ceph_caps_wanted(ci),
  1749. cap->issued | cap->implemented,
  1750. ci->i_flushing_caps, NULL);
  1751. if (delayed) {
  1752. spin_lock(&ci->i_ceph_lock);
  1753. __cap_delay_requeue(mdsc, ci);
  1754. spin_unlock(&ci->i_ceph_lock);
  1755. }
  1756. } else {
  1757. pr_err("%p auth cap %p not mds%d ???\n", inode,
  1758. cap, session->s_mds);
  1759. spin_unlock(&ci->i_ceph_lock);
  1760. }
  1761. }
  1762. }
  1763. static void kick_flushing_inode_caps(struct ceph_mds_client *mdsc,
  1764. struct ceph_mds_session *session,
  1765. struct inode *inode)
  1766. {
  1767. struct ceph_inode_info *ci = ceph_inode(inode);
  1768. struct ceph_cap *cap;
  1769. int delayed = 0;
  1770. spin_lock(&ci->i_ceph_lock);
  1771. cap = ci->i_auth_cap;
  1772. dout("kick_flushing_inode_caps %p flushing %s flush_seq %lld\n", inode,
  1773. ceph_cap_string(ci->i_flushing_caps), ci->i_cap_flush_seq);
  1774. __ceph_flush_snaps(ci, &session, 1);
  1775. if (ci->i_flushing_caps) {
  1776. spin_lock(&mdsc->cap_dirty_lock);
  1777. list_move_tail(&ci->i_flushing_item,
  1778. &cap->session->s_cap_flushing);
  1779. spin_unlock(&mdsc->cap_dirty_lock);
  1780. delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH,
  1781. __ceph_caps_used(ci),
  1782. __ceph_caps_wanted(ci),
  1783. cap->issued | cap->implemented,
  1784. ci->i_flushing_caps, NULL);
  1785. if (delayed) {
  1786. spin_lock(&ci->i_ceph_lock);
  1787. __cap_delay_requeue(mdsc, ci);
  1788. spin_unlock(&ci->i_ceph_lock);
  1789. }
  1790. } else {
  1791. spin_unlock(&ci->i_ceph_lock);
  1792. }
  1793. }
  1794. /*
  1795. * Take references to capabilities we hold, so that we don't release
  1796. * them to the MDS prematurely.
  1797. *
  1798. * Protected by i_ceph_lock.
  1799. */
  1800. static void __take_cap_refs(struct ceph_inode_info *ci, int got)
  1801. {
  1802. if (got & CEPH_CAP_PIN)
  1803. ci->i_pin_ref++;
  1804. if (got & CEPH_CAP_FILE_RD)
  1805. ci->i_rd_ref++;
  1806. if (got & CEPH_CAP_FILE_CACHE)
  1807. ci->i_rdcache_ref++;
  1808. if (got & CEPH_CAP_FILE_WR)
  1809. ci->i_wr_ref++;
  1810. if (got & CEPH_CAP_FILE_BUFFER) {
  1811. if (ci->i_wb_ref == 0)
  1812. ihold(&ci->vfs_inode);
  1813. ci->i_wb_ref++;
  1814. dout("__take_cap_refs %p wb %d -> %d (?)\n",
  1815. &ci->vfs_inode, ci->i_wb_ref-1, ci->i_wb_ref);
  1816. }
  1817. }
  1818. /*
  1819. * Try to grab cap references. Specify those refs we @want, and the
  1820. * minimal set we @need. Also include the larger offset we are writing
  1821. * to (when applicable), and check against max_size here as well.
  1822. * Note that caller is responsible for ensuring max_size increases are
  1823. * requested from the MDS.
  1824. */
  1825. static int try_get_cap_refs(struct ceph_inode_info *ci, int need, int want,
  1826. int *got, loff_t endoff, int *check_max, int *err)
  1827. {
  1828. struct inode *inode = &ci->vfs_inode;
  1829. int ret = 0;
  1830. int have, implemented;
  1831. int file_wanted;
  1832. dout("get_cap_refs %p need %s want %s\n", inode,
  1833. ceph_cap_string(need), ceph_cap_string(want));
  1834. spin_lock(&ci->i_ceph_lock);
  1835. /* make sure file is actually open */
  1836. file_wanted = __ceph_caps_file_wanted(ci);
  1837. if ((file_wanted & need) == 0) {
  1838. dout("try_get_cap_refs need %s file_wanted %s, EBADF\n",
  1839. ceph_cap_string(need), ceph_cap_string(file_wanted));
  1840. *err = -EBADF;
  1841. ret = 1;
  1842. goto out;
  1843. }
  1844. /* finish pending truncate */
  1845. while (ci->i_truncate_pending) {
  1846. spin_unlock(&ci->i_ceph_lock);
  1847. if (!(need & CEPH_CAP_FILE_WR))
  1848. mutex_lock(&inode->i_mutex);
  1849. __ceph_do_pending_vmtruncate(inode);
  1850. if (!(need & CEPH_CAP_FILE_WR))
  1851. mutex_unlock(&inode->i_mutex);
  1852. spin_lock(&ci->i_ceph_lock);
  1853. }
  1854. if (need & CEPH_CAP_FILE_WR) {
  1855. if (endoff >= 0 && endoff > (loff_t)ci->i_max_size) {
  1856. dout("get_cap_refs %p endoff %llu > maxsize %llu\n",
  1857. inode, endoff, ci->i_max_size);
  1858. if (endoff > ci->i_wanted_max_size) {
  1859. *check_max = 1;
  1860. ret = 1;
  1861. }
  1862. goto out;
  1863. }
  1864. /*
  1865. * If a sync write is in progress, we must wait, so that we
  1866. * can get a final snapshot value for size+mtime.
  1867. */
  1868. if (__ceph_have_pending_cap_snap(ci)) {
  1869. dout("get_cap_refs %p cap_snap_pending\n", inode);
  1870. goto out;
  1871. }
  1872. }
  1873. have = __ceph_caps_issued(ci, &implemented);
  1874. if ((have & need) == need) {
  1875. /*
  1876. * Look at (implemented & ~have & not) so that we keep waiting
  1877. * on transition from wanted -> needed caps. This is needed
  1878. * for WRBUFFER|WR -> WR to avoid a new WR sync write from
  1879. * going before a prior buffered writeback happens.
  1880. */
  1881. int not = want & ~(have & need);
  1882. int revoking = implemented & ~have;
  1883. dout("get_cap_refs %p have %s but not %s (revoking %s)\n",
  1884. inode, ceph_cap_string(have), ceph_cap_string(not),
  1885. ceph_cap_string(revoking));
  1886. if ((revoking & not) == 0) {
  1887. *got = need | (have & want);
  1888. __take_cap_refs(ci, *got);
  1889. ret = 1;
  1890. }
  1891. } else {
  1892. dout("get_cap_refs %p have %s needed %s\n", inode,
  1893. ceph_cap_string(have), ceph_cap_string(need));
  1894. }
  1895. out:
  1896. spin_unlock(&ci->i_ceph_lock);
  1897. dout("get_cap_refs %p ret %d got %s\n", inode,
  1898. ret, ceph_cap_string(*got));
  1899. return ret;
  1900. }
  1901. /*
  1902. * Check the offset we are writing up to against our current
  1903. * max_size. If necessary, tell the MDS we want to write to
  1904. * a larger offset.
  1905. */
  1906. static void check_max_size(struct inode *inode, loff_t endoff)
  1907. {
  1908. struct ceph_inode_info *ci = ceph_inode(inode);
  1909. int check = 0;
  1910. /* do we need to explicitly request a larger max_size? */
  1911. spin_lock(&ci->i_ceph_lock);
  1912. if ((endoff >= ci->i_max_size ||
  1913. endoff > (inode->i_size << 1)) &&
  1914. endoff > ci->i_wanted_max_size) {
  1915. dout("write %p at large endoff %llu, req max_size\n",
  1916. inode, endoff);
  1917. ci->i_wanted_max_size = endoff;
  1918. check = 1;
  1919. }
  1920. spin_unlock(&ci->i_ceph_lock);
  1921. if (check)
  1922. ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL);
  1923. }
  1924. /*
  1925. * Wait for caps, and take cap references. If we can't get a WR cap
  1926. * due to a small max_size, make sure we check_max_size (and possibly
  1927. * ask the mds) so we don't get hung up indefinitely.
  1928. */
  1929. int ceph_get_caps(struct ceph_inode_info *ci, int need, int want, int *got,
  1930. loff_t endoff)
  1931. {
  1932. int check_max, ret, err;
  1933. retry:
  1934. if (endoff > 0)
  1935. check_max_size(&ci->vfs_inode, endoff);
  1936. check_max = 0;
  1937. err = 0;
  1938. ret = wait_event_interruptible(ci->i_cap_wq,
  1939. try_get_cap_refs(ci, need, want,
  1940. got, endoff,
  1941. &check_max, &err));
  1942. if (err)
  1943. ret = err;
  1944. if (check_max)
  1945. goto retry;
  1946. return ret;
  1947. }
  1948. /*
  1949. * Take cap refs. Caller must already know we hold at least one ref
  1950. * on the caps in question or we don't know this is safe.
  1951. */
  1952. void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps)
  1953. {
  1954. spin_lock(&ci->i_ceph_lock);
  1955. __take_cap_refs(ci, caps);
  1956. spin_unlock(&ci->i_ceph_lock);
  1957. }
  1958. /*
  1959. * Release cap refs.
  1960. *
  1961. * If we released the last ref on any given cap, call ceph_check_caps
  1962. * to release (or schedule a release).
  1963. *
  1964. * If we are releasing a WR cap (from a sync write), finalize any affected
  1965. * cap_snap, and wake up any waiters.
  1966. */
  1967. void ceph_put_cap_refs(struct ceph_inode_info *ci, int had)
  1968. {
  1969. struct inode *inode = &ci->vfs_inode;
  1970. int last = 0, put = 0, flushsnaps = 0, wake = 0;
  1971. struct ceph_cap_snap *capsnap;
  1972. spin_lock(&ci->i_ceph_lock);
  1973. if (had & CEPH_CAP_PIN)
  1974. --ci->i_pin_ref;
  1975. if (had & CEPH_CAP_FILE_RD)
  1976. if (--ci->i_rd_ref == 0)
  1977. last++;
  1978. if (had & CEPH_CAP_FILE_CACHE)
  1979. if (--ci->i_rdcache_ref == 0)
  1980. last++;
  1981. if (had & CEPH_CAP_FILE_BUFFER) {
  1982. if (--ci->i_wb_ref == 0) {
  1983. last++;
  1984. put++;
  1985. }
  1986. dout("put_cap_refs %p wb %d -> %d (?)\n",
  1987. inode, ci->i_wb_ref+1, ci->i_wb_ref);
  1988. }
  1989. if (had & CEPH_CAP_FILE_WR)
  1990. if (--ci->i_wr_ref == 0) {
  1991. last++;
  1992. if (!list_empty(&ci->i_cap_snaps)) {
  1993. capsnap = list_first_entry(&ci->i_cap_snaps,
  1994. struct ceph_cap_snap,
  1995. ci_item);
  1996. if (capsnap->writing) {
  1997. capsnap->writing = 0;
  1998. flushsnaps =
  1999. __ceph_finish_cap_snap(ci,
  2000. capsnap);
  2001. wake = 1;
  2002. }
  2003. }
  2004. }
  2005. spin_unlock(&ci->i_ceph_lock);
  2006. dout("put_cap_refs %p had %s%s%s\n", inode, ceph_cap_string(had),
  2007. last ? " last" : "", put ? " put" : "");
  2008. if (last && !flushsnaps)
  2009. ceph_check_caps(ci, 0, NULL);
  2010. else if (flushsnaps)
  2011. ceph_flush_snaps(ci);
  2012. if (wake)
  2013. wake_up_all(&ci->i_cap_wq);
  2014. if (put)
  2015. iput(inode);
  2016. }
  2017. /*
  2018. * Release @nr WRBUFFER refs on dirty pages for the given @snapc snap
  2019. * context. Adjust per-snap dirty page accounting as appropriate.
  2020. * Once all dirty data for a cap_snap is flushed, flush snapped file
  2021. * metadata back to the MDS. If we dropped the last ref, call
  2022. * ceph_check_caps.
  2023. */
  2024. void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr,
  2025. struct ceph_snap_context *snapc)
  2026. {
  2027. struct inode *inode = &ci->vfs_inode;
  2028. int last = 0;
  2029. int complete_capsnap = 0;
  2030. int drop_capsnap = 0;
  2031. int found = 0;
  2032. struct ceph_cap_snap *capsnap = NULL;
  2033. spin_lock(&ci->i_ceph_lock);
  2034. ci->i_wrbuffer_ref -= nr;
  2035. last = !ci->i_wrbuffer_ref;
  2036. if (ci->i_head_snapc == snapc) {
  2037. ci->i_wrbuffer_ref_head -= nr;
  2038. if (ci->i_wrbuffer_ref_head == 0 &&
  2039. ci->i_dirty_caps == 0 && ci->i_flushing_caps == 0) {
  2040. BUG_ON(!ci->i_head_snapc);
  2041. ceph_put_snap_context(ci->i_head_snapc);
  2042. ci->i_head_snapc = NULL;
  2043. }
  2044. dout("put_wrbuffer_cap_refs on %p head %d/%d -> %d/%d %s\n",
  2045. inode,
  2046. ci->i_wrbuffer_ref+nr, ci->i_wrbuffer_ref_head+nr,
  2047. ci->i_wrbuffer_ref, ci->i_wrbuffer_ref_head,
  2048. last ? " LAST" : "");
  2049. } else {
  2050. list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
  2051. if (capsnap->context == snapc) {
  2052. found = 1;
  2053. break;
  2054. }
  2055. }
  2056. BUG_ON(!found);
  2057. capsnap->dirty_pages -= nr;
  2058. if (capsnap->dirty_pages == 0) {
  2059. complete_capsnap = 1;
  2060. if (capsnap->dirty == 0)
  2061. /* cap writeback completed before we created
  2062. * the cap_snap; no FLUSHSNAP is needed */
  2063. drop_capsnap = 1;
  2064. }
  2065. dout("put_wrbuffer_cap_refs on %p cap_snap %p "
  2066. " snap %lld %d/%d -> %d/%d %s%s%s\n",
  2067. inode, capsnap, capsnap->context->seq,
  2068. ci->i_wrbuffer_ref+nr, capsnap->dirty_pages + nr,
  2069. ci->i_wrbuffer_ref, capsnap->dirty_pages,
  2070. last ? " (wrbuffer last)" : "",
  2071. complete_capsnap ? " (complete capsnap)" : "",
  2072. drop_capsnap ? " (drop capsnap)" : "");
  2073. if (drop_capsnap) {
  2074. ceph_put_snap_context(capsnap->context);
  2075. list_del(&capsnap->ci_item);
  2076. list_del(&capsnap->flushing_item);
  2077. ceph_put_cap_snap(capsnap);
  2078. }
  2079. }
  2080. spin_unlock(&ci->i_ceph_lock);
  2081. if (last) {
  2082. ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL);
  2083. iput(inode);
  2084. } else if (complete_capsnap) {
  2085. ceph_flush_snaps(ci);
  2086. wake_up_all(&ci->i_cap_wq);
  2087. }
  2088. if (drop_capsnap)
  2089. iput(inode);
  2090. }
  2091. /*
  2092. * Handle a cap GRANT message from the MDS. (Note that a GRANT may
  2093. * actually be a revocation if it specifies a smaller cap set.)
  2094. *
  2095. * caller holds s_mutex and i_ceph_lock, we drop both.
  2096. *
  2097. * return value:
  2098. * 0 - ok
  2099. * 1 - check_caps on auth cap only (writeback)
  2100. * 2 - check_caps (ack revoke)
  2101. */
  2102. static void handle_cap_grant(struct inode *inode, struct ceph_mds_caps *grant,
  2103. struct ceph_mds_session *session,
  2104. struct ceph_cap *cap,
  2105. struct ceph_buffer *xattr_buf)
  2106. __releases(ci->i_ceph_lock)
  2107. {
  2108. struct ceph_inode_info *ci = ceph_inode(inode);
  2109. int mds = session->s_mds;
  2110. int seq = le32_to_cpu(grant->seq);
  2111. int newcaps = le32_to_cpu(grant->caps);
  2112. int issued, implemented, used, wanted, dirty;
  2113. u64 size = le64_to_cpu(grant->size);
  2114. u64 max_size = le64_to_cpu(grant->max_size);
  2115. struct timespec mtime, atime, ctime;
  2116. int check_caps = 0;
  2117. int wake = 0;
  2118. int writeback = 0;
  2119. int revoked_rdcache = 0;
  2120. int queue_invalidate = 0;
  2121. dout("handle_cap_grant inode %p cap %p mds%d seq %d %s\n",
  2122. inode, cap, mds, seq, ceph_cap_string(newcaps));
  2123. dout(" size %llu max_size %llu, i_size %llu\n", size, max_size,
  2124. inode->i_size);
  2125. /*
  2126. * If CACHE is being revoked, and we have no dirty buffers,
  2127. * try to invalidate (once). (If there are dirty buffers, we
  2128. * will invalidate _after_ writeback.)
  2129. */
  2130. if (((cap->issued & ~newcaps) & CEPH_CAP_FILE_CACHE) &&
  2131. (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 &&
  2132. !ci->i_wrbuffer_ref) {
  2133. if (try_nonblocking_invalidate(inode) == 0) {
  2134. revoked_rdcache = 1;
  2135. } else {
  2136. /* there were locked pages.. invalidate later
  2137. in a separate thread. */
  2138. if (ci->i_rdcache_revoking != ci->i_rdcache_gen) {
  2139. queue_invalidate = 1;
  2140. ci->i_rdcache_revoking = ci->i_rdcache_gen;
  2141. }
  2142. }
  2143. }
  2144. /* side effects now are allowed */
  2145. issued = __ceph_caps_issued(ci, &implemented);
  2146. issued |= implemented | __ceph_caps_dirty(ci);
  2147. cap->cap_gen = session->s_cap_gen;
  2148. __check_cap_issue(ci, cap, newcaps);
  2149. if ((issued & CEPH_CAP_AUTH_EXCL) == 0) {
  2150. inode->i_mode = le32_to_cpu(grant->mode);
  2151. inode->i_uid = make_kuid(&init_user_ns, le32_to_cpu(grant->uid));
  2152. inode->i_gid = make_kgid(&init_user_ns, le32_to_cpu(grant->gid));
  2153. dout("%p mode 0%o uid.gid %d.%d\n", inode, inode->i_mode,
  2154. from_kuid(&init_user_ns, inode->i_uid),
  2155. from_kgid(&init_user_ns, inode->i_gid));
  2156. }
  2157. if ((issued & CEPH_CAP_LINK_EXCL) == 0)
  2158. set_nlink(inode, le32_to_cpu(grant->nlink));
  2159. if ((issued & CEPH_CAP_XATTR_EXCL) == 0 && grant->xattr_len) {
  2160. int len = le32_to_cpu(grant->xattr_len);
  2161. u64 version = le64_to_cpu(grant->xattr_version);
  2162. if (version > ci->i_xattrs.version) {
  2163. dout(" got new xattrs v%llu on %p len %d\n",
  2164. version, inode, len);
  2165. if (ci->i_xattrs.blob)
  2166. ceph_buffer_put(ci->i_xattrs.blob);
  2167. ci->i_xattrs.blob = ceph_buffer_get(xattr_buf);
  2168. ci->i_xattrs.version = version;
  2169. }
  2170. }
  2171. /* size/ctime/mtime/atime? */
  2172. ceph_fill_file_size(inode, issued,
  2173. le32_to_cpu(grant->truncate_seq),
  2174. le64_to_cpu(grant->truncate_size), size);
  2175. ceph_decode_timespec(&mtime, &grant->mtime);
  2176. ceph_decode_timespec(&atime, &grant->atime);
  2177. ceph_decode_timespec(&ctime, &grant->ctime);
  2178. ceph_fill_file_time(inode, issued,
  2179. le32_to_cpu(grant->time_warp_seq), &ctime, &mtime,
  2180. &atime);
  2181. /* max size increase? */
  2182. if (ci->i_auth_cap == cap && max_size != ci->i_max_size) {
  2183. dout("max_size %lld -> %llu\n", ci->i_max_size, max_size);
  2184. ci->i_max_size = max_size;
  2185. if (max_size >= ci->i_wanted_max_size) {
  2186. ci->i_wanted_max_size = 0; /* reset */
  2187. ci->i_requested_max_size = 0;
  2188. }
  2189. wake = 1;
  2190. }
  2191. /* check cap bits */
  2192. wanted = __ceph_caps_wanted(ci);
  2193. used = __ceph_caps_used(ci);
  2194. dirty = __ceph_caps_dirty(ci);
  2195. dout(" my wanted = %s, used = %s, dirty %s\n",
  2196. ceph_cap_string(wanted),
  2197. ceph_cap_string(used),
  2198. ceph_cap_string(dirty));
  2199. if (wanted != le32_to_cpu(grant->wanted)) {
  2200. dout("mds wanted %s -> %s\n",
  2201. ceph_cap_string(le32_to_cpu(grant->wanted)),
  2202. ceph_cap_string(wanted));
  2203. /* imported cap may not have correct mds_wanted */
  2204. if (le32_to_cpu(grant->op) == CEPH_CAP_OP_IMPORT)
  2205. check_caps = 1;
  2206. }
  2207. cap->seq = seq;
  2208. /* file layout may have changed */
  2209. ci->i_layout = grant->layout;
  2210. /* revocation, grant, or no-op? */
  2211. if (cap->issued & ~newcaps) {
  2212. int revoking = cap->issued & ~newcaps;
  2213. dout("revocation: %s -> %s (revoking %s)\n",
  2214. ceph_cap_string(cap->issued),
  2215. ceph_cap_string(newcaps),
  2216. ceph_cap_string(revoking));
  2217. if (revoking & used & CEPH_CAP_FILE_BUFFER)
  2218. writeback = 1; /* initiate writeback; will delay ack */
  2219. else if (revoking == CEPH_CAP_FILE_CACHE &&
  2220. (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 &&
  2221. queue_invalidate)
  2222. ; /* do nothing yet, invalidation will be queued */
  2223. else if (cap == ci->i_auth_cap)
  2224. check_caps = 1; /* check auth cap only */
  2225. else
  2226. check_caps = 2; /* check all caps */
  2227. cap->issued = newcaps;
  2228. cap->implemented |= newcaps;
  2229. } else if (cap->issued == newcaps) {
  2230. dout("caps unchanged: %s -> %s\n",
  2231. ceph_cap_string(cap->issued), ceph_cap_string(newcaps));
  2232. } else {
  2233. dout("grant: %s -> %s\n", ceph_cap_string(cap->issued),
  2234. ceph_cap_string(newcaps));
  2235. /* non-auth MDS is revoking the newly grant caps ? */
  2236. if (cap == ci->i_auth_cap &&
  2237. __ceph_caps_revoking_other(ci, cap, newcaps))
  2238. check_caps = 2;
  2239. cap->issued = newcaps;
  2240. cap->implemented |= newcaps; /* add bits only, to
  2241. * avoid stepping on a
  2242. * pending revocation */
  2243. wake = 1;
  2244. }
  2245. BUG_ON(cap->issued & ~cap->implemented);
  2246. spin_unlock(&ci->i_ceph_lock);
  2247. if (writeback)
  2248. /*
  2249. * queue inode for writeback: we can't actually call
  2250. * filemap_write_and_wait, etc. from message handler
  2251. * context.
  2252. */
  2253. ceph_queue_writeback(inode);
  2254. if (queue_invalidate)
  2255. ceph_queue_invalidate(inode);
  2256. if (wake)
  2257. wake_up_all(&ci->i_cap_wq);
  2258. if (check_caps == 1)
  2259. ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_AUTHONLY,
  2260. session);
  2261. else if (check_caps == 2)
  2262. ceph_check_caps(ci, CHECK_CAPS_NODELAY, session);
  2263. else
  2264. mutex_unlock(&session->s_mutex);
  2265. }
  2266. /*
  2267. * Handle FLUSH_ACK from MDS, indicating that metadata we sent to the
  2268. * MDS has been safely committed.
  2269. */
  2270. static void handle_cap_flush_ack(struct inode *inode, u64 flush_tid,
  2271. struct ceph_mds_caps *m,
  2272. struct ceph_mds_session *session,
  2273. struct ceph_cap *cap)
  2274. __releases(ci->i_ceph_lock)
  2275. {
  2276. struct ceph_inode_info *ci = ceph_inode(inode);
  2277. struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
  2278. unsigned seq = le32_to_cpu(m->seq);
  2279. int dirty = le32_to_cpu(m->dirty);
  2280. int cleaned = 0;
  2281. int drop = 0;
  2282. int i;
  2283. for (i = 0; i < CEPH_CAP_BITS; i++)
  2284. if ((dirty & (1 << i)) &&
  2285. flush_tid == ci->i_cap_flush_tid[i])
  2286. cleaned |= 1 << i;
  2287. dout("handle_cap_flush_ack inode %p mds%d seq %d on %s cleaned %s,"
  2288. " flushing %s -> %s\n",
  2289. inode, session->s_mds, seq, ceph_cap_string(dirty),
  2290. ceph_cap_string(cleaned), ceph_cap_string(ci->i_flushing_caps),
  2291. ceph_cap_string(ci->i_flushing_caps & ~cleaned));
  2292. if (ci->i_flushing_caps == (ci->i_flushing_caps & ~cleaned))
  2293. goto out;
  2294. ci->i_flushing_caps &= ~cleaned;
  2295. spin_lock(&mdsc->cap_dirty_lock);
  2296. if (ci->i_flushing_caps == 0) {
  2297. list_del_init(&ci->i_flushing_item);
  2298. if (!list_empty(&session->s_cap_flushing))
  2299. dout(" mds%d still flushing cap on %p\n",
  2300. session->s_mds,
  2301. &list_entry(session->s_cap_flushing.next,
  2302. struct ceph_inode_info,
  2303. i_flushing_item)->vfs_inode);
  2304. mdsc->num_cap_flushing--;
  2305. wake_up_all(&mdsc->cap_flushing_wq);
  2306. dout(" inode %p now !flushing\n", inode);
  2307. if (ci->i_dirty_caps == 0) {
  2308. dout(" inode %p now clean\n", inode);
  2309. BUG_ON(!list_empty(&ci->i_dirty_item));
  2310. drop = 1;
  2311. if (ci->i_wrbuffer_ref_head == 0) {
  2312. BUG_ON(!ci->i_head_snapc);
  2313. ceph_put_snap_context(ci->i_head_snapc);
  2314. ci->i_head_snapc = NULL;
  2315. }
  2316. } else {
  2317. BUG_ON(list_empty(&ci->i_dirty_item));
  2318. }
  2319. }
  2320. spin_unlock(&mdsc->cap_dirty_lock);
  2321. wake_up_all(&ci->i_cap_wq);
  2322. out:
  2323. spin_unlock(&ci->i_ceph_lock);
  2324. if (drop)
  2325. iput(inode);
  2326. }
  2327. /*
  2328. * Handle FLUSHSNAP_ACK. MDS has flushed snap data to disk and we can
  2329. * throw away our cap_snap.
  2330. *
  2331. * Caller hold s_mutex.
  2332. */
  2333. static void handle_cap_flushsnap_ack(struct inode *inode, u64 flush_tid,
  2334. struct ceph_mds_caps *m,
  2335. struct ceph_mds_session *session)
  2336. {
  2337. struct ceph_inode_info *ci = ceph_inode(inode);
  2338. u64 follows = le64_to_cpu(m->snap_follows);
  2339. struct ceph_cap_snap *capsnap;
  2340. int drop = 0;
  2341. dout("handle_cap_flushsnap_ack inode %p ci %p mds%d follows %lld\n",
  2342. inode, ci, session->s_mds, follows);
  2343. spin_lock(&ci->i_ceph_lock);
  2344. list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
  2345. if (capsnap->follows == follows) {
  2346. if (capsnap->flush_tid != flush_tid) {
  2347. dout(" cap_snap %p follows %lld tid %lld !="
  2348. " %lld\n", capsnap, follows,
  2349. flush_tid, capsnap->flush_tid);
  2350. break;
  2351. }
  2352. WARN_ON(capsnap->dirty_pages || capsnap->writing);
  2353. dout(" removing %p cap_snap %p follows %lld\n",
  2354. inode, capsnap, follows);
  2355. ceph_put_snap_context(capsnap->context);
  2356. list_del(&capsnap->ci_item);
  2357. list_del(&capsnap->flushing_item);
  2358. ceph_put_cap_snap(capsnap);
  2359. drop = 1;
  2360. break;
  2361. } else {
  2362. dout(" skipping cap_snap %p follows %lld\n",
  2363. capsnap, capsnap->follows);
  2364. }
  2365. }
  2366. spin_unlock(&ci->i_ceph_lock);
  2367. if (drop)
  2368. iput(inode);
  2369. }
  2370. /*
  2371. * Handle TRUNC from MDS, indicating file truncation.
  2372. *
  2373. * caller hold s_mutex.
  2374. */
  2375. static void handle_cap_trunc(struct inode *inode,
  2376. struct ceph_mds_caps *trunc,
  2377. struct ceph_mds_session *session)
  2378. __releases(ci->i_ceph_lock)
  2379. {
  2380. struct ceph_inode_info *ci = ceph_inode(inode);
  2381. int mds = session->s_mds;
  2382. int seq = le32_to_cpu(trunc->seq);
  2383. u32 truncate_seq = le32_to_cpu(trunc->truncate_seq);
  2384. u64 truncate_size = le64_to_cpu(trunc->truncate_size);
  2385. u64 size = le64_to_cpu(trunc->size);
  2386. int implemented = 0;
  2387. int dirty = __ceph_caps_dirty(ci);
  2388. int issued = __ceph_caps_issued(ceph_inode(inode), &implemented);
  2389. int queue_trunc = 0;
  2390. issued |= implemented | dirty;
  2391. dout("handle_cap_trunc inode %p mds%d seq %d to %lld seq %d\n",
  2392. inode, mds, seq, truncate_size, truncate_seq);
  2393. queue_trunc = ceph_fill_file_size(inode, issued,
  2394. truncate_seq, truncate_size, size);
  2395. spin_unlock(&ci->i_ceph_lock);
  2396. if (queue_trunc)
  2397. ceph_queue_vmtruncate(inode);
  2398. }
  2399. /*
  2400. * Handle EXPORT from MDS. Cap is being migrated _from_ this mds to a
  2401. * different one. If we are the most recent migration we've seen (as
  2402. * indicated by mseq), make note of the migrating cap bits for the
  2403. * duration (until we see the corresponding IMPORT).
  2404. *
  2405. * caller holds s_mutex
  2406. */
  2407. static void handle_cap_export(struct inode *inode, struct ceph_mds_caps *ex,
  2408. struct ceph_mds_session *session,
  2409. int *open_target_sessions)
  2410. {
  2411. struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
  2412. struct ceph_inode_info *ci = ceph_inode(inode);
  2413. int mds = session->s_mds;
  2414. unsigned mseq = le32_to_cpu(ex->migrate_seq);
  2415. struct ceph_cap *cap = NULL, *t;
  2416. struct rb_node *p;
  2417. int remember = 1;
  2418. dout("handle_cap_export inode %p ci %p mds%d mseq %d\n",
  2419. inode, ci, mds, mseq);
  2420. spin_lock(&ci->i_ceph_lock);
  2421. /* make sure we haven't seen a higher mseq */
  2422. for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
  2423. t = rb_entry(p, struct ceph_cap, ci_node);
  2424. if (ceph_seq_cmp(t->mseq, mseq) > 0) {
  2425. dout(" higher mseq on cap from mds%d\n",
  2426. t->session->s_mds);
  2427. remember = 0;
  2428. }
  2429. if (t->session->s_mds == mds)
  2430. cap = t;
  2431. }
  2432. if (cap) {
  2433. if (remember) {
  2434. /* make note */
  2435. ci->i_cap_exporting_mds = mds;
  2436. ci->i_cap_exporting_mseq = mseq;
  2437. ci->i_cap_exporting_issued = cap->issued;
  2438. /*
  2439. * make sure we have open sessions with all possible
  2440. * export targets, so that we get the matching IMPORT
  2441. */
  2442. *open_target_sessions = 1;
  2443. /*
  2444. * we can't flush dirty caps that we've seen the
  2445. * EXPORT but no IMPORT for
  2446. */
  2447. spin_lock(&mdsc->cap_dirty_lock);
  2448. if (!list_empty(&ci->i_dirty_item)) {
  2449. dout(" moving %p to cap_dirty_migrating\n",
  2450. inode);
  2451. list_move(&ci->i_dirty_item,
  2452. &mdsc->cap_dirty_migrating);
  2453. }
  2454. spin_unlock(&mdsc->cap_dirty_lock);
  2455. }
  2456. __ceph_remove_cap(cap);
  2457. }
  2458. /* else, we already released it */
  2459. spin_unlock(&ci->i_ceph_lock);
  2460. }
  2461. /*
  2462. * Handle cap IMPORT. If there are temp bits from an older EXPORT,
  2463. * clean them up.
  2464. *
  2465. * caller holds s_mutex.
  2466. */
  2467. static void handle_cap_import(struct ceph_mds_client *mdsc,
  2468. struct inode *inode, struct ceph_mds_caps *im,
  2469. struct ceph_mds_session *session,
  2470. void *snaptrace, int snaptrace_len)
  2471. {
  2472. struct ceph_inode_info *ci = ceph_inode(inode);
  2473. int mds = session->s_mds;
  2474. unsigned issued = le32_to_cpu(im->caps);
  2475. unsigned wanted = le32_to_cpu(im->wanted);
  2476. unsigned seq = le32_to_cpu(im->seq);
  2477. unsigned mseq = le32_to_cpu(im->migrate_seq);
  2478. u64 realmino = le64_to_cpu(im->realm);
  2479. u64 cap_id = le64_to_cpu(im->cap_id);
  2480. if (ci->i_cap_exporting_mds >= 0 &&
  2481. ceph_seq_cmp(ci->i_cap_exporting_mseq, mseq) < 0) {
  2482. dout("handle_cap_import inode %p ci %p mds%d mseq %d"
  2483. " - cleared exporting from mds%d\n",
  2484. inode, ci, mds, mseq,
  2485. ci->i_cap_exporting_mds);
  2486. ci->i_cap_exporting_issued = 0;
  2487. ci->i_cap_exporting_mseq = 0;
  2488. ci->i_cap_exporting_mds = -1;
  2489. spin_lock(&mdsc->cap_dirty_lock);
  2490. if (!list_empty(&ci->i_dirty_item)) {
  2491. dout(" moving %p back to cap_dirty\n", inode);
  2492. list_move(&ci->i_dirty_item, &mdsc->cap_dirty);
  2493. }
  2494. spin_unlock(&mdsc->cap_dirty_lock);
  2495. } else {
  2496. dout("handle_cap_import inode %p ci %p mds%d mseq %d\n",
  2497. inode, ci, mds, mseq);
  2498. }
  2499. down_write(&mdsc->snap_rwsem);
  2500. ceph_update_snap_trace(mdsc, snaptrace, snaptrace+snaptrace_len,
  2501. false);
  2502. downgrade_write(&mdsc->snap_rwsem);
  2503. ceph_add_cap(inode, session, cap_id, -1,
  2504. issued, wanted, seq, mseq, realmino, CEPH_CAP_FLAG_AUTH,
  2505. NULL /* no caps context */);
  2506. kick_flushing_inode_caps(mdsc, session, inode);
  2507. up_read(&mdsc->snap_rwsem);
  2508. /* make sure we re-request max_size, if necessary */
  2509. spin_lock(&ci->i_ceph_lock);
  2510. ci->i_wanted_max_size = 0; /* reset */
  2511. ci->i_requested_max_size = 0;
  2512. spin_unlock(&ci->i_ceph_lock);
  2513. }
  2514. /*
  2515. * Handle a caps message from the MDS.
  2516. *
  2517. * Identify the appropriate session, inode, and call the right handler
  2518. * based on the cap op.
  2519. */
  2520. void ceph_handle_caps(struct ceph_mds_session *session,
  2521. struct ceph_msg *msg)
  2522. {
  2523. struct ceph_mds_client *mdsc = session->s_mdsc;
  2524. struct super_block *sb = mdsc->fsc->sb;
  2525. struct inode *inode;
  2526. struct ceph_inode_info *ci;
  2527. struct ceph_cap *cap;
  2528. struct ceph_mds_caps *h;
  2529. int mds = session->s_mds;
  2530. int op;
  2531. u32 seq, mseq;
  2532. struct ceph_vino vino;
  2533. u64 cap_id;
  2534. u64 size, max_size;
  2535. u64 tid;
  2536. void *snaptrace;
  2537. size_t snaptrace_len;
  2538. void *flock;
  2539. u32 flock_len;
  2540. int open_target_sessions = 0;
  2541. dout("handle_caps from mds%d\n", mds);
  2542. /* decode */
  2543. tid = le64_to_cpu(msg->hdr.tid);
  2544. if (msg->front.iov_len < sizeof(*h))
  2545. goto bad;
  2546. h = msg->front.iov_base;
  2547. op = le32_to_cpu(h->op);
  2548. vino.ino = le64_to_cpu(h->ino);
  2549. vino.snap = CEPH_NOSNAP;
  2550. cap_id = le64_to_cpu(h->cap_id);
  2551. seq = le32_to_cpu(h->seq);
  2552. mseq = le32_to_cpu(h->migrate_seq);
  2553. size = le64_to_cpu(h->size);
  2554. max_size = le64_to_cpu(h->max_size);
  2555. snaptrace = h + 1;
  2556. snaptrace_len = le32_to_cpu(h->snap_trace_len);
  2557. if (le16_to_cpu(msg->hdr.version) >= 2) {
  2558. void *p, *end;
  2559. p = snaptrace + snaptrace_len;
  2560. end = msg->front.iov_base + msg->front.iov_len;
  2561. ceph_decode_32_safe(&p, end, flock_len, bad);
  2562. flock = p;
  2563. } else {
  2564. flock = NULL;
  2565. flock_len = 0;
  2566. }
  2567. mutex_lock(&session->s_mutex);
  2568. session->s_seq++;
  2569. dout(" mds%d seq %lld cap seq %u\n", session->s_mds, session->s_seq,
  2570. (unsigned)seq);
  2571. if (op == CEPH_CAP_OP_IMPORT)
  2572. ceph_add_cap_releases(mdsc, session);
  2573. /* lookup ino */
  2574. inode = ceph_find_inode(sb, vino);
  2575. ci = ceph_inode(inode);
  2576. dout(" op %s ino %llx.%llx inode %p\n", ceph_cap_op_name(op), vino.ino,
  2577. vino.snap, inode);
  2578. if (!inode) {
  2579. dout(" i don't have ino %llx\n", vino.ino);
  2580. if (op == CEPH_CAP_OP_IMPORT)
  2581. __queue_cap_release(session, vino.ino, cap_id,
  2582. mseq, seq);
  2583. goto flush_cap_releases;
  2584. }
  2585. /* these will work even if we don't have a cap yet */
  2586. switch (op) {
  2587. case CEPH_CAP_OP_FLUSHSNAP_ACK:
  2588. handle_cap_flushsnap_ack(inode, tid, h, session);
  2589. goto done;
  2590. case CEPH_CAP_OP_EXPORT:
  2591. handle_cap_export(inode, h, session, &open_target_sessions);
  2592. goto done;
  2593. case CEPH_CAP_OP_IMPORT:
  2594. handle_cap_import(mdsc, inode, h, session,
  2595. snaptrace, snaptrace_len);
  2596. }
  2597. /* the rest require a cap */
  2598. spin_lock(&ci->i_ceph_lock);
  2599. cap = __get_cap_for_mds(ceph_inode(inode), mds);
  2600. if (!cap) {
  2601. dout(" no cap on %p ino %llx.%llx from mds%d\n",
  2602. inode, ceph_ino(inode), ceph_snap(inode), mds);
  2603. spin_unlock(&ci->i_ceph_lock);
  2604. goto flush_cap_releases;
  2605. }
  2606. /* note that each of these drops i_ceph_lock for us */
  2607. switch (op) {
  2608. case CEPH_CAP_OP_REVOKE:
  2609. case CEPH_CAP_OP_GRANT:
  2610. case CEPH_CAP_OP_IMPORT:
  2611. handle_cap_grant(inode, h, session, cap, msg->middle);
  2612. goto done_unlocked;
  2613. case CEPH_CAP_OP_FLUSH_ACK:
  2614. handle_cap_flush_ack(inode, tid, h, session, cap);
  2615. break;
  2616. case CEPH_CAP_OP_TRUNC:
  2617. handle_cap_trunc(inode, h, session);
  2618. break;
  2619. default:
  2620. spin_unlock(&ci->i_ceph_lock);
  2621. pr_err("ceph_handle_caps: unknown cap op %d %s\n", op,
  2622. ceph_cap_op_name(op));
  2623. }
  2624. goto done;
  2625. flush_cap_releases:
  2626. /*
  2627. * send any full release message to try to move things
  2628. * along for the mds (who clearly thinks we still have this
  2629. * cap).
  2630. */
  2631. ceph_add_cap_releases(mdsc, session);
  2632. ceph_send_cap_releases(mdsc, session);
  2633. done:
  2634. mutex_unlock(&session->s_mutex);
  2635. done_unlocked:
  2636. if (inode)
  2637. iput(inode);
  2638. if (open_target_sessions)
  2639. ceph_mdsc_open_export_target_sessions(mdsc, session);
  2640. return;
  2641. bad:
  2642. pr_err("ceph_handle_caps: corrupt message\n");
  2643. ceph_msg_dump(msg);
  2644. return;
  2645. }
  2646. /*
  2647. * Delayed work handler to process end of delayed cap release LRU list.
  2648. */
  2649. void ceph_check_delayed_caps(struct ceph_mds_client *mdsc)
  2650. {
  2651. struct ceph_inode_info *ci;
  2652. int flags = CHECK_CAPS_NODELAY;
  2653. dout("check_delayed_caps\n");
  2654. while (1) {
  2655. spin_lock(&mdsc->cap_delay_lock);
  2656. if (list_empty(&mdsc->cap_delay_list))
  2657. break;
  2658. ci = list_first_entry(&mdsc->cap_delay_list,
  2659. struct ceph_inode_info,
  2660. i_cap_delay_list);
  2661. if ((ci->i_ceph_flags & CEPH_I_FLUSH) == 0 &&
  2662. time_before(jiffies, ci->i_hold_caps_max))
  2663. break;
  2664. list_del_init(&ci->i_cap_delay_list);
  2665. spin_unlock(&mdsc->cap_delay_lock);
  2666. dout("check_delayed_caps on %p\n", &ci->vfs_inode);
  2667. ceph_check_caps(ci, flags, NULL);
  2668. }
  2669. spin_unlock(&mdsc->cap_delay_lock);
  2670. }
  2671. /*
  2672. * Flush all dirty caps to the mds
  2673. */
  2674. void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc)
  2675. {
  2676. struct ceph_inode_info *ci;
  2677. struct inode *inode;
  2678. dout("flush_dirty_caps\n");
  2679. spin_lock(&mdsc->cap_dirty_lock);
  2680. while (!list_empty(&mdsc->cap_dirty)) {
  2681. ci = list_first_entry(&mdsc->cap_dirty, struct ceph_inode_info,
  2682. i_dirty_item);
  2683. inode = &ci->vfs_inode;
  2684. ihold(inode);
  2685. dout("flush_dirty_caps %p\n", inode);
  2686. spin_unlock(&mdsc->cap_dirty_lock);
  2687. ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_FLUSH, NULL);
  2688. iput(inode);
  2689. spin_lock(&mdsc->cap_dirty_lock);
  2690. }
  2691. spin_unlock(&mdsc->cap_dirty_lock);
  2692. dout("flush_dirty_caps done\n");
  2693. }
  2694. /*
  2695. * Drop open file reference. If we were the last open file,
  2696. * we may need to release capabilities to the MDS (or schedule
  2697. * their delayed release).
  2698. */
  2699. void ceph_put_fmode(struct ceph_inode_info *ci, int fmode)
  2700. {
  2701. struct inode *inode = &ci->vfs_inode;
  2702. int last = 0;
  2703. spin_lock(&ci->i_ceph_lock);
  2704. dout("put_fmode %p fmode %d %d -> %d\n", inode, fmode,
  2705. ci->i_nr_by_mode[fmode], ci->i_nr_by_mode[fmode]-1);
  2706. BUG_ON(ci->i_nr_by_mode[fmode] == 0);
  2707. if (--ci->i_nr_by_mode[fmode] == 0)
  2708. last++;
  2709. spin_unlock(&ci->i_ceph_lock);
  2710. if (last && ci->i_vino.snap == CEPH_NOSNAP)
  2711. ceph_check_caps(ci, 0, NULL);
  2712. }
  2713. /*
  2714. * Helpers for embedding cap and dentry lease releases into mds
  2715. * requests.
  2716. *
  2717. * @force is used by dentry_release (below) to force inclusion of a
  2718. * record for the directory inode, even when there aren't any caps to
  2719. * drop.
  2720. */
  2721. int ceph_encode_inode_release(void **p, struct inode *inode,
  2722. int mds, int drop, int unless, int force)
  2723. {
  2724. struct ceph_inode_info *ci = ceph_inode(inode);
  2725. struct ceph_cap *cap;
  2726. struct ceph_mds_request_release *rel = *p;
  2727. int used, dirty;
  2728. int ret = 0;
  2729. spin_lock(&ci->i_ceph_lock);
  2730. used = __ceph_caps_used(ci);
  2731. dirty = __ceph_caps_dirty(ci);
  2732. dout("encode_inode_release %p mds%d used|dirty %s drop %s unless %s\n",
  2733. inode, mds, ceph_cap_string(used|dirty), ceph_cap_string(drop),
  2734. ceph_cap_string(unless));
  2735. /* only drop unused, clean caps */
  2736. drop &= ~(used | dirty);
  2737. cap = __get_cap_for_mds(ci, mds);
  2738. if (cap && __cap_is_valid(cap)) {
  2739. if (force ||
  2740. ((cap->issued & drop) &&
  2741. (cap->issued & unless) == 0)) {
  2742. if ((cap->issued & drop) &&
  2743. (cap->issued & unless) == 0) {
  2744. int wanted = __ceph_caps_wanted(ci);
  2745. if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0)
  2746. wanted |= cap->mds_wanted;
  2747. dout("encode_inode_release %p cap %p "
  2748. "%s -> %s, wanted %s -> %s\n", inode, cap,
  2749. ceph_cap_string(cap->issued),
  2750. ceph_cap_string(cap->issued & ~drop),
  2751. ceph_cap_string(cap->mds_wanted),
  2752. ceph_cap_string(wanted));
  2753. cap->issued &= ~drop;
  2754. cap->implemented &= ~drop;
  2755. cap->mds_wanted = wanted;
  2756. } else {
  2757. dout("encode_inode_release %p cap %p %s"
  2758. " (force)\n", inode, cap,
  2759. ceph_cap_string(cap->issued));
  2760. }
  2761. rel->ino = cpu_to_le64(ceph_ino(inode));
  2762. rel->cap_id = cpu_to_le64(cap->cap_id);
  2763. rel->seq = cpu_to_le32(cap->seq);
  2764. rel->issue_seq = cpu_to_le32(cap->issue_seq),
  2765. rel->mseq = cpu_to_le32(cap->mseq);
  2766. rel->caps = cpu_to_le32(cap->issued);
  2767. rel->wanted = cpu_to_le32(cap->mds_wanted);
  2768. rel->dname_len = 0;
  2769. rel->dname_seq = 0;
  2770. *p += sizeof(*rel);
  2771. ret = 1;
  2772. } else {
  2773. dout("encode_inode_release %p cap %p %s\n",
  2774. inode, cap, ceph_cap_string(cap->issued));
  2775. }
  2776. }
  2777. spin_unlock(&ci->i_ceph_lock);
  2778. return ret;
  2779. }
  2780. int ceph_encode_dentry_release(void **p, struct dentry *dentry,
  2781. int mds, int drop, int unless)
  2782. {
  2783. struct inode *dir = dentry->d_parent->d_inode;
  2784. struct ceph_mds_request_release *rel = *p;
  2785. struct ceph_dentry_info *di = ceph_dentry(dentry);
  2786. int force = 0;
  2787. int ret;
  2788. /*
  2789. * force an record for the directory caps if we have a dentry lease.
  2790. * this is racy (can't take i_ceph_lock and d_lock together), but it
  2791. * doesn't have to be perfect; the mds will revoke anything we don't
  2792. * release.
  2793. */
  2794. spin_lock(&dentry->d_lock);
  2795. if (di->lease_session && di->lease_session->s_mds == mds)
  2796. force = 1;
  2797. spin_unlock(&dentry->d_lock);
  2798. ret = ceph_encode_inode_release(p, dir, mds, drop, unless, force);
  2799. spin_lock(&dentry->d_lock);
  2800. if (ret && di->lease_session && di->lease_session->s_mds == mds) {
  2801. dout("encode_dentry_release %p mds%d seq %d\n",
  2802. dentry, mds, (int)di->lease_seq);
  2803. rel->dname_len = cpu_to_le32(dentry->d_name.len);
  2804. memcpy(*p, dentry->d_name.name, dentry->d_name.len);
  2805. *p += dentry->d_name.len;
  2806. rel->dname_seq = cpu_to_le32(di->lease_seq);
  2807. __ceph_mdsc_drop_dentry_lease(dentry);
  2808. }
  2809. spin_unlock(&dentry->d_lock);
  2810. return ret;
  2811. }