ib_srpt.c 104 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041
  1. /*
  2. * Copyright (c) 2006 - 2009 Mellanox Technology Inc. All rights reserved.
  3. * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>.
  4. *
  5. * This software is available to you under a choice of one of two
  6. * licenses. You may choose to be licensed under the terms of the GNU
  7. * General Public License (GPL) Version 2, available from the file
  8. * COPYING in the main directory of this source tree, or the
  9. * OpenIB.org BSD license below:
  10. *
  11. * Redistribution and use in source and binary forms, with or
  12. * without modification, are permitted provided that the following
  13. * conditions are met:
  14. *
  15. * - Redistributions of source code must retain the above
  16. * copyright notice, this list of conditions and the following
  17. * disclaimer.
  18. *
  19. * - Redistributions in binary form must reproduce the above
  20. * copyright notice, this list of conditions and the following
  21. * disclaimer in the documentation and/or other materials
  22. * provided with the distribution.
  23. *
  24. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  25. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  26. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  27. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  28. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  29. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  30. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  31. * SOFTWARE.
  32. *
  33. */
  34. #include <linux/module.h>
  35. #include <linux/init.h>
  36. #include <linux/slab.h>
  37. #include <linux/err.h>
  38. #include <linux/ctype.h>
  39. #include <linux/kthread.h>
  40. #include <linux/string.h>
  41. #include <linux/delay.h>
  42. #include <linux/atomic.h>
  43. #include <scsi/scsi_tcq.h>
  44. #include <target/configfs_macros.h>
  45. #include <target/target_core_base.h>
  46. #include <target/target_core_fabric_configfs.h>
  47. #include <target/target_core_fabric.h>
  48. #include <target/target_core_configfs.h>
  49. #include "ib_srpt.h"
  50. /* Name of this kernel module. */
  51. #define DRV_NAME "ib_srpt"
  52. #define DRV_VERSION "2.0.0"
  53. #define DRV_RELDATE "2011-02-14"
  54. #define SRPT_ID_STRING "Linux SRP target"
  55. #undef pr_fmt
  56. #define pr_fmt(fmt) DRV_NAME " " fmt
  57. MODULE_AUTHOR("Vu Pham and Bart Van Assche");
  58. MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target "
  59. "v" DRV_VERSION " (" DRV_RELDATE ")");
  60. MODULE_LICENSE("Dual BSD/GPL");
  61. /*
  62. * Global Variables
  63. */
  64. static u64 srpt_service_guid;
  65. static DEFINE_SPINLOCK(srpt_dev_lock); /* Protects srpt_dev_list. */
  66. static LIST_HEAD(srpt_dev_list); /* List of srpt_device structures. */
  67. static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE;
  68. module_param(srp_max_req_size, int, 0444);
  69. MODULE_PARM_DESC(srp_max_req_size,
  70. "Maximum size of SRP request messages in bytes.");
  71. static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE;
  72. module_param(srpt_srq_size, int, 0444);
  73. MODULE_PARM_DESC(srpt_srq_size,
  74. "Shared receive queue (SRQ) size.");
  75. static int srpt_get_u64_x(char *buffer, struct kernel_param *kp)
  76. {
  77. return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg);
  78. }
  79. module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid,
  80. 0444);
  81. MODULE_PARM_DESC(srpt_service_guid,
  82. "Using this value for ioc_guid, id_ext, and cm_listen_id"
  83. " instead of using the node_guid of the first HCA.");
  84. static struct ib_client srpt_client;
  85. static struct target_fabric_configfs *srpt_target;
  86. static void srpt_release_channel(struct srpt_rdma_ch *ch);
  87. static int srpt_queue_status(struct se_cmd *cmd);
  88. /**
  89. * opposite_dma_dir() - Swap DMA_TO_DEVICE and DMA_FROM_DEVICE.
  90. */
  91. static inline
  92. enum dma_data_direction opposite_dma_dir(enum dma_data_direction dir)
  93. {
  94. switch (dir) {
  95. case DMA_TO_DEVICE: return DMA_FROM_DEVICE;
  96. case DMA_FROM_DEVICE: return DMA_TO_DEVICE;
  97. default: return dir;
  98. }
  99. }
  100. /**
  101. * srpt_sdev_name() - Return the name associated with the HCA.
  102. *
  103. * Examples are ib0, ib1, ...
  104. */
  105. static inline const char *srpt_sdev_name(struct srpt_device *sdev)
  106. {
  107. return sdev->device->name;
  108. }
  109. static enum rdma_ch_state srpt_get_ch_state(struct srpt_rdma_ch *ch)
  110. {
  111. unsigned long flags;
  112. enum rdma_ch_state state;
  113. spin_lock_irqsave(&ch->spinlock, flags);
  114. state = ch->state;
  115. spin_unlock_irqrestore(&ch->spinlock, flags);
  116. return state;
  117. }
  118. static enum rdma_ch_state
  119. srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new_state)
  120. {
  121. unsigned long flags;
  122. enum rdma_ch_state prev;
  123. spin_lock_irqsave(&ch->spinlock, flags);
  124. prev = ch->state;
  125. ch->state = new_state;
  126. spin_unlock_irqrestore(&ch->spinlock, flags);
  127. return prev;
  128. }
  129. /**
  130. * srpt_test_and_set_ch_state() - Test and set the channel state.
  131. *
  132. * Returns true if and only if the channel state has been set to the new state.
  133. */
  134. static bool
  135. srpt_test_and_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state old,
  136. enum rdma_ch_state new)
  137. {
  138. unsigned long flags;
  139. enum rdma_ch_state prev;
  140. spin_lock_irqsave(&ch->spinlock, flags);
  141. prev = ch->state;
  142. if (prev == old)
  143. ch->state = new;
  144. spin_unlock_irqrestore(&ch->spinlock, flags);
  145. return prev == old;
  146. }
  147. /**
  148. * srpt_event_handler() - Asynchronous IB event callback function.
  149. *
  150. * Callback function called by the InfiniBand core when an asynchronous IB
  151. * event occurs. This callback may occur in interrupt context. See also
  152. * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand
  153. * Architecture Specification.
  154. */
  155. static void srpt_event_handler(struct ib_event_handler *handler,
  156. struct ib_event *event)
  157. {
  158. struct srpt_device *sdev;
  159. struct srpt_port *sport;
  160. sdev = ib_get_client_data(event->device, &srpt_client);
  161. if (!sdev || sdev->device != event->device)
  162. return;
  163. pr_debug("ASYNC event= %d on device= %s\n", event->event,
  164. srpt_sdev_name(sdev));
  165. switch (event->event) {
  166. case IB_EVENT_PORT_ERR:
  167. if (event->element.port_num <= sdev->device->phys_port_cnt) {
  168. sport = &sdev->port[event->element.port_num - 1];
  169. sport->lid = 0;
  170. sport->sm_lid = 0;
  171. }
  172. break;
  173. case IB_EVENT_PORT_ACTIVE:
  174. case IB_EVENT_LID_CHANGE:
  175. case IB_EVENT_PKEY_CHANGE:
  176. case IB_EVENT_SM_CHANGE:
  177. case IB_EVENT_CLIENT_REREGISTER:
  178. /* Refresh port data asynchronously. */
  179. if (event->element.port_num <= sdev->device->phys_port_cnt) {
  180. sport = &sdev->port[event->element.port_num - 1];
  181. if (!sport->lid && !sport->sm_lid)
  182. schedule_work(&sport->work);
  183. }
  184. break;
  185. default:
  186. printk(KERN_ERR "received unrecognized IB event %d\n",
  187. event->event);
  188. break;
  189. }
  190. }
  191. /**
  192. * srpt_srq_event() - SRQ event callback function.
  193. */
  194. static void srpt_srq_event(struct ib_event *event, void *ctx)
  195. {
  196. printk(KERN_INFO "SRQ event %d\n", event->event);
  197. }
  198. /**
  199. * srpt_qp_event() - QP event callback function.
  200. */
  201. static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch)
  202. {
  203. pr_debug("QP event %d on cm_id=%p sess_name=%s state=%d\n",
  204. event->event, ch->cm_id, ch->sess_name, srpt_get_ch_state(ch));
  205. switch (event->event) {
  206. case IB_EVENT_COMM_EST:
  207. ib_cm_notify(ch->cm_id, event->event);
  208. break;
  209. case IB_EVENT_QP_LAST_WQE_REACHED:
  210. if (srpt_test_and_set_ch_state(ch, CH_DRAINING,
  211. CH_RELEASING))
  212. srpt_release_channel(ch);
  213. else
  214. pr_debug("%s: state %d - ignored LAST_WQE.\n",
  215. ch->sess_name, srpt_get_ch_state(ch));
  216. break;
  217. default:
  218. printk(KERN_ERR "received unrecognized IB QP event %d\n",
  219. event->event);
  220. break;
  221. }
  222. }
  223. /**
  224. * srpt_set_ioc() - Helper function for initializing an IOUnitInfo structure.
  225. *
  226. * @slot: one-based slot number.
  227. * @value: four-bit value.
  228. *
  229. * Copies the lowest four bits of value in element slot of the array of four
  230. * bit elements called c_list (controller list). The index slot is one-based.
  231. */
  232. static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value)
  233. {
  234. u16 id;
  235. u8 tmp;
  236. id = (slot - 1) / 2;
  237. if (slot & 0x1) {
  238. tmp = c_list[id] & 0xf;
  239. c_list[id] = (value << 4) | tmp;
  240. } else {
  241. tmp = c_list[id] & 0xf0;
  242. c_list[id] = (value & 0xf) | tmp;
  243. }
  244. }
  245. /**
  246. * srpt_get_class_port_info() - Copy ClassPortInfo to a management datagram.
  247. *
  248. * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture
  249. * Specification.
  250. */
  251. static void srpt_get_class_port_info(struct ib_dm_mad *mad)
  252. {
  253. struct ib_class_port_info *cif;
  254. cif = (struct ib_class_port_info *)mad->data;
  255. memset(cif, 0, sizeof *cif);
  256. cif->base_version = 1;
  257. cif->class_version = 1;
  258. cif->resp_time_value = 20;
  259. mad->mad_hdr.status = 0;
  260. }
  261. /**
  262. * srpt_get_iou() - Write IOUnitInfo to a management datagram.
  263. *
  264. * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture
  265. * Specification. See also section B.7, table B.6 in the SRP r16a document.
  266. */
  267. static void srpt_get_iou(struct ib_dm_mad *mad)
  268. {
  269. struct ib_dm_iou_info *ioui;
  270. u8 slot;
  271. int i;
  272. ioui = (struct ib_dm_iou_info *)mad->data;
  273. ioui->change_id = __constant_cpu_to_be16(1);
  274. ioui->max_controllers = 16;
  275. /* set present for slot 1 and empty for the rest */
  276. srpt_set_ioc(ioui->controller_list, 1, 1);
  277. for (i = 1, slot = 2; i < 16; i++, slot++)
  278. srpt_set_ioc(ioui->controller_list, slot, 0);
  279. mad->mad_hdr.status = 0;
  280. }
  281. /**
  282. * srpt_get_ioc() - Write IOControllerprofile to a management datagram.
  283. *
  284. * See also section 16.3.3.4 IOControllerProfile in the InfiniBand
  285. * Architecture Specification. See also section B.7, table B.7 in the SRP
  286. * r16a document.
  287. */
  288. static void srpt_get_ioc(struct srpt_port *sport, u32 slot,
  289. struct ib_dm_mad *mad)
  290. {
  291. struct srpt_device *sdev = sport->sdev;
  292. struct ib_dm_ioc_profile *iocp;
  293. iocp = (struct ib_dm_ioc_profile *)mad->data;
  294. if (!slot || slot > 16) {
  295. mad->mad_hdr.status
  296. = __constant_cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
  297. return;
  298. }
  299. if (slot > 2) {
  300. mad->mad_hdr.status
  301. = __constant_cpu_to_be16(DM_MAD_STATUS_NO_IOC);
  302. return;
  303. }
  304. memset(iocp, 0, sizeof *iocp);
  305. strcpy(iocp->id_string, SRPT_ID_STRING);
  306. iocp->guid = cpu_to_be64(srpt_service_guid);
  307. iocp->vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id);
  308. iocp->device_id = cpu_to_be32(sdev->dev_attr.vendor_part_id);
  309. iocp->device_version = cpu_to_be16(sdev->dev_attr.hw_ver);
  310. iocp->subsys_vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id);
  311. iocp->subsys_device_id = 0x0;
  312. iocp->io_class = __constant_cpu_to_be16(SRP_REV16A_IB_IO_CLASS);
  313. iocp->io_subclass = __constant_cpu_to_be16(SRP_IO_SUBCLASS);
  314. iocp->protocol = __constant_cpu_to_be16(SRP_PROTOCOL);
  315. iocp->protocol_version = __constant_cpu_to_be16(SRP_PROTOCOL_VERSION);
  316. iocp->send_queue_depth = cpu_to_be16(sdev->srq_size);
  317. iocp->rdma_read_depth = 4;
  318. iocp->send_size = cpu_to_be32(srp_max_req_size);
  319. iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size,
  320. 1U << 24));
  321. iocp->num_svc_entries = 1;
  322. iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC |
  323. SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC;
  324. mad->mad_hdr.status = 0;
  325. }
  326. /**
  327. * srpt_get_svc_entries() - Write ServiceEntries to a management datagram.
  328. *
  329. * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture
  330. * Specification. See also section B.7, table B.8 in the SRP r16a document.
  331. */
  332. static void srpt_get_svc_entries(u64 ioc_guid,
  333. u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad)
  334. {
  335. struct ib_dm_svc_entries *svc_entries;
  336. WARN_ON(!ioc_guid);
  337. if (!slot || slot > 16) {
  338. mad->mad_hdr.status
  339. = __constant_cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
  340. return;
  341. }
  342. if (slot > 2 || lo > hi || hi > 1) {
  343. mad->mad_hdr.status
  344. = __constant_cpu_to_be16(DM_MAD_STATUS_NO_IOC);
  345. return;
  346. }
  347. svc_entries = (struct ib_dm_svc_entries *)mad->data;
  348. memset(svc_entries, 0, sizeof *svc_entries);
  349. svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid);
  350. snprintf(svc_entries->service_entries[0].name,
  351. sizeof(svc_entries->service_entries[0].name),
  352. "%s%016llx",
  353. SRP_SERVICE_NAME_PREFIX,
  354. ioc_guid);
  355. mad->mad_hdr.status = 0;
  356. }
  357. /**
  358. * srpt_mgmt_method_get() - Process a received management datagram.
  359. * @sp: source port through which the MAD has been received.
  360. * @rq_mad: received MAD.
  361. * @rsp_mad: response MAD.
  362. */
  363. static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad,
  364. struct ib_dm_mad *rsp_mad)
  365. {
  366. u16 attr_id;
  367. u32 slot;
  368. u8 hi, lo;
  369. attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id);
  370. switch (attr_id) {
  371. case DM_ATTR_CLASS_PORT_INFO:
  372. srpt_get_class_port_info(rsp_mad);
  373. break;
  374. case DM_ATTR_IOU_INFO:
  375. srpt_get_iou(rsp_mad);
  376. break;
  377. case DM_ATTR_IOC_PROFILE:
  378. slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
  379. srpt_get_ioc(sp, slot, rsp_mad);
  380. break;
  381. case DM_ATTR_SVC_ENTRIES:
  382. slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
  383. hi = (u8) ((slot >> 8) & 0xff);
  384. lo = (u8) (slot & 0xff);
  385. slot = (u16) ((slot >> 16) & 0xffff);
  386. srpt_get_svc_entries(srpt_service_guid,
  387. slot, hi, lo, rsp_mad);
  388. break;
  389. default:
  390. rsp_mad->mad_hdr.status =
  391. __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
  392. break;
  393. }
  394. }
  395. /**
  396. * srpt_mad_send_handler() - Post MAD-send callback function.
  397. */
  398. static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent,
  399. struct ib_mad_send_wc *mad_wc)
  400. {
  401. ib_destroy_ah(mad_wc->send_buf->ah);
  402. ib_free_send_mad(mad_wc->send_buf);
  403. }
  404. /**
  405. * srpt_mad_recv_handler() - MAD reception callback function.
  406. */
  407. static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent,
  408. struct ib_mad_recv_wc *mad_wc)
  409. {
  410. struct srpt_port *sport = (struct srpt_port *)mad_agent->context;
  411. struct ib_ah *ah;
  412. struct ib_mad_send_buf *rsp;
  413. struct ib_dm_mad *dm_mad;
  414. if (!mad_wc || !mad_wc->recv_buf.mad)
  415. return;
  416. ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc,
  417. mad_wc->recv_buf.grh, mad_agent->port_num);
  418. if (IS_ERR(ah))
  419. goto err;
  420. BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR);
  421. rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp,
  422. mad_wc->wc->pkey_index, 0,
  423. IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA,
  424. GFP_KERNEL);
  425. if (IS_ERR(rsp))
  426. goto err_rsp;
  427. rsp->ah = ah;
  428. dm_mad = rsp->mad;
  429. memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof *dm_mad);
  430. dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP;
  431. dm_mad->mad_hdr.status = 0;
  432. switch (mad_wc->recv_buf.mad->mad_hdr.method) {
  433. case IB_MGMT_METHOD_GET:
  434. srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad);
  435. break;
  436. case IB_MGMT_METHOD_SET:
  437. dm_mad->mad_hdr.status =
  438. __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
  439. break;
  440. default:
  441. dm_mad->mad_hdr.status =
  442. __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD);
  443. break;
  444. }
  445. if (!ib_post_send_mad(rsp, NULL)) {
  446. ib_free_recv_mad(mad_wc);
  447. /* will destroy_ah & free_send_mad in send completion */
  448. return;
  449. }
  450. ib_free_send_mad(rsp);
  451. err_rsp:
  452. ib_destroy_ah(ah);
  453. err:
  454. ib_free_recv_mad(mad_wc);
  455. }
  456. /**
  457. * srpt_refresh_port() - Configure a HCA port.
  458. *
  459. * Enable InfiniBand management datagram processing, update the cached sm_lid,
  460. * lid and gid values, and register a callback function for processing MADs
  461. * on the specified port.
  462. *
  463. * Note: It is safe to call this function more than once for the same port.
  464. */
  465. static int srpt_refresh_port(struct srpt_port *sport)
  466. {
  467. struct ib_mad_reg_req reg_req;
  468. struct ib_port_modify port_modify;
  469. struct ib_port_attr port_attr;
  470. int ret;
  471. memset(&port_modify, 0, sizeof port_modify);
  472. port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
  473. port_modify.clr_port_cap_mask = 0;
  474. ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
  475. if (ret)
  476. goto err_mod_port;
  477. ret = ib_query_port(sport->sdev->device, sport->port, &port_attr);
  478. if (ret)
  479. goto err_query_port;
  480. sport->sm_lid = port_attr.sm_lid;
  481. sport->lid = port_attr.lid;
  482. ret = ib_query_gid(sport->sdev->device, sport->port, 0, &sport->gid);
  483. if (ret)
  484. goto err_query_port;
  485. if (!sport->mad_agent) {
  486. memset(&reg_req, 0, sizeof reg_req);
  487. reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT;
  488. reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION;
  489. set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask);
  490. set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask);
  491. sport->mad_agent = ib_register_mad_agent(sport->sdev->device,
  492. sport->port,
  493. IB_QPT_GSI,
  494. &reg_req, 0,
  495. srpt_mad_send_handler,
  496. srpt_mad_recv_handler,
  497. sport);
  498. if (IS_ERR(sport->mad_agent)) {
  499. ret = PTR_ERR(sport->mad_agent);
  500. sport->mad_agent = NULL;
  501. goto err_query_port;
  502. }
  503. }
  504. return 0;
  505. err_query_port:
  506. port_modify.set_port_cap_mask = 0;
  507. port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
  508. ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
  509. err_mod_port:
  510. return ret;
  511. }
  512. /**
  513. * srpt_unregister_mad_agent() - Unregister MAD callback functions.
  514. *
  515. * Note: It is safe to call this function more than once for the same device.
  516. */
  517. static void srpt_unregister_mad_agent(struct srpt_device *sdev)
  518. {
  519. struct ib_port_modify port_modify = {
  520. .clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP,
  521. };
  522. struct srpt_port *sport;
  523. int i;
  524. for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
  525. sport = &sdev->port[i - 1];
  526. WARN_ON(sport->port != i);
  527. if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0)
  528. printk(KERN_ERR "disabling MAD processing failed.\n");
  529. if (sport->mad_agent) {
  530. ib_unregister_mad_agent(sport->mad_agent);
  531. sport->mad_agent = NULL;
  532. }
  533. }
  534. }
  535. /**
  536. * srpt_alloc_ioctx() - Allocate an SRPT I/O context structure.
  537. */
  538. static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev,
  539. int ioctx_size, int dma_size,
  540. enum dma_data_direction dir)
  541. {
  542. struct srpt_ioctx *ioctx;
  543. ioctx = kmalloc(ioctx_size, GFP_KERNEL);
  544. if (!ioctx)
  545. goto err;
  546. ioctx->buf = kmalloc(dma_size, GFP_KERNEL);
  547. if (!ioctx->buf)
  548. goto err_free_ioctx;
  549. ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, dma_size, dir);
  550. if (ib_dma_mapping_error(sdev->device, ioctx->dma))
  551. goto err_free_buf;
  552. return ioctx;
  553. err_free_buf:
  554. kfree(ioctx->buf);
  555. err_free_ioctx:
  556. kfree(ioctx);
  557. err:
  558. return NULL;
  559. }
  560. /**
  561. * srpt_free_ioctx() - Free an SRPT I/O context structure.
  562. */
  563. static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx,
  564. int dma_size, enum dma_data_direction dir)
  565. {
  566. if (!ioctx)
  567. return;
  568. ib_dma_unmap_single(sdev->device, ioctx->dma, dma_size, dir);
  569. kfree(ioctx->buf);
  570. kfree(ioctx);
  571. }
  572. /**
  573. * srpt_alloc_ioctx_ring() - Allocate a ring of SRPT I/O context structures.
  574. * @sdev: Device to allocate the I/O context ring for.
  575. * @ring_size: Number of elements in the I/O context ring.
  576. * @ioctx_size: I/O context size.
  577. * @dma_size: DMA buffer size.
  578. * @dir: DMA data direction.
  579. */
  580. static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev,
  581. int ring_size, int ioctx_size,
  582. int dma_size, enum dma_data_direction dir)
  583. {
  584. struct srpt_ioctx **ring;
  585. int i;
  586. WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx)
  587. && ioctx_size != sizeof(struct srpt_send_ioctx));
  588. ring = kmalloc(ring_size * sizeof(ring[0]), GFP_KERNEL);
  589. if (!ring)
  590. goto out;
  591. for (i = 0; i < ring_size; ++i) {
  592. ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, dma_size, dir);
  593. if (!ring[i])
  594. goto err;
  595. ring[i]->index = i;
  596. }
  597. goto out;
  598. err:
  599. while (--i >= 0)
  600. srpt_free_ioctx(sdev, ring[i], dma_size, dir);
  601. kfree(ring);
  602. ring = NULL;
  603. out:
  604. return ring;
  605. }
  606. /**
  607. * srpt_free_ioctx_ring() - Free the ring of SRPT I/O context structures.
  608. */
  609. static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring,
  610. struct srpt_device *sdev, int ring_size,
  611. int dma_size, enum dma_data_direction dir)
  612. {
  613. int i;
  614. for (i = 0; i < ring_size; ++i)
  615. srpt_free_ioctx(sdev, ioctx_ring[i], dma_size, dir);
  616. kfree(ioctx_ring);
  617. }
  618. /**
  619. * srpt_get_cmd_state() - Get the state of a SCSI command.
  620. */
  621. static enum srpt_command_state srpt_get_cmd_state(struct srpt_send_ioctx *ioctx)
  622. {
  623. enum srpt_command_state state;
  624. unsigned long flags;
  625. BUG_ON(!ioctx);
  626. spin_lock_irqsave(&ioctx->spinlock, flags);
  627. state = ioctx->state;
  628. spin_unlock_irqrestore(&ioctx->spinlock, flags);
  629. return state;
  630. }
  631. /**
  632. * srpt_set_cmd_state() - Set the state of a SCSI command.
  633. *
  634. * Does not modify the state of aborted commands. Returns the previous command
  635. * state.
  636. */
  637. static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx,
  638. enum srpt_command_state new)
  639. {
  640. enum srpt_command_state previous;
  641. unsigned long flags;
  642. BUG_ON(!ioctx);
  643. spin_lock_irqsave(&ioctx->spinlock, flags);
  644. previous = ioctx->state;
  645. if (previous != SRPT_STATE_DONE)
  646. ioctx->state = new;
  647. spin_unlock_irqrestore(&ioctx->spinlock, flags);
  648. return previous;
  649. }
  650. /**
  651. * srpt_test_and_set_cmd_state() - Test and set the state of a command.
  652. *
  653. * Returns true if and only if the previous command state was equal to 'old'.
  654. */
  655. static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx,
  656. enum srpt_command_state old,
  657. enum srpt_command_state new)
  658. {
  659. enum srpt_command_state previous;
  660. unsigned long flags;
  661. WARN_ON(!ioctx);
  662. WARN_ON(old == SRPT_STATE_DONE);
  663. WARN_ON(new == SRPT_STATE_NEW);
  664. spin_lock_irqsave(&ioctx->spinlock, flags);
  665. previous = ioctx->state;
  666. if (previous == old)
  667. ioctx->state = new;
  668. spin_unlock_irqrestore(&ioctx->spinlock, flags);
  669. return previous == old;
  670. }
  671. /**
  672. * srpt_post_recv() - Post an IB receive request.
  673. */
  674. static int srpt_post_recv(struct srpt_device *sdev,
  675. struct srpt_recv_ioctx *ioctx)
  676. {
  677. struct ib_sge list;
  678. struct ib_recv_wr wr, *bad_wr;
  679. BUG_ON(!sdev);
  680. wr.wr_id = encode_wr_id(SRPT_RECV, ioctx->ioctx.index);
  681. list.addr = ioctx->ioctx.dma;
  682. list.length = srp_max_req_size;
  683. list.lkey = sdev->mr->lkey;
  684. wr.next = NULL;
  685. wr.sg_list = &list;
  686. wr.num_sge = 1;
  687. return ib_post_srq_recv(sdev->srq, &wr, &bad_wr);
  688. }
  689. /**
  690. * srpt_post_send() - Post an IB send request.
  691. *
  692. * Returns zero upon success and a non-zero value upon failure.
  693. */
  694. static int srpt_post_send(struct srpt_rdma_ch *ch,
  695. struct srpt_send_ioctx *ioctx, int len)
  696. {
  697. struct ib_sge list;
  698. struct ib_send_wr wr, *bad_wr;
  699. struct srpt_device *sdev = ch->sport->sdev;
  700. int ret;
  701. atomic_inc(&ch->req_lim);
  702. ret = -ENOMEM;
  703. if (unlikely(atomic_dec_return(&ch->sq_wr_avail) < 0)) {
  704. printk(KERN_WARNING "IB send queue full (needed 1)\n");
  705. goto out;
  706. }
  707. ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, len,
  708. DMA_TO_DEVICE);
  709. list.addr = ioctx->ioctx.dma;
  710. list.length = len;
  711. list.lkey = sdev->mr->lkey;
  712. wr.next = NULL;
  713. wr.wr_id = encode_wr_id(SRPT_SEND, ioctx->ioctx.index);
  714. wr.sg_list = &list;
  715. wr.num_sge = 1;
  716. wr.opcode = IB_WR_SEND;
  717. wr.send_flags = IB_SEND_SIGNALED;
  718. ret = ib_post_send(ch->qp, &wr, &bad_wr);
  719. out:
  720. if (ret < 0) {
  721. atomic_inc(&ch->sq_wr_avail);
  722. atomic_dec(&ch->req_lim);
  723. }
  724. return ret;
  725. }
  726. /**
  727. * srpt_get_desc_tbl() - Parse the data descriptors of an SRP_CMD request.
  728. * @ioctx: Pointer to the I/O context associated with the request.
  729. * @srp_cmd: Pointer to the SRP_CMD request data.
  730. * @dir: Pointer to the variable to which the transfer direction will be
  731. * written.
  732. * @data_len: Pointer to the variable to which the total data length of all
  733. * descriptors in the SRP_CMD request will be written.
  734. *
  735. * This function initializes ioctx->nrbuf and ioctx->r_bufs.
  736. *
  737. * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors;
  738. * -ENOMEM when memory allocation fails and zero upon success.
  739. */
  740. static int srpt_get_desc_tbl(struct srpt_send_ioctx *ioctx,
  741. struct srp_cmd *srp_cmd,
  742. enum dma_data_direction *dir, u64 *data_len)
  743. {
  744. struct srp_indirect_buf *idb;
  745. struct srp_direct_buf *db;
  746. unsigned add_cdb_offset;
  747. int ret;
  748. /*
  749. * The pointer computations below will only be compiled correctly
  750. * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check
  751. * whether srp_cmd::add_data has been declared as a byte pointer.
  752. */
  753. BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0)
  754. && !__same_type(srp_cmd->add_data[0], (u8)0));
  755. BUG_ON(!dir);
  756. BUG_ON(!data_len);
  757. ret = 0;
  758. *data_len = 0;
  759. /*
  760. * The lower four bits of the buffer format field contain the DATA-IN
  761. * buffer descriptor format, and the highest four bits contain the
  762. * DATA-OUT buffer descriptor format.
  763. */
  764. *dir = DMA_NONE;
  765. if (srp_cmd->buf_fmt & 0xf)
  766. /* DATA-IN: transfer data from target to initiator (read). */
  767. *dir = DMA_FROM_DEVICE;
  768. else if (srp_cmd->buf_fmt >> 4)
  769. /* DATA-OUT: transfer data from initiator to target (write). */
  770. *dir = DMA_TO_DEVICE;
  771. /*
  772. * According to the SRP spec, the lower two bits of the 'ADDITIONAL
  773. * CDB LENGTH' field are reserved and the size in bytes of this field
  774. * is four times the value specified in bits 3..7. Hence the "& ~3".
  775. */
  776. add_cdb_offset = srp_cmd->add_cdb_len & ~3;
  777. if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) ||
  778. ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) {
  779. ioctx->n_rbuf = 1;
  780. ioctx->rbufs = &ioctx->single_rbuf;
  781. db = (struct srp_direct_buf *)(srp_cmd->add_data
  782. + add_cdb_offset);
  783. memcpy(ioctx->rbufs, db, sizeof *db);
  784. *data_len = be32_to_cpu(db->len);
  785. } else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) ||
  786. ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) {
  787. idb = (struct srp_indirect_buf *)(srp_cmd->add_data
  788. + add_cdb_offset);
  789. ioctx->n_rbuf = be32_to_cpu(idb->table_desc.len) / sizeof *db;
  790. if (ioctx->n_rbuf >
  791. (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) {
  792. printk(KERN_ERR "received unsupported SRP_CMD request"
  793. " type (%u out + %u in != %u / %zu)\n",
  794. srp_cmd->data_out_desc_cnt,
  795. srp_cmd->data_in_desc_cnt,
  796. be32_to_cpu(idb->table_desc.len),
  797. sizeof(*db));
  798. ioctx->n_rbuf = 0;
  799. ret = -EINVAL;
  800. goto out;
  801. }
  802. if (ioctx->n_rbuf == 1)
  803. ioctx->rbufs = &ioctx->single_rbuf;
  804. else {
  805. ioctx->rbufs =
  806. kmalloc(ioctx->n_rbuf * sizeof *db, GFP_ATOMIC);
  807. if (!ioctx->rbufs) {
  808. ioctx->n_rbuf = 0;
  809. ret = -ENOMEM;
  810. goto out;
  811. }
  812. }
  813. db = idb->desc_list;
  814. memcpy(ioctx->rbufs, db, ioctx->n_rbuf * sizeof *db);
  815. *data_len = be32_to_cpu(idb->len);
  816. }
  817. out:
  818. return ret;
  819. }
  820. /**
  821. * srpt_init_ch_qp() - Initialize queue pair attributes.
  822. *
  823. * Initialized the attributes of queue pair 'qp' by allowing local write,
  824. * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT.
  825. */
  826. static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp)
  827. {
  828. struct ib_qp_attr *attr;
  829. int ret;
  830. attr = kzalloc(sizeof *attr, GFP_KERNEL);
  831. if (!attr)
  832. return -ENOMEM;
  833. attr->qp_state = IB_QPS_INIT;
  834. attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_READ |
  835. IB_ACCESS_REMOTE_WRITE;
  836. attr->port_num = ch->sport->port;
  837. attr->pkey_index = 0;
  838. ret = ib_modify_qp(qp, attr,
  839. IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT |
  840. IB_QP_PKEY_INDEX);
  841. kfree(attr);
  842. return ret;
  843. }
  844. /**
  845. * srpt_ch_qp_rtr() - Change the state of a channel to 'ready to receive' (RTR).
  846. * @ch: channel of the queue pair.
  847. * @qp: queue pair to change the state of.
  848. *
  849. * Returns zero upon success and a negative value upon failure.
  850. *
  851. * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
  852. * If this structure ever becomes larger, it might be necessary to allocate
  853. * it dynamically instead of on the stack.
  854. */
  855. static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp)
  856. {
  857. struct ib_qp_attr qp_attr;
  858. int attr_mask;
  859. int ret;
  860. qp_attr.qp_state = IB_QPS_RTR;
  861. ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
  862. if (ret)
  863. goto out;
  864. qp_attr.max_dest_rd_atomic = 4;
  865. ret = ib_modify_qp(qp, &qp_attr, attr_mask);
  866. out:
  867. return ret;
  868. }
  869. /**
  870. * srpt_ch_qp_rts() - Change the state of a channel to 'ready to send' (RTS).
  871. * @ch: channel of the queue pair.
  872. * @qp: queue pair to change the state of.
  873. *
  874. * Returns zero upon success and a negative value upon failure.
  875. *
  876. * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
  877. * If this structure ever becomes larger, it might be necessary to allocate
  878. * it dynamically instead of on the stack.
  879. */
  880. static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp)
  881. {
  882. struct ib_qp_attr qp_attr;
  883. int attr_mask;
  884. int ret;
  885. qp_attr.qp_state = IB_QPS_RTS;
  886. ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
  887. if (ret)
  888. goto out;
  889. qp_attr.max_rd_atomic = 4;
  890. ret = ib_modify_qp(qp, &qp_attr, attr_mask);
  891. out:
  892. return ret;
  893. }
  894. /**
  895. * srpt_ch_qp_err() - Set the channel queue pair state to 'error'.
  896. */
  897. static int srpt_ch_qp_err(struct srpt_rdma_ch *ch)
  898. {
  899. struct ib_qp_attr qp_attr;
  900. qp_attr.qp_state = IB_QPS_ERR;
  901. return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE);
  902. }
  903. /**
  904. * srpt_unmap_sg_to_ib_sge() - Unmap an IB SGE list.
  905. */
  906. static void srpt_unmap_sg_to_ib_sge(struct srpt_rdma_ch *ch,
  907. struct srpt_send_ioctx *ioctx)
  908. {
  909. struct scatterlist *sg;
  910. enum dma_data_direction dir;
  911. BUG_ON(!ch);
  912. BUG_ON(!ioctx);
  913. BUG_ON(ioctx->n_rdma && !ioctx->rdma_ius);
  914. while (ioctx->n_rdma)
  915. kfree(ioctx->rdma_ius[--ioctx->n_rdma].sge);
  916. kfree(ioctx->rdma_ius);
  917. ioctx->rdma_ius = NULL;
  918. if (ioctx->mapped_sg_count) {
  919. sg = ioctx->sg;
  920. WARN_ON(!sg);
  921. dir = ioctx->cmd.data_direction;
  922. BUG_ON(dir == DMA_NONE);
  923. ib_dma_unmap_sg(ch->sport->sdev->device, sg, ioctx->sg_cnt,
  924. opposite_dma_dir(dir));
  925. ioctx->mapped_sg_count = 0;
  926. }
  927. }
  928. /**
  929. * srpt_map_sg_to_ib_sge() - Map an SG list to an IB SGE list.
  930. */
  931. static int srpt_map_sg_to_ib_sge(struct srpt_rdma_ch *ch,
  932. struct srpt_send_ioctx *ioctx)
  933. {
  934. struct se_cmd *cmd;
  935. struct scatterlist *sg, *sg_orig;
  936. int sg_cnt;
  937. enum dma_data_direction dir;
  938. struct rdma_iu *riu;
  939. struct srp_direct_buf *db;
  940. dma_addr_t dma_addr;
  941. struct ib_sge *sge;
  942. u64 raddr;
  943. u32 rsize;
  944. u32 tsize;
  945. u32 dma_len;
  946. int count, nrdma;
  947. int i, j, k;
  948. BUG_ON(!ch);
  949. BUG_ON(!ioctx);
  950. cmd = &ioctx->cmd;
  951. dir = cmd->data_direction;
  952. BUG_ON(dir == DMA_NONE);
  953. ioctx->sg = sg = sg_orig = cmd->t_data_sg;
  954. ioctx->sg_cnt = sg_cnt = cmd->t_data_nents;
  955. count = ib_dma_map_sg(ch->sport->sdev->device, sg, sg_cnt,
  956. opposite_dma_dir(dir));
  957. if (unlikely(!count))
  958. return -EAGAIN;
  959. ioctx->mapped_sg_count = count;
  960. if (ioctx->rdma_ius && ioctx->n_rdma_ius)
  961. nrdma = ioctx->n_rdma_ius;
  962. else {
  963. nrdma = (count + SRPT_DEF_SG_PER_WQE - 1) / SRPT_DEF_SG_PER_WQE
  964. + ioctx->n_rbuf;
  965. ioctx->rdma_ius = kzalloc(nrdma * sizeof *riu, GFP_KERNEL);
  966. if (!ioctx->rdma_ius)
  967. goto free_mem;
  968. ioctx->n_rdma_ius = nrdma;
  969. }
  970. db = ioctx->rbufs;
  971. tsize = cmd->data_length;
  972. dma_len = sg_dma_len(&sg[0]);
  973. riu = ioctx->rdma_ius;
  974. /*
  975. * For each remote desc - calculate the #ib_sge.
  976. * If #ib_sge < SRPT_DEF_SG_PER_WQE per rdma operation then
  977. * each remote desc rdma_iu is required a rdma wr;
  978. * else
  979. * we need to allocate extra rdma_iu to carry extra #ib_sge in
  980. * another rdma wr
  981. */
  982. for (i = 0, j = 0;
  983. j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) {
  984. rsize = be32_to_cpu(db->len);
  985. raddr = be64_to_cpu(db->va);
  986. riu->raddr = raddr;
  987. riu->rkey = be32_to_cpu(db->key);
  988. riu->sge_cnt = 0;
  989. /* calculate how many sge required for this remote_buf */
  990. while (rsize > 0 && tsize > 0) {
  991. if (rsize >= dma_len) {
  992. tsize -= dma_len;
  993. rsize -= dma_len;
  994. raddr += dma_len;
  995. if (tsize > 0) {
  996. ++j;
  997. if (j < count) {
  998. sg = sg_next(sg);
  999. dma_len = sg_dma_len(sg);
  1000. }
  1001. }
  1002. } else {
  1003. tsize -= rsize;
  1004. dma_len -= rsize;
  1005. rsize = 0;
  1006. }
  1007. ++riu->sge_cnt;
  1008. if (rsize > 0 && riu->sge_cnt == SRPT_DEF_SG_PER_WQE) {
  1009. ++ioctx->n_rdma;
  1010. riu->sge =
  1011. kmalloc(riu->sge_cnt * sizeof *riu->sge,
  1012. GFP_KERNEL);
  1013. if (!riu->sge)
  1014. goto free_mem;
  1015. ++riu;
  1016. riu->sge_cnt = 0;
  1017. riu->raddr = raddr;
  1018. riu->rkey = be32_to_cpu(db->key);
  1019. }
  1020. }
  1021. ++ioctx->n_rdma;
  1022. riu->sge = kmalloc(riu->sge_cnt * sizeof *riu->sge,
  1023. GFP_KERNEL);
  1024. if (!riu->sge)
  1025. goto free_mem;
  1026. }
  1027. db = ioctx->rbufs;
  1028. tsize = cmd->data_length;
  1029. riu = ioctx->rdma_ius;
  1030. sg = sg_orig;
  1031. dma_len = sg_dma_len(&sg[0]);
  1032. dma_addr = sg_dma_address(&sg[0]);
  1033. /* this second loop is really mapped sg_addres to rdma_iu->ib_sge */
  1034. for (i = 0, j = 0;
  1035. j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) {
  1036. rsize = be32_to_cpu(db->len);
  1037. sge = riu->sge;
  1038. k = 0;
  1039. while (rsize > 0 && tsize > 0) {
  1040. sge->addr = dma_addr;
  1041. sge->lkey = ch->sport->sdev->mr->lkey;
  1042. if (rsize >= dma_len) {
  1043. sge->length =
  1044. (tsize < dma_len) ? tsize : dma_len;
  1045. tsize -= dma_len;
  1046. rsize -= dma_len;
  1047. if (tsize > 0) {
  1048. ++j;
  1049. if (j < count) {
  1050. sg = sg_next(sg);
  1051. dma_len = sg_dma_len(sg);
  1052. dma_addr = sg_dma_address(sg);
  1053. }
  1054. }
  1055. } else {
  1056. sge->length = (tsize < rsize) ? tsize : rsize;
  1057. tsize -= rsize;
  1058. dma_len -= rsize;
  1059. dma_addr += rsize;
  1060. rsize = 0;
  1061. }
  1062. ++k;
  1063. if (k == riu->sge_cnt && rsize > 0 && tsize > 0) {
  1064. ++riu;
  1065. sge = riu->sge;
  1066. k = 0;
  1067. } else if (rsize > 0 && tsize > 0)
  1068. ++sge;
  1069. }
  1070. }
  1071. return 0;
  1072. free_mem:
  1073. srpt_unmap_sg_to_ib_sge(ch, ioctx);
  1074. return -ENOMEM;
  1075. }
  1076. /**
  1077. * srpt_get_send_ioctx() - Obtain an I/O context for sending to the initiator.
  1078. */
  1079. static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch)
  1080. {
  1081. struct srpt_send_ioctx *ioctx;
  1082. unsigned long flags;
  1083. BUG_ON(!ch);
  1084. ioctx = NULL;
  1085. spin_lock_irqsave(&ch->spinlock, flags);
  1086. if (!list_empty(&ch->free_list)) {
  1087. ioctx = list_first_entry(&ch->free_list,
  1088. struct srpt_send_ioctx, free_list);
  1089. list_del(&ioctx->free_list);
  1090. }
  1091. spin_unlock_irqrestore(&ch->spinlock, flags);
  1092. if (!ioctx)
  1093. return ioctx;
  1094. BUG_ON(ioctx->ch != ch);
  1095. spin_lock_init(&ioctx->spinlock);
  1096. ioctx->state = SRPT_STATE_NEW;
  1097. ioctx->n_rbuf = 0;
  1098. ioctx->rbufs = NULL;
  1099. ioctx->n_rdma = 0;
  1100. ioctx->n_rdma_ius = 0;
  1101. ioctx->rdma_ius = NULL;
  1102. ioctx->mapped_sg_count = 0;
  1103. init_completion(&ioctx->tx_done);
  1104. ioctx->queue_status_only = false;
  1105. /*
  1106. * transport_init_se_cmd() does not initialize all fields, so do it
  1107. * here.
  1108. */
  1109. memset(&ioctx->cmd, 0, sizeof(ioctx->cmd));
  1110. memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data));
  1111. return ioctx;
  1112. }
  1113. /**
  1114. * srpt_abort_cmd() - Abort a SCSI command.
  1115. * @ioctx: I/O context associated with the SCSI command.
  1116. * @context: Preferred execution context.
  1117. */
  1118. static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx)
  1119. {
  1120. enum srpt_command_state state;
  1121. unsigned long flags;
  1122. BUG_ON(!ioctx);
  1123. /*
  1124. * If the command is in a state where the target core is waiting for
  1125. * the ib_srpt driver, change the state to the next state. Changing
  1126. * the state of the command from SRPT_STATE_NEED_DATA to
  1127. * SRPT_STATE_DATA_IN ensures that srpt_xmit_response() will call this
  1128. * function a second time.
  1129. */
  1130. spin_lock_irqsave(&ioctx->spinlock, flags);
  1131. state = ioctx->state;
  1132. switch (state) {
  1133. case SRPT_STATE_NEED_DATA:
  1134. ioctx->state = SRPT_STATE_DATA_IN;
  1135. break;
  1136. case SRPT_STATE_DATA_IN:
  1137. case SRPT_STATE_CMD_RSP_SENT:
  1138. case SRPT_STATE_MGMT_RSP_SENT:
  1139. ioctx->state = SRPT_STATE_DONE;
  1140. break;
  1141. default:
  1142. break;
  1143. }
  1144. spin_unlock_irqrestore(&ioctx->spinlock, flags);
  1145. if (state == SRPT_STATE_DONE) {
  1146. struct srpt_rdma_ch *ch = ioctx->ch;
  1147. BUG_ON(ch->sess == NULL);
  1148. target_put_sess_cmd(ch->sess, &ioctx->cmd);
  1149. goto out;
  1150. }
  1151. pr_debug("Aborting cmd with state %d and tag %lld\n", state,
  1152. ioctx->tag);
  1153. switch (state) {
  1154. case SRPT_STATE_NEW:
  1155. case SRPT_STATE_DATA_IN:
  1156. case SRPT_STATE_MGMT:
  1157. /*
  1158. * Do nothing - defer abort processing until
  1159. * srpt_queue_response() is invoked.
  1160. */
  1161. WARN_ON(!transport_check_aborted_status(&ioctx->cmd, false));
  1162. break;
  1163. case SRPT_STATE_NEED_DATA:
  1164. /* DMA_TO_DEVICE (write) - RDMA read error. */
  1165. /* XXX(hch): this is a horrible layering violation.. */
  1166. spin_lock_irqsave(&ioctx->cmd.t_state_lock, flags);
  1167. ioctx->cmd.transport_state |= CMD_T_LUN_STOP;
  1168. ioctx->cmd.transport_state &= ~CMD_T_ACTIVE;
  1169. spin_unlock_irqrestore(&ioctx->cmd.t_state_lock, flags);
  1170. complete(&ioctx->cmd.transport_lun_stop_comp);
  1171. break;
  1172. case SRPT_STATE_CMD_RSP_SENT:
  1173. /*
  1174. * SRP_RSP sending failed or the SRP_RSP send completion has
  1175. * not been received in time.
  1176. */
  1177. srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx);
  1178. spin_lock_irqsave(&ioctx->cmd.t_state_lock, flags);
  1179. ioctx->cmd.transport_state |= CMD_T_LUN_STOP;
  1180. spin_unlock_irqrestore(&ioctx->cmd.t_state_lock, flags);
  1181. target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd);
  1182. break;
  1183. case SRPT_STATE_MGMT_RSP_SENT:
  1184. srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
  1185. target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd);
  1186. break;
  1187. default:
  1188. WARN(1, "Unexpected command state (%d)", state);
  1189. break;
  1190. }
  1191. out:
  1192. return state;
  1193. }
  1194. /**
  1195. * srpt_handle_send_err_comp() - Process an IB_WC_SEND error completion.
  1196. */
  1197. static void srpt_handle_send_err_comp(struct srpt_rdma_ch *ch, u64 wr_id)
  1198. {
  1199. struct srpt_send_ioctx *ioctx;
  1200. enum srpt_command_state state;
  1201. struct se_cmd *cmd;
  1202. u32 index;
  1203. atomic_inc(&ch->sq_wr_avail);
  1204. index = idx_from_wr_id(wr_id);
  1205. ioctx = ch->ioctx_ring[index];
  1206. state = srpt_get_cmd_state(ioctx);
  1207. cmd = &ioctx->cmd;
  1208. WARN_ON(state != SRPT_STATE_CMD_RSP_SENT
  1209. && state != SRPT_STATE_MGMT_RSP_SENT
  1210. && state != SRPT_STATE_NEED_DATA
  1211. && state != SRPT_STATE_DONE);
  1212. /* If SRP_RSP sending failed, undo the ch->req_lim change. */
  1213. if (state == SRPT_STATE_CMD_RSP_SENT
  1214. || state == SRPT_STATE_MGMT_RSP_SENT)
  1215. atomic_dec(&ch->req_lim);
  1216. srpt_abort_cmd(ioctx);
  1217. }
  1218. /**
  1219. * srpt_handle_send_comp() - Process an IB send completion notification.
  1220. */
  1221. static void srpt_handle_send_comp(struct srpt_rdma_ch *ch,
  1222. struct srpt_send_ioctx *ioctx)
  1223. {
  1224. enum srpt_command_state state;
  1225. atomic_inc(&ch->sq_wr_avail);
  1226. state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
  1227. if (WARN_ON(state != SRPT_STATE_CMD_RSP_SENT
  1228. && state != SRPT_STATE_MGMT_RSP_SENT
  1229. && state != SRPT_STATE_DONE))
  1230. pr_debug("state = %d\n", state);
  1231. if (state != SRPT_STATE_DONE) {
  1232. srpt_unmap_sg_to_ib_sge(ch, ioctx);
  1233. transport_generic_free_cmd(&ioctx->cmd, 0);
  1234. } else {
  1235. printk(KERN_ERR "IB completion has been received too late for"
  1236. " wr_id = %u.\n", ioctx->ioctx.index);
  1237. }
  1238. }
  1239. /**
  1240. * srpt_handle_rdma_comp() - Process an IB RDMA completion notification.
  1241. *
  1242. * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping
  1243. * the data that has been transferred via IB RDMA had to be postponed until the
  1244. * check_stop_free() callback. None of this is necessary anymore and needs to
  1245. * be cleaned up.
  1246. */
  1247. static void srpt_handle_rdma_comp(struct srpt_rdma_ch *ch,
  1248. struct srpt_send_ioctx *ioctx,
  1249. enum srpt_opcode opcode)
  1250. {
  1251. WARN_ON(ioctx->n_rdma <= 0);
  1252. atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
  1253. if (opcode == SRPT_RDMA_READ_LAST) {
  1254. if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA,
  1255. SRPT_STATE_DATA_IN))
  1256. target_execute_cmd(&ioctx->cmd);
  1257. else
  1258. printk(KERN_ERR "%s[%d]: wrong state = %d\n", __func__,
  1259. __LINE__, srpt_get_cmd_state(ioctx));
  1260. } else if (opcode == SRPT_RDMA_ABORT) {
  1261. ioctx->rdma_aborted = true;
  1262. } else {
  1263. WARN(true, "unexpected opcode %d\n", opcode);
  1264. }
  1265. }
  1266. /**
  1267. * srpt_handle_rdma_err_comp() - Process an IB RDMA error completion.
  1268. */
  1269. static void srpt_handle_rdma_err_comp(struct srpt_rdma_ch *ch,
  1270. struct srpt_send_ioctx *ioctx,
  1271. enum srpt_opcode opcode)
  1272. {
  1273. struct se_cmd *cmd;
  1274. enum srpt_command_state state;
  1275. unsigned long flags;
  1276. cmd = &ioctx->cmd;
  1277. state = srpt_get_cmd_state(ioctx);
  1278. switch (opcode) {
  1279. case SRPT_RDMA_READ_LAST:
  1280. if (ioctx->n_rdma <= 0) {
  1281. printk(KERN_ERR "Received invalid RDMA read"
  1282. " error completion with idx %d\n",
  1283. ioctx->ioctx.index);
  1284. break;
  1285. }
  1286. atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
  1287. if (state == SRPT_STATE_NEED_DATA)
  1288. srpt_abort_cmd(ioctx);
  1289. else
  1290. printk(KERN_ERR "%s[%d]: wrong state = %d\n",
  1291. __func__, __LINE__, state);
  1292. break;
  1293. case SRPT_RDMA_WRITE_LAST:
  1294. spin_lock_irqsave(&ioctx->cmd.t_state_lock, flags);
  1295. ioctx->cmd.transport_state |= CMD_T_LUN_STOP;
  1296. spin_unlock_irqrestore(&ioctx->cmd.t_state_lock, flags);
  1297. break;
  1298. default:
  1299. printk(KERN_ERR "%s[%d]: opcode = %u\n", __func__,
  1300. __LINE__, opcode);
  1301. break;
  1302. }
  1303. }
  1304. /**
  1305. * srpt_build_cmd_rsp() - Build an SRP_RSP response.
  1306. * @ch: RDMA channel through which the request has been received.
  1307. * @ioctx: I/O context associated with the SRP_CMD request. The response will
  1308. * be built in the buffer ioctx->buf points at and hence this function will
  1309. * overwrite the request data.
  1310. * @tag: tag of the request for which this response is being generated.
  1311. * @status: value for the STATUS field of the SRP_RSP information unit.
  1312. *
  1313. * Returns the size in bytes of the SRP_RSP response.
  1314. *
  1315. * An SRP_RSP response contains a SCSI status or service response. See also
  1316. * section 6.9 in the SRP r16a document for the format of an SRP_RSP
  1317. * response. See also SPC-2 for more information about sense data.
  1318. */
  1319. static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch,
  1320. struct srpt_send_ioctx *ioctx, u64 tag,
  1321. int status)
  1322. {
  1323. struct srp_rsp *srp_rsp;
  1324. const u8 *sense_data;
  1325. int sense_data_len, max_sense_len;
  1326. /*
  1327. * The lowest bit of all SAM-3 status codes is zero (see also
  1328. * paragraph 5.3 in SAM-3).
  1329. */
  1330. WARN_ON(status & 1);
  1331. srp_rsp = ioctx->ioctx.buf;
  1332. BUG_ON(!srp_rsp);
  1333. sense_data = ioctx->sense_data;
  1334. sense_data_len = ioctx->cmd.scsi_sense_length;
  1335. WARN_ON(sense_data_len > sizeof(ioctx->sense_data));
  1336. memset(srp_rsp, 0, sizeof *srp_rsp);
  1337. srp_rsp->opcode = SRP_RSP;
  1338. srp_rsp->req_lim_delta =
  1339. __constant_cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
  1340. srp_rsp->tag = tag;
  1341. srp_rsp->status = status;
  1342. if (sense_data_len) {
  1343. BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp));
  1344. max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp);
  1345. if (sense_data_len > max_sense_len) {
  1346. printk(KERN_WARNING "truncated sense data from %d to %d"
  1347. " bytes\n", sense_data_len, max_sense_len);
  1348. sense_data_len = max_sense_len;
  1349. }
  1350. srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID;
  1351. srp_rsp->sense_data_len = cpu_to_be32(sense_data_len);
  1352. memcpy(srp_rsp + 1, sense_data, sense_data_len);
  1353. }
  1354. return sizeof(*srp_rsp) + sense_data_len;
  1355. }
  1356. /**
  1357. * srpt_build_tskmgmt_rsp() - Build a task management response.
  1358. * @ch: RDMA channel through which the request has been received.
  1359. * @ioctx: I/O context in which the SRP_RSP response will be built.
  1360. * @rsp_code: RSP_CODE that will be stored in the response.
  1361. * @tag: Tag of the request for which this response is being generated.
  1362. *
  1363. * Returns the size in bytes of the SRP_RSP response.
  1364. *
  1365. * An SRP_RSP response contains a SCSI status or service response. See also
  1366. * section 6.9 in the SRP r16a document for the format of an SRP_RSP
  1367. * response.
  1368. */
  1369. static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch,
  1370. struct srpt_send_ioctx *ioctx,
  1371. u8 rsp_code, u64 tag)
  1372. {
  1373. struct srp_rsp *srp_rsp;
  1374. int resp_data_len;
  1375. int resp_len;
  1376. resp_data_len = (rsp_code == SRP_TSK_MGMT_SUCCESS) ? 0 : 4;
  1377. resp_len = sizeof(*srp_rsp) + resp_data_len;
  1378. srp_rsp = ioctx->ioctx.buf;
  1379. BUG_ON(!srp_rsp);
  1380. memset(srp_rsp, 0, sizeof *srp_rsp);
  1381. srp_rsp->opcode = SRP_RSP;
  1382. srp_rsp->req_lim_delta = __constant_cpu_to_be32(1
  1383. + atomic_xchg(&ch->req_lim_delta, 0));
  1384. srp_rsp->tag = tag;
  1385. if (rsp_code != SRP_TSK_MGMT_SUCCESS) {
  1386. srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID;
  1387. srp_rsp->resp_data_len = cpu_to_be32(resp_data_len);
  1388. srp_rsp->data[3] = rsp_code;
  1389. }
  1390. return resp_len;
  1391. }
  1392. #define NO_SUCH_LUN ((uint64_t)-1LL)
  1393. /*
  1394. * SCSI LUN addressing method. See also SAM-2 and the section about
  1395. * eight byte LUNs.
  1396. */
  1397. enum scsi_lun_addr_method {
  1398. SCSI_LUN_ADDR_METHOD_PERIPHERAL = 0,
  1399. SCSI_LUN_ADDR_METHOD_FLAT = 1,
  1400. SCSI_LUN_ADDR_METHOD_LUN = 2,
  1401. SCSI_LUN_ADDR_METHOD_EXTENDED_LUN = 3,
  1402. };
  1403. /*
  1404. * srpt_unpack_lun() - Convert from network LUN to linear LUN.
  1405. *
  1406. * Convert an 2-byte, 4-byte, 6-byte or 8-byte LUN structure in network byte
  1407. * order (big endian) to a linear LUN. Supports three LUN addressing methods:
  1408. * peripheral, flat and logical unit. See also SAM-2, section 4.9.4 (page 40).
  1409. */
  1410. static uint64_t srpt_unpack_lun(const uint8_t *lun, int len)
  1411. {
  1412. uint64_t res = NO_SUCH_LUN;
  1413. int addressing_method;
  1414. if (unlikely(len < 2)) {
  1415. printk(KERN_ERR "Illegal LUN length %d, expected 2 bytes or "
  1416. "more", len);
  1417. goto out;
  1418. }
  1419. switch (len) {
  1420. case 8:
  1421. if ((*((__be64 *)lun) &
  1422. __constant_cpu_to_be64(0x0000FFFFFFFFFFFFLL)) != 0)
  1423. goto out_err;
  1424. break;
  1425. case 4:
  1426. if (*((__be16 *)&lun[2]) != 0)
  1427. goto out_err;
  1428. break;
  1429. case 6:
  1430. if (*((__be32 *)&lun[2]) != 0)
  1431. goto out_err;
  1432. break;
  1433. case 2:
  1434. break;
  1435. default:
  1436. goto out_err;
  1437. }
  1438. addressing_method = (*lun) >> 6; /* highest two bits of byte 0 */
  1439. switch (addressing_method) {
  1440. case SCSI_LUN_ADDR_METHOD_PERIPHERAL:
  1441. case SCSI_LUN_ADDR_METHOD_FLAT:
  1442. case SCSI_LUN_ADDR_METHOD_LUN:
  1443. res = *(lun + 1) | (((*lun) & 0x3f) << 8);
  1444. break;
  1445. case SCSI_LUN_ADDR_METHOD_EXTENDED_LUN:
  1446. default:
  1447. printk(KERN_ERR "Unimplemented LUN addressing method %u",
  1448. addressing_method);
  1449. break;
  1450. }
  1451. out:
  1452. return res;
  1453. out_err:
  1454. printk(KERN_ERR "Support for multi-level LUNs has not yet been"
  1455. " implemented");
  1456. goto out;
  1457. }
  1458. static int srpt_check_stop_free(struct se_cmd *cmd)
  1459. {
  1460. struct srpt_send_ioctx *ioctx = container_of(cmd,
  1461. struct srpt_send_ioctx, cmd);
  1462. return target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd);
  1463. }
  1464. /**
  1465. * srpt_handle_cmd() - Process SRP_CMD.
  1466. */
  1467. static int srpt_handle_cmd(struct srpt_rdma_ch *ch,
  1468. struct srpt_recv_ioctx *recv_ioctx,
  1469. struct srpt_send_ioctx *send_ioctx)
  1470. {
  1471. struct se_cmd *cmd;
  1472. struct srp_cmd *srp_cmd;
  1473. uint64_t unpacked_lun;
  1474. u64 data_len;
  1475. enum dma_data_direction dir;
  1476. sense_reason_t ret;
  1477. int rc;
  1478. BUG_ON(!send_ioctx);
  1479. srp_cmd = recv_ioctx->ioctx.buf;
  1480. cmd = &send_ioctx->cmd;
  1481. send_ioctx->tag = srp_cmd->tag;
  1482. switch (srp_cmd->task_attr) {
  1483. case SRP_CMD_SIMPLE_Q:
  1484. cmd->sam_task_attr = MSG_SIMPLE_TAG;
  1485. break;
  1486. case SRP_CMD_ORDERED_Q:
  1487. default:
  1488. cmd->sam_task_attr = MSG_ORDERED_TAG;
  1489. break;
  1490. case SRP_CMD_HEAD_OF_Q:
  1491. cmd->sam_task_attr = MSG_HEAD_TAG;
  1492. break;
  1493. case SRP_CMD_ACA:
  1494. cmd->sam_task_attr = MSG_ACA_TAG;
  1495. break;
  1496. }
  1497. if (srpt_get_desc_tbl(send_ioctx, srp_cmd, &dir, &data_len)) {
  1498. printk(KERN_ERR "0x%llx: parsing SRP descriptor table failed.\n",
  1499. srp_cmd->tag);
  1500. ret = TCM_INVALID_CDB_FIELD;
  1501. goto send_sense;
  1502. }
  1503. unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_cmd->lun,
  1504. sizeof(srp_cmd->lun));
  1505. rc = target_submit_cmd(cmd, ch->sess, srp_cmd->cdb,
  1506. &send_ioctx->sense_data[0], unpacked_lun, data_len,
  1507. MSG_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF);
  1508. if (rc != 0) {
  1509. ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
  1510. goto send_sense;
  1511. }
  1512. return 0;
  1513. send_sense:
  1514. transport_send_check_condition_and_sense(cmd, ret, 0);
  1515. return -1;
  1516. }
  1517. /**
  1518. * srpt_rx_mgmt_fn_tag() - Process a task management function by tag.
  1519. * @ch: RDMA channel of the task management request.
  1520. * @fn: Task management function to perform.
  1521. * @req_tag: Tag of the SRP task management request.
  1522. * @mgmt_ioctx: I/O context of the task management request.
  1523. *
  1524. * Returns zero if the target core will process the task management
  1525. * request asynchronously.
  1526. *
  1527. * Note: It is assumed that the initiator serializes tag-based task management
  1528. * requests.
  1529. */
  1530. static int srpt_rx_mgmt_fn_tag(struct srpt_send_ioctx *ioctx, u64 tag)
  1531. {
  1532. struct srpt_device *sdev;
  1533. struct srpt_rdma_ch *ch;
  1534. struct srpt_send_ioctx *target;
  1535. int ret, i;
  1536. ret = -EINVAL;
  1537. ch = ioctx->ch;
  1538. BUG_ON(!ch);
  1539. BUG_ON(!ch->sport);
  1540. sdev = ch->sport->sdev;
  1541. BUG_ON(!sdev);
  1542. spin_lock_irq(&sdev->spinlock);
  1543. for (i = 0; i < ch->rq_size; ++i) {
  1544. target = ch->ioctx_ring[i];
  1545. if (target->cmd.se_lun == ioctx->cmd.se_lun &&
  1546. target->tag == tag &&
  1547. srpt_get_cmd_state(target) != SRPT_STATE_DONE) {
  1548. ret = 0;
  1549. /* now let the target core abort &target->cmd; */
  1550. break;
  1551. }
  1552. }
  1553. spin_unlock_irq(&sdev->spinlock);
  1554. return ret;
  1555. }
  1556. static int srp_tmr_to_tcm(int fn)
  1557. {
  1558. switch (fn) {
  1559. case SRP_TSK_ABORT_TASK:
  1560. return TMR_ABORT_TASK;
  1561. case SRP_TSK_ABORT_TASK_SET:
  1562. return TMR_ABORT_TASK_SET;
  1563. case SRP_TSK_CLEAR_TASK_SET:
  1564. return TMR_CLEAR_TASK_SET;
  1565. case SRP_TSK_LUN_RESET:
  1566. return TMR_LUN_RESET;
  1567. case SRP_TSK_CLEAR_ACA:
  1568. return TMR_CLEAR_ACA;
  1569. default:
  1570. return -1;
  1571. }
  1572. }
  1573. /**
  1574. * srpt_handle_tsk_mgmt() - Process an SRP_TSK_MGMT information unit.
  1575. *
  1576. * Returns 0 if and only if the request will be processed by the target core.
  1577. *
  1578. * For more information about SRP_TSK_MGMT information units, see also section
  1579. * 6.7 in the SRP r16a document.
  1580. */
  1581. static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch,
  1582. struct srpt_recv_ioctx *recv_ioctx,
  1583. struct srpt_send_ioctx *send_ioctx)
  1584. {
  1585. struct srp_tsk_mgmt *srp_tsk;
  1586. struct se_cmd *cmd;
  1587. struct se_session *sess = ch->sess;
  1588. uint64_t unpacked_lun;
  1589. uint32_t tag = 0;
  1590. int tcm_tmr;
  1591. int rc;
  1592. BUG_ON(!send_ioctx);
  1593. srp_tsk = recv_ioctx->ioctx.buf;
  1594. cmd = &send_ioctx->cmd;
  1595. pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld"
  1596. " cm_id %p sess %p\n", srp_tsk->tsk_mgmt_func,
  1597. srp_tsk->task_tag, srp_tsk->tag, ch->cm_id, ch->sess);
  1598. srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT);
  1599. send_ioctx->tag = srp_tsk->tag;
  1600. tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func);
  1601. if (tcm_tmr < 0) {
  1602. send_ioctx->cmd.se_tmr_req->response =
  1603. TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
  1604. goto fail;
  1605. }
  1606. unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_tsk->lun,
  1607. sizeof(srp_tsk->lun));
  1608. if (srp_tsk->tsk_mgmt_func == SRP_TSK_ABORT_TASK) {
  1609. rc = srpt_rx_mgmt_fn_tag(send_ioctx, srp_tsk->task_tag);
  1610. if (rc < 0) {
  1611. send_ioctx->cmd.se_tmr_req->response =
  1612. TMR_TASK_DOES_NOT_EXIST;
  1613. goto fail;
  1614. }
  1615. tag = srp_tsk->task_tag;
  1616. }
  1617. rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL, unpacked_lun,
  1618. srp_tsk, tcm_tmr, GFP_KERNEL, tag,
  1619. TARGET_SCF_ACK_KREF);
  1620. if (rc != 0) {
  1621. send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED;
  1622. goto fail;
  1623. }
  1624. return;
  1625. fail:
  1626. transport_send_check_condition_and_sense(cmd, 0, 0); // XXX:
  1627. }
  1628. /**
  1629. * srpt_handle_new_iu() - Process a newly received information unit.
  1630. * @ch: RDMA channel through which the information unit has been received.
  1631. * @ioctx: SRPT I/O context associated with the information unit.
  1632. */
  1633. static void srpt_handle_new_iu(struct srpt_rdma_ch *ch,
  1634. struct srpt_recv_ioctx *recv_ioctx,
  1635. struct srpt_send_ioctx *send_ioctx)
  1636. {
  1637. struct srp_cmd *srp_cmd;
  1638. enum rdma_ch_state ch_state;
  1639. BUG_ON(!ch);
  1640. BUG_ON(!recv_ioctx);
  1641. ib_dma_sync_single_for_cpu(ch->sport->sdev->device,
  1642. recv_ioctx->ioctx.dma, srp_max_req_size,
  1643. DMA_FROM_DEVICE);
  1644. ch_state = srpt_get_ch_state(ch);
  1645. if (unlikely(ch_state == CH_CONNECTING)) {
  1646. list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list);
  1647. goto out;
  1648. }
  1649. if (unlikely(ch_state != CH_LIVE))
  1650. goto out;
  1651. srp_cmd = recv_ioctx->ioctx.buf;
  1652. if (srp_cmd->opcode == SRP_CMD || srp_cmd->opcode == SRP_TSK_MGMT) {
  1653. if (!send_ioctx)
  1654. send_ioctx = srpt_get_send_ioctx(ch);
  1655. if (unlikely(!send_ioctx)) {
  1656. list_add_tail(&recv_ioctx->wait_list,
  1657. &ch->cmd_wait_list);
  1658. goto out;
  1659. }
  1660. }
  1661. switch (srp_cmd->opcode) {
  1662. case SRP_CMD:
  1663. srpt_handle_cmd(ch, recv_ioctx, send_ioctx);
  1664. break;
  1665. case SRP_TSK_MGMT:
  1666. srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx);
  1667. break;
  1668. case SRP_I_LOGOUT:
  1669. printk(KERN_ERR "Not yet implemented: SRP_I_LOGOUT\n");
  1670. break;
  1671. case SRP_CRED_RSP:
  1672. pr_debug("received SRP_CRED_RSP\n");
  1673. break;
  1674. case SRP_AER_RSP:
  1675. pr_debug("received SRP_AER_RSP\n");
  1676. break;
  1677. case SRP_RSP:
  1678. printk(KERN_ERR "Received SRP_RSP\n");
  1679. break;
  1680. default:
  1681. printk(KERN_ERR "received IU with unknown opcode 0x%x\n",
  1682. srp_cmd->opcode);
  1683. break;
  1684. }
  1685. srpt_post_recv(ch->sport->sdev, recv_ioctx);
  1686. out:
  1687. return;
  1688. }
  1689. static void srpt_process_rcv_completion(struct ib_cq *cq,
  1690. struct srpt_rdma_ch *ch,
  1691. struct ib_wc *wc)
  1692. {
  1693. struct srpt_device *sdev = ch->sport->sdev;
  1694. struct srpt_recv_ioctx *ioctx;
  1695. u32 index;
  1696. index = idx_from_wr_id(wc->wr_id);
  1697. if (wc->status == IB_WC_SUCCESS) {
  1698. int req_lim;
  1699. req_lim = atomic_dec_return(&ch->req_lim);
  1700. if (unlikely(req_lim < 0))
  1701. printk(KERN_ERR "req_lim = %d < 0\n", req_lim);
  1702. ioctx = sdev->ioctx_ring[index];
  1703. srpt_handle_new_iu(ch, ioctx, NULL);
  1704. } else {
  1705. printk(KERN_INFO "receiving failed for idx %u with status %d\n",
  1706. index, wc->status);
  1707. }
  1708. }
  1709. /**
  1710. * srpt_process_send_completion() - Process an IB send completion.
  1711. *
  1712. * Note: Although this has not yet been observed during tests, at least in
  1713. * theory it is possible that the srpt_get_send_ioctx() call invoked by
  1714. * srpt_handle_new_iu() fails. This is possible because the req_lim_delta
  1715. * value in each response is set to one, and it is possible that this response
  1716. * makes the initiator send a new request before the send completion for that
  1717. * response has been processed. This could e.g. happen if the call to
  1718. * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or
  1719. * if IB retransmission causes generation of the send completion to be
  1720. * delayed. Incoming information units for which srpt_get_send_ioctx() fails
  1721. * are queued on cmd_wait_list. The code below processes these delayed
  1722. * requests one at a time.
  1723. */
  1724. static void srpt_process_send_completion(struct ib_cq *cq,
  1725. struct srpt_rdma_ch *ch,
  1726. struct ib_wc *wc)
  1727. {
  1728. struct srpt_send_ioctx *send_ioctx;
  1729. uint32_t index;
  1730. enum srpt_opcode opcode;
  1731. index = idx_from_wr_id(wc->wr_id);
  1732. opcode = opcode_from_wr_id(wc->wr_id);
  1733. send_ioctx = ch->ioctx_ring[index];
  1734. if (wc->status == IB_WC_SUCCESS) {
  1735. if (opcode == SRPT_SEND)
  1736. srpt_handle_send_comp(ch, send_ioctx);
  1737. else {
  1738. WARN_ON(opcode != SRPT_RDMA_ABORT &&
  1739. wc->opcode != IB_WC_RDMA_READ);
  1740. srpt_handle_rdma_comp(ch, send_ioctx, opcode);
  1741. }
  1742. } else {
  1743. if (opcode == SRPT_SEND) {
  1744. printk(KERN_INFO "sending response for idx %u failed"
  1745. " with status %d\n", index, wc->status);
  1746. srpt_handle_send_err_comp(ch, wc->wr_id);
  1747. } else if (opcode != SRPT_RDMA_MID) {
  1748. printk(KERN_INFO "RDMA t %d for idx %u failed with"
  1749. " status %d", opcode, index, wc->status);
  1750. srpt_handle_rdma_err_comp(ch, send_ioctx, opcode);
  1751. }
  1752. }
  1753. while (unlikely(opcode == SRPT_SEND
  1754. && !list_empty(&ch->cmd_wait_list)
  1755. && srpt_get_ch_state(ch) == CH_LIVE
  1756. && (send_ioctx = srpt_get_send_ioctx(ch)) != NULL)) {
  1757. struct srpt_recv_ioctx *recv_ioctx;
  1758. recv_ioctx = list_first_entry(&ch->cmd_wait_list,
  1759. struct srpt_recv_ioctx,
  1760. wait_list);
  1761. list_del(&recv_ioctx->wait_list);
  1762. srpt_handle_new_iu(ch, recv_ioctx, send_ioctx);
  1763. }
  1764. }
  1765. static void srpt_process_completion(struct ib_cq *cq, struct srpt_rdma_ch *ch)
  1766. {
  1767. struct ib_wc *const wc = ch->wc;
  1768. int i, n;
  1769. WARN_ON(cq != ch->cq);
  1770. ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
  1771. while ((n = ib_poll_cq(cq, ARRAY_SIZE(ch->wc), wc)) > 0) {
  1772. for (i = 0; i < n; i++) {
  1773. if (opcode_from_wr_id(wc[i].wr_id) == SRPT_RECV)
  1774. srpt_process_rcv_completion(cq, ch, &wc[i]);
  1775. else
  1776. srpt_process_send_completion(cq, ch, &wc[i]);
  1777. }
  1778. }
  1779. }
  1780. /**
  1781. * srpt_completion() - IB completion queue callback function.
  1782. *
  1783. * Notes:
  1784. * - It is guaranteed that a completion handler will never be invoked
  1785. * concurrently on two different CPUs for the same completion queue. See also
  1786. * Documentation/infiniband/core_locking.txt and the implementation of
  1787. * handle_edge_irq() in kernel/irq/chip.c.
  1788. * - When threaded IRQs are enabled, completion handlers are invoked in thread
  1789. * context instead of interrupt context.
  1790. */
  1791. static void srpt_completion(struct ib_cq *cq, void *ctx)
  1792. {
  1793. struct srpt_rdma_ch *ch = ctx;
  1794. wake_up_interruptible(&ch->wait_queue);
  1795. }
  1796. static int srpt_compl_thread(void *arg)
  1797. {
  1798. struct srpt_rdma_ch *ch;
  1799. /* Hibernation / freezing of the SRPT kernel thread is not supported. */
  1800. current->flags |= PF_NOFREEZE;
  1801. ch = arg;
  1802. BUG_ON(!ch);
  1803. printk(KERN_INFO "Session %s: kernel thread %s (PID %d) started\n",
  1804. ch->sess_name, ch->thread->comm, current->pid);
  1805. while (!kthread_should_stop()) {
  1806. wait_event_interruptible(ch->wait_queue,
  1807. (srpt_process_completion(ch->cq, ch),
  1808. kthread_should_stop()));
  1809. }
  1810. printk(KERN_INFO "Session %s: kernel thread %s (PID %d) stopped\n",
  1811. ch->sess_name, ch->thread->comm, current->pid);
  1812. return 0;
  1813. }
  1814. /**
  1815. * srpt_create_ch_ib() - Create receive and send completion queues.
  1816. */
  1817. static int srpt_create_ch_ib(struct srpt_rdma_ch *ch)
  1818. {
  1819. struct ib_qp_init_attr *qp_init;
  1820. struct srpt_port *sport = ch->sport;
  1821. struct srpt_device *sdev = sport->sdev;
  1822. u32 srp_sq_size = sport->port_attrib.srp_sq_size;
  1823. int ret;
  1824. WARN_ON(ch->rq_size < 1);
  1825. ret = -ENOMEM;
  1826. qp_init = kzalloc(sizeof *qp_init, GFP_KERNEL);
  1827. if (!qp_init)
  1828. goto out;
  1829. ch->cq = ib_create_cq(sdev->device, srpt_completion, NULL, ch,
  1830. ch->rq_size + srp_sq_size, 0);
  1831. if (IS_ERR(ch->cq)) {
  1832. ret = PTR_ERR(ch->cq);
  1833. printk(KERN_ERR "failed to create CQ cqe= %d ret= %d\n",
  1834. ch->rq_size + srp_sq_size, ret);
  1835. goto out;
  1836. }
  1837. qp_init->qp_context = (void *)ch;
  1838. qp_init->event_handler
  1839. = (void(*)(struct ib_event *, void*))srpt_qp_event;
  1840. qp_init->send_cq = ch->cq;
  1841. qp_init->recv_cq = ch->cq;
  1842. qp_init->srq = sdev->srq;
  1843. qp_init->sq_sig_type = IB_SIGNAL_REQ_WR;
  1844. qp_init->qp_type = IB_QPT_RC;
  1845. qp_init->cap.max_send_wr = srp_sq_size;
  1846. qp_init->cap.max_send_sge = SRPT_DEF_SG_PER_WQE;
  1847. ch->qp = ib_create_qp(sdev->pd, qp_init);
  1848. if (IS_ERR(ch->qp)) {
  1849. ret = PTR_ERR(ch->qp);
  1850. printk(KERN_ERR "failed to create_qp ret= %d\n", ret);
  1851. goto err_destroy_cq;
  1852. }
  1853. atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr);
  1854. pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
  1855. __func__, ch->cq->cqe, qp_init->cap.max_send_sge,
  1856. qp_init->cap.max_send_wr, ch->cm_id);
  1857. ret = srpt_init_ch_qp(ch, ch->qp);
  1858. if (ret)
  1859. goto err_destroy_qp;
  1860. init_waitqueue_head(&ch->wait_queue);
  1861. pr_debug("creating thread for session %s\n", ch->sess_name);
  1862. ch->thread = kthread_run(srpt_compl_thread, ch, "ib_srpt_compl");
  1863. if (IS_ERR(ch->thread)) {
  1864. printk(KERN_ERR "failed to create kernel thread %ld\n",
  1865. PTR_ERR(ch->thread));
  1866. ch->thread = NULL;
  1867. goto err_destroy_qp;
  1868. }
  1869. out:
  1870. kfree(qp_init);
  1871. return ret;
  1872. err_destroy_qp:
  1873. ib_destroy_qp(ch->qp);
  1874. err_destroy_cq:
  1875. ib_destroy_cq(ch->cq);
  1876. goto out;
  1877. }
  1878. static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch)
  1879. {
  1880. if (ch->thread)
  1881. kthread_stop(ch->thread);
  1882. ib_destroy_qp(ch->qp);
  1883. ib_destroy_cq(ch->cq);
  1884. }
  1885. /**
  1886. * __srpt_close_ch() - Close an RDMA channel by setting the QP error state.
  1887. *
  1888. * Reset the QP and make sure all resources associated with the channel will
  1889. * be deallocated at an appropriate time.
  1890. *
  1891. * Note: The caller must hold ch->sport->sdev->spinlock.
  1892. */
  1893. static void __srpt_close_ch(struct srpt_rdma_ch *ch)
  1894. {
  1895. struct srpt_device *sdev;
  1896. enum rdma_ch_state prev_state;
  1897. unsigned long flags;
  1898. sdev = ch->sport->sdev;
  1899. spin_lock_irqsave(&ch->spinlock, flags);
  1900. prev_state = ch->state;
  1901. switch (prev_state) {
  1902. case CH_CONNECTING:
  1903. case CH_LIVE:
  1904. ch->state = CH_DISCONNECTING;
  1905. break;
  1906. default:
  1907. break;
  1908. }
  1909. spin_unlock_irqrestore(&ch->spinlock, flags);
  1910. switch (prev_state) {
  1911. case CH_CONNECTING:
  1912. ib_send_cm_rej(ch->cm_id, IB_CM_REJ_NO_RESOURCES, NULL, 0,
  1913. NULL, 0);
  1914. /* fall through */
  1915. case CH_LIVE:
  1916. if (ib_send_cm_dreq(ch->cm_id, NULL, 0) < 0)
  1917. printk(KERN_ERR "sending CM DREQ failed.\n");
  1918. break;
  1919. case CH_DISCONNECTING:
  1920. break;
  1921. case CH_DRAINING:
  1922. case CH_RELEASING:
  1923. break;
  1924. }
  1925. }
  1926. /**
  1927. * srpt_close_ch() - Close an RDMA channel.
  1928. */
  1929. static void srpt_close_ch(struct srpt_rdma_ch *ch)
  1930. {
  1931. struct srpt_device *sdev;
  1932. sdev = ch->sport->sdev;
  1933. spin_lock_irq(&sdev->spinlock);
  1934. __srpt_close_ch(ch);
  1935. spin_unlock_irq(&sdev->spinlock);
  1936. }
  1937. /**
  1938. * srpt_shutdown_session() - Whether or not a session may be shut down.
  1939. */
  1940. static int srpt_shutdown_session(struct se_session *se_sess)
  1941. {
  1942. struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr;
  1943. unsigned long flags;
  1944. spin_lock_irqsave(&ch->spinlock, flags);
  1945. if (ch->in_shutdown) {
  1946. spin_unlock_irqrestore(&ch->spinlock, flags);
  1947. return true;
  1948. }
  1949. ch->in_shutdown = true;
  1950. target_sess_cmd_list_set_waiting(se_sess);
  1951. spin_unlock_irqrestore(&ch->spinlock, flags);
  1952. return true;
  1953. }
  1954. /**
  1955. * srpt_drain_channel() - Drain a channel by resetting the IB queue pair.
  1956. * @cm_id: Pointer to the CM ID of the channel to be drained.
  1957. *
  1958. * Note: Must be called from inside srpt_cm_handler to avoid a race between
  1959. * accessing sdev->spinlock and the call to kfree(sdev) in srpt_remove_one()
  1960. * (the caller of srpt_cm_handler holds the cm_id spinlock; srpt_remove_one()
  1961. * waits until all target sessions for the associated IB device have been
  1962. * unregistered and target session registration involves a call to
  1963. * ib_destroy_cm_id(), which locks the cm_id spinlock and hence waits until
  1964. * this function has finished).
  1965. */
  1966. static void srpt_drain_channel(struct ib_cm_id *cm_id)
  1967. {
  1968. struct srpt_device *sdev;
  1969. struct srpt_rdma_ch *ch;
  1970. int ret;
  1971. bool do_reset = false;
  1972. WARN_ON_ONCE(irqs_disabled());
  1973. sdev = cm_id->context;
  1974. BUG_ON(!sdev);
  1975. spin_lock_irq(&sdev->spinlock);
  1976. list_for_each_entry(ch, &sdev->rch_list, list) {
  1977. if (ch->cm_id == cm_id) {
  1978. do_reset = srpt_test_and_set_ch_state(ch,
  1979. CH_CONNECTING, CH_DRAINING) ||
  1980. srpt_test_and_set_ch_state(ch,
  1981. CH_LIVE, CH_DRAINING) ||
  1982. srpt_test_and_set_ch_state(ch,
  1983. CH_DISCONNECTING, CH_DRAINING);
  1984. break;
  1985. }
  1986. }
  1987. spin_unlock_irq(&sdev->spinlock);
  1988. if (do_reset) {
  1989. if (ch->sess)
  1990. srpt_shutdown_session(ch->sess);
  1991. ret = srpt_ch_qp_err(ch);
  1992. if (ret < 0)
  1993. printk(KERN_ERR "Setting queue pair in error state"
  1994. " failed: %d\n", ret);
  1995. }
  1996. }
  1997. /**
  1998. * srpt_find_channel() - Look up an RDMA channel.
  1999. * @cm_id: Pointer to the CM ID of the channel to be looked up.
  2000. *
  2001. * Return NULL if no matching RDMA channel has been found.
  2002. */
  2003. static struct srpt_rdma_ch *srpt_find_channel(struct srpt_device *sdev,
  2004. struct ib_cm_id *cm_id)
  2005. {
  2006. struct srpt_rdma_ch *ch;
  2007. bool found;
  2008. WARN_ON_ONCE(irqs_disabled());
  2009. BUG_ON(!sdev);
  2010. found = false;
  2011. spin_lock_irq(&sdev->spinlock);
  2012. list_for_each_entry(ch, &sdev->rch_list, list) {
  2013. if (ch->cm_id == cm_id) {
  2014. found = true;
  2015. break;
  2016. }
  2017. }
  2018. spin_unlock_irq(&sdev->spinlock);
  2019. return found ? ch : NULL;
  2020. }
  2021. /**
  2022. * srpt_release_channel() - Release channel resources.
  2023. *
  2024. * Schedules the actual release because:
  2025. * - Calling the ib_destroy_cm_id() call from inside an IB CM callback would
  2026. * trigger a deadlock.
  2027. * - It is not safe to call TCM transport_* functions from interrupt context.
  2028. */
  2029. static void srpt_release_channel(struct srpt_rdma_ch *ch)
  2030. {
  2031. schedule_work(&ch->release_work);
  2032. }
  2033. static void srpt_release_channel_work(struct work_struct *w)
  2034. {
  2035. struct srpt_rdma_ch *ch;
  2036. struct srpt_device *sdev;
  2037. struct se_session *se_sess;
  2038. ch = container_of(w, struct srpt_rdma_ch, release_work);
  2039. pr_debug("ch = %p; ch->sess = %p; release_done = %p\n", ch, ch->sess,
  2040. ch->release_done);
  2041. sdev = ch->sport->sdev;
  2042. BUG_ON(!sdev);
  2043. se_sess = ch->sess;
  2044. BUG_ON(!se_sess);
  2045. target_wait_for_sess_cmds(se_sess);
  2046. transport_deregister_session_configfs(se_sess);
  2047. transport_deregister_session(se_sess);
  2048. ch->sess = NULL;
  2049. srpt_destroy_ch_ib(ch);
  2050. srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
  2051. ch->sport->sdev, ch->rq_size,
  2052. ch->rsp_size, DMA_TO_DEVICE);
  2053. spin_lock_irq(&sdev->spinlock);
  2054. list_del(&ch->list);
  2055. spin_unlock_irq(&sdev->spinlock);
  2056. ib_destroy_cm_id(ch->cm_id);
  2057. if (ch->release_done)
  2058. complete(ch->release_done);
  2059. wake_up(&sdev->ch_releaseQ);
  2060. kfree(ch);
  2061. }
  2062. static struct srpt_node_acl *__srpt_lookup_acl(struct srpt_port *sport,
  2063. u8 i_port_id[16])
  2064. {
  2065. struct srpt_node_acl *nacl;
  2066. list_for_each_entry(nacl, &sport->port_acl_list, list)
  2067. if (memcmp(nacl->i_port_id, i_port_id,
  2068. sizeof(nacl->i_port_id)) == 0)
  2069. return nacl;
  2070. return NULL;
  2071. }
  2072. static struct srpt_node_acl *srpt_lookup_acl(struct srpt_port *sport,
  2073. u8 i_port_id[16])
  2074. {
  2075. struct srpt_node_acl *nacl;
  2076. spin_lock_irq(&sport->port_acl_lock);
  2077. nacl = __srpt_lookup_acl(sport, i_port_id);
  2078. spin_unlock_irq(&sport->port_acl_lock);
  2079. return nacl;
  2080. }
  2081. /**
  2082. * srpt_cm_req_recv() - Process the event IB_CM_REQ_RECEIVED.
  2083. *
  2084. * Ownership of the cm_id is transferred to the target session if this
  2085. * functions returns zero. Otherwise the caller remains the owner of cm_id.
  2086. */
  2087. static int srpt_cm_req_recv(struct ib_cm_id *cm_id,
  2088. struct ib_cm_req_event_param *param,
  2089. void *private_data)
  2090. {
  2091. struct srpt_device *sdev = cm_id->context;
  2092. struct srpt_port *sport = &sdev->port[param->port - 1];
  2093. struct srp_login_req *req;
  2094. struct srp_login_rsp *rsp;
  2095. struct srp_login_rej *rej;
  2096. struct ib_cm_rep_param *rep_param;
  2097. struct srpt_rdma_ch *ch, *tmp_ch;
  2098. struct srpt_node_acl *nacl;
  2099. u32 it_iu_len;
  2100. int i;
  2101. int ret = 0;
  2102. WARN_ON_ONCE(irqs_disabled());
  2103. if (WARN_ON(!sdev || !private_data))
  2104. return -EINVAL;
  2105. req = (struct srp_login_req *)private_data;
  2106. it_iu_len = be32_to_cpu(req->req_it_iu_len);
  2107. printk(KERN_INFO "Received SRP_LOGIN_REQ with i_port_id 0x%llx:0x%llx,"
  2108. " t_port_id 0x%llx:0x%llx and it_iu_len %d on port %d"
  2109. " (guid=0x%llx:0x%llx)\n",
  2110. be64_to_cpu(*(__be64 *)&req->initiator_port_id[0]),
  2111. be64_to_cpu(*(__be64 *)&req->initiator_port_id[8]),
  2112. be64_to_cpu(*(__be64 *)&req->target_port_id[0]),
  2113. be64_to_cpu(*(__be64 *)&req->target_port_id[8]),
  2114. it_iu_len,
  2115. param->port,
  2116. be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[0]),
  2117. be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[8]));
  2118. rsp = kzalloc(sizeof *rsp, GFP_KERNEL);
  2119. rej = kzalloc(sizeof *rej, GFP_KERNEL);
  2120. rep_param = kzalloc(sizeof *rep_param, GFP_KERNEL);
  2121. if (!rsp || !rej || !rep_param) {
  2122. ret = -ENOMEM;
  2123. goto out;
  2124. }
  2125. if (it_iu_len > srp_max_req_size || it_iu_len < 64) {
  2126. rej->reason = __constant_cpu_to_be32(
  2127. SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE);
  2128. ret = -EINVAL;
  2129. printk(KERN_ERR "rejected SRP_LOGIN_REQ because its"
  2130. " length (%d bytes) is out of range (%d .. %d)\n",
  2131. it_iu_len, 64, srp_max_req_size);
  2132. goto reject;
  2133. }
  2134. if (!sport->enabled) {
  2135. rej->reason = __constant_cpu_to_be32(
  2136. SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
  2137. ret = -EINVAL;
  2138. printk(KERN_ERR "rejected SRP_LOGIN_REQ because the target port"
  2139. " has not yet been enabled\n");
  2140. goto reject;
  2141. }
  2142. if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) {
  2143. rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_NO_CHAN;
  2144. spin_lock_irq(&sdev->spinlock);
  2145. list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) {
  2146. if (!memcmp(ch->i_port_id, req->initiator_port_id, 16)
  2147. && !memcmp(ch->t_port_id, req->target_port_id, 16)
  2148. && param->port == ch->sport->port
  2149. && param->listen_id == ch->sport->sdev->cm_id
  2150. && ch->cm_id) {
  2151. enum rdma_ch_state ch_state;
  2152. ch_state = srpt_get_ch_state(ch);
  2153. if (ch_state != CH_CONNECTING
  2154. && ch_state != CH_LIVE)
  2155. continue;
  2156. /* found an existing channel */
  2157. pr_debug("Found existing channel %s"
  2158. " cm_id= %p state= %d\n",
  2159. ch->sess_name, ch->cm_id, ch_state);
  2160. __srpt_close_ch(ch);
  2161. rsp->rsp_flags =
  2162. SRP_LOGIN_RSP_MULTICHAN_TERMINATED;
  2163. }
  2164. }
  2165. spin_unlock_irq(&sdev->spinlock);
  2166. } else
  2167. rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_MAINTAINED;
  2168. if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid)
  2169. || *(__be64 *)(req->target_port_id + 8) !=
  2170. cpu_to_be64(srpt_service_guid)) {
  2171. rej->reason = __constant_cpu_to_be32(
  2172. SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL);
  2173. ret = -ENOMEM;
  2174. printk(KERN_ERR "rejected SRP_LOGIN_REQ because it"
  2175. " has an invalid target port identifier.\n");
  2176. goto reject;
  2177. }
  2178. ch = kzalloc(sizeof *ch, GFP_KERNEL);
  2179. if (!ch) {
  2180. rej->reason = __constant_cpu_to_be32(
  2181. SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
  2182. printk(KERN_ERR "rejected SRP_LOGIN_REQ because no memory.\n");
  2183. ret = -ENOMEM;
  2184. goto reject;
  2185. }
  2186. INIT_WORK(&ch->release_work, srpt_release_channel_work);
  2187. memcpy(ch->i_port_id, req->initiator_port_id, 16);
  2188. memcpy(ch->t_port_id, req->target_port_id, 16);
  2189. ch->sport = &sdev->port[param->port - 1];
  2190. ch->cm_id = cm_id;
  2191. /*
  2192. * Avoid QUEUE_FULL conditions by limiting the number of buffers used
  2193. * for the SRP protocol to the command queue size.
  2194. */
  2195. ch->rq_size = SRPT_RQ_SIZE;
  2196. spin_lock_init(&ch->spinlock);
  2197. ch->state = CH_CONNECTING;
  2198. INIT_LIST_HEAD(&ch->cmd_wait_list);
  2199. ch->rsp_size = ch->sport->port_attrib.srp_max_rsp_size;
  2200. ch->ioctx_ring = (struct srpt_send_ioctx **)
  2201. srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
  2202. sizeof(*ch->ioctx_ring[0]),
  2203. ch->rsp_size, DMA_TO_DEVICE);
  2204. if (!ch->ioctx_ring)
  2205. goto free_ch;
  2206. INIT_LIST_HEAD(&ch->free_list);
  2207. for (i = 0; i < ch->rq_size; i++) {
  2208. ch->ioctx_ring[i]->ch = ch;
  2209. list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list);
  2210. }
  2211. ret = srpt_create_ch_ib(ch);
  2212. if (ret) {
  2213. rej->reason = __constant_cpu_to_be32(
  2214. SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
  2215. printk(KERN_ERR "rejected SRP_LOGIN_REQ because creating"
  2216. " a new RDMA channel failed.\n");
  2217. goto free_ring;
  2218. }
  2219. ret = srpt_ch_qp_rtr(ch, ch->qp);
  2220. if (ret) {
  2221. rej->reason = __constant_cpu_to_be32(
  2222. SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
  2223. printk(KERN_ERR "rejected SRP_LOGIN_REQ because enabling"
  2224. " RTR failed (error code = %d)\n", ret);
  2225. goto destroy_ib;
  2226. }
  2227. /*
  2228. * Use the initator port identifier as the session name.
  2229. */
  2230. snprintf(ch->sess_name, sizeof(ch->sess_name), "0x%016llx%016llx",
  2231. be64_to_cpu(*(__be64 *)ch->i_port_id),
  2232. be64_to_cpu(*(__be64 *)(ch->i_port_id + 8)));
  2233. pr_debug("registering session %s\n", ch->sess_name);
  2234. nacl = srpt_lookup_acl(sport, ch->i_port_id);
  2235. if (!nacl) {
  2236. printk(KERN_INFO "Rejected login because no ACL has been"
  2237. " configured yet for initiator %s.\n", ch->sess_name);
  2238. rej->reason = __constant_cpu_to_be32(
  2239. SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED);
  2240. goto destroy_ib;
  2241. }
  2242. ch->sess = transport_init_session();
  2243. if (IS_ERR(ch->sess)) {
  2244. rej->reason = __constant_cpu_to_be32(
  2245. SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
  2246. pr_debug("Failed to create session\n");
  2247. goto deregister_session;
  2248. }
  2249. ch->sess->se_node_acl = &nacl->nacl;
  2250. transport_register_session(&sport->port_tpg_1, &nacl->nacl, ch->sess, ch);
  2251. pr_debug("Establish connection sess=%p name=%s cm_id=%p\n", ch->sess,
  2252. ch->sess_name, ch->cm_id);
  2253. /* create srp_login_response */
  2254. rsp->opcode = SRP_LOGIN_RSP;
  2255. rsp->tag = req->tag;
  2256. rsp->max_it_iu_len = req->req_it_iu_len;
  2257. rsp->max_ti_iu_len = req->req_it_iu_len;
  2258. ch->max_ti_iu_len = it_iu_len;
  2259. rsp->buf_fmt = __constant_cpu_to_be16(SRP_BUF_FORMAT_DIRECT
  2260. | SRP_BUF_FORMAT_INDIRECT);
  2261. rsp->req_lim_delta = cpu_to_be32(ch->rq_size);
  2262. atomic_set(&ch->req_lim, ch->rq_size);
  2263. atomic_set(&ch->req_lim_delta, 0);
  2264. /* create cm reply */
  2265. rep_param->qp_num = ch->qp->qp_num;
  2266. rep_param->private_data = (void *)rsp;
  2267. rep_param->private_data_len = sizeof *rsp;
  2268. rep_param->rnr_retry_count = 7;
  2269. rep_param->flow_control = 1;
  2270. rep_param->failover_accepted = 0;
  2271. rep_param->srq = 1;
  2272. rep_param->responder_resources = 4;
  2273. rep_param->initiator_depth = 4;
  2274. ret = ib_send_cm_rep(cm_id, rep_param);
  2275. if (ret) {
  2276. printk(KERN_ERR "sending SRP_LOGIN_REQ response failed"
  2277. " (error code = %d)\n", ret);
  2278. goto release_channel;
  2279. }
  2280. spin_lock_irq(&sdev->spinlock);
  2281. list_add_tail(&ch->list, &sdev->rch_list);
  2282. spin_unlock_irq(&sdev->spinlock);
  2283. goto out;
  2284. release_channel:
  2285. srpt_set_ch_state(ch, CH_RELEASING);
  2286. transport_deregister_session_configfs(ch->sess);
  2287. deregister_session:
  2288. transport_deregister_session(ch->sess);
  2289. ch->sess = NULL;
  2290. destroy_ib:
  2291. srpt_destroy_ch_ib(ch);
  2292. free_ring:
  2293. srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
  2294. ch->sport->sdev, ch->rq_size,
  2295. ch->rsp_size, DMA_TO_DEVICE);
  2296. free_ch:
  2297. kfree(ch);
  2298. reject:
  2299. rej->opcode = SRP_LOGIN_REJ;
  2300. rej->tag = req->tag;
  2301. rej->buf_fmt = __constant_cpu_to_be16(SRP_BUF_FORMAT_DIRECT
  2302. | SRP_BUF_FORMAT_INDIRECT);
  2303. ib_send_cm_rej(cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0,
  2304. (void *)rej, sizeof *rej);
  2305. out:
  2306. kfree(rep_param);
  2307. kfree(rsp);
  2308. kfree(rej);
  2309. return ret;
  2310. }
  2311. static void srpt_cm_rej_recv(struct ib_cm_id *cm_id)
  2312. {
  2313. printk(KERN_INFO "Received IB REJ for cm_id %p.\n", cm_id);
  2314. srpt_drain_channel(cm_id);
  2315. }
  2316. /**
  2317. * srpt_cm_rtu_recv() - Process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event.
  2318. *
  2319. * An IB_CM_RTU_RECEIVED message indicates that the connection is established
  2320. * and that the recipient may begin transmitting (RTU = ready to use).
  2321. */
  2322. static void srpt_cm_rtu_recv(struct ib_cm_id *cm_id)
  2323. {
  2324. struct srpt_rdma_ch *ch;
  2325. int ret;
  2326. ch = srpt_find_channel(cm_id->context, cm_id);
  2327. BUG_ON(!ch);
  2328. if (srpt_test_and_set_ch_state(ch, CH_CONNECTING, CH_LIVE)) {
  2329. struct srpt_recv_ioctx *ioctx, *ioctx_tmp;
  2330. ret = srpt_ch_qp_rts(ch, ch->qp);
  2331. list_for_each_entry_safe(ioctx, ioctx_tmp, &ch->cmd_wait_list,
  2332. wait_list) {
  2333. list_del(&ioctx->wait_list);
  2334. srpt_handle_new_iu(ch, ioctx, NULL);
  2335. }
  2336. if (ret)
  2337. srpt_close_ch(ch);
  2338. }
  2339. }
  2340. static void srpt_cm_timewait_exit(struct ib_cm_id *cm_id)
  2341. {
  2342. printk(KERN_INFO "Received IB TimeWait exit for cm_id %p.\n", cm_id);
  2343. srpt_drain_channel(cm_id);
  2344. }
  2345. static void srpt_cm_rep_error(struct ib_cm_id *cm_id)
  2346. {
  2347. printk(KERN_INFO "Received IB REP error for cm_id %p.\n", cm_id);
  2348. srpt_drain_channel(cm_id);
  2349. }
  2350. /**
  2351. * srpt_cm_dreq_recv() - Process reception of a DREQ message.
  2352. */
  2353. static void srpt_cm_dreq_recv(struct ib_cm_id *cm_id)
  2354. {
  2355. struct srpt_rdma_ch *ch;
  2356. unsigned long flags;
  2357. bool send_drep = false;
  2358. ch = srpt_find_channel(cm_id->context, cm_id);
  2359. BUG_ON(!ch);
  2360. pr_debug("cm_id= %p ch->state= %d\n", cm_id, srpt_get_ch_state(ch));
  2361. spin_lock_irqsave(&ch->spinlock, flags);
  2362. switch (ch->state) {
  2363. case CH_CONNECTING:
  2364. case CH_LIVE:
  2365. send_drep = true;
  2366. ch->state = CH_DISCONNECTING;
  2367. break;
  2368. case CH_DISCONNECTING:
  2369. case CH_DRAINING:
  2370. case CH_RELEASING:
  2371. WARN(true, "unexpected channel state %d\n", ch->state);
  2372. break;
  2373. }
  2374. spin_unlock_irqrestore(&ch->spinlock, flags);
  2375. if (send_drep) {
  2376. if (ib_send_cm_drep(ch->cm_id, NULL, 0) < 0)
  2377. printk(KERN_ERR "Sending IB DREP failed.\n");
  2378. printk(KERN_INFO "Received DREQ and sent DREP for session %s.\n",
  2379. ch->sess_name);
  2380. }
  2381. }
  2382. /**
  2383. * srpt_cm_drep_recv() - Process reception of a DREP message.
  2384. */
  2385. static void srpt_cm_drep_recv(struct ib_cm_id *cm_id)
  2386. {
  2387. printk(KERN_INFO "Received InfiniBand DREP message for cm_id %p.\n",
  2388. cm_id);
  2389. srpt_drain_channel(cm_id);
  2390. }
  2391. /**
  2392. * srpt_cm_handler() - IB connection manager callback function.
  2393. *
  2394. * A non-zero return value will cause the caller destroy the CM ID.
  2395. *
  2396. * Note: srpt_cm_handler() must only return a non-zero value when transferring
  2397. * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning
  2398. * a non-zero value in any other case will trigger a race with the
  2399. * ib_destroy_cm_id() call in srpt_release_channel().
  2400. */
  2401. static int srpt_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event)
  2402. {
  2403. int ret;
  2404. ret = 0;
  2405. switch (event->event) {
  2406. case IB_CM_REQ_RECEIVED:
  2407. ret = srpt_cm_req_recv(cm_id, &event->param.req_rcvd,
  2408. event->private_data);
  2409. break;
  2410. case IB_CM_REJ_RECEIVED:
  2411. srpt_cm_rej_recv(cm_id);
  2412. break;
  2413. case IB_CM_RTU_RECEIVED:
  2414. case IB_CM_USER_ESTABLISHED:
  2415. srpt_cm_rtu_recv(cm_id);
  2416. break;
  2417. case IB_CM_DREQ_RECEIVED:
  2418. srpt_cm_dreq_recv(cm_id);
  2419. break;
  2420. case IB_CM_DREP_RECEIVED:
  2421. srpt_cm_drep_recv(cm_id);
  2422. break;
  2423. case IB_CM_TIMEWAIT_EXIT:
  2424. srpt_cm_timewait_exit(cm_id);
  2425. break;
  2426. case IB_CM_REP_ERROR:
  2427. srpt_cm_rep_error(cm_id);
  2428. break;
  2429. case IB_CM_DREQ_ERROR:
  2430. printk(KERN_INFO "Received IB DREQ ERROR event.\n");
  2431. break;
  2432. case IB_CM_MRA_RECEIVED:
  2433. printk(KERN_INFO "Received IB MRA event\n");
  2434. break;
  2435. default:
  2436. printk(KERN_ERR "received unrecognized IB CM event %d\n",
  2437. event->event);
  2438. break;
  2439. }
  2440. return ret;
  2441. }
  2442. /**
  2443. * srpt_perform_rdmas() - Perform IB RDMA.
  2444. *
  2445. * Returns zero upon success or a negative number upon failure.
  2446. */
  2447. static int srpt_perform_rdmas(struct srpt_rdma_ch *ch,
  2448. struct srpt_send_ioctx *ioctx)
  2449. {
  2450. struct ib_send_wr wr;
  2451. struct ib_send_wr *bad_wr;
  2452. struct rdma_iu *riu;
  2453. int i;
  2454. int ret;
  2455. int sq_wr_avail;
  2456. enum dma_data_direction dir;
  2457. const int n_rdma = ioctx->n_rdma;
  2458. dir = ioctx->cmd.data_direction;
  2459. if (dir == DMA_TO_DEVICE) {
  2460. /* write */
  2461. ret = -ENOMEM;
  2462. sq_wr_avail = atomic_sub_return(n_rdma, &ch->sq_wr_avail);
  2463. if (sq_wr_avail < 0) {
  2464. printk(KERN_WARNING "IB send queue full (needed %d)\n",
  2465. n_rdma);
  2466. goto out;
  2467. }
  2468. }
  2469. ioctx->rdma_aborted = false;
  2470. ret = 0;
  2471. riu = ioctx->rdma_ius;
  2472. memset(&wr, 0, sizeof wr);
  2473. for (i = 0; i < n_rdma; ++i, ++riu) {
  2474. if (dir == DMA_FROM_DEVICE) {
  2475. wr.opcode = IB_WR_RDMA_WRITE;
  2476. wr.wr_id = encode_wr_id(i == n_rdma - 1 ?
  2477. SRPT_RDMA_WRITE_LAST :
  2478. SRPT_RDMA_MID,
  2479. ioctx->ioctx.index);
  2480. } else {
  2481. wr.opcode = IB_WR_RDMA_READ;
  2482. wr.wr_id = encode_wr_id(i == n_rdma - 1 ?
  2483. SRPT_RDMA_READ_LAST :
  2484. SRPT_RDMA_MID,
  2485. ioctx->ioctx.index);
  2486. }
  2487. wr.next = NULL;
  2488. wr.wr.rdma.remote_addr = riu->raddr;
  2489. wr.wr.rdma.rkey = riu->rkey;
  2490. wr.num_sge = riu->sge_cnt;
  2491. wr.sg_list = riu->sge;
  2492. /* only get completion event for the last rdma write */
  2493. if (i == (n_rdma - 1) && dir == DMA_TO_DEVICE)
  2494. wr.send_flags = IB_SEND_SIGNALED;
  2495. ret = ib_post_send(ch->qp, &wr, &bad_wr);
  2496. if (ret)
  2497. break;
  2498. }
  2499. if (ret)
  2500. printk(KERN_ERR "%s[%d]: ib_post_send() returned %d for %d/%d",
  2501. __func__, __LINE__, ret, i, n_rdma);
  2502. if (ret && i > 0) {
  2503. wr.num_sge = 0;
  2504. wr.wr_id = encode_wr_id(SRPT_RDMA_ABORT, ioctx->ioctx.index);
  2505. wr.send_flags = IB_SEND_SIGNALED;
  2506. while (ch->state == CH_LIVE &&
  2507. ib_post_send(ch->qp, &wr, &bad_wr) != 0) {
  2508. printk(KERN_INFO "Trying to abort failed RDMA transfer [%d]",
  2509. ioctx->ioctx.index);
  2510. msleep(1000);
  2511. }
  2512. while (ch->state != CH_RELEASING && !ioctx->rdma_aborted) {
  2513. printk(KERN_INFO "Waiting until RDMA abort finished [%d]",
  2514. ioctx->ioctx.index);
  2515. msleep(1000);
  2516. }
  2517. }
  2518. out:
  2519. if (unlikely(dir == DMA_TO_DEVICE && ret < 0))
  2520. atomic_add(n_rdma, &ch->sq_wr_avail);
  2521. return ret;
  2522. }
  2523. /**
  2524. * srpt_xfer_data() - Start data transfer from initiator to target.
  2525. */
  2526. static int srpt_xfer_data(struct srpt_rdma_ch *ch,
  2527. struct srpt_send_ioctx *ioctx)
  2528. {
  2529. int ret;
  2530. ret = srpt_map_sg_to_ib_sge(ch, ioctx);
  2531. if (ret) {
  2532. printk(KERN_ERR "%s[%d] ret=%d\n", __func__, __LINE__, ret);
  2533. goto out;
  2534. }
  2535. ret = srpt_perform_rdmas(ch, ioctx);
  2536. if (ret) {
  2537. if (ret == -EAGAIN || ret == -ENOMEM)
  2538. printk(KERN_INFO "%s[%d] queue full -- ret=%d\n",
  2539. __func__, __LINE__, ret);
  2540. else
  2541. printk(KERN_ERR "%s[%d] fatal error -- ret=%d\n",
  2542. __func__, __LINE__, ret);
  2543. goto out_unmap;
  2544. }
  2545. out:
  2546. return ret;
  2547. out_unmap:
  2548. srpt_unmap_sg_to_ib_sge(ch, ioctx);
  2549. goto out;
  2550. }
  2551. static int srpt_write_pending_status(struct se_cmd *se_cmd)
  2552. {
  2553. struct srpt_send_ioctx *ioctx;
  2554. ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
  2555. return srpt_get_cmd_state(ioctx) == SRPT_STATE_NEED_DATA;
  2556. }
  2557. /*
  2558. * srpt_write_pending() - Start data transfer from initiator to target (write).
  2559. */
  2560. static int srpt_write_pending(struct se_cmd *se_cmd)
  2561. {
  2562. struct srpt_rdma_ch *ch;
  2563. struct srpt_send_ioctx *ioctx;
  2564. enum srpt_command_state new_state;
  2565. enum rdma_ch_state ch_state;
  2566. int ret;
  2567. ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
  2568. new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA);
  2569. WARN_ON(new_state == SRPT_STATE_DONE);
  2570. ch = ioctx->ch;
  2571. BUG_ON(!ch);
  2572. ch_state = srpt_get_ch_state(ch);
  2573. switch (ch_state) {
  2574. case CH_CONNECTING:
  2575. WARN(true, "unexpected channel state %d\n", ch_state);
  2576. ret = -EINVAL;
  2577. goto out;
  2578. case CH_LIVE:
  2579. break;
  2580. case CH_DISCONNECTING:
  2581. case CH_DRAINING:
  2582. case CH_RELEASING:
  2583. pr_debug("cmd with tag %lld: channel disconnecting\n",
  2584. ioctx->tag);
  2585. srpt_set_cmd_state(ioctx, SRPT_STATE_DATA_IN);
  2586. ret = -EINVAL;
  2587. goto out;
  2588. }
  2589. ret = srpt_xfer_data(ch, ioctx);
  2590. out:
  2591. return ret;
  2592. }
  2593. static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status)
  2594. {
  2595. switch (tcm_mgmt_status) {
  2596. case TMR_FUNCTION_COMPLETE:
  2597. return SRP_TSK_MGMT_SUCCESS;
  2598. case TMR_FUNCTION_REJECTED:
  2599. return SRP_TSK_MGMT_FUNC_NOT_SUPP;
  2600. }
  2601. return SRP_TSK_MGMT_FAILED;
  2602. }
  2603. /**
  2604. * srpt_queue_response() - Transmits the response to a SCSI command.
  2605. *
  2606. * Callback function called by the TCM core. Must not block since it can be
  2607. * invoked on the context of the IB completion handler.
  2608. */
  2609. static void srpt_queue_response(struct se_cmd *cmd)
  2610. {
  2611. struct srpt_rdma_ch *ch;
  2612. struct srpt_send_ioctx *ioctx;
  2613. enum srpt_command_state state;
  2614. unsigned long flags;
  2615. int ret;
  2616. enum dma_data_direction dir;
  2617. int resp_len;
  2618. u8 srp_tm_status;
  2619. ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
  2620. ch = ioctx->ch;
  2621. BUG_ON(!ch);
  2622. spin_lock_irqsave(&ioctx->spinlock, flags);
  2623. state = ioctx->state;
  2624. switch (state) {
  2625. case SRPT_STATE_NEW:
  2626. case SRPT_STATE_DATA_IN:
  2627. ioctx->state = SRPT_STATE_CMD_RSP_SENT;
  2628. break;
  2629. case SRPT_STATE_MGMT:
  2630. ioctx->state = SRPT_STATE_MGMT_RSP_SENT;
  2631. break;
  2632. default:
  2633. WARN(true, "ch %p; cmd %d: unexpected command state %d\n",
  2634. ch, ioctx->ioctx.index, ioctx->state);
  2635. break;
  2636. }
  2637. spin_unlock_irqrestore(&ioctx->spinlock, flags);
  2638. if (unlikely(transport_check_aborted_status(&ioctx->cmd, false)
  2639. || WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT))) {
  2640. atomic_inc(&ch->req_lim_delta);
  2641. srpt_abort_cmd(ioctx);
  2642. return;
  2643. }
  2644. dir = ioctx->cmd.data_direction;
  2645. /* For read commands, transfer the data to the initiator. */
  2646. if (dir == DMA_FROM_DEVICE && ioctx->cmd.data_length &&
  2647. !ioctx->queue_status_only) {
  2648. ret = srpt_xfer_data(ch, ioctx);
  2649. if (ret) {
  2650. printk(KERN_ERR "xfer_data failed for tag %llu\n",
  2651. ioctx->tag);
  2652. return;
  2653. }
  2654. }
  2655. if (state != SRPT_STATE_MGMT)
  2656. resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->tag,
  2657. cmd->scsi_status);
  2658. else {
  2659. srp_tm_status
  2660. = tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response);
  2661. resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status,
  2662. ioctx->tag);
  2663. }
  2664. ret = srpt_post_send(ch, ioctx, resp_len);
  2665. if (ret) {
  2666. printk(KERN_ERR "sending cmd response failed for tag %llu\n",
  2667. ioctx->tag);
  2668. srpt_unmap_sg_to_ib_sge(ch, ioctx);
  2669. srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
  2670. target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd);
  2671. }
  2672. }
  2673. static int srpt_queue_data_in(struct se_cmd *cmd)
  2674. {
  2675. srpt_queue_response(cmd);
  2676. return 0;
  2677. }
  2678. static void srpt_queue_tm_rsp(struct se_cmd *cmd)
  2679. {
  2680. srpt_queue_response(cmd);
  2681. }
  2682. static int srpt_queue_status(struct se_cmd *cmd)
  2683. {
  2684. struct srpt_send_ioctx *ioctx;
  2685. ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
  2686. BUG_ON(ioctx->sense_data != cmd->sense_buffer);
  2687. if (cmd->se_cmd_flags &
  2688. (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE))
  2689. WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION);
  2690. ioctx->queue_status_only = true;
  2691. srpt_queue_response(cmd);
  2692. return 0;
  2693. }
  2694. static void srpt_refresh_port_work(struct work_struct *work)
  2695. {
  2696. struct srpt_port *sport = container_of(work, struct srpt_port, work);
  2697. srpt_refresh_port(sport);
  2698. }
  2699. static int srpt_ch_list_empty(struct srpt_device *sdev)
  2700. {
  2701. int res;
  2702. spin_lock_irq(&sdev->spinlock);
  2703. res = list_empty(&sdev->rch_list);
  2704. spin_unlock_irq(&sdev->spinlock);
  2705. return res;
  2706. }
  2707. /**
  2708. * srpt_release_sdev() - Free the channel resources associated with a target.
  2709. */
  2710. static int srpt_release_sdev(struct srpt_device *sdev)
  2711. {
  2712. struct srpt_rdma_ch *ch, *tmp_ch;
  2713. int res;
  2714. WARN_ON_ONCE(irqs_disabled());
  2715. BUG_ON(!sdev);
  2716. spin_lock_irq(&sdev->spinlock);
  2717. list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list)
  2718. __srpt_close_ch(ch);
  2719. spin_unlock_irq(&sdev->spinlock);
  2720. res = wait_event_interruptible(sdev->ch_releaseQ,
  2721. srpt_ch_list_empty(sdev));
  2722. if (res)
  2723. printk(KERN_ERR "%s: interrupted.\n", __func__);
  2724. return 0;
  2725. }
  2726. static struct srpt_port *__srpt_lookup_port(const char *name)
  2727. {
  2728. struct ib_device *dev;
  2729. struct srpt_device *sdev;
  2730. struct srpt_port *sport;
  2731. int i;
  2732. list_for_each_entry(sdev, &srpt_dev_list, list) {
  2733. dev = sdev->device;
  2734. if (!dev)
  2735. continue;
  2736. for (i = 0; i < dev->phys_port_cnt; i++) {
  2737. sport = &sdev->port[i];
  2738. if (!strcmp(sport->port_guid, name))
  2739. return sport;
  2740. }
  2741. }
  2742. return NULL;
  2743. }
  2744. static struct srpt_port *srpt_lookup_port(const char *name)
  2745. {
  2746. struct srpt_port *sport;
  2747. spin_lock(&srpt_dev_lock);
  2748. sport = __srpt_lookup_port(name);
  2749. spin_unlock(&srpt_dev_lock);
  2750. return sport;
  2751. }
  2752. /**
  2753. * srpt_add_one() - Infiniband device addition callback function.
  2754. */
  2755. static void srpt_add_one(struct ib_device *device)
  2756. {
  2757. struct srpt_device *sdev;
  2758. struct srpt_port *sport;
  2759. struct ib_srq_init_attr srq_attr;
  2760. int i;
  2761. pr_debug("device = %p, device->dma_ops = %p\n", device,
  2762. device->dma_ops);
  2763. sdev = kzalloc(sizeof *sdev, GFP_KERNEL);
  2764. if (!sdev)
  2765. goto err;
  2766. sdev->device = device;
  2767. INIT_LIST_HEAD(&sdev->rch_list);
  2768. init_waitqueue_head(&sdev->ch_releaseQ);
  2769. spin_lock_init(&sdev->spinlock);
  2770. if (ib_query_device(device, &sdev->dev_attr))
  2771. goto free_dev;
  2772. sdev->pd = ib_alloc_pd(device);
  2773. if (IS_ERR(sdev->pd))
  2774. goto free_dev;
  2775. sdev->mr = ib_get_dma_mr(sdev->pd, IB_ACCESS_LOCAL_WRITE);
  2776. if (IS_ERR(sdev->mr))
  2777. goto err_pd;
  2778. sdev->srq_size = min(srpt_srq_size, sdev->dev_attr.max_srq_wr);
  2779. srq_attr.event_handler = srpt_srq_event;
  2780. srq_attr.srq_context = (void *)sdev;
  2781. srq_attr.attr.max_wr = sdev->srq_size;
  2782. srq_attr.attr.max_sge = 1;
  2783. srq_attr.attr.srq_limit = 0;
  2784. srq_attr.srq_type = IB_SRQT_BASIC;
  2785. sdev->srq = ib_create_srq(sdev->pd, &srq_attr);
  2786. if (IS_ERR(sdev->srq))
  2787. goto err_mr;
  2788. pr_debug("%s: create SRQ #wr= %d max_allow=%d dev= %s\n",
  2789. __func__, sdev->srq_size, sdev->dev_attr.max_srq_wr,
  2790. device->name);
  2791. if (!srpt_service_guid)
  2792. srpt_service_guid = be64_to_cpu(device->node_guid);
  2793. sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev);
  2794. if (IS_ERR(sdev->cm_id))
  2795. goto err_srq;
  2796. /* print out target login information */
  2797. pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx,"
  2798. "pkey=ffff,service_id=%016llx\n", srpt_service_guid,
  2799. srpt_service_guid, srpt_service_guid);
  2800. /*
  2801. * We do not have a consistent service_id (ie. also id_ext of target_id)
  2802. * to identify this target. We currently use the guid of the first HCA
  2803. * in the system as service_id; therefore, the target_id will change
  2804. * if this HCA is gone bad and replaced by different HCA
  2805. */
  2806. if (ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0, NULL))
  2807. goto err_cm;
  2808. INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device,
  2809. srpt_event_handler);
  2810. if (ib_register_event_handler(&sdev->event_handler))
  2811. goto err_cm;
  2812. sdev->ioctx_ring = (struct srpt_recv_ioctx **)
  2813. srpt_alloc_ioctx_ring(sdev, sdev->srq_size,
  2814. sizeof(*sdev->ioctx_ring[0]),
  2815. srp_max_req_size, DMA_FROM_DEVICE);
  2816. if (!sdev->ioctx_ring)
  2817. goto err_event;
  2818. for (i = 0; i < sdev->srq_size; ++i)
  2819. srpt_post_recv(sdev, sdev->ioctx_ring[i]);
  2820. WARN_ON(sdev->device->phys_port_cnt > ARRAY_SIZE(sdev->port));
  2821. for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
  2822. sport = &sdev->port[i - 1];
  2823. sport->sdev = sdev;
  2824. sport->port = i;
  2825. sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE;
  2826. sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE;
  2827. sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE;
  2828. INIT_WORK(&sport->work, srpt_refresh_port_work);
  2829. INIT_LIST_HEAD(&sport->port_acl_list);
  2830. spin_lock_init(&sport->port_acl_lock);
  2831. if (srpt_refresh_port(sport)) {
  2832. printk(KERN_ERR "MAD registration failed for %s-%d.\n",
  2833. srpt_sdev_name(sdev), i);
  2834. goto err_ring;
  2835. }
  2836. snprintf(sport->port_guid, sizeof(sport->port_guid),
  2837. "0x%016llx%016llx",
  2838. be64_to_cpu(sport->gid.global.subnet_prefix),
  2839. be64_to_cpu(sport->gid.global.interface_id));
  2840. }
  2841. spin_lock(&srpt_dev_lock);
  2842. list_add_tail(&sdev->list, &srpt_dev_list);
  2843. spin_unlock(&srpt_dev_lock);
  2844. out:
  2845. ib_set_client_data(device, &srpt_client, sdev);
  2846. pr_debug("added %s.\n", device->name);
  2847. return;
  2848. err_ring:
  2849. srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
  2850. sdev->srq_size, srp_max_req_size,
  2851. DMA_FROM_DEVICE);
  2852. err_event:
  2853. ib_unregister_event_handler(&sdev->event_handler);
  2854. err_cm:
  2855. ib_destroy_cm_id(sdev->cm_id);
  2856. err_srq:
  2857. ib_destroy_srq(sdev->srq);
  2858. err_mr:
  2859. ib_dereg_mr(sdev->mr);
  2860. err_pd:
  2861. ib_dealloc_pd(sdev->pd);
  2862. free_dev:
  2863. kfree(sdev);
  2864. err:
  2865. sdev = NULL;
  2866. printk(KERN_INFO "%s(%s) failed.\n", __func__, device->name);
  2867. goto out;
  2868. }
  2869. /**
  2870. * srpt_remove_one() - InfiniBand device removal callback function.
  2871. */
  2872. static void srpt_remove_one(struct ib_device *device)
  2873. {
  2874. struct srpt_device *sdev;
  2875. int i;
  2876. sdev = ib_get_client_data(device, &srpt_client);
  2877. if (!sdev) {
  2878. printk(KERN_INFO "%s(%s): nothing to do.\n", __func__,
  2879. device->name);
  2880. return;
  2881. }
  2882. srpt_unregister_mad_agent(sdev);
  2883. ib_unregister_event_handler(&sdev->event_handler);
  2884. /* Cancel any work queued by the just unregistered IB event handler. */
  2885. for (i = 0; i < sdev->device->phys_port_cnt; i++)
  2886. cancel_work_sync(&sdev->port[i].work);
  2887. ib_destroy_cm_id(sdev->cm_id);
  2888. /*
  2889. * Unregistering a target must happen after destroying sdev->cm_id
  2890. * such that no new SRP_LOGIN_REQ information units can arrive while
  2891. * destroying the target.
  2892. */
  2893. spin_lock(&srpt_dev_lock);
  2894. list_del(&sdev->list);
  2895. spin_unlock(&srpt_dev_lock);
  2896. srpt_release_sdev(sdev);
  2897. ib_destroy_srq(sdev->srq);
  2898. ib_dereg_mr(sdev->mr);
  2899. ib_dealloc_pd(sdev->pd);
  2900. srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
  2901. sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE);
  2902. sdev->ioctx_ring = NULL;
  2903. kfree(sdev);
  2904. }
  2905. static struct ib_client srpt_client = {
  2906. .name = DRV_NAME,
  2907. .add = srpt_add_one,
  2908. .remove = srpt_remove_one
  2909. };
  2910. static int srpt_check_true(struct se_portal_group *se_tpg)
  2911. {
  2912. return 1;
  2913. }
  2914. static int srpt_check_false(struct se_portal_group *se_tpg)
  2915. {
  2916. return 0;
  2917. }
  2918. static char *srpt_get_fabric_name(void)
  2919. {
  2920. return "srpt";
  2921. }
  2922. static u8 srpt_get_fabric_proto_ident(struct se_portal_group *se_tpg)
  2923. {
  2924. return SCSI_TRANSPORTID_PROTOCOLID_SRP;
  2925. }
  2926. static char *srpt_get_fabric_wwn(struct se_portal_group *tpg)
  2927. {
  2928. struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1);
  2929. return sport->port_guid;
  2930. }
  2931. static u16 srpt_get_tag(struct se_portal_group *tpg)
  2932. {
  2933. return 1;
  2934. }
  2935. static u32 srpt_get_default_depth(struct se_portal_group *se_tpg)
  2936. {
  2937. return 1;
  2938. }
  2939. static u32 srpt_get_pr_transport_id(struct se_portal_group *se_tpg,
  2940. struct se_node_acl *se_nacl,
  2941. struct t10_pr_registration *pr_reg,
  2942. int *format_code, unsigned char *buf)
  2943. {
  2944. struct srpt_node_acl *nacl;
  2945. struct spc_rdma_transport_id *tr_id;
  2946. nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
  2947. tr_id = (void *)buf;
  2948. tr_id->protocol_identifier = SCSI_TRANSPORTID_PROTOCOLID_SRP;
  2949. memcpy(tr_id->i_port_id, nacl->i_port_id, sizeof(tr_id->i_port_id));
  2950. return sizeof(*tr_id);
  2951. }
  2952. static u32 srpt_get_pr_transport_id_len(struct se_portal_group *se_tpg,
  2953. struct se_node_acl *se_nacl,
  2954. struct t10_pr_registration *pr_reg,
  2955. int *format_code)
  2956. {
  2957. *format_code = 0;
  2958. return sizeof(struct spc_rdma_transport_id);
  2959. }
  2960. static char *srpt_parse_pr_out_transport_id(struct se_portal_group *se_tpg,
  2961. const char *buf, u32 *out_tid_len,
  2962. char **port_nexus_ptr)
  2963. {
  2964. struct spc_rdma_transport_id *tr_id;
  2965. *port_nexus_ptr = NULL;
  2966. *out_tid_len = sizeof(struct spc_rdma_transport_id);
  2967. tr_id = (void *)buf;
  2968. return (char *)tr_id->i_port_id;
  2969. }
  2970. static struct se_node_acl *srpt_alloc_fabric_acl(struct se_portal_group *se_tpg)
  2971. {
  2972. struct srpt_node_acl *nacl;
  2973. nacl = kzalloc(sizeof(struct srpt_node_acl), GFP_KERNEL);
  2974. if (!nacl) {
  2975. printk(KERN_ERR "Unable to allocate struct srpt_node_acl\n");
  2976. return NULL;
  2977. }
  2978. return &nacl->nacl;
  2979. }
  2980. static void srpt_release_fabric_acl(struct se_portal_group *se_tpg,
  2981. struct se_node_acl *se_nacl)
  2982. {
  2983. struct srpt_node_acl *nacl;
  2984. nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
  2985. kfree(nacl);
  2986. }
  2987. static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg)
  2988. {
  2989. return 1;
  2990. }
  2991. static void srpt_release_cmd(struct se_cmd *se_cmd)
  2992. {
  2993. struct srpt_send_ioctx *ioctx = container_of(se_cmd,
  2994. struct srpt_send_ioctx, cmd);
  2995. struct srpt_rdma_ch *ch = ioctx->ch;
  2996. unsigned long flags;
  2997. WARN_ON(ioctx->state != SRPT_STATE_DONE);
  2998. WARN_ON(ioctx->mapped_sg_count != 0);
  2999. if (ioctx->n_rbuf > 1) {
  3000. kfree(ioctx->rbufs);
  3001. ioctx->rbufs = NULL;
  3002. ioctx->n_rbuf = 0;
  3003. }
  3004. spin_lock_irqsave(&ch->spinlock, flags);
  3005. list_add(&ioctx->free_list, &ch->free_list);
  3006. spin_unlock_irqrestore(&ch->spinlock, flags);
  3007. }
  3008. /**
  3009. * srpt_close_session() - Forcibly close a session.
  3010. *
  3011. * Callback function invoked by the TCM core to clean up sessions associated
  3012. * with a node ACL when the user invokes
  3013. * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
  3014. */
  3015. static void srpt_close_session(struct se_session *se_sess)
  3016. {
  3017. DECLARE_COMPLETION_ONSTACK(release_done);
  3018. struct srpt_rdma_ch *ch;
  3019. struct srpt_device *sdev;
  3020. int res;
  3021. ch = se_sess->fabric_sess_ptr;
  3022. WARN_ON(ch->sess != se_sess);
  3023. pr_debug("ch %p state %d\n", ch, srpt_get_ch_state(ch));
  3024. sdev = ch->sport->sdev;
  3025. spin_lock_irq(&sdev->spinlock);
  3026. BUG_ON(ch->release_done);
  3027. ch->release_done = &release_done;
  3028. __srpt_close_ch(ch);
  3029. spin_unlock_irq(&sdev->spinlock);
  3030. res = wait_for_completion_timeout(&release_done, 60 * HZ);
  3031. WARN_ON(res <= 0);
  3032. }
  3033. /**
  3034. * srpt_sess_get_index() - Return the value of scsiAttIntrPortIndex (SCSI-MIB).
  3035. *
  3036. * A quote from RFC 4455 (SCSI-MIB) about this MIB object:
  3037. * This object represents an arbitrary integer used to uniquely identify a
  3038. * particular attached remote initiator port to a particular SCSI target port
  3039. * within a particular SCSI target device within a particular SCSI instance.
  3040. */
  3041. static u32 srpt_sess_get_index(struct se_session *se_sess)
  3042. {
  3043. return 0;
  3044. }
  3045. static void srpt_set_default_node_attrs(struct se_node_acl *nacl)
  3046. {
  3047. }
  3048. static u32 srpt_get_task_tag(struct se_cmd *se_cmd)
  3049. {
  3050. struct srpt_send_ioctx *ioctx;
  3051. ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
  3052. return ioctx->tag;
  3053. }
  3054. /* Note: only used from inside debug printk's by the TCM core. */
  3055. static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd)
  3056. {
  3057. struct srpt_send_ioctx *ioctx;
  3058. ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
  3059. return srpt_get_cmd_state(ioctx);
  3060. }
  3061. /**
  3062. * srpt_parse_i_port_id() - Parse an initiator port ID.
  3063. * @name: ASCII representation of a 128-bit initiator port ID.
  3064. * @i_port_id: Binary 128-bit port ID.
  3065. */
  3066. static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name)
  3067. {
  3068. const char *p;
  3069. unsigned len, count, leading_zero_bytes;
  3070. int ret, rc;
  3071. p = name;
  3072. if (strnicmp(p, "0x", 2) == 0)
  3073. p += 2;
  3074. ret = -EINVAL;
  3075. len = strlen(p);
  3076. if (len % 2)
  3077. goto out;
  3078. count = min(len / 2, 16U);
  3079. leading_zero_bytes = 16 - count;
  3080. memset(i_port_id, 0, leading_zero_bytes);
  3081. rc = hex2bin(i_port_id + leading_zero_bytes, p, count);
  3082. if (rc < 0)
  3083. pr_debug("hex2bin failed for srpt_parse_i_port_id: %d\n", rc);
  3084. ret = 0;
  3085. out:
  3086. return ret;
  3087. }
  3088. /*
  3089. * configfs callback function invoked for
  3090. * mkdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
  3091. */
  3092. static struct se_node_acl *srpt_make_nodeacl(struct se_portal_group *tpg,
  3093. struct config_group *group,
  3094. const char *name)
  3095. {
  3096. struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1);
  3097. struct se_node_acl *se_nacl, *se_nacl_new;
  3098. struct srpt_node_acl *nacl;
  3099. int ret = 0;
  3100. u32 nexus_depth = 1;
  3101. u8 i_port_id[16];
  3102. if (srpt_parse_i_port_id(i_port_id, name) < 0) {
  3103. printk(KERN_ERR "invalid initiator port ID %s\n", name);
  3104. ret = -EINVAL;
  3105. goto err;
  3106. }
  3107. se_nacl_new = srpt_alloc_fabric_acl(tpg);
  3108. if (!se_nacl_new) {
  3109. ret = -ENOMEM;
  3110. goto err;
  3111. }
  3112. /*
  3113. * nacl_new may be released by core_tpg_add_initiator_node_acl()
  3114. * when converting a node ACL from demo mode to explict
  3115. */
  3116. se_nacl = core_tpg_add_initiator_node_acl(tpg, se_nacl_new, name,
  3117. nexus_depth);
  3118. if (IS_ERR(se_nacl)) {
  3119. ret = PTR_ERR(se_nacl);
  3120. goto err;
  3121. }
  3122. /* Locate our struct srpt_node_acl and set sdev and i_port_id. */
  3123. nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
  3124. memcpy(&nacl->i_port_id[0], &i_port_id[0], 16);
  3125. nacl->sport = sport;
  3126. spin_lock_irq(&sport->port_acl_lock);
  3127. list_add_tail(&nacl->list, &sport->port_acl_list);
  3128. spin_unlock_irq(&sport->port_acl_lock);
  3129. return se_nacl;
  3130. err:
  3131. return ERR_PTR(ret);
  3132. }
  3133. /*
  3134. * configfs callback function invoked for
  3135. * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
  3136. */
  3137. static void srpt_drop_nodeacl(struct se_node_acl *se_nacl)
  3138. {
  3139. struct srpt_node_acl *nacl;
  3140. struct srpt_device *sdev;
  3141. struct srpt_port *sport;
  3142. nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
  3143. sport = nacl->sport;
  3144. sdev = sport->sdev;
  3145. spin_lock_irq(&sport->port_acl_lock);
  3146. list_del(&nacl->list);
  3147. spin_unlock_irq(&sport->port_acl_lock);
  3148. core_tpg_del_initiator_node_acl(&sport->port_tpg_1, se_nacl, 1);
  3149. srpt_release_fabric_acl(NULL, se_nacl);
  3150. }
  3151. static ssize_t srpt_tpg_attrib_show_srp_max_rdma_size(
  3152. struct se_portal_group *se_tpg,
  3153. char *page)
  3154. {
  3155. struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
  3156. return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size);
  3157. }
  3158. static ssize_t srpt_tpg_attrib_store_srp_max_rdma_size(
  3159. struct se_portal_group *se_tpg,
  3160. const char *page,
  3161. size_t count)
  3162. {
  3163. struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
  3164. unsigned long val;
  3165. int ret;
  3166. ret = strict_strtoul(page, 0, &val);
  3167. if (ret < 0) {
  3168. pr_err("strict_strtoul() failed with ret: %d\n", ret);
  3169. return -EINVAL;
  3170. }
  3171. if (val > MAX_SRPT_RDMA_SIZE) {
  3172. pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val,
  3173. MAX_SRPT_RDMA_SIZE);
  3174. return -EINVAL;
  3175. }
  3176. if (val < DEFAULT_MAX_RDMA_SIZE) {
  3177. pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n",
  3178. val, DEFAULT_MAX_RDMA_SIZE);
  3179. return -EINVAL;
  3180. }
  3181. sport->port_attrib.srp_max_rdma_size = val;
  3182. return count;
  3183. }
  3184. TF_TPG_ATTRIB_ATTR(srpt, srp_max_rdma_size, S_IRUGO | S_IWUSR);
  3185. static ssize_t srpt_tpg_attrib_show_srp_max_rsp_size(
  3186. struct se_portal_group *se_tpg,
  3187. char *page)
  3188. {
  3189. struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
  3190. return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size);
  3191. }
  3192. static ssize_t srpt_tpg_attrib_store_srp_max_rsp_size(
  3193. struct se_portal_group *se_tpg,
  3194. const char *page,
  3195. size_t count)
  3196. {
  3197. struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
  3198. unsigned long val;
  3199. int ret;
  3200. ret = strict_strtoul(page, 0, &val);
  3201. if (ret < 0) {
  3202. pr_err("strict_strtoul() failed with ret: %d\n", ret);
  3203. return -EINVAL;
  3204. }
  3205. if (val > MAX_SRPT_RSP_SIZE) {
  3206. pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val,
  3207. MAX_SRPT_RSP_SIZE);
  3208. return -EINVAL;
  3209. }
  3210. if (val < MIN_MAX_RSP_SIZE) {
  3211. pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val,
  3212. MIN_MAX_RSP_SIZE);
  3213. return -EINVAL;
  3214. }
  3215. sport->port_attrib.srp_max_rsp_size = val;
  3216. return count;
  3217. }
  3218. TF_TPG_ATTRIB_ATTR(srpt, srp_max_rsp_size, S_IRUGO | S_IWUSR);
  3219. static ssize_t srpt_tpg_attrib_show_srp_sq_size(
  3220. struct se_portal_group *se_tpg,
  3221. char *page)
  3222. {
  3223. struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
  3224. return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size);
  3225. }
  3226. static ssize_t srpt_tpg_attrib_store_srp_sq_size(
  3227. struct se_portal_group *se_tpg,
  3228. const char *page,
  3229. size_t count)
  3230. {
  3231. struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
  3232. unsigned long val;
  3233. int ret;
  3234. ret = strict_strtoul(page, 0, &val);
  3235. if (ret < 0) {
  3236. pr_err("strict_strtoul() failed with ret: %d\n", ret);
  3237. return -EINVAL;
  3238. }
  3239. if (val > MAX_SRPT_SRQ_SIZE) {
  3240. pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val,
  3241. MAX_SRPT_SRQ_SIZE);
  3242. return -EINVAL;
  3243. }
  3244. if (val < MIN_SRPT_SRQ_SIZE) {
  3245. pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val,
  3246. MIN_SRPT_SRQ_SIZE);
  3247. return -EINVAL;
  3248. }
  3249. sport->port_attrib.srp_sq_size = val;
  3250. return count;
  3251. }
  3252. TF_TPG_ATTRIB_ATTR(srpt, srp_sq_size, S_IRUGO | S_IWUSR);
  3253. static struct configfs_attribute *srpt_tpg_attrib_attrs[] = {
  3254. &srpt_tpg_attrib_srp_max_rdma_size.attr,
  3255. &srpt_tpg_attrib_srp_max_rsp_size.attr,
  3256. &srpt_tpg_attrib_srp_sq_size.attr,
  3257. NULL,
  3258. };
  3259. static ssize_t srpt_tpg_show_enable(
  3260. struct se_portal_group *se_tpg,
  3261. char *page)
  3262. {
  3263. struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
  3264. return snprintf(page, PAGE_SIZE, "%d\n", (sport->enabled) ? 1: 0);
  3265. }
  3266. static ssize_t srpt_tpg_store_enable(
  3267. struct se_portal_group *se_tpg,
  3268. const char *page,
  3269. size_t count)
  3270. {
  3271. struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
  3272. unsigned long tmp;
  3273. int ret;
  3274. ret = strict_strtoul(page, 0, &tmp);
  3275. if (ret < 0) {
  3276. printk(KERN_ERR "Unable to extract srpt_tpg_store_enable\n");
  3277. return -EINVAL;
  3278. }
  3279. if ((tmp != 0) && (tmp != 1)) {
  3280. printk(KERN_ERR "Illegal value for srpt_tpg_store_enable: %lu\n", tmp);
  3281. return -EINVAL;
  3282. }
  3283. if (tmp == 1)
  3284. sport->enabled = true;
  3285. else
  3286. sport->enabled = false;
  3287. return count;
  3288. }
  3289. TF_TPG_BASE_ATTR(srpt, enable, S_IRUGO | S_IWUSR);
  3290. static struct configfs_attribute *srpt_tpg_attrs[] = {
  3291. &srpt_tpg_enable.attr,
  3292. NULL,
  3293. };
  3294. /**
  3295. * configfs callback invoked for
  3296. * mkdir /sys/kernel/config/target/$driver/$port/$tpg
  3297. */
  3298. static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn,
  3299. struct config_group *group,
  3300. const char *name)
  3301. {
  3302. struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn);
  3303. int res;
  3304. /* Initialize sport->port_wwn and sport->port_tpg_1 */
  3305. res = core_tpg_register(&srpt_target->tf_ops, &sport->port_wwn,
  3306. &sport->port_tpg_1, sport, TRANSPORT_TPG_TYPE_NORMAL);
  3307. if (res)
  3308. return ERR_PTR(res);
  3309. return &sport->port_tpg_1;
  3310. }
  3311. /**
  3312. * configfs callback invoked for
  3313. * rmdir /sys/kernel/config/target/$driver/$port/$tpg
  3314. */
  3315. static void srpt_drop_tpg(struct se_portal_group *tpg)
  3316. {
  3317. struct srpt_port *sport = container_of(tpg,
  3318. struct srpt_port, port_tpg_1);
  3319. sport->enabled = false;
  3320. core_tpg_deregister(&sport->port_tpg_1);
  3321. }
  3322. /**
  3323. * configfs callback invoked for
  3324. * mkdir /sys/kernel/config/target/$driver/$port
  3325. */
  3326. static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf,
  3327. struct config_group *group,
  3328. const char *name)
  3329. {
  3330. struct srpt_port *sport;
  3331. int ret;
  3332. sport = srpt_lookup_port(name);
  3333. pr_debug("make_tport(%s)\n", name);
  3334. ret = -EINVAL;
  3335. if (!sport)
  3336. goto err;
  3337. return &sport->port_wwn;
  3338. err:
  3339. return ERR_PTR(ret);
  3340. }
  3341. /**
  3342. * configfs callback invoked for
  3343. * rmdir /sys/kernel/config/target/$driver/$port
  3344. */
  3345. static void srpt_drop_tport(struct se_wwn *wwn)
  3346. {
  3347. struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn);
  3348. pr_debug("drop_tport(%s\n", config_item_name(&sport->port_wwn.wwn_group.cg_item));
  3349. }
  3350. static ssize_t srpt_wwn_show_attr_version(struct target_fabric_configfs *tf,
  3351. char *buf)
  3352. {
  3353. return scnprintf(buf, PAGE_SIZE, "%s\n", DRV_VERSION);
  3354. }
  3355. TF_WWN_ATTR_RO(srpt, version);
  3356. static struct configfs_attribute *srpt_wwn_attrs[] = {
  3357. &srpt_wwn_version.attr,
  3358. NULL,
  3359. };
  3360. static struct target_core_fabric_ops srpt_template = {
  3361. .get_fabric_name = srpt_get_fabric_name,
  3362. .get_fabric_proto_ident = srpt_get_fabric_proto_ident,
  3363. .tpg_get_wwn = srpt_get_fabric_wwn,
  3364. .tpg_get_tag = srpt_get_tag,
  3365. .tpg_get_default_depth = srpt_get_default_depth,
  3366. .tpg_get_pr_transport_id = srpt_get_pr_transport_id,
  3367. .tpg_get_pr_transport_id_len = srpt_get_pr_transport_id_len,
  3368. .tpg_parse_pr_out_transport_id = srpt_parse_pr_out_transport_id,
  3369. .tpg_check_demo_mode = srpt_check_false,
  3370. .tpg_check_demo_mode_cache = srpt_check_true,
  3371. .tpg_check_demo_mode_write_protect = srpt_check_true,
  3372. .tpg_check_prod_mode_write_protect = srpt_check_false,
  3373. .tpg_alloc_fabric_acl = srpt_alloc_fabric_acl,
  3374. .tpg_release_fabric_acl = srpt_release_fabric_acl,
  3375. .tpg_get_inst_index = srpt_tpg_get_inst_index,
  3376. .release_cmd = srpt_release_cmd,
  3377. .check_stop_free = srpt_check_stop_free,
  3378. .shutdown_session = srpt_shutdown_session,
  3379. .close_session = srpt_close_session,
  3380. .sess_get_index = srpt_sess_get_index,
  3381. .sess_get_initiator_sid = NULL,
  3382. .write_pending = srpt_write_pending,
  3383. .write_pending_status = srpt_write_pending_status,
  3384. .set_default_node_attributes = srpt_set_default_node_attrs,
  3385. .get_task_tag = srpt_get_task_tag,
  3386. .get_cmd_state = srpt_get_tcm_cmd_state,
  3387. .queue_data_in = srpt_queue_data_in,
  3388. .queue_status = srpt_queue_status,
  3389. .queue_tm_rsp = srpt_queue_tm_rsp,
  3390. /*
  3391. * Setup function pointers for generic logic in
  3392. * target_core_fabric_configfs.c
  3393. */
  3394. .fabric_make_wwn = srpt_make_tport,
  3395. .fabric_drop_wwn = srpt_drop_tport,
  3396. .fabric_make_tpg = srpt_make_tpg,
  3397. .fabric_drop_tpg = srpt_drop_tpg,
  3398. .fabric_post_link = NULL,
  3399. .fabric_pre_unlink = NULL,
  3400. .fabric_make_np = NULL,
  3401. .fabric_drop_np = NULL,
  3402. .fabric_make_nodeacl = srpt_make_nodeacl,
  3403. .fabric_drop_nodeacl = srpt_drop_nodeacl,
  3404. };
  3405. /**
  3406. * srpt_init_module() - Kernel module initialization.
  3407. *
  3408. * Note: Since ib_register_client() registers callback functions, and since at
  3409. * least one of these callback functions (srpt_add_one()) calls target core
  3410. * functions, this driver must be registered with the target core before
  3411. * ib_register_client() is called.
  3412. */
  3413. static int __init srpt_init_module(void)
  3414. {
  3415. int ret;
  3416. ret = -EINVAL;
  3417. if (srp_max_req_size < MIN_MAX_REQ_SIZE) {
  3418. printk(KERN_ERR "invalid value %d for kernel module parameter"
  3419. " srp_max_req_size -- must be at least %d.\n",
  3420. srp_max_req_size, MIN_MAX_REQ_SIZE);
  3421. goto out;
  3422. }
  3423. if (srpt_srq_size < MIN_SRPT_SRQ_SIZE
  3424. || srpt_srq_size > MAX_SRPT_SRQ_SIZE) {
  3425. printk(KERN_ERR "invalid value %d for kernel module parameter"
  3426. " srpt_srq_size -- must be in the range [%d..%d].\n",
  3427. srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE);
  3428. goto out;
  3429. }
  3430. srpt_target = target_fabric_configfs_init(THIS_MODULE, "srpt");
  3431. if (IS_ERR(srpt_target)) {
  3432. printk(KERN_ERR "couldn't register\n");
  3433. ret = PTR_ERR(srpt_target);
  3434. goto out;
  3435. }
  3436. srpt_target->tf_ops = srpt_template;
  3437. /*
  3438. * Set up default attribute lists.
  3439. */
  3440. srpt_target->tf_cit_tmpl.tfc_wwn_cit.ct_attrs = srpt_wwn_attrs;
  3441. srpt_target->tf_cit_tmpl.tfc_tpg_base_cit.ct_attrs = srpt_tpg_attrs;
  3442. srpt_target->tf_cit_tmpl.tfc_tpg_attrib_cit.ct_attrs = srpt_tpg_attrib_attrs;
  3443. srpt_target->tf_cit_tmpl.tfc_tpg_param_cit.ct_attrs = NULL;
  3444. srpt_target->tf_cit_tmpl.tfc_tpg_np_base_cit.ct_attrs = NULL;
  3445. srpt_target->tf_cit_tmpl.tfc_tpg_nacl_base_cit.ct_attrs = NULL;
  3446. srpt_target->tf_cit_tmpl.tfc_tpg_nacl_attrib_cit.ct_attrs = NULL;
  3447. srpt_target->tf_cit_tmpl.tfc_tpg_nacl_auth_cit.ct_attrs = NULL;
  3448. srpt_target->tf_cit_tmpl.tfc_tpg_nacl_param_cit.ct_attrs = NULL;
  3449. ret = target_fabric_configfs_register(srpt_target);
  3450. if (ret < 0) {
  3451. printk(KERN_ERR "couldn't register\n");
  3452. goto out_free_target;
  3453. }
  3454. ret = ib_register_client(&srpt_client);
  3455. if (ret) {
  3456. printk(KERN_ERR "couldn't register IB client\n");
  3457. goto out_unregister_target;
  3458. }
  3459. return 0;
  3460. out_unregister_target:
  3461. target_fabric_configfs_deregister(srpt_target);
  3462. srpt_target = NULL;
  3463. out_free_target:
  3464. if (srpt_target)
  3465. target_fabric_configfs_free(srpt_target);
  3466. out:
  3467. return ret;
  3468. }
  3469. static void __exit srpt_cleanup_module(void)
  3470. {
  3471. ib_unregister_client(&srpt_client);
  3472. target_fabric_configfs_deregister(srpt_target);
  3473. srpt_target = NULL;
  3474. }
  3475. module_init(srpt_init_module);
  3476. module_exit(srpt_cleanup_module);