compression.c 27 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052
  1. /*
  2. * Copyright (C) 2008 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/kernel.h>
  19. #include <linux/bio.h>
  20. #include <linux/buffer_head.h>
  21. #include <linux/file.h>
  22. #include <linux/fs.h>
  23. #include <linux/pagemap.h>
  24. #include <linux/highmem.h>
  25. #include <linux/time.h>
  26. #include <linux/init.h>
  27. #include <linux/string.h>
  28. #include <linux/backing-dev.h>
  29. #include <linux/mpage.h>
  30. #include <linux/swap.h>
  31. #include <linux/writeback.h>
  32. #include <linux/bit_spinlock.h>
  33. #include <linux/slab.h>
  34. #include "compat.h"
  35. #include "ctree.h"
  36. #include "disk-io.h"
  37. #include "transaction.h"
  38. #include "btrfs_inode.h"
  39. #include "volumes.h"
  40. #include "ordered-data.h"
  41. #include "compression.h"
  42. #include "extent_io.h"
  43. #include "extent_map.h"
  44. struct compressed_bio {
  45. /* number of bios pending for this compressed extent */
  46. atomic_t pending_bios;
  47. /* the pages with the compressed data on them */
  48. struct page **compressed_pages;
  49. /* inode that owns this data */
  50. struct inode *inode;
  51. /* starting offset in the inode for our pages */
  52. u64 start;
  53. /* number of bytes in the inode we're working on */
  54. unsigned long len;
  55. /* number of bytes on disk */
  56. unsigned long compressed_len;
  57. /* the compression algorithm for this bio */
  58. int compress_type;
  59. /* number of compressed pages in the array */
  60. unsigned long nr_pages;
  61. /* IO errors */
  62. int errors;
  63. int mirror_num;
  64. /* for reads, this is the bio we are copying the data into */
  65. struct bio *orig_bio;
  66. /*
  67. * the start of a variable length array of checksums only
  68. * used by reads
  69. */
  70. u32 sums;
  71. };
  72. static int btrfs_decompress_biovec(int type, struct page **pages_in,
  73. u64 disk_start, struct bio_vec *bvec,
  74. int vcnt, size_t srclen);
  75. static inline int compressed_bio_size(struct btrfs_root *root,
  76. unsigned long disk_size)
  77. {
  78. u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
  79. return sizeof(struct compressed_bio) +
  80. ((disk_size + root->sectorsize - 1) / root->sectorsize) *
  81. csum_size;
  82. }
  83. static struct bio *compressed_bio_alloc(struct block_device *bdev,
  84. u64 first_byte, gfp_t gfp_flags)
  85. {
  86. int nr_vecs;
  87. nr_vecs = bio_get_nr_vecs(bdev);
  88. return btrfs_bio_alloc(bdev, first_byte >> 9, nr_vecs, gfp_flags);
  89. }
  90. static int check_compressed_csum(struct inode *inode,
  91. struct compressed_bio *cb,
  92. u64 disk_start)
  93. {
  94. int ret;
  95. struct page *page;
  96. unsigned long i;
  97. char *kaddr;
  98. u32 csum;
  99. u32 *cb_sum = &cb->sums;
  100. if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
  101. return 0;
  102. for (i = 0; i < cb->nr_pages; i++) {
  103. page = cb->compressed_pages[i];
  104. csum = ~(u32)0;
  105. kaddr = kmap_atomic(page);
  106. csum = btrfs_csum_data(kaddr, csum, PAGE_CACHE_SIZE);
  107. btrfs_csum_final(csum, (char *)&csum);
  108. kunmap_atomic(kaddr);
  109. if (csum != *cb_sum) {
  110. printk(KERN_INFO "btrfs csum failed ino %llu "
  111. "extent %llu csum %u "
  112. "wanted %u mirror %d\n",
  113. (unsigned long long)btrfs_ino(inode),
  114. (unsigned long long)disk_start,
  115. csum, *cb_sum, cb->mirror_num);
  116. ret = -EIO;
  117. goto fail;
  118. }
  119. cb_sum++;
  120. }
  121. ret = 0;
  122. fail:
  123. return ret;
  124. }
  125. /* when we finish reading compressed pages from the disk, we
  126. * decompress them and then run the bio end_io routines on the
  127. * decompressed pages (in the inode address space).
  128. *
  129. * This allows the checksumming and other IO error handling routines
  130. * to work normally
  131. *
  132. * The compressed pages are freed here, and it must be run
  133. * in process context
  134. */
  135. static void end_compressed_bio_read(struct bio *bio, int err)
  136. {
  137. struct compressed_bio *cb = bio->bi_private;
  138. struct inode *inode;
  139. struct page *page;
  140. unsigned long index;
  141. int ret;
  142. if (err)
  143. cb->errors = 1;
  144. /* if there are more bios still pending for this compressed
  145. * extent, just exit
  146. */
  147. if (!atomic_dec_and_test(&cb->pending_bios))
  148. goto out;
  149. inode = cb->inode;
  150. ret = check_compressed_csum(inode, cb, (u64)bio->bi_sector << 9);
  151. if (ret)
  152. goto csum_failed;
  153. /* ok, we're the last bio for this extent, lets start
  154. * the decompression.
  155. */
  156. ret = btrfs_decompress_biovec(cb->compress_type,
  157. cb->compressed_pages,
  158. cb->start,
  159. cb->orig_bio->bi_io_vec,
  160. cb->orig_bio->bi_vcnt,
  161. cb->compressed_len);
  162. csum_failed:
  163. if (ret)
  164. cb->errors = 1;
  165. /* release the compressed pages */
  166. index = 0;
  167. for (index = 0; index < cb->nr_pages; index++) {
  168. page = cb->compressed_pages[index];
  169. page->mapping = NULL;
  170. page_cache_release(page);
  171. }
  172. /* do io completion on the original bio */
  173. if (cb->errors) {
  174. bio_io_error(cb->orig_bio);
  175. } else {
  176. int bio_index = 0;
  177. struct bio_vec *bvec = cb->orig_bio->bi_io_vec;
  178. /*
  179. * we have verified the checksum already, set page
  180. * checked so the end_io handlers know about it
  181. */
  182. while (bio_index < cb->orig_bio->bi_vcnt) {
  183. SetPageChecked(bvec->bv_page);
  184. bvec++;
  185. bio_index++;
  186. }
  187. bio_endio(cb->orig_bio, 0);
  188. }
  189. /* finally free the cb struct */
  190. kfree(cb->compressed_pages);
  191. kfree(cb);
  192. out:
  193. bio_put(bio);
  194. }
  195. /*
  196. * Clear the writeback bits on all of the file
  197. * pages for a compressed write
  198. */
  199. static noinline void end_compressed_writeback(struct inode *inode, u64 start,
  200. unsigned long ram_size)
  201. {
  202. unsigned long index = start >> PAGE_CACHE_SHIFT;
  203. unsigned long end_index = (start + ram_size - 1) >> PAGE_CACHE_SHIFT;
  204. struct page *pages[16];
  205. unsigned long nr_pages = end_index - index + 1;
  206. int i;
  207. int ret;
  208. while (nr_pages > 0) {
  209. ret = find_get_pages_contig(inode->i_mapping, index,
  210. min_t(unsigned long,
  211. nr_pages, ARRAY_SIZE(pages)), pages);
  212. if (ret == 0) {
  213. nr_pages -= 1;
  214. index += 1;
  215. continue;
  216. }
  217. for (i = 0; i < ret; i++) {
  218. end_page_writeback(pages[i]);
  219. page_cache_release(pages[i]);
  220. }
  221. nr_pages -= ret;
  222. index += ret;
  223. }
  224. /* the inode may be gone now */
  225. }
  226. /*
  227. * do the cleanup once all the compressed pages hit the disk.
  228. * This will clear writeback on the file pages and free the compressed
  229. * pages.
  230. *
  231. * This also calls the writeback end hooks for the file pages so that
  232. * metadata and checksums can be updated in the file.
  233. */
  234. static void end_compressed_bio_write(struct bio *bio, int err)
  235. {
  236. struct extent_io_tree *tree;
  237. struct compressed_bio *cb = bio->bi_private;
  238. struct inode *inode;
  239. struct page *page;
  240. unsigned long index;
  241. if (err)
  242. cb->errors = 1;
  243. /* if there are more bios still pending for this compressed
  244. * extent, just exit
  245. */
  246. if (!atomic_dec_and_test(&cb->pending_bios))
  247. goto out;
  248. /* ok, we're the last bio for this extent, step one is to
  249. * call back into the FS and do all the end_io operations
  250. */
  251. inode = cb->inode;
  252. tree = &BTRFS_I(inode)->io_tree;
  253. cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
  254. tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
  255. cb->start,
  256. cb->start + cb->len - 1,
  257. NULL, 1);
  258. cb->compressed_pages[0]->mapping = NULL;
  259. end_compressed_writeback(inode, cb->start, cb->len);
  260. /* note, our inode could be gone now */
  261. /*
  262. * release the compressed pages, these came from alloc_page and
  263. * are not attached to the inode at all
  264. */
  265. index = 0;
  266. for (index = 0; index < cb->nr_pages; index++) {
  267. page = cb->compressed_pages[index];
  268. page->mapping = NULL;
  269. page_cache_release(page);
  270. }
  271. /* finally free the cb struct */
  272. kfree(cb->compressed_pages);
  273. kfree(cb);
  274. out:
  275. bio_put(bio);
  276. }
  277. /*
  278. * worker function to build and submit bios for previously compressed pages.
  279. * The corresponding pages in the inode should be marked for writeback
  280. * and the compressed pages should have a reference on them for dropping
  281. * when the IO is complete.
  282. *
  283. * This also checksums the file bytes and gets things ready for
  284. * the end io hooks.
  285. */
  286. int btrfs_submit_compressed_write(struct inode *inode, u64 start,
  287. unsigned long len, u64 disk_start,
  288. unsigned long compressed_len,
  289. struct page **compressed_pages,
  290. unsigned long nr_pages)
  291. {
  292. struct bio *bio = NULL;
  293. struct btrfs_root *root = BTRFS_I(inode)->root;
  294. struct compressed_bio *cb;
  295. unsigned long bytes_left;
  296. struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
  297. int pg_index = 0;
  298. struct page *page;
  299. u64 first_byte = disk_start;
  300. struct block_device *bdev;
  301. int ret;
  302. int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
  303. WARN_ON(start & ((u64)PAGE_CACHE_SIZE - 1));
  304. cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
  305. if (!cb)
  306. return -ENOMEM;
  307. atomic_set(&cb->pending_bios, 0);
  308. cb->errors = 0;
  309. cb->inode = inode;
  310. cb->start = start;
  311. cb->len = len;
  312. cb->mirror_num = 0;
  313. cb->compressed_pages = compressed_pages;
  314. cb->compressed_len = compressed_len;
  315. cb->orig_bio = NULL;
  316. cb->nr_pages = nr_pages;
  317. bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  318. bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
  319. if(!bio) {
  320. kfree(cb);
  321. return -ENOMEM;
  322. }
  323. bio->bi_private = cb;
  324. bio->bi_end_io = end_compressed_bio_write;
  325. atomic_inc(&cb->pending_bios);
  326. /* create and submit bios for the compressed pages */
  327. bytes_left = compressed_len;
  328. for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
  329. page = compressed_pages[pg_index];
  330. page->mapping = inode->i_mapping;
  331. if (bio->bi_size)
  332. ret = io_tree->ops->merge_bio_hook(WRITE, page, 0,
  333. PAGE_CACHE_SIZE,
  334. bio, 0);
  335. else
  336. ret = 0;
  337. page->mapping = NULL;
  338. if (ret || bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) <
  339. PAGE_CACHE_SIZE) {
  340. bio_get(bio);
  341. /*
  342. * inc the count before we submit the bio so
  343. * we know the end IO handler won't happen before
  344. * we inc the count. Otherwise, the cb might get
  345. * freed before we're done setting it up
  346. */
  347. atomic_inc(&cb->pending_bios);
  348. ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
  349. BUG_ON(ret); /* -ENOMEM */
  350. if (!skip_sum) {
  351. ret = btrfs_csum_one_bio(root, inode, bio,
  352. start, 1);
  353. BUG_ON(ret); /* -ENOMEM */
  354. }
  355. ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
  356. BUG_ON(ret); /* -ENOMEM */
  357. bio_put(bio);
  358. bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
  359. BUG_ON(!bio);
  360. bio->bi_private = cb;
  361. bio->bi_end_io = end_compressed_bio_write;
  362. bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
  363. }
  364. if (bytes_left < PAGE_CACHE_SIZE) {
  365. printk("bytes left %lu compress len %lu nr %lu\n",
  366. bytes_left, cb->compressed_len, cb->nr_pages);
  367. }
  368. bytes_left -= PAGE_CACHE_SIZE;
  369. first_byte += PAGE_CACHE_SIZE;
  370. cond_resched();
  371. }
  372. bio_get(bio);
  373. ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
  374. BUG_ON(ret); /* -ENOMEM */
  375. if (!skip_sum) {
  376. ret = btrfs_csum_one_bio(root, inode, bio, start, 1);
  377. BUG_ON(ret); /* -ENOMEM */
  378. }
  379. ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
  380. BUG_ON(ret); /* -ENOMEM */
  381. bio_put(bio);
  382. return 0;
  383. }
  384. static noinline int add_ra_bio_pages(struct inode *inode,
  385. u64 compressed_end,
  386. struct compressed_bio *cb)
  387. {
  388. unsigned long end_index;
  389. unsigned long pg_index;
  390. u64 last_offset;
  391. u64 isize = i_size_read(inode);
  392. int ret;
  393. struct page *page;
  394. unsigned long nr_pages = 0;
  395. struct extent_map *em;
  396. struct address_space *mapping = inode->i_mapping;
  397. struct extent_map_tree *em_tree;
  398. struct extent_io_tree *tree;
  399. u64 end;
  400. int misses = 0;
  401. page = cb->orig_bio->bi_io_vec[cb->orig_bio->bi_vcnt - 1].bv_page;
  402. last_offset = (page_offset(page) + PAGE_CACHE_SIZE);
  403. em_tree = &BTRFS_I(inode)->extent_tree;
  404. tree = &BTRFS_I(inode)->io_tree;
  405. if (isize == 0)
  406. return 0;
  407. end_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
  408. while (last_offset < compressed_end) {
  409. pg_index = last_offset >> PAGE_CACHE_SHIFT;
  410. if (pg_index > end_index)
  411. break;
  412. rcu_read_lock();
  413. page = radix_tree_lookup(&mapping->page_tree, pg_index);
  414. rcu_read_unlock();
  415. if (page) {
  416. misses++;
  417. if (misses > 4)
  418. break;
  419. goto next;
  420. }
  421. page = __page_cache_alloc(mapping_gfp_mask(mapping) &
  422. ~__GFP_FS);
  423. if (!page)
  424. break;
  425. if (add_to_page_cache_lru(page, mapping, pg_index,
  426. GFP_NOFS)) {
  427. page_cache_release(page);
  428. goto next;
  429. }
  430. end = last_offset + PAGE_CACHE_SIZE - 1;
  431. /*
  432. * at this point, we have a locked page in the page cache
  433. * for these bytes in the file. But, we have to make
  434. * sure they map to this compressed extent on disk.
  435. */
  436. set_page_extent_mapped(page);
  437. lock_extent(tree, last_offset, end);
  438. read_lock(&em_tree->lock);
  439. em = lookup_extent_mapping(em_tree, last_offset,
  440. PAGE_CACHE_SIZE);
  441. read_unlock(&em_tree->lock);
  442. if (!em || last_offset < em->start ||
  443. (last_offset + PAGE_CACHE_SIZE > extent_map_end(em)) ||
  444. (em->block_start >> 9) != cb->orig_bio->bi_sector) {
  445. free_extent_map(em);
  446. unlock_extent(tree, last_offset, end);
  447. unlock_page(page);
  448. page_cache_release(page);
  449. break;
  450. }
  451. free_extent_map(em);
  452. if (page->index == end_index) {
  453. char *userpage;
  454. size_t zero_offset = isize & (PAGE_CACHE_SIZE - 1);
  455. if (zero_offset) {
  456. int zeros;
  457. zeros = PAGE_CACHE_SIZE - zero_offset;
  458. userpage = kmap_atomic(page);
  459. memset(userpage + zero_offset, 0, zeros);
  460. flush_dcache_page(page);
  461. kunmap_atomic(userpage);
  462. }
  463. }
  464. ret = bio_add_page(cb->orig_bio, page,
  465. PAGE_CACHE_SIZE, 0);
  466. if (ret == PAGE_CACHE_SIZE) {
  467. nr_pages++;
  468. page_cache_release(page);
  469. } else {
  470. unlock_extent(tree, last_offset, end);
  471. unlock_page(page);
  472. page_cache_release(page);
  473. break;
  474. }
  475. next:
  476. last_offset += PAGE_CACHE_SIZE;
  477. }
  478. return 0;
  479. }
  480. /*
  481. * for a compressed read, the bio we get passed has all the inode pages
  482. * in it. We don't actually do IO on those pages but allocate new ones
  483. * to hold the compressed pages on disk.
  484. *
  485. * bio->bi_sector points to the compressed extent on disk
  486. * bio->bi_io_vec points to all of the inode pages
  487. * bio->bi_vcnt is a count of pages
  488. *
  489. * After the compressed pages are read, we copy the bytes into the
  490. * bio we were passed and then call the bio end_io calls
  491. */
  492. int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
  493. int mirror_num, unsigned long bio_flags)
  494. {
  495. struct extent_io_tree *tree;
  496. struct extent_map_tree *em_tree;
  497. struct compressed_bio *cb;
  498. struct btrfs_root *root = BTRFS_I(inode)->root;
  499. unsigned long uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
  500. unsigned long compressed_len;
  501. unsigned long nr_pages;
  502. unsigned long pg_index;
  503. struct page *page;
  504. struct block_device *bdev;
  505. struct bio *comp_bio;
  506. u64 cur_disk_byte = (u64)bio->bi_sector << 9;
  507. u64 em_len;
  508. u64 em_start;
  509. struct extent_map *em;
  510. int ret = -ENOMEM;
  511. int faili = 0;
  512. u32 *sums;
  513. tree = &BTRFS_I(inode)->io_tree;
  514. em_tree = &BTRFS_I(inode)->extent_tree;
  515. /* we need the actual starting offset of this extent in the file */
  516. read_lock(&em_tree->lock);
  517. em = lookup_extent_mapping(em_tree,
  518. page_offset(bio->bi_io_vec->bv_page),
  519. PAGE_CACHE_SIZE);
  520. read_unlock(&em_tree->lock);
  521. if (!em)
  522. return -EIO;
  523. compressed_len = em->block_len;
  524. cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
  525. if (!cb)
  526. goto out;
  527. atomic_set(&cb->pending_bios, 0);
  528. cb->errors = 0;
  529. cb->inode = inode;
  530. cb->mirror_num = mirror_num;
  531. sums = &cb->sums;
  532. cb->start = em->orig_start;
  533. em_len = em->len;
  534. em_start = em->start;
  535. free_extent_map(em);
  536. em = NULL;
  537. cb->len = uncompressed_len;
  538. cb->compressed_len = compressed_len;
  539. cb->compress_type = extent_compress_type(bio_flags);
  540. cb->orig_bio = bio;
  541. nr_pages = (compressed_len + PAGE_CACHE_SIZE - 1) /
  542. PAGE_CACHE_SIZE;
  543. cb->compressed_pages = kzalloc(sizeof(struct page *) * nr_pages,
  544. GFP_NOFS);
  545. if (!cb->compressed_pages)
  546. goto fail1;
  547. bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  548. for (pg_index = 0; pg_index < nr_pages; pg_index++) {
  549. cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
  550. __GFP_HIGHMEM);
  551. if (!cb->compressed_pages[pg_index]) {
  552. faili = pg_index - 1;
  553. ret = -ENOMEM;
  554. goto fail2;
  555. }
  556. }
  557. faili = nr_pages - 1;
  558. cb->nr_pages = nr_pages;
  559. add_ra_bio_pages(inode, em_start + em_len, cb);
  560. /* include any pages we added in add_ra-bio_pages */
  561. uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
  562. cb->len = uncompressed_len;
  563. comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS);
  564. if (!comp_bio)
  565. goto fail2;
  566. comp_bio->bi_private = cb;
  567. comp_bio->bi_end_io = end_compressed_bio_read;
  568. atomic_inc(&cb->pending_bios);
  569. for (pg_index = 0; pg_index < nr_pages; pg_index++) {
  570. page = cb->compressed_pages[pg_index];
  571. page->mapping = inode->i_mapping;
  572. page->index = em_start >> PAGE_CACHE_SHIFT;
  573. if (comp_bio->bi_size)
  574. ret = tree->ops->merge_bio_hook(READ, page, 0,
  575. PAGE_CACHE_SIZE,
  576. comp_bio, 0);
  577. else
  578. ret = 0;
  579. page->mapping = NULL;
  580. if (ret || bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0) <
  581. PAGE_CACHE_SIZE) {
  582. bio_get(comp_bio);
  583. ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
  584. BUG_ON(ret); /* -ENOMEM */
  585. /*
  586. * inc the count before we submit the bio so
  587. * we know the end IO handler won't happen before
  588. * we inc the count. Otherwise, the cb might get
  589. * freed before we're done setting it up
  590. */
  591. atomic_inc(&cb->pending_bios);
  592. if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
  593. ret = btrfs_lookup_bio_sums(root, inode,
  594. comp_bio, sums);
  595. BUG_ON(ret); /* -ENOMEM */
  596. }
  597. sums += (comp_bio->bi_size + root->sectorsize - 1) /
  598. root->sectorsize;
  599. ret = btrfs_map_bio(root, READ, comp_bio,
  600. mirror_num, 0);
  601. if (ret)
  602. bio_endio(comp_bio, ret);
  603. bio_put(comp_bio);
  604. comp_bio = compressed_bio_alloc(bdev, cur_disk_byte,
  605. GFP_NOFS);
  606. BUG_ON(!comp_bio);
  607. comp_bio->bi_private = cb;
  608. comp_bio->bi_end_io = end_compressed_bio_read;
  609. bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0);
  610. }
  611. cur_disk_byte += PAGE_CACHE_SIZE;
  612. }
  613. bio_get(comp_bio);
  614. ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
  615. BUG_ON(ret); /* -ENOMEM */
  616. if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
  617. ret = btrfs_lookup_bio_sums(root, inode, comp_bio, sums);
  618. BUG_ON(ret); /* -ENOMEM */
  619. }
  620. ret = btrfs_map_bio(root, READ, comp_bio, mirror_num, 0);
  621. if (ret)
  622. bio_endio(comp_bio, ret);
  623. bio_put(comp_bio);
  624. return 0;
  625. fail2:
  626. while (faili >= 0) {
  627. __free_page(cb->compressed_pages[faili]);
  628. faili--;
  629. }
  630. kfree(cb->compressed_pages);
  631. fail1:
  632. kfree(cb);
  633. out:
  634. free_extent_map(em);
  635. return ret;
  636. }
  637. static struct list_head comp_idle_workspace[BTRFS_COMPRESS_TYPES];
  638. static spinlock_t comp_workspace_lock[BTRFS_COMPRESS_TYPES];
  639. static int comp_num_workspace[BTRFS_COMPRESS_TYPES];
  640. static atomic_t comp_alloc_workspace[BTRFS_COMPRESS_TYPES];
  641. static wait_queue_head_t comp_workspace_wait[BTRFS_COMPRESS_TYPES];
  642. static struct btrfs_compress_op *btrfs_compress_op[] = {
  643. &btrfs_zlib_compress,
  644. &btrfs_lzo_compress,
  645. };
  646. void __init btrfs_init_compress(void)
  647. {
  648. int i;
  649. for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
  650. INIT_LIST_HEAD(&comp_idle_workspace[i]);
  651. spin_lock_init(&comp_workspace_lock[i]);
  652. atomic_set(&comp_alloc_workspace[i], 0);
  653. init_waitqueue_head(&comp_workspace_wait[i]);
  654. }
  655. }
  656. /*
  657. * this finds an available workspace or allocates a new one
  658. * ERR_PTR is returned if things go bad.
  659. */
  660. static struct list_head *find_workspace(int type)
  661. {
  662. struct list_head *workspace;
  663. int cpus = num_online_cpus();
  664. int idx = type - 1;
  665. struct list_head *idle_workspace = &comp_idle_workspace[idx];
  666. spinlock_t *workspace_lock = &comp_workspace_lock[idx];
  667. atomic_t *alloc_workspace = &comp_alloc_workspace[idx];
  668. wait_queue_head_t *workspace_wait = &comp_workspace_wait[idx];
  669. int *num_workspace = &comp_num_workspace[idx];
  670. again:
  671. spin_lock(workspace_lock);
  672. if (!list_empty(idle_workspace)) {
  673. workspace = idle_workspace->next;
  674. list_del(workspace);
  675. (*num_workspace)--;
  676. spin_unlock(workspace_lock);
  677. return workspace;
  678. }
  679. if (atomic_read(alloc_workspace) > cpus) {
  680. DEFINE_WAIT(wait);
  681. spin_unlock(workspace_lock);
  682. prepare_to_wait(workspace_wait, &wait, TASK_UNINTERRUPTIBLE);
  683. if (atomic_read(alloc_workspace) > cpus && !*num_workspace)
  684. schedule();
  685. finish_wait(workspace_wait, &wait);
  686. goto again;
  687. }
  688. atomic_inc(alloc_workspace);
  689. spin_unlock(workspace_lock);
  690. workspace = btrfs_compress_op[idx]->alloc_workspace();
  691. if (IS_ERR(workspace)) {
  692. atomic_dec(alloc_workspace);
  693. wake_up(workspace_wait);
  694. }
  695. return workspace;
  696. }
  697. /*
  698. * put a workspace struct back on the list or free it if we have enough
  699. * idle ones sitting around
  700. */
  701. static void free_workspace(int type, struct list_head *workspace)
  702. {
  703. int idx = type - 1;
  704. struct list_head *idle_workspace = &comp_idle_workspace[idx];
  705. spinlock_t *workspace_lock = &comp_workspace_lock[idx];
  706. atomic_t *alloc_workspace = &comp_alloc_workspace[idx];
  707. wait_queue_head_t *workspace_wait = &comp_workspace_wait[idx];
  708. int *num_workspace = &comp_num_workspace[idx];
  709. spin_lock(workspace_lock);
  710. if (*num_workspace < num_online_cpus()) {
  711. list_add_tail(workspace, idle_workspace);
  712. (*num_workspace)++;
  713. spin_unlock(workspace_lock);
  714. goto wake;
  715. }
  716. spin_unlock(workspace_lock);
  717. btrfs_compress_op[idx]->free_workspace(workspace);
  718. atomic_dec(alloc_workspace);
  719. wake:
  720. smp_mb();
  721. if (waitqueue_active(workspace_wait))
  722. wake_up(workspace_wait);
  723. }
  724. /*
  725. * cleanup function for module exit
  726. */
  727. static void free_workspaces(void)
  728. {
  729. struct list_head *workspace;
  730. int i;
  731. for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
  732. while (!list_empty(&comp_idle_workspace[i])) {
  733. workspace = comp_idle_workspace[i].next;
  734. list_del(workspace);
  735. btrfs_compress_op[i]->free_workspace(workspace);
  736. atomic_dec(&comp_alloc_workspace[i]);
  737. }
  738. }
  739. }
  740. /*
  741. * given an address space and start/len, compress the bytes.
  742. *
  743. * pages are allocated to hold the compressed result and stored
  744. * in 'pages'
  745. *
  746. * out_pages is used to return the number of pages allocated. There
  747. * may be pages allocated even if we return an error
  748. *
  749. * total_in is used to return the number of bytes actually read. It
  750. * may be smaller then len if we had to exit early because we
  751. * ran out of room in the pages array or because we cross the
  752. * max_out threshold.
  753. *
  754. * total_out is used to return the total number of compressed bytes
  755. *
  756. * max_out tells us the max number of bytes that we're allowed to
  757. * stuff into pages
  758. */
  759. int btrfs_compress_pages(int type, struct address_space *mapping,
  760. u64 start, unsigned long len,
  761. struct page **pages,
  762. unsigned long nr_dest_pages,
  763. unsigned long *out_pages,
  764. unsigned long *total_in,
  765. unsigned long *total_out,
  766. unsigned long max_out)
  767. {
  768. struct list_head *workspace;
  769. int ret;
  770. workspace = find_workspace(type);
  771. if (IS_ERR(workspace))
  772. return -1;
  773. ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
  774. start, len, pages,
  775. nr_dest_pages, out_pages,
  776. total_in, total_out,
  777. max_out);
  778. free_workspace(type, workspace);
  779. return ret;
  780. }
  781. /*
  782. * pages_in is an array of pages with compressed data.
  783. *
  784. * disk_start is the starting logical offset of this array in the file
  785. *
  786. * bvec is a bio_vec of pages from the file that we want to decompress into
  787. *
  788. * vcnt is the count of pages in the biovec
  789. *
  790. * srclen is the number of bytes in pages_in
  791. *
  792. * The basic idea is that we have a bio that was created by readpages.
  793. * The pages in the bio are for the uncompressed data, and they may not
  794. * be contiguous. They all correspond to the range of bytes covered by
  795. * the compressed extent.
  796. */
  797. static int btrfs_decompress_biovec(int type, struct page **pages_in,
  798. u64 disk_start, struct bio_vec *bvec,
  799. int vcnt, size_t srclen)
  800. {
  801. struct list_head *workspace;
  802. int ret;
  803. workspace = find_workspace(type);
  804. if (IS_ERR(workspace))
  805. return -ENOMEM;
  806. ret = btrfs_compress_op[type-1]->decompress_biovec(workspace, pages_in,
  807. disk_start,
  808. bvec, vcnt, srclen);
  809. free_workspace(type, workspace);
  810. return ret;
  811. }
  812. /*
  813. * a less complex decompression routine. Our compressed data fits in a
  814. * single page, and we want to read a single page out of it.
  815. * start_byte tells us the offset into the compressed data we're interested in
  816. */
  817. int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
  818. unsigned long start_byte, size_t srclen, size_t destlen)
  819. {
  820. struct list_head *workspace;
  821. int ret;
  822. workspace = find_workspace(type);
  823. if (IS_ERR(workspace))
  824. return -ENOMEM;
  825. ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
  826. dest_page, start_byte,
  827. srclen, destlen);
  828. free_workspace(type, workspace);
  829. return ret;
  830. }
  831. void btrfs_exit_compress(void)
  832. {
  833. free_workspaces();
  834. }
  835. /*
  836. * Copy uncompressed data from working buffer to pages.
  837. *
  838. * buf_start is the byte offset we're of the start of our workspace buffer.
  839. *
  840. * total_out is the last byte of the buffer
  841. */
  842. int btrfs_decompress_buf2page(char *buf, unsigned long buf_start,
  843. unsigned long total_out, u64 disk_start,
  844. struct bio_vec *bvec, int vcnt,
  845. unsigned long *pg_index,
  846. unsigned long *pg_offset)
  847. {
  848. unsigned long buf_offset;
  849. unsigned long current_buf_start;
  850. unsigned long start_byte;
  851. unsigned long working_bytes = total_out - buf_start;
  852. unsigned long bytes;
  853. char *kaddr;
  854. struct page *page_out = bvec[*pg_index].bv_page;
  855. /*
  856. * start byte is the first byte of the page we're currently
  857. * copying into relative to the start of the compressed data.
  858. */
  859. start_byte = page_offset(page_out) - disk_start;
  860. /* we haven't yet hit data corresponding to this page */
  861. if (total_out <= start_byte)
  862. return 1;
  863. /*
  864. * the start of the data we care about is offset into
  865. * the middle of our working buffer
  866. */
  867. if (total_out > start_byte && buf_start < start_byte) {
  868. buf_offset = start_byte - buf_start;
  869. working_bytes -= buf_offset;
  870. } else {
  871. buf_offset = 0;
  872. }
  873. current_buf_start = buf_start;
  874. /* copy bytes from the working buffer into the pages */
  875. while (working_bytes > 0) {
  876. bytes = min(PAGE_CACHE_SIZE - *pg_offset,
  877. PAGE_CACHE_SIZE - buf_offset);
  878. bytes = min(bytes, working_bytes);
  879. kaddr = kmap_atomic(page_out);
  880. memcpy(kaddr + *pg_offset, buf + buf_offset, bytes);
  881. kunmap_atomic(kaddr);
  882. flush_dcache_page(page_out);
  883. *pg_offset += bytes;
  884. buf_offset += bytes;
  885. working_bytes -= bytes;
  886. current_buf_start += bytes;
  887. /* check if we need to pick another page */
  888. if (*pg_offset == PAGE_CACHE_SIZE) {
  889. (*pg_index)++;
  890. if (*pg_index >= vcnt)
  891. return 0;
  892. page_out = bvec[*pg_index].bv_page;
  893. *pg_offset = 0;
  894. start_byte = page_offset(page_out) - disk_start;
  895. /*
  896. * make sure our new page is covered by this
  897. * working buffer
  898. */
  899. if (total_out <= start_byte)
  900. return 1;
  901. /*
  902. * the next page in the biovec might not be adjacent
  903. * to the last page, but it might still be found
  904. * inside this working buffer. bump our offset pointer
  905. */
  906. if (total_out > start_byte &&
  907. current_buf_start < start_byte) {
  908. buf_offset = start_byte - buf_start;
  909. working_bytes = total_out - start_byte;
  910. current_buf_start = buf_start + buf_offset;
  911. }
  912. }
  913. }
  914. return 1;
  915. }