mem.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948
  1. /*
  2. * Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
  3. *
  4. * This software is available to you under a choice of one of two
  5. * licenses. You may choose to be licensed under the terms of the GNU
  6. * General Public License (GPL) Version 2, available from the file
  7. * COPYING in the main directory of this source tree, or the
  8. * OpenIB.org BSD license below:
  9. *
  10. * Redistribution and use in source and binary forms, with or
  11. * without modification, are permitted provided that the following
  12. * conditions are met:
  13. *
  14. * - Redistributions of source code must retain the above
  15. * copyright notice, this list of conditions and the following
  16. * disclaimer.
  17. *
  18. * - Redistributions in binary form must reproduce the above
  19. * copyright notice, this list of conditions and the following
  20. * disclaimer in the documentation and/or other materials
  21. * provided with the distribution.
  22. *
  23. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30. * SOFTWARE.
  31. */
  32. #include <linux/module.h>
  33. #include <linux/moduleparam.h>
  34. #include <rdma/ib_umem.h>
  35. #include <linux/atomic.h>
  36. #include "iw_cxgb4.h"
  37. int use_dsgl = 1;
  38. module_param(use_dsgl, int, 0644);
  39. MODULE_PARM_DESC(use_dsgl, "Use DSGL for PBL/FastReg (default=1)");
  40. #define T4_ULPTX_MIN_IO 32
  41. #define C4IW_MAX_INLINE_SIZE 96
  42. #define T4_ULPTX_MAX_DMA 1024
  43. #define C4IW_INLINE_THRESHOLD 128
  44. static int inline_threshold = C4IW_INLINE_THRESHOLD;
  45. module_param(inline_threshold, int, 0644);
  46. MODULE_PARM_DESC(inline_threshold, "inline vs dsgl threshold (default=128)");
  47. static int _c4iw_write_mem_dma_aligned(struct c4iw_rdev *rdev, u32 addr,
  48. u32 len, dma_addr_t data, int wait)
  49. {
  50. struct sk_buff *skb;
  51. struct ulp_mem_io *req;
  52. struct ulptx_sgl *sgl;
  53. u8 wr_len;
  54. int ret = 0;
  55. struct c4iw_wr_wait wr_wait;
  56. addr &= 0x7FFFFFF;
  57. if (wait)
  58. c4iw_init_wr_wait(&wr_wait);
  59. wr_len = roundup(sizeof(*req) + sizeof(*sgl), 16);
  60. skb = alloc_skb(wr_len, GFP_KERNEL | __GFP_NOFAIL);
  61. if (!skb)
  62. return -ENOMEM;
  63. set_wr_txq(skb, CPL_PRIORITY_CONTROL, 0);
  64. req = (struct ulp_mem_io *)__skb_put(skb, wr_len);
  65. memset(req, 0, wr_len);
  66. INIT_ULPTX_WR(req, wr_len, 0, 0);
  67. req->wr.wr_hi = cpu_to_be32(FW_WR_OP(FW_ULPTX_WR) |
  68. (wait ? FW_WR_COMPL(1) : 0));
  69. req->wr.wr_lo = wait ? (__force __be64)&wr_wait : 0;
  70. req->wr.wr_mid = cpu_to_be32(FW_WR_LEN16(DIV_ROUND_UP(wr_len, 16)));
  71. req->cmd = cpu_to_be32(ULPTX_CMD(ULP_TX_MEM_WRITE));
  72. req->cmd |= cpu_to_be32(V_T5_ULP_MEMIO_ORDER(1));
  73. req->dlen = cpu_to_be32(ULP_MEMIO_DATA_LEN(len>>5));
  74. req->len16 = cpu_to_be32(DIV_ROUND_UP(wr_len-sizeof(req->wr), 16));
  75. req->lock_addr = cpu_to_be32(ULP_MEMIO_ADDR(addr));
  76. sgl = (struct ulptx_sgl *)(req + 1);
  77. sgl->cmd_nsge = cpu_to_be32(ULPTX_CMD(ULP_TX_SC_DSGL) |
  78. ULPTX_NSGE(1));
  79. sgl->len0 = cpu_to_be32(len);
  80. sgl->addr0 = cpu_to_be64(data);
  81. ret = c4iw_ofld_send(rdev, skb);
  82. if (ret)
  83. return ret;
  84. if (wait)
  85. ret = c4iw_wait_for_reply(rdev, &wr_wait, 0, 0, __func__);
  86. return ret;
  87. }
  88. static int _c4iw_write_mem_inline(struct c4iw_rdev *rdev, u32 addr, u32 len,
  89. void *data)
  90. {
  91. struct sk_buff *skb;
  92. struct ulp_mem_io *req;
  93. struct ulptx_idata *sc;
  94. u8 wr_len, *to_dp, *from_dp;
  95. int copy_len, num_wqe, i, ret = 0;
  96. struct c4iw_wr_wait wr_wait;
  97. __be32 cmd = cpu_to_be32(ULPTX_CMD(ULP_TX_MEM_WRITE));
  98. if (is_t4(rdev->lldi.adapter_type))
  99. cmd |= cpu_to_be32(ULP_MEMIO_ORDER(1));
  100. else
  101. cmd |= cpu_to_be32(V_T5_ULP_MEMIO_IMM(1));
  102. addr &= 0x7FFFFFF;
  103. PDBG("%s addr 0x%x len %u\n", __func__, addr, len);
  104. num_wqe = DIV_ROUND_UP(len, C4IW_MAX_INLINE_SIZE);
  105. c4iw_init_wr_wait(&wr_wait);
  106. for (i = 0; i < num_wqe; i++) {
  107. copy_len = len > C4IW_MAX_INLINE_SIZE ? C4IW_MAX_INLINE_SIZE :
  108. len;
  109. wr_len = roundup(sizeof *req + sizeof *sc +
  110. roundup(copy_len, T4_ULPTX_MIN_IO), 16);
  111. skb = alloc_skb(wr_len, GFP_KERNEL);
  112. if (!skb)
  113. return -ENOMEM;
  114. set_wr_txq(skb, CPL_PRIORITY_CONTROL, 0);
  115. req = (struct ulp_mem_io *)__skb_put(skb, wr_len);
  116. memset(req, 0, wr_len);
  117. INIT_ULPTX_WR(req, wr_len, 0, 0);
  118. if (i == (num_wqe-1)) {
  119. req->wr.wr_hi = cpu_to_be32(FW_WR_OP(FW_ULPTX_WR) |
  120. FW_WR_COMPL(1));
  121. req->wr.wr_lo = (__force __be64)(unsigned long) &wr_wait;
  122. } else
  123. req->wr.wr_hi = cpu_to_be32(FW_WR_OP(FW_ULPTX_WR));
  124. req->wr.wr_mid = cpu_to_be32(
  125. FW_WR_LEN16(DIV_ROUND_UP(wr_len, 16)));
  126. req->cmd = cmd;
  127. req->dlen = cpu_to_be32(ULP_MEMIO_DATA_LEN(
  128. DIV_ROUND_UP(copy_len, T4_ULPTX_MIN_IO)));
  129. req->len16 = cpu_to_be32(DIV_ROUND_UP(wr_len-sizeof(req->wr),
  130. 16));
  131. req->lock_addr = cpu_to_be32(ULP_MEMIO_ADDR(addr + i * 3));
  132. sc = (struct ulptx_idata *)(req + 1);
  133. sc->cmd_more = cpu_to_be32(ULPTX_CMD(ULP_TX_SC_IMM));
  134. sc->len = cpu_to_be32(roundup(copy_len, T4_ULPTX_MIN_IO));
  135. to_dp = (u8 *)(sc + 1);
  136. from_dp = (u8 *)data + i * C4IW_MAX_INLINE_SIZE;
  137. if (data)
  138. memcpy(to_dp, from_dp, copy_len);
  139. else
  140. memset(to_dp, 0, copy_len);
  141. if (copy_len % T4_ULPTX_MIN_IO)
  142. memset(to_dp + copy_len, 0, T4_ULPTX_MIN_IO -
  143. (copy_len % T4_ULPTX_MIN_IO));
  144. ret = c4iw_ofld_send(rdev, skb);
  145. if (ret)
  146. return ret;
  147. len -= C4IW_MAX_INLINE_SIZE;
  148. }
  149. ret = c4iw_wait_for_reply(rdev, &wr_wait, 0, 0, __func__);
  150. return ret;
  151. }
  152. int _c4iw_write_mem_dma(struct c4iw_rdev *rdev, u32 addr, u32 len, void *data)
  153. {
  154. u32 remain = len;
  155. u32 dmalen;
  156. int ret = 0;
  157. dma_addr_t daddr;
  158. dma_addr_t save;
  159. daddr = dma_map_single(&rdev->lldi.pdev->dev, data, len, DMA_TO_DEVICE);
  160. if (dma_mapping_error(&rdev->lldi.pdev->dev, daddr))
  161. return -1;
  162. save = daddr;
  163. while (remain > inline_threshold) {
  164. if (remain < T4_ULPTX_MAX_DMA) {
  165. if (remain & ~T4_ULPTX_MIN_IO)
  166. dmalen = remain & ~(T4_ULPTX_MIN_IO-1);
  167. else
  168. dmalen = remain;
  169. } else
  170. dmalen = T4_ULPTX_MAX_DMA;
  171. remain -= dmalen;
  172. ret = _c4iw_write_mem_dma_aligned(rdev, addr, dmalen, daddr,
  173. !remain);
  174. if (ret)
  175. goto out;
  176. addr += dmalen >> 5;
  177. data += dmalen;
  178. daddr += dmalen;
  179. }
  180. if (remain)
  181. ret = _c4iw_write_mem_inline(rdev, addr, remain, data);
  182. out:
  183. dma_unmap_single(&rdev->lldi.pdev->dev, save, len, DMA_TO_DEVICE);
  184. return ret;
  185. }
  186. /*
  187. * write len bytes of data into addr (32B aligned address)
  188. * If data is NULL, clear len byte of memory to zero.
  189. */
  190. static int write_adapter_mem(struct c4iw_rdev *rdev, u32 addr, u32 len,
  191. void *data)
  192. {
  193. if (is_t5(rdev->lldi.adapter_type) && use_dsgl) {
  194. if (len > inline_threshold) {
  195. if (_c4iw_write_mem_dma(rdev, addr, len, data)) {
  196. printk_ratelimited(KERN_WARNING
  197. "%s: dma map"
  198. " failure (non fatal)\n",
  199. pci_name(rdev->lldi.pdev));
  200. return _c4iw_write_mem_inline(rdev, addr, len,
  201. data);
  202. } else
  203. return 0;
  204. } else
  205. return _c4iw_write_mem_inline(rdev, addr, len, data);
  206. } else
  207. return _c4iw_write_mem_inline(rdev, addr, len, data);
  208. }
  209. /*
  210. * Build and write a TPT entry.
  211. * IN: stag key, pdid, perm, bind_enabled, zbva, to, len, page_size,
  212. * pbl_size and pbl_addr
  213. * OUT: stag index
  214. */
  215. static int write_tpt_entry(struct c4iw_rdev *rdev, u32 reset_tpt_entry,
  216. u32 *stag, u8 stag_state, u32 pdid,
  217. enum fw_ri_stag_type type, enum fw_ri_mem_perms perm,
  218. int bind_enabled, u32 zbva, u64 to,
  219. u64 len, u8 page_size, u32 pbl_size, u32 pbl_addr)
  220. {
  221. int err;
  222. struct fw_ri_tpte tpt;
  223. u32 stag_idx;
  224. static atomic_t key;
  225. if (c4iw_fatal_error(rdev))
  226. return -EIO;
  227. stag_state = stag_state > 0;
  228. stag_idx = (*stag) >> 8;
  229. if ((!reset_tpt_entry) && (*stag == T4_STAG_UNSET)) {
  230. stag_idx = c4iw_get_resource(&rdev->resource.tpt_table);
  231. if (!stag_idx)
  232. return -ENOMEM;
  233. mutex_lock(&rdev->stats.lock);
  234. rdev->stats.stag.cur += 32;
  235. if (rdev->stats.stag.cur > rdev->stats.stag.max)
  236. rdev->stats.stag.max = rdev->stats.stag.cur;
  237. mutex_unlock(&rdev->stats.lock);
  238. *stag = (stag_idx << 8) | (atomic_inc_return(&key) & 0xff);
  239. }
  240. PDBG("%s stag_state 0x%0x type 0x%0x pdid 0x%0x, stag_idx 0x%x\n",
  241. __func__, stag_state, type, pdid, stag_idx);
  242. /* write TPT entry */
  243. if (reset_tpt_entry)
  244. memset(&tpt, 0, sizeof(tpt));
  245. else {
  246. tpt.valid_to_pdid = cpu_to_be32(F_FW_RI_TPTE_VALID |
  247. V_FW_RI_TPTE_STAGKEY((*stag & M_FW_RI_TPTE_STAGKEY)) |
  248. V_FW_RI_TPTE_STAGSTATE(stag_state) |
  249. V_FW_RI_TPTE_STAGTYPE(type) | V_FW_RI_TPTE_PDID(pdid));
  250. tpt.locread_to_qpid = cpu_to_be32(V_FW_RI_TPTE_PERM(perm) |
  251. (bind_enabled ? F_FW_RI_TPTE_MWBINDEN : 0) |
  252. V_FW_RI_TPTE_ADDRTYPE((zbva ? FW_RI_ZERO_BASED_TO :
  253. FW_RI_VA_BASED_TO))|
  254. V_FW_RI_TPTE_PS(page_size));
  255. tpt.nosnoop_pbladdr = !pbl_size ? 0 : cpu_to_be32(
  256. V_FW_RI_TPTE_PBLADDR(PBL_OFF(rdev, pbl_addr)>>3));
  257. tpt.len_lo = cpu_to_be32((u32)(len & 0xffffffffUL));
  258. tpt.va_hi = cpu_to_be32((u32)(to >> 32));
  259. tpt.va_lo_fbo = cpu_to_be32((u32)(to & 0xffffffffUL));
  260. tpt.dca_mwbcnt_pstag = cpu_to_be32(0);
  261. tpt.len_hi = cpu_to_be32((u32)(len >> 32));
  262. }
  263. err = write_adapter_mem(rdev, stag_idx +
  264. (rdev->lldi.vr->stag.start >> 5),
  265. sizeof(tpt), &tpt);
  266. if (reset_tpt_entry) {
  267. c4iw_put_resource(&rdev->resource.tpt_table, stag_idx);
  268. mutex_lock(&rdev->stats.lock);
  269. rdev->stats.stag.cur -= 32;
  270. mutex_unlock(&rdev->stats.lock);
  271. }
  272. return err;
  273. }
  274. static int write_pbl(struct c4iw_rdev *rdev, __be64 *pbl,
  275. u32 pbl_addr, u32 pbl_size)
  276. {
  277. int err;
  278. PDBG("%s *pdb_addr 0x%x, pbl_base 0x%x, pbl_size %d\n",
  279. __func__, pbl_addr, rdev->lldi.vr->pbl.start,
  280. pbl_size);
  281. err = write_adapter_mem(rdev, pbl_addr >> 5, pbl_size << 3, pbl);
  282. return err;
  283. }
  284. static int dereg_mem(struct c4iw_rdev *rdev, u32 stag, u32 pbl_size,
  285. u32 pbl_addr)
  286. {
  287. return write_tpt_entry(rdev, 1, &stag, 0, 0, 0, 0, 0, 0, 0UL, 0, 0,
  288. pbl_size, pbl_addr);
  289. }
  290. static int allocate_window(struct c4iw_rdev *rdev, u32 * stag, u32 pdid)
  291. {
  292. *stag = T4_STAG_UNSET;
  293. return write_tpt_entry(rdev, 0, stag, 0, pdid, FW_RI_STAG_MW, 0, 0, 0,
  294. 0UL, 0, 0, 0, 0);
  295. }
  296. static int deallocate_window(struct c4iw_rdev *rdev, u32 stag)
  297. {
  298. return write_tpt_entry(rdev, 1, &stag, 0, 0, 0, 0, 0, 0, 0UL, 0, 0, 0,
  299. 0);
  300. }
  301. static int allocate_stag(struct c4iw_rdev *rdev, u32 *stag, u32 pdid,
  302. u32 pbl_size, u32 pbl_addr)
  303. {
  304. *stag = T4_STAG_UNSET;
  305. return write_tpt_entry(rdev, 0, stag, 0, pdid, FW_RI_STAG_NSMR, 0, 0, 0,
  306. 0UL, 0, 0, pbl_size, pbl_addr);
  307. }
  308. static int finish_mem_reg(struct c4iw_mr *mhp, u32 stag)
  309. {
  310. u32 mmid;
  311. mhp->attr.state = 1;
  312. mhp->attr.stag = stag;
  313. mmid = stag >> 8;
  314. mhp->ibmr.rkey = mhp->ibmr.lkey = stag;
  315. PDBG("%s mmid 0x%x mhp %p\n", __func__, mmid, mhp);
  316. return insert_handle(mhp->rhp, &mhp->rhp->mmidr, mhp, mmid);
  317. }
  318. static int register_mem(struct c4iw_dev *rhp, struct c4iw_pd *php,
  319. struct c4iw_mr *mhp, int shift)
  320. {
  321. u32 stag = T4_STAG_UNSET;
  322. int ret;
  323. ret = write_tpt_entry(&rhp->rdev, 0, &stag, 1, mhp->attr.pdid,
  324. FW_RI_STAG_NSMR, mhp->attr.perms,
  325. mhp->attr.mw_bind_enable, mhp->attr.zbva,
  326. mhp->attr.va_fbo, mhp->attr.len, shift - 12,
  327. mhp->attr.pbl_size, mhp->attr.pbl_addr);
  328. if (ret)
  329. return ret;
  330. ret = finish_mem_reg(mhp, stag);
  331. if (ret)
  332. dereg_mem(&rhp->rdev, mhp->attr.stag, mhp->attr.pbl_size,
  333. mhp->attr.pbl_addr);
  334. return ret;
  335. }
  336. static int reregister_mem(struct c4iw_dev *rhp, struct c4iw_pd *php,
  337. struct c4iw_mr *mhp, int shift, int npages)
  338. {
  339. u32 stag;
  340. int ret;
  341. if (npages > mhp->attr.pbl_size)
  342. return -ENOMEM;
  343. stag = mhp->attr.stag;
  344. ret = write_tpt_entry(&rhp->rdev, 0, &stag, 1, mhp->attr.pdid,
  345. FW_RI_STAG_NSMR, mhp->attr.perms,
  346. mhp->attr.mw_bind_enable, mhp->attr.zbva,
  347. mhp->attr.va_fbo, mhp->attr.len, shift - 12,
  348. mhp->attr.pbl_size, mhp->attr.pbl_addr);
  349. if (ret)
  350. return ret;
  351. ret = finish_mem_reg(mhp, stag);
  352. if (ret)
  353. dereg_mem(&rhp->rdev, mhp->attr.stag, mhp->attr.pbl_size,
  354. mhp->attr.pbl_addr);
  355. return ret;
  356. }
  357. static int alloc_pbl(struct c4iw_mr *mhp, int npages)
  358. {
  359. mhp->attr.pbl_addr = c4iw_pblpool_alloc(&mhp->rhp->rdev,
  360. npages << 3);
  361. if (!mhp->attr.pbl_addr)
  362. return -ENOMEM;
  363. mhp->attr.pbl_size = npages;
  364. return 0;
  365. }
  366. static int build_phys_page_list(struct ib_phys_buf *buffer_list,
  367. int num_phys_buf, u64 *iova_start,
  368. u64 *total_size, int *npages,
  369. int *shift, __be64 **page_list)
  370. {
  371. u64 mask;
  372. int i, j, n;
  373. mask = 0;
  374. *total_size = 0;
  375. for (i = 0; i < num_phys_buf; ++i) {
  376. if (i != 0 && buffer_list[i].addr & ~PAGE_MASK)
  377. return -EINVAL;
  378. if (i != 0 && i != num_phys_buf - 1 &&
  379. (buffer_list[i].size & ~PAGE_MASK))
  380. return -EINVAL;
  381. *total_size += buffer_list[i].size;
  382. if (i > 0)
  383. mask |= buffer_list[i].addr;
  384. else
  385. mask |= buffer_list[i].addr & PAGE_MASK;
  386. if (i != num_phys_buf - 1)
  387. mask |= buffer_list[i].addr + buffer_list[i].size;
  388. else
  389. mask |= (buffer_list[i].addr + buffer_list[i].size +
  390. PAGE_SIZE - 1) & PAGE_MASK;
  391. }
  392. if (*total_size > 0xFFFFFFFFULL)
  393. return -ENOMEM;
  394. /* Find largest page shift we can use to cover buffers */
  395. for (*shift = PAGE_SHIFT; *shift < 27; ++(*shift))
  396. if ((1ULL << *shift) & mask)
  397. break;
  398. buffer_list[0].size += buffer_list[0].addr & ((1ULL << *shift) - 1);
  399. buffer_list[0].addr &= ~0ull << *shift;
  400. *npages = 0;
  401. for (i = 0; i < num_phys_buf; ++i)
  402. *npages += (buffer_list[i].size +
  403. (1ULL << *shift) - 1) >> *shift;
  404. if (!*npages)
  405. return -EINVAL;
  406. *page_list = kmalloc(sizeof(u64) * *npages, GFP_KERNEL);
  407. if (!*page_list)
  408. return -ENOMEM;
  409. n = 0;
  410. for (i = 0; i < num_phys_buf; ++i)
  411. for (j = 0;
  412. j < (buffer_list[i].size + (1ULL << *shift) - 1) >> *shift;
  413. ++j)
  414. (*page_list)[n++] = cpu_to_be64(buffer_list[i].addr +
  415. ((u64) j << *shift));
  416. PDBG("%s va 0x%llx mask 0x%llx shift %d len %lld pbl_size %d\n",
  417. __func__, (unsigned long long)*iova_start,
  418. (unsigned long long)mask, *shift, (unsigned long long)*total_size,
  419. *npages);
  420. return 0;
  421. }
  422. int c4iw_reregister_phys_mem(struct ib_mr *mr, int mr_rereg_mask,
  423. struct ib_pd *pd, struct ib_phys_buf *buffer_list,
  424. int num_phys_buf, int acc, u64 *iova_start)
  425. {
  426. struct c4iw_mr mh, *mhp;
  427. struct c4iw_pd *php;
  428. struct c4iw_dev *rhp;
  429. __be64 *page_list = NULL;
  430. int shift = 0;
  431. u64 total_size;
  432. int npages;
  433. int ret;
  434. PDBG("%s ib_mr %p ib_pd %p\n", __func__, mr, pd);
  435. /* There can be no memory windows */
  436. if (atomic_read(&mr->usecnt))
  437. return -EINVAL;
  438. mhp = to_c4iw_mr(mr);
  439. rhp = mhp->rhp;
  440. php = to_c4iw_pd(mr->pd);
  441. /* make sure we are on the same adapter */
  442. if (rhp != php->rhp)
  443. return -EINVAL;
  444. memcpy(&mh, mhp, sizeof *mhp);
  445. if (mr_rereg_mask & IB_MR_REREG_PD)
  446. php = to_c4iw_pd(pd);
  447. if (mr_rereg_mask & IB_MR_REREG_ACCESS) {
  448. mh.attr.perms = c4iw_ib_to_tpt_access(acc);
  449. mh.attr.mw_bind_enable = (acc & IB_ACCESS_MW_BIND) ==
  450. IB_ACCESS_MW_BIND;
  451. }
  452. if (mr_rereg_mask & IB_MR_REREG_TRANS) {
  453. ret = build_phys_page_list(buffer_list, num_phys_buf,
  454. iova_start,
  455. &total_size, &npages,
  456. &shift, &page_list);
  457. if (ret)
  458. return ret;
  459. }
  460. ret = reregister_mem(rhp, php, &mh, shift, npages);
  461. kfree(page_list);
  462. if (ret)
  463. return ret;
  464. if (mr_rereg_mask & IB_MR_REREG_PD)
  465. mhp->attr.pdid = php->pdid;
  466. if (mr_rereg_mask & IB_MR_REREG_ACCESS)
  467. mhp->attr.perms = c4iw_ib_to_tpt_access(acc);
  468. if (mr_rereg_mask & IB_MR_REREG_TRANS) {
  469. mhp->attr.zbva = 0;
  470. mhp->attr.va_fbo = *iova_start;
  471. mhp->attr.page_size = shift - 12;
  472. mhp->attr.len = (u32) total_size;
  473. mhp->attr.pbl_size = npages;
  474. }
  475. return 0;
  476. }
  477. struct ib_mr *c4iw_register_phys_mem(struct ib_pd *pd,
  478. struct ib_phys_buf *buffer_list,
  479. int num_phys_buf, int acc, u64 *iova_start)
  480. {
  481. __be64 *page_list;
  482. int shift;
  483. u64 total_size;
  484. int npages;
  485. struct c4iw_dev *rhp;
  486. struct c4iw_pd *php;
  487. struct c4iw_mr *mhp;
  488. int ret;
  489. PDBG("%s ib_pd %p\n", __func__, pd);
  490. php = to_c4iw_pd(pd);
  491. rhp = php->rhp;
  492. mhp = kzalloc(sizeof(*mhp), GFP_KERNEL);
  493. if (!mhp)
  494. return ERR_PTR(-ENOMEM);
  495. mhp->rhp = rhp;
  496. /* First check that we have enough alignment */
  497. if ((*iova_start & ~PAGE_MASK) != (buffer_list[0].addr & ~PAGE_MASK)) {
  498. ret = -EINVAL;
  499. goto err;
  500. }
  501. if (num_phys_buf > 1 &&
  502. ((buffer_list[0].addr + buffer_list[0].size) & ~PAGE_MASK)) {
  503. ret = -EINVAL;
  504. goto err;
  505. }
  506. ret = build_phys_page_list(buffer_list, num_phys_buf, iova_start,
  507. &total_size, &npages, &shift,
  508. &page_list);
  509. if (ret)
  510. goto err;
  511. ret = alloc_pbl(mhp, npages);
  512. if (ret) {
  513. kfree(page_list);
  514. goto err;
  515. }
  516. ret = write_pbl(&mhp->rhp->rdev, page_list, mhp->attr.pbl_addr,
  517. npages);
  518. kfree(page_list);
  519. if (ret)
  520. goto err_pbl;
  521. mhp->attr.pdid = php->pdid;
  522. mhp->attr.zbva = 0;
  523. mhp->attr.perms = c4iw_ib_to_tpt_access(acc);
  524. mhp->attr.va_fbo = *iova_start;
  525. mhp->attr.page_size = shift - 12;
  526. mhp->attr.len = (u32) total_size;
  527. mhp->attr.pbl_size = npages;
  528. ret = register_mem(rhp, php, mhp, shift);
  529. if (ret)
  530. goto err_pbl;
  531. return &mhp->ibmr;
  532. err_pbl:
  533. c4iw_pblpool_free(&mhp->rhp->rdev, mhp->attr.pbl_addr,
  534. mhp->attr.pbl_size << 3);
  535. err:
  536. kfree(mhp);
  537. return ERR_PTR(ret);
  538. }
  539. struct ib_mr *c4iw_get_dma_mr(struct ib_pd *pd, int acc)
  540. {
  541. struct c4iw_dev *rhp;
  542. struct c4iw_pd *php;
  543. struct c4iw_mr *mhp;
  544. int ret;
  545. u32 stag = T4_STAG_UNSET;
  546. PDBG("%s ib_pd %p\n", __func__, pd);
  547. php = to_c4iw_pd(pd);
  548. rhp = php->rhp;
  549. mhp = kzalloc(sizeof(*mhp), GFP_KERNEL);
  550. if (!mhp)
  551. return ERR_PTR(-ENOMEM);
  552. mhp->rhp = rhp;
  553. mhp->attr.pdid = php->pdid;
  554. mhp->attr.perms = c4iw_ib_to_tpt_access(acc);
  555. mhp->attr.mw_bind_enable = (acc&IB_ACCESS_MW_BIND) == IB_ACCESS_MW_BIND;
  556. mhp->attr.zbva = 0;
  557. mhp->attr.va_fbo = 0;
  558. mhp->attr.page_size = 0;
  559. mhp->attr.len = ~0UL;
  560. mhp->attr.pbl_size = 0;
  561. ret = write_tpt_entry(&rhp->rdev, 0, &stag, 1, php->pdid,
  562. FW_RI_STAG_NSMR, mhp->attr.perms,
  563. mhp->attr.mw_bind_enable, 0, 0, ~0UL, 0, 0, 0);
  564. if (ret)
  565. goto err1;
  566. ret = finish_mem_reg(mhp, stag);
  567. if (ret)
  568. goto err2;
  569. return &mhp->ibmr;
  570. err2:
  571. dereg_mem(&rhp->rdev, mhp->attr.stag, mhp->attr.pbl_size,
  572. mhp->attr.pbl_addr);
  573. err1:
  574. kfree(mhp);
  575. return ERR_PTR(ret);
  576. }
  577. struct ib_mr *c4iw_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
  578. u64 virt, int acc, struct ib_udata *udata)
  579. {
  580. __be64 *pages;
  581. int shift, n, len;
  582. int i, j, k;
  583. int err = 0;
  584. struct ib_umem_chunk *chunk;
  585. struct c4iw_dev *rhp;
  586. struct c4iw_pd *php;
  587. struct c4iw_mr *mhp;
  588. PDBG("%s ib_pd %p\n", __func__, pd);
  589. if (length == ~0ULL)
  590. return ERR_PTR(-EINVAL);
  591. if ((length + start) < start)
  592. return ERR_PTR(-EINVAL);
  593. php = to_c4iw_pd(pd);
  594. rhp = php->rhp;
  595. mhp = kzalloc(sizeof(*mhp), GFP_KERNEL);
  596. if (!mhp)
  597. return ERR_PTR(-ENOMEM);
  598. mhp->rhp = rhp;
  599. mhp->umem = ib_umem_get(pd->uobject->context, start, length, acc, 0);
  600. if (IS_ERR(mhp->umem)) {
  601. err = PTR_ERR(mhp->umem);
  602. kfree(mhp);
  603. return ERR_PTR(err);
  604. }
  605. shift = ffs(mhp->umem->page_size) - 1;
  606. n = 0;
  607. list_for_each_entry(chunk, &mhp->umem->chunk_list, list)
  608. n += chunk->nents;
  609. err = alloc_pbl(mhp, n);
  610. if (err)
  611. goto err;
  612. pages = (__be64 *) __get_free_page(GFP_KERNEL);
  613. if (!pages) {
  614. err = -ENOMEM;
  615. goto err_pbl;
  616. }
  617. i = n = 0;
  618. list_for_each_entry(chunk, &mhp->umem->chunk_list, list)
  619. for (j = 0; j < chunk->nmap; ++j) {
  620. len = sg_dma_len(&chunk->page_list[j]) >> shift;
  621. for (k = 0; k < len; ++k) {
  622. pages[i++] = cpu_to_be64(sg_dma_address(
  623. &chunk->page_list[j]) +
  624. mhp->umem->page_size * k);
  625. if (i == PAGE_SIZE / sizeof *pages) {
  626. err = write_pbl(&mhp->rhp->rdev,
  627. pages,
  628. mhp->attr.pbl_addr + (n << 3), i);
  629. if (err)
  630. goto pbl_done;
  631. n += i;
  632. i = 0;
  633. }
  634. }
  635. }
  636. if (i)
  637. err = write_pbl(&mhp->rhp->rdev, pages,
  638. mhp->attr.pbl_addr + (n << 3), i);
  639. pbl_done:
  640. free_page((unsigned long) pages);
  641. if (err)
  642. goto err_pbl;
  643. mhp->attr.pdid = php->pdid;
  644. mhp->attr.zbva = 0;
  645. mhp->attr.perms = c4iw_ib_to_tpt_access(acc);
  646. mhp->attr.va_fbo = virt;
  647. mhp->attr.page_size = shift - 12;
  648. mhp->attr.len = length;
  649. err = register_mem(rhp, php, mhp, shift);
  650. if (err)
  651. goto err_pbl;
  652. return &mhp->ibmr;
  653. err_pbl:
  654. c4iw_pblpool_free(&mhp->rhp->rdev, mhp->attr.pbl_addr,
  655. mhp->attr.pbl_size << 3);
  656. err:
  657. ib_umem_release(mhp->umem);
  658. kfree(mhp);
  659. return ERR_PTR(err);
  660. }
  661. struct ib_mw *c4iw_alloc_mw(struct ib_pd *pd, enum ib_mw_type type)
  662. {
  663. struct c4iw_dev *rhp;
  664. struct c4iw_pd *php;
  665. struct c4iw_mw *mhp;
  666. u32 mmid;
  667. u32 stag = 0;
  668. int ret;
  669. if (type != IB_MW_TYPE_1)
  670. return ERR_PTR(-EINVAL);
  671. php = to_c4iw_pd(pd);
  672. rhp = php->rhp;
  673. mhp = kzalloc(sizeof(*mhp), GFP_KERNEL);
  674. if (!mhp)
  675. return ERR_PTR(-ENOMEM);
  676. ret = allocate_window(&rhp->rdev, &stag, php->pdid);
  677. if (ret) {
  678. kfree(mhp);
  679. return ERR_PTR(ret);
  680. }
  681. mhp->rhp = rhp;
  682. mhp->attr.pdid = php->pdid;
  683. mhp->attr.type = FW_RI_STAG_MW;
  684. mhp->attr.stag = stag;
  685. mmid = (stag) >> 8;
  686. mhp->ibmw.rkey = stag;
  687. if (insert_handle(rhp, &rhp->mmidr, mhp, mmid)) {
  688. deallocate_window(&rhp->rdev, mhp->attr.stag);
  689. kfree(mhp);
  690. return ERR_PTR(-ENOMEM);
  691. }
  692. PDBG("%s mmid 0x%x mhp %p stag 0x%x\n", __func__, mmid, mhp, stag);
  693. return &(mhp->ibmw);
  694. }
  695. int c4iw_dealloc_mw(struct ib_mw *mw)
  696. {
  697. struct c4iw_dev *rhp;
  698. struct c4iw_mw *mhp;
  699. u32 mmid;
  700. mhp = to_c4iw_mw(mw);
  701. rhp = mhp->rhp;
  702. mmid = (mw->rkey) >> 8;
  703. remove_handle(rhp, &rhp->mmidr, mmid);
  704. deallocate_window(&rhp->rdev, mhp->attr.stag);
  705. kfree(mhp);
  706. PDBG("%s ib_mw %p mmid 0x%x ptr %p\n", __func__, mw, mmid, mhp);
  707. return 0;
  708. }
  709. struct ib_mr *c4iw_alloc_fast_reg_mr(struct ib_pd *pd, int pbl_depth)
  710. {
  711. struct c4iw_dev *rhp;
  712. struct c4iw_pd *php;
  713. struct c4iw_mr *mhp;
  714. u32 mmid;
  715. u32 stag = 0;
  716. int ret = 0;
  717. php = to_c4iw_pd(pd);
  718. rhp = php->rhp;
  719. mhp = kzalloc(sizeof(*mhp), GFP_KERNEL);
  720. if (!mhp) {
  721. ret = -ENOMEM;
  722. goto err;
  723. }
  724. mhp->rhp = rhp;
  725. ret = alloc_pbl(mhp, pbl_depth);
  726. if (ret)
  727. goto err1;
  728. mhp->attr.pbl_size = pbl_depth;
  729. ret = allocate_stag(&rhp->rdev, &stag, php->pdid,
  730. mhp->attr.pbl_size, mhp->attr.pbl_addr);
  731. if (ret)
  732. goto err2;
  733. mhp->attr.pdid = php->pdid;
  734. mhp->attr.type = FW_RI_STAG_NSMR;
  735. mhp->attr.stag = stag;
  736. mhp->attr.state = 1;
  737. mmid = (stag) >> 8;
  738. mhp->ibmr.rkey = mhp->ibmr.lkey = stag;
  739. if (insert_handle(rhp, &rhp->mmidr, mhp, mmid)) {
  740. ret = -ENOMEM;
  741. goto err3;
  742. }
  743. PDBG("%s mmid 0x%x mhp %p stag 0x%x\n", __func__, mmid, mhp, stag);
  744. return &(mhp->ibmr);
  745. err3:
  746. dereg_mem(&rhp->rdev, stag, mhp->attr.pbl_size,
  747. mhp->attr.pbl_addr);
  748. err2:
  749. c4iw_pblpool_free(&mhp->rhp->rdev, mhp->attr.pbl_addr,
  750. mhp->attr.pbl_size << 3);
  751. err1:
  752. kfree(mhp);
  753. err:
  754. return ERR_PTR(ret);
  755. }
  756. struct ib_fast_reg_page_list *c4iw_alloc_fastreg_pbl(struct ib_device *device,
  757. int page_list_len)
  758. {
  759. struct c4iw_fr_page_list *c4pl;
  760. struct c4iw_dev *dev = to_c4iw_dev(device);
  761. dma_addr_t dma_addr;
  762. int pll_len = roundup(page_list_len * sizeof(u64), 32);
  763. c4pl = kmalloc(sizeof(*c4pl), GFP_KERNEL);
  764. if (!c4pl)
  765. return ERR_PTR(-ENOMEM);
  766. c4pl->ibpl.page_list = dma_alloc_coherent(&dev->rdev.lldi.pdev->dev,
  767. pll_len, &dma_addr,
  768. GFP_KERNEL);
  769. if (!c4pl->ibpl.page_list) {
  770. kfree(c4pl);
  771. return ERR_PTR(-ENOMEM);
  772. }
  773. dma_unmap_addr_set(c4pl, mapping, dma_addr);
  774. c4pl->dma_addr = dma_addr;
  775. c4pl->dev = dev;
  776. c4pl->ibpl.max_page_list_len = pll_len;
  777. return &c4pl->ibpl;
  778. }
  779. void c4iw_free_fastreg_pbl(struct ib_fast_reg_page_list *ibpl)
  780. {
  781. struct c4iw_fr_page_list *c4pl = to_c4iw_fr_page_list(ibpl);
  782. dma_free_coherent(&c4pl->dev->rdev.lldi.pdev->dev,
  783. c4pl->ibpl.max_page_list_len,
  784. c4pl->ibpl.page_list, dma_unmap_addr(c4pl, mapping));
  785. kfree(c4pl);
  786. }
  787. int c4iw_dereg_mr(struct ib_mr *ib_mr)
  788. {
  789. struct c4iw_dev *rhp;
  790. struct c4iw_mr *mhp;
  791. u32 mmid;
  792. PDBG("%s ib_mr %p\n", __func__, ib_mr);
  793. /* There can be no memory windows */
  794. if (atomic_read(&ib_mr->usecnt))
  795. return -EINVAL;
  796. mhp = to_c4iw_mr(ib_mr);
  797. rhp = mhp->rhp;
  798. mmid = mhp->attr.stag >> 8;
  799. remove_handle(rhp, &rhp->mmidr, mmid);
  800. dereg_mem(&rhp->rdev, mhp->attr.stag, mhp->attr.pbl_size,
  801. mhp->attr.pbl_addr);
  802. if (mhp->attr.pbl_size)
  803. c4iw_pblpool_free(&mhp->rhp->rdev, mhp->attr.pbl_addr,
  804. mhp->attr.pbl_size << 3);
  805. if (mhp->kva)
  806. kfree((void *) (unsigned long) mhp->kva);
  807. if (mhp->umem)
  808. ib_umem_release(mhp->umem);
  809. PDBG("%s mmid 0x%x ptr %p\n", __func__, mmid, mhp);
  810. kfree(mhp);
  811. return 0;
  812. }