t4.h 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592
  1. /*
  2. * Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
  3. *
  4. * This software is available to you under a choice of one of two
  5. * licenses. You may choose to be licensed under the terms of the GNU
  6. * General Public License (GPL) Version 2, available from the file
  7. * COPYING in the main directory of this source tree, or the
  8. * OpenIB.org BSD license below:
  9. *
  10. * Redistribution and use in source and binary forms, with or
  11. * without modification, are permitted provided that the following
  12. * conditions are met:
  13. *
  14. * - Redistributions of source code must retain the above
  15. * copyright notice, this list of conditions and the following
  16. * disclaimer.
  17. * - Redistributions in binary form must reproduce the above
  18. * copyright notice, this list of conditions and the following
  19. * disclaimer in the documentation and/or other materials
  20. * provided with the distribution.
  21. *
  22. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  23. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  24. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  25. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  26. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  27. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  28. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  29. * SOFTWARE.
  30. */
  31. #ifndef __T4_H__
  32. #define __T4_H__
  33. #include "t4_hw.h"
  34. #include "t4_regs.h"
  35. #include "t4_msg.h"
  36. #include "t4fw_ri_api.h"
  37. #define T4_MAX_NUM_QP (1<<16)
  38. #define T4_MAX_NUM_CQ (1<<15)
  39. #define T4_MAX_NUM_PD (1<<15)
  40. #define T4_EQ_STATUS_ENTRIES (L1_CACHE_BYTES > 64 ? 2 : 1)
  41. #define T4_MAX_EQ_SIZE (65520 - T4_EQ_STATUS_ENTRIES)
  42. #define T4_MAX_IQ_SIZE (65520 - 1)
  43. #define T4_MAX_RQ_SIZE (8192 - T4_EQ_STATUS_ENTRIES)
  44. #define T4_MAX_SQ_SIZE (T4_MAX_EQ_SIZE - 1)
  45. #define T4_MAX_QP_DEPTH (T4_MAX_RQ_SIZE - 1)
  46. #define T4_MAX_CQ_DEPTH (T4_MAX_IQ_SIZE - 1)
  47. #define T4_MAX_NUM_STAG (1<<15)
  48. #define T4_MAX_MR_SIZE (~0ULL - 1)
  49. #define T4_PAGESIZE_MASK 0xffff000 /* 4KB-128MB */
  50. #define T4_STAG_UNSET 0xffffffff
  51. #define T4_FW_MAJ 0
  52. #define T4_EQ_STATUS_ENTRIES (L1_CACHE_BYTES > 64 ? 2 : 1)
  53. #define A_PCIE_MA_SYNC 0x30b4
  54. struct t4_status_page {
  55. __be32 rsvd1; /* flit 0 - hw owns */
  56. __be16 rsvd2;
  57. __be16 qid;
  58. __be16 cidx;
  59. __be16 pidx;
  60. u8 qp_err; /* flit 1 - sw owns */
  61. u8 db_off;
  62. u8 pad;
  63. u16 host_wq_pidx;
  64. u16 host_cidx;
  65. u16 host_pidx;
  66. };
  67. #define T4_EQ_ENTRY_SIZE 64
  68. #define T4_SQ_NUM_SLOTS 5
  69. #define T4_SQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_SQ_NUM_SLOTS)
  70. #define T4_MAX_SEND_SGE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
  71. sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
  72. #define T4_MAX_SEND_INLINE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
  73. sizeof(struct fw_ri_immd)))
  74. #define T4_MAX_WRITE_INLINE ((T4_SQ_NUM_BYTES - \
  75. sizeof(struct fw_ri_rdma_write_wr) - \
  76. sizeof(struct fw_ri_immd)))
  77. #define T4_MAX_WRITE_SGE ((T4_SQ_NUM_BYTES - \
  78. sizeof(struct fw_ri_rdma_write_wr) - \
  79. sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
  80. #define T4_MAX_FR_IMMD ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_fr_nsmr_wr) - \
  81. sizeof(struct fw_ri_immd)) & ~31UL)
  82. #define T4_MAX_FR_DEPTH (1024 / sizeof(u64))
  83. #define T4_RQ_NUM_SLOTS 2
  84. #define T4_RQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_RQ_NUM_SLOTS)
  85. #define T4_MAX_RECV_SGE 4
  86. union t4_wr {
  87. struct fw_ri_res_wr res;
  88. struct fw_ri_wr ri;
  89. struct fw_ri_rdma_write_wr write;
  90. struct fw_ri_send_wr send;
  91. struct fw_ri_rdma_read_wr read;
  92. struct fw_ri_bind_mw_wr bind;
  93. struct fw_ri_fr_nsmr_wr fr;
  94. struct fw_ri_inv_lstag_wr inv;
  95. struct t4_status_page status;
  96. __be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_SQ_NUM_SLOTS];
  97. };
  98. union t4_recv_wr {
  99. struct fw_ri_recv_wr recv;
  100. struct t4_status_page status;
  101. __be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_RQ_NUM_SLOTS];
  102. };
  103. static inline void init_wr_hdr(union t4_wr *wqe, u16 wrid,
  104. enum fw_wr_opcodes opcode, u8 flags, u8 len16)
  105. {
  106. wqe->send.opcode = (u8)opcode;
  107. wqe->send.flags = flags;
  108. wqe->send.wrid = wrid;
  109. wqe->send.r1[0] = 0;
  110. wqe->send.r1[1] = 0;
  111. wqe->send.r1[2] = 0;
  112. wqe->send.len16 = len16;
  113. }
  114. /* CQE/AE status codes */
  115. #define T4_ERR_SUCCESS 0x0
  116. #define T4_ERR_STAG 0x1 /* STAG invalid: either the */
  117. /* STAG is offlimt, being 0, */
  118. /* or STAG_key mismatch */
  119. #define T4_ERR_PDID 0x2 /* PDID mismatch */
  120. #define T4_ERR_QPID 0x3 /* QPID mismatch */
  121. #define T4_ERR_ACCESS 0x4 /* Invalid access right */
  122. #define T4_ERR_WRAP 0x5 /* Wrap error */
  123. #define T4_ERR_BOUND 0x6 /* base and bounds voilation */
  124. #define T4_ERR_INVALIDATE_SHARED_MR 0x7 /* attempt to invalidate a */
  125. /* shared memory region */
  126. #define T4_ERR_INVALIDATE_MR_WITH_MW_BOUND 0x8 /* attempt to invalidate a */
  127. /* shared memory region */
  128. #define T4_ERR_ECC 0x9 /* ECC error detected */
  129. #define T4_ERR_ECC_PSTAG 0xA /* ECC error detected when */
  130. /* reading PSTAG for a MW */
  131. /* Invalidate */
  132. #define T4_ERR_PBL_ADDR_BOUND 0xB /* pbl addr out of bounds: */
  133. /* software error */
  134. #define T4_ERR_SWFLUSH 0xC /* SW FLUSHED */
  135. #define T4_ERR_CRC 0x10 /* CRC error */
  136. #define T4_ERR_MARKER 0x11 /* Marker error */
  137. #define T4_ERR_PDU_LEN_ERR 0x12 /* invalid PDU length */
  138. #define T4_ERR_OUT_OF_RQE 0x13 /* out of RQE */
  139. #define T4_ERR_DDP_VERSION 0x14 /* wrong DDP version */
  140. #define T4_ERR_RDMA_VERSION 0x15 /* wrong RDMA version */
  141. #define T4_ERR_OPCODE 0x16 /* invalid rdma opcode */
  142. #define T4_ERR_DDP_QUEUE_NUM 0x17 /* invalid ddp queue number */
  143. #define T4_ERR_MSN 0x18 /* MSN error */
  144. #define T4_ERR_TBIT 0x19 /* tag bit not set correctly */
  145. #define T4_ERR_MO 0x1A /* MO not 0 for TERMINATE */
  146. /* or READ_REQ */
  147. #define T4_ERR_MSN_GAP 0x1B
  148. #define T4_ERR_MSN_RANGE 0x1C
  149. #define T4_ERR_IRD_OVERFLOW 0x1D
  150. #define T4_ERR_RQE_ADDR_BOUND 0x1E /* RQE addr out of bounds: */
  151. /* software error */
  152. #define T4_ERR_INTERNAL_ERR 0x1F /* internal error (opcode */
  153. /* mismatch) */
  154. /*
  155. * CQE defs
  156. */
  157. struct t4_cqe {
  158. __be32 header;
  159. __be32 len;
  160. union {
  161. struct {
  162. __be32 stag;
  163. __be32 msn;
  164. } rcqe;
  165. struct {
  166. u32 nada1;
  167. u16 nada2;
  168. u16 cidx;
  169. } scqe;
  170. struct {
  171. __be32 wrid_hi;
  172. __be32 wrid_low;
  173. } gen;
  174. } u;
  175. __be64 reserved;
  176. __be64 bits_type_ts;
  177. };
  178. /* macros for flit 0 of the cqe */
  179. #define S_CQE_QPID 12
  180. #define M_CQE_QPID 0xFFFFF
  181. #define G_CQE_QPID(x) ((((x) >> S_CQE_QPID)) & M_CQE_QPID)
  182. #define V_CQE_QPID(x) ((x)<<S_CQE_QPID)
  183. #define S_CQE_SWCQE 11
  184. #define M_CQE_SWCQE 0x1
  185. #define G_CQE_SWCQE(x) ((((x) >> S_CQE_SWCQE)) & M_CQE_SWCQE)
  186. #define V_CQE_SWCQE(x) ((x)<<S_CQE_SWCQE)
  187. #define S_CQE_STATUS 5
  188. #define M_CQE_STATUS 0x1F
  189. #define G_CQE_STATUS(x) ((((x) >> S_CQE_STATUS)) & M_CQE_STATUS)
  190. #define V_CQE_STATUS(x) ((x)<<S_CQE_STATUS)
  191. #define S_CQE_TYPE 4
  192. #define M_CQE_TYPE 0x1
  193. #define G_CQE_TYPE(x) ((((x) >> S_CQE_TYPE)) & M_CQE_TYPE)
  194. #define V_CQE_TYPE(x) ((x)<<S_CQE_TYPE)
  195. #define S_CQE_OPCODE 0
  196. #define M_CQE_OPCODE 0xF
  197. #define G_CQE_OPCODE(x) ((((x) >> S_CQE_OPCODE)) & M_CQE_OPCODE)
  198. #define V_CQE_OPCODE(x) ((x)<<S_CQE_OPCODE)
  199. #define SW_CQE(x) (G_CQE_SWCQE(be32_to_cpu((x)->header)))
  200. #define CQE_QPID(x) (G_CQE_QPID(be32_to_cpu((x)->header)))
  201. #define CQE_TYPE(x) (G_CQE_TYPE(be32_to_cpu((x)->header)))
  202. #define SQ_TYPE(x) (CQE_TYPE((x)))
  203. #define RQ_TYPE(x) (!CQE_TYPE((x)))
  204. #define CQE_STATUS(x) (G_CQE_STATUS(be32_to_cpu((x)->header)))
  205. #define CQE_OPCODE(x) (G_CQE_OPCODE(be32_to_cpu((x)->header)))
  206. #define CQE_SEND_OPCODE(x)( \
  207. (G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND) || \
  208. (G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE) || \
  209. (G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_INV) || \
  210. (G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE_INV))
  211. #define CQE_LEN(x) (be32_to_cpu((x)->len))
  212. /* used for RQ completion processing */
  213. #define CQE_WRID_STAG(x) (be32_to_cpu((x)->u.rcqe.stag))
  214. #define CQE_WRID_MSN(x) (be32_to_cpu((x)->u.rcqe.msn))
  215. /* used for SQ completion processing */
  216. #define CQE_WRID_SQ_IDX(x) ((x)->u.scqe.cidx)
  217. /* generic accessor macros */
  218. #define CQE_WRID_HI(x) ((x)->u.gen.wrid_hi)
  219. #define CQE_WRID_LOW(x) ((x)->u.gen.wrid_low)
  220. /* macros for flit 3 of the cqe */
  221. #define S_CQE_GENBIT 63
  222. #define M_CQE_GENBIT 0x1
  223. #define G_CQE_GENBIT(x) (((x) >> S_CQE_GENBIT) & M_CQE_GENBIT)
  224. #define V_CQE_GENBIT(x) ((x)<<S_CQE_GENBIT)
  225. #define S_CQE_OVFBIT 62
  226. #define M_CQE_OVFBIT 0x1
  227. #define G_CQE_OVFBIT(x) ((((x) >> S_CQE_OVFBIT)) & M_CQE_OVFBIT)
  228. #define S_CQE_IQTYPE 60
  229. #define M_CQE_IQTYPE 0x3
  230. #define G_CQE_IQTYPE(x) ((((x) >> S_CQE_IQTYPE)) & M_CQE_IQTYPE)
  231. #define M_CQE_TS 0x0fffffffffffffffULL
  232. #define G_CQE_TS(x) ((x) & M_CQE_TS)
  233. #define CQE_OVFBIT(x) ((unsigned)G_CQE_OVFBIT(be64_to_cpu((x)->bits_type_ts)))
  234. #define CQE_GENBIT(x) ((unsigned)G_CQE_GENBIT(be64_to_cpu((x)->bits_type_ts)))
  235. #define CQE_TS(x) (G_CQE_TS(be64_to_cpu((x)->bits_type_ts)))
  236. struct t4_swsqe {
  237. u64 wr_id;
  238. struct t4_cqe cqe;
  239. int read_len;
  240. int opcode;
  241. int complete;
  242. int signaled;
  243. u16 idx;
  244. };
  245. static inline pgprot_t t4_pgprot_wc(pgprot_t prot)
  246. {
  247. #if defined(__i386__) || defined(__x86_64__) || defined(CONFIG_PPC64)
  248. return pgprot_writecombine(prot);
  249. #else
  250. return pgprot_noncached(prot);
  251. #endif
  252. }
  253. enum {
  254. T4_SQ_ONCHIP = (1<<0),
  255. };
  256. struct t4_sq {
  257. union t4_wr *queue;
  258. dma_addr_t dma_addr;
  259. DEFINE_DMA_UNMAP_ADDR(mapping);
  260. unsigned long phys_addr;
  261. struct t4_swsqe *sw_sq;
  262. struct t4_swsqe *oldest_read;
  263. u64 udb;
  264. size_t memsize;
  265. u32 qid;
  266. u16 in_use;
  267. u16 size;
  268. u16 cidx;
  269. u16 pidx;
  270. u16 wq_pidx;
  271. u16 flags;
  272. };
  273. struct t4_swrqe {
  274. u64 wr_id;
  275. };
  276. struct t4_rq {
  277. union t4_recv_wr *queue;
  278. dma_addr_t dma_addr;
  279. DEFINE_DMA_UNMAP_ADDR(mapping);
  280. struct t4_swrqe *sw_rq;
  281. u64 udb;
  282. size_t memsize;
  283. u32 qid;
  284. u32 msn;
  285. u32 rqt_hwaddr;
  286. u16 rqt_size;
  287. u16 in_use;
  288. u16 size;
  289. u16 cidx;
  290. u16 pidx;
  291. u16 wq_pidx;
  292. };
  293. struct t4_wq {
  294. struct t4_sq sq;
  295. struct t4_rq rq;
  296. void __iomem *db;
  297. void __iomem *gts;
  298. struct c4iw_rdev *rdev;
  299. };
  300. static inline int t4_rqes_posted(struct t4_wq *wq)
  301. {
  302. return wq->rq.in_use;
  303. }
  304. static inline int t4_rq_empty(struct t4_wq *wq)
  305. {
  306. return wq->rq.in_use == 0;
  307. }
  308. static inline int t4_rq_full(struct t4_wq *wq)
  309. {
  310. return wq->rq.in_use == (wq->rq.size - 1);
  311. }
  312. static inline u32 t4_rq_avail(struct t4_wq *wq)
  313. {
  314. return wq->rq.size - 1 - wq->rq.in_use;
  315. }
  316. static inline void t4_rq_produce(struct t4_wq *wq, u8 len16)
  317. {
  318. wq->rq.in_use++;
  319. if (++wq->rq.pidx == wq->rq.size)
  320. wq->rq.pidx = 0;
  321. wq->rq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
  322. if (wq->rq.wq_pidx >= wq->rq.size * T4_RQ_NUM_SLOTS)
  323. wq->rq.wq_pidx %= wq->rq.size * T4_RQ_NUM_SLOTS;
  324. }
  325. static inline void t4_rq_consume(struct t4_wq *wq)
  326. {
  327. wq->rq.in_use--;
  328. wq->rq.msn++;
  329. if (++wq->rq.cidx == wq->rq.size)
  330. wq->rq.cidx = 0;
  331. }
  332. static inline u16 t4_rq_host_wq_pidx(struct t4_wq *wq)
  333. {
  334. return wq->rq.queue[wq->rq.size].status.host_wq_pidx;
  335. }
  336. static inline u16 t4_rq_wq_size(struct t4_wq *wq)
  337. {
  338. return wq->rq.size * T4_RQ_NUM_SLOTS;
  339. }
  340. static inline int t4_sq_onchip(struct t4_sq *sq)
  341. {
  342. return sq->flags & T4_SQ_ONCHIP;
  343. }
  344. static inline int t4_sq_empty(struct t4_wq *wq)
  345. {
  346. return wq->sq.in_use == 0;
  347. }
  348. static inline int t4_sq_full(struct t4_wq *wq)
  349. {
  350. return wq->sq.in_use == (wq->sq.size - 1);
  351. }
  352. static inline u32 t4_sq_avail(struct t4_wq *wq)
  353. {
  354. return wq->sq.size - 1 - wq->sq.in_use;
  355. }
  356. static inline void t4_sq_produce(struct t4_wq *wq, u8 len16)
  357. {
  358. wq->sq.in_use++;
  359. if (++wq->sq.pidx == wq->sq.size)
  360. wq->sq.pidx = 0;
  361. wq->sq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
  362. if (wq->sq.wq_pidx >= wq->sq.size * T4_SQ_NUM_SLOTS)
  363. wq->sq.wq_pidx %= wq->sq.size * T4_SQ_NUM_SLOTS;
  364. }
  365. static inline void t4_sq_consume(struct t4_wq *wq)
  366. {
  367. wq->sq.in_use--;
  368. if (++wq->sq.cidx == wq->sq.size)
  369. wq->sq.cidx = 0;
  370. }
  371. static inline u16 t4_sq_host_wq_pidx(struct t4_wq *wq)
  372. {
  373. return wq->sq.queue[wq->sq.size].status.host_wq_pidx;
  374. }
  375. static inline u16 t4_sq_wq_size(struct t4_wq *wq)
  376. {
  377. return wq->sq.size * T4_SQ_NUM_SLOTS;
  378. }
  379. static inline void t4_ring_sq_db(struct t4_wq *wq, u16 inc)
  380. {
  381. wmb();
  382. writel(QID(wq->sq.qid) | PIDX(inc), wq->db);
  383. }
  384. static inline void t4_ring_rq_db(struct t4_wq *wq, u16 inc)
  385. {
  386. wmb();
  387. writel(QID(wq->rq.qid) | PIDX(inc), wq->db);
  388. }
  389. static inline int t4_wq_in_error(struct t4_wq *wq)
  390. {
  391. return wq->rq.queue[wq->rq.size].status.qp_err;
  392. }
  393. static inline void t4_set_wq_in_error(struct t4_wq *wq)
  394. {
  395. wq->rq.queue[wq->rq.size].status.qp_err = 1;
  396. }
  397. static inline void t4_disable_wq_db(struct t4_wq *wq)
  398. {
  399. wq->rq.queue[wq->rq.size].status.db_off = 1;
  400. }
  401. static inline void t4_enable_wq_db(struct t4_wq *wq)
  402. {
  403. wq->rq.queue[wq->rq.size].status.db_off = 0;
  404. }
  405. static inline int t4_wq_db_enabled(struct t4_wq *wq)
  406. {
  407. return !wq->rq.queue[wq->rq.size].status.db_off;
  408. }
  409. struct t4_cq {
  410. struct t4_cqe *queue;
  411. dma_addr_t dma_addr;
  412. DEFINE_DMA_UNMAP_ADDR(mapping);
  413. struct t4_cqe *sw_queue;
  414. void __iomem *gts;
  415. struct c4iw_rdev *rdev;
  416. u64 ugts;
  417. size_t memsize;
  418. __be64 bits_type_ts;
  419. u32 cqid;
  420. u16 size; /* including status page */
  421. u16 cidx;
  422. u16 sw_pidx;
  423. u16 sw_cidx;
  424. u16 sw_in_use;
  425. u16 cidx_inc;
  426. u8 gen;
  427. u8 error;
  428. };
  429. static inline int t4_arm_cq(struct t4_cq *cq, int se)
  430. {
  431. u32 val;
  432. while (cq->cidx_inc > CIDXINC_MASK) {
  433. val = SEINTARM(0) | CIDXINC(CIDXINC_MASK) | TIMERREG(7) |
  434. INGRESSQID(cq->cqid);
  435. writel(val, cq->gts);
  436. cq->cidx_inc -= CIDXINC_MASK;
  437. }
  438. val = SEINTARM(se) | CIDXINC(cq->cidx_inc) | TIMERREG(6) |
  439. INGRESSQID(cq->cqid);
  440. writel(val, cq->gts);
  441. cq->cidx_inc = 0;
  442. return 0;
  443. }
  444. static inline void t4_swcq_produce(struct t4_cq *cq)
  445. {
  446. cq->sw_in_use++;
  447. if (++cq->sw_pidx == cq->size)
  448. cq->sw_pidx = 0;
  449. }
  450. static inline void t4_swcq_consume(struct t4_cq *cq)
  451. {
  452. cq->sw_in_use--;
  453. if (++cq->sw_cidx == cq->size)
  454. cq->sw_cidx = 0;
  455. }
  456. static inline void t4_hwcq_consume(struct t4_cq *cq)
  457. {
  458. cq->bits_type_ts = cq->queue[cq->cidx].bits_type_ts;
  459. if (++cq->cidx_inc == (cq->size >> 4)) {
  460. u32 val;
  461. val = SEINTARM(0) | CIDXINC(cq->cidx_inc) | TIMERREG(7) |
  462. INGRESSQID(cq->cqid);
  463. writel(val, cq->gts);
  464. cq->cidx_inc = 0;
  465. }
  466. if (++cq->cidx == cq->size) {
  467. cq->cidx = 0;
  468. cq->gen ^= 1;
  469. }
  470. }
  471. static inline int t4_valid_cqe(struct t4_cq *cq, struct t4_cqe *cqe)
  472. {
  473. return (CQE_GENBIT(cqe) == cq->gen);
  474. }
  475. static inline int t4_next_hw_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
  476. {
  477. int ret;
  478. u16 prev_cidx;
  479. if (cq->cidx == 0)
  480. prev_cidx = cq->size - 1;
  481. else
  482. prev_cidx = cq->cidx - 1;
  483. if (cq->queue[prev_cidx].bits_type_ts != cq->bits_type_ts) {
  484. ret = -EOVERFLOW;
  485. cq->error = 1;
  486. printk(KERN_ERR MOD "cq overflow cqid %u\n", cq->cqid);
  487. } else if (t4_valid_cqe(cq, &cq->queue[cq->cidx])) {
  488. *cqe = &cq->queue[cq->cidx];
  489. ret = 0;
  490. } else
  491. ret = -ENODATA;
  492. return ret;
  493. }
  494. static inline struct t4_cqe *t4_next_sw_cqe(struct t4_cq *cq)
  495. {
  496. if (cq->sw_in_use)
  497. return &cq->sw_queue[cq->sw_cidx];
  498. return NULL;
  499. }
  500. static inline int t4_next_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
  501. {
  502. int ret = 0;
  503. if (cq->error)
  504. ret = -ENODATA;
  505. else if (cq->sw_in_use)
  506. *cqe = &cq->sw_queue[cq->sw_cidx];
  507. else
  508. ret = t4_next_hw_cqe(cq, cqe);
  509. return ret;
  510. }
  511. static inline int t4_cq_in_error(struct t4_cq *cq)
  512. {
  513. return ((struct t4_status_page *)&cq->queue[cq->size])->qp_err;
  514. }
  515. static inline void t4_set_cq_in_error(struct t4_cq *cq)
  516. {
  517. ((struct t4_status_page *)&cq->queue[cq->size])->qp_err = 1;
  518. }
  519. #endif