smp.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718
  1. /*
  2. * Xen SMP support
  3. *
  4. * This file implements the Xen versions of smp_ops. SMP under Xen is
  5. * very straightforward. Bringing a CPU up is simply a matter of
  6. * loading its initial context and setting it running.
  7. *
  8. * IPIs are handled through the Xen event mechanism.
  9. *
  10. * Because virtual CPUs can be scheduled onto any real CPU, there's no
  11. * useful topology information for the kernel to make use of. As a
  12. * result, all CPUs are treated as if they're single-core and
  13. * single-threaded.
  14. */
  15. #include <linux/sched.h>
  16. #include <linux/err.h>
  17. #include <linux/slab.h>
  18. #include <linux/smp.h>
  19. #include <linux/irq_work.h>
  20. #include <linux/tick.h>
  21. #include <asm/paravirt.h>
  22. #include <asm/desc.h>
  23. #include <asm/pgtable.h>
  24. #include <asm/cpu.h>
  25. #include <xen/interface/xen.h>
  26. #include <xen/interface/vcpu.h>
  27. #include <asm/xen/interface.h>
  28. #include <asm/xen/hypercall.h>
  29. #include <xen/xen.h>
  30. #include <xen/page.h>
  31. #include <xen/events.h>
  32. #include <xen/hvc-console.h>
  33. #include "xen-ops.h"
  34. #include "mmu.h"
  35. cpumask_var_t xen_cpu_initialized_map;
  36. struct xen_common_irq {
  37. int irq;
  38. char *name;
  39. };
  40. static DEFINE_PER_CPU(struct xen_common_irq, xen_resched_irq) = { .irq = -1 };
  41. static DEFINE_PER_CPU(struct xen_common_irq, xen_callfunc_irq) = { .irq = -1 };
  42. static DEFINE_PER_CPU(struct xen_common_irq, xen_callfuncsingle_irq) = { .irq = -1 };
  43. static DEFINE_PER_CPU(struct xen_common_irq, xen_irq_work) = { .irq = -1 };
  44. static DEFINE_PER_CPU(struct xen_common_irq, xen_debug_irq) = { .irq = -1 };
  45. static irqreturn_t xen_call_function_interrupt(int irq, void *dev_id);
  46. static irqreturn_t xen_call_function_single_interrupt(int irq, void *dev_id);
  47. static irqreturn_t xen_irq_work_interrupt(int irq, void *dev_id);
  48. /*
  49. * Reschedule call back.
  50. */
  51. static irqreturn_t xen_reschedule_interrupt(int irq, void *dev_id)
  52. {
  53. inc_irq_stat(irq_resched_count);
  54. scheduler_ipi();
  55. return IRQ_HANDLED;
  56. }
  57. static void cpu_bringup(void)
  58. {
  59. int cpu;
  60. cpu_init();
  61. touch_softlockup_watchdog();
  62. preempt_disable();
  63. xen_enable_sysenter();
  64. xen_enable_syscall();
  65. cpu = smp_processor_id();
  66. smp_store_cpu_info(cpu);
  67. cpu_data(cpu).x86_max_cores = 1;
  68. set_cpu_sibling_map(cpu);
  69. xen_setup_cpu_clockevents();
  70. notify_cpu_starting(cpu);
  71. set_cpu_online(cpu, true);
  72. this_cpu_write(cpu_state, CPU_ONLINE);
  73. wmb();
  74. /* We can take interrupts now: we're officially "up". */
  75. local_irq_enable();
  76. wmb(); /* make sure everything is out */
  77. }
  78. static void cpu_bringup_and_idle(void)
  79. {
  80. cpu_bringup();
  81. cpu_startup_entry(CPUHP_ONLINE);
  82. }
  83. static void xen_smp_intr_free(unsigned int cpu)
  84. {
  85. if (per_cpu(xen_resched_irq, cpu).irq >= 0) {
  86. unbind_from_irqhandler(per_cpu(xen_resched_irq, cpu).irq, NULL);
  87. per_cpu(xen_resched_irq, cpu).irq = -1;
  88. kfree(per_cpu(xen_resched_irq, cpu).name);
  89. per_cpu(xen_resched_irq, cpu).name = NULL;
  90. }
  91. if (per_cpu(xen_callfunc_irq, cpu).irq >= 0) {
  92. unbind_from_irqhandler(per_cpu(xen_callfunc_irq, cpu).irq, NULL);
  93. per_cpu(xen_callfunc_irq, cpu).irq = -1;
  94. kfree(per_cpu(xen_callfunc_irq, cpu).name);
  95. per_cpu(xen_callfunc_irq, cpu).name = NULL;
  96. }
  97. if (per_cpu(xen_debug_irq, cpu).irq >= 0) {
  98. unbind_from_irqhandler(per_cpu(xen_debug_irq, cpu).irq, NULL);
  99. per_cpu(xen_debug_irq, cpu).irq = -1;
  100. kfree(per_cpu(xen_debug_irq, cpu).name);
  101. per_cpu(xen_debug_irq, cpu).name = NULL;
  102. }
  103. if (per_cpu(xen_callfuncsingle_irq, cpu).irq >= 0) {
  104. unbind_from_irqhandler(per_cpu(xen_callfuncsingle_irq, cpu).irq,
  105. NULL);
  106. per_cpu(xen_callfuncsingle_irq, cpu).irq = -1;
  107. kfree(per_cpu(xen_callfuncsingle_irq, cpu).name);
  108. per_cpu(xen_callfuncsingle_irq, cpu).name = NULL;
  109. }
  110. if (xen_hvm_domain())
  111. return;
  112. if (per_cpu(xen_irq_work, cpu).irq >= 0) {
  113. unbind_from_irqhandler(per_cpu(xen_irq_work, cpu).irq, NULL);
  114. per_cpu(xen_irq_work, cpu).irq = -1;
  115. kfree(per_cpu(xen_irq_work, cpu).name);
  116. per_cpu(xen_irq_work, cpu).name = NULL;
  117. }
  118. };
  119. static int xen_smp_intr_init(unsigned int cpu)
  120. {
  121. int rc;
  122. char *resched_name, *callfunc_name, *debug_name;
  123. resched_name = kasprintf(GFP_KERNEL, "resched%d", cpu);
  124. rc = bind_ipi_to_irqhandler(XEN_RESCHEDULE_VECTOR,
  125. cpu,
  126. xen_reschedule_interrupt,
  127. IRQF_DISABLED|IRQF_PERCPU|IRQF_NOBALANCING,
  128. resched_name,
  129. NULL);
  130. if (rc < 0)
  131. goto fail;
  132. per_cpu(xen_resched_irq, cpu).irq = rc;
  133. per_cpu(xen_resched_irq, cpu).name = resched_name;
  134. callfunc_name = kasprintf(GFP_KERNEL, "callfunc%d", cpu);
  135. rc = bind_ipi_to_irqhandler(XEN_CALL_FUNCTION_VECTOR,
  136. cpu,
  137. xen_call_function_interrupt,
  138. IRQF_DISABLED|IRQF_PERCPU|IRQF_NOBALANCING,
  139. callfunc_name,
  140. NULL);
  141. if (rc < 0)
  142. goto fail;
  143. per_cpu(xen_callfunc_irq, cpu).irq = rc;
  144. per_cpu(xen_callfunc_irq, cpu).name = callfunc_name;
  145. debug_name = kasprintf(GFP_KERNEL, "debug%d", cpu);
  146. rc = bind_virq_to_irqhandler(VIRQ_DEBUG, cpu, xen_debug_interrupt,
  147. IRQF_DISABLED | IRQF_PERCPU | IRQF_NOBALANCING,
  148. debug_name, NULL);
  149. if (rc < 0)
  150. goto fail;
  151. per_cpu(xen_debug_irq, cpu).irq = rc;
  152. per_cpu(xen_debug_irq, cpu).name = debug_name;
  153. callfunc_name = kasprintf(GFP_KERNEL, "callfuncsingle%d", cpu);
  154. rc = bind_ipi_to_irqhandler(XEN_CALL_FUNCTION_SINGLE_VECTOR,
  155. cpu,
  156. xen_call_function_single_interrupt,
  157. IRQF_DISABLED|IRQF_PERCPU|IRQF_NOBALANCING,
  158. callfunc_name,
  159. NULL);
  160. if (rc < 0)
  161. goto fail;
  162. per_cpu(xen_callfuncsingle_irq, cpu).irq = rc;
  163. per_cpu(xen_callfuncsingle_irq, cpu).name = callfunc_name;
  164. /*
  165. * The IRQ worker on PVHVM goes through the native path and uses the
  166. * IPI mechanism.
  167. */
  168. if (xen_hvm_domain())
  169. return 0;
  170. callfunc_name = kasprintf(GFP_KERNEL, "irqwork%d", cpu);
  171. rc = bind_ipi_to_irqhandler(XEN_IRQ_WORK_VECTOR,
  172. cpu,
  173. xen_irq_work_interrupt,
  174. IRQF_DISABLED|IRQF_PERCPU|IRQF_NOBALANCING,
  175. callfunc_name,
  176. NULL);
  177. if (rc < 0)
  178. goto fail;
  179. per_cpu(xen_irq_work, cpu).irq = rc;
  180. per_cpu(xen_irq_work, cpu).name = callfunc_name;
  181. return 0;
  182. fail:
  183. xen_smp_intr_free(cpu);
  184. return rc;
  185. }
  186. static void __init xen_fill_possible_map(void)
  187. {
  188. int i, rc;
  189. if (xen_initial_domain())
  190. return;
  191. for (i = 0; i < nr_cpu_ids; i++) {
  192. rc = HYPERVISOR_vcpu_op(VCPUOP_is_up, i, NULL);
  193. if (rc >= 0) {
  194. num_processors++;
  195. set_cpu_possible(i, true);
  196. }
  197. }
  198. }
  199. static void __init xen_filter_cpu_maps(void)
  200. {
  201. int i, rc;
  202. unsigned int subtract = 0;
  203. if (!xen_initial_domain())
  204. return;
  205. num_processors = 0;
  206. disabled_cpus = 0;
  207. for (i = 0; i < nr_cpu_ids; i++) {
  208. rc = HYPERVISOR_vcpu_op(VCPUOP_is_up, i, NULL);
  209. if (rc >= 0) {
  210. num_processors++;
  211. set_cpu_possible(i, true);
  212. } else {
  213. set_cpu_possible(i, false);
  214. set_cpu_present(i, false);
  215. subtract++;
  216. }
  217. }
  218. #ifdef CONFIG_HOTPLUG_CPU
  219. /* This is akin to using 'nr_cpus' on the Linux command line.
  220. * Which is OK as when we use 'dom0_max_vcpus=X' we can only
  221. * have up to X, while nr_cpu_ids is greater than X. This
  222. * normally is not a problem, except when CPU hotplugging
  223. * is involved and then there might be more than X CPUs
  224. * in the guest - which will not work as there is no
  225. * hypercall to expand the max number of VCPUs an already
  226. * running guest has. So cap it up to X. */
  227. if (subtract)
  228. nr_cpu_ids = nr_cpu_ids - subtract;
  229. #endif
  230. }
  231. static void __init xen_smp_prepare_boot_cpu(void)
  232. {
  233. BUG_ON(smp_processor_id() != 0);
  234. native_smp_prepare_boot_cpu();
  235. /* We've switched to the "real" per-cpu gdt, so make sure the
  236. old memory can be recycled */
  237. make_lowmem_page_readwrite(xen_initial_gdt);
  238. xen_filter_cpu_maps();
  239. xen_setup_vcpu_info_placement();
  240. }
  241. static void __init xen_smp_prepare_cpus(unsigned int max_cpus)
  242. {
  243. unsigned cpu;
  244. unsigned int i;
  245. if (skip_ioapic_setup) {
  246. char *m = (max_cpus == 0) ?
  247. "The nosmp parameter is incompatible with Xen; " \
  248. "use Xen dom0_max_vcpus=1 parameter" :
  249. "The noapic parameter is incompatible with Xen";
  250. xen_raw_printk(m);
  251. panic(m);
  252. }
  253. xen_init_lock_cpu(0);
  254. smp_store_boot_cpu_info();
  255. cpu_data(0).x86_max_cores = 1;
  256. for_each_possible_cpu(i) {
  257. zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
  258. zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
  259. zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
  260. }
  261. set_cpu_sibling_map(0);
  262. if (xen_smp_intr_init(0))
  263. BUG();
  264. if (!alloc_cpumask_var(&xen_cpu_initialized_map, GFP_KERNEL))
  265. panic("could not allocate xen_cpu_initialized_map\n");
  266. cpumask_copy(xen_cpu_initialized_map, cpumask_of(0));
  267. /* Restrict the possible_map according to max_cpus. */
  268. while ((num_possible_cpus() > 1) && (num_possible_cpus() > max_cpus)) {
  269. for (cpu = nr_cpu_ids - 1; !cpu_possible(cpu); cpu--)
  270. continue;
  271. set_cpu_possible(cpu, false);
  272. }
  273. for_each_possible_cpu(cpu)
  274. set_cpu_present(cpu, true);
  275. }
  276. static int
  277. cpu_initialize_context(unsigned int cpu, struct task_struct *idle)
  278. {
  279. struct vcpu_guest_context *ctxt;
  280. struct desc_struct *gdt;
  281. unsigned long gdt_mfn;
  282. if (cpumask_test_and_set_cpu(cpu, xen_cpu_initialized_map))
  283. return 0;
  284. ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
  285. if (ctxt == NULL)
  286. return -ENOMEM;
  287. gdt = get_cpu_gdt_table(cpu);
  288. ctxt->flags = VGCF_IN_KERNEL;
  289. ctxt->user_regs.ss = __KERNEL_DS;
  290. #ifdef CONFIG_X86_32
  291. ctxt->user_regs.fs = __KERNEL_PERCPU;
  292. ctxt->user_regs.gs = __KERNEL_STACK_CANARY;
  293. #else
  294. ctxt->gs_base_kernel = per_cpu_offset(cpu);
  295. #endif
  296. ctxt->user_regs.eip = (unsigned long)cpu_bringup_and_idle;
  297. memset(&ctxt->fpu_ctxt, 0, sizeof(ctxt->fpu_ctxt));
  298. {
  299. ctxt->user_regs.eflags = 0x1000; /* IOPL_RING1 */
  300. ctxt->user_regs.ds = __USER_DS;
  301. ctxt->user_regs.es = __USER_DS;
  302. xen_copy_trap_info(ctxt->trap_ctxt);
  303. ctxt->ldt_ents = 0;
  304. BUG_ON((unsigned long)gdt & ~PAGE_MASK);
  305. gdt_mfn = arbitrary_virt_to_mfn(gdt);
  306. make_lowmem_page_readonly(gdt);
  307. make_lowmem_page_readonly(mfn_to_virt(gdt_mfn));
  308. ctxt->gdt_frames[0] = gdt_mfn;
  309. ctxt->gdt_ents = GDT_ENTRIES;
  310. ctxt->kernel_ss = __KERNEL_DS;
  311. ctxt->kernel_sp = idle->thread.sp0;
  312. #ifdef CONFIG_X86_32
  313. ctxt->event_callback_cs = __KERNEL_CS;
  314. ctxt->failsafe_callback_cs = __KERNEL_CS;
  315. #endif
  316. ctxt->event_callback_eip =
  317. (unsigned long)xen_hypervisor_callback;
  318. ctxt->failsafe_callback_eip =
  319. (unsigned long)xen_failsafe_callback;
  320. }
  321. ctxt->user_regs.cs = __KERNEL_CS;
  322. ctxt->user_regs.esp = idle->thread.sp0 - sizeof(struct pt_regs);
  323. per_cpu(xen_cr3, cpu) = __pa(swapper_pg_dir);
  324. ctxt->ctrlreg[3] = xen_pfn_to_cr3(virt_to_mfn(swapper_pg_dir));
  325. if (HYPERVISOR_vcpu_op(VCPUOP_initialise, cpu, ctxt))
  326. BUG();
  327. kfree(ctxt);
  328. return 0;
  329. }
  330. static int xen_cpu_up(unsigned int cpu, struct task_struct *idle)
  331. {
  332. int rc;
  333. per_cpu(current_task, cpu) = idle;
  334. #ifdef CONFIG_X86_32
  335. irq_ctx_init(cpu);
  336. #else
  337. clear_tsk_thread_flag(idle, TIF_FORK);
  338. per_cpu(kernel_stack, cpu) =
  339. (unsigned long)task_stack_page(idle) -
  340. KERNEL_STACK_OFFSET + THREAD_SIZE;
  341. #endif
  342. xen_setup_runstate_info(cpu);
  343. xen_setup_timer(cpu);
  344. xen_init_lock_cpu(cpu);
  345. per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
  346. /* make sure interrupts start blocked */
  347. per_cpu(xen_vcpu, cpu)->evtchn_upcall_mask = 1;
  348. rc = cpu_initialize_context(cpu, idle);
  349. if (rc)
  350. return rc;
  351. if (num_online_cpus() == 1)
  352. /* Just in case we booted with a single CPU. */
  353. alternatives_enable_smp();
  354. rc = xen_smp_intr_init(cpu);
  355. if (rc)
  356. return rc;
  357. rc = HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL);
  358. BUG_ON(rc);
  359. while(per_cpu(cpu_state, cpu) != CPU_ONLINE) {
  360. HYPERVISOR_sched_op(SCHEDOP_yield, NULL);
  361. barrier();
  362. }
  363. return 0;
  364. }
  365. static void xen_smp_cpus_done(unsigned int max_cpus)
  366. {
  367. }
  368. #ifdef CONFIG_HOTPLUG_CPU
  369. static int xen_cpu_disable(void)
  370. {
  371. unsigned int cpu = smp_processor_id();
  372. if (cpu == 0)
  373. return -EBUSY;
  374. cpu_disable_common();
  375. load_cr3(swapper_pg_dir);
  376. return 0;
  377. }
  378. static void xen_cpu_die(unsigned int cpu)
  379. {
  380. while (xen_pv_domain() && HYPERVISOR_vcpu_op(VCPUOP_is_up, cpu, NULL)) {
  381. current->state = TASK_UNINTERRUPTIBLE;
  382. schedule_timeout(HZ/10);
  383. }
  384. xen_smp_intr_free(cpu);
  385. xen_uninit_lock_cpu(cpu);
  386. xen_teardown_timer(cpu);
  387. }
  388. static void xen_play_dead(void) /* used only with HOTPLUG_CPU */
  389. {
  390. play_dead_common();
  391. HYPERVISOR_vcpu_op(VCPUOP_down, smp_processor_id(), NULL);
  392. cpu_bringup();
  393. /*
  394. * commit 4b0c0f294 (tick: Cleanup NOHZ per cpu data on cpu down)
  395. * clears certain data that the cpu_idle loop (which called us
  396. * and that we return from) expects. The only way to get that
  397. * data back is to call:
  398. */
  399. tick_nohz_idle_enter();
  400. }
  401. #else /* !CONFIG_HOTPLUG_CPU */
  402. static int xen_cpu_disable(void)
  403. {
  404. return -ENOSYS;
  405. }
  406. static void xen_cpu_die(unsigned int cpu)
  407. {
  408. BUG();
  409. }
  410. static void xen_play_dead(void)
  411. {
  412. BUG();
  413. }
  414. #endif
  415. static void stop_self(void *v)
  416. {
  417. int cpu = smp_processor_id();
  418. /* make sure we're not pinning something down */
  419. load_cr3(swapper_pg_dir);
  420. /* should set up a minimal gdt */
  421. set_cpu_online(cpu, false);
  422. HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL);
  423. BUG();
  424. }
  425. static void xen_stop_other_cpus(int wait)
  426. {
  427. smp_call_function(stop_self, NULL, wait);
  428. }
  429. static void xen_smp_send_reschedule(int cpu)
  430. {
  431. xen_send_IPI_one(cpu, XEN_RESCHEDULE_VECTOR);
  432. }
  433. static void __xen_send_IPI_mask(const struct cpumask *mask,
  434. int vector)
  435. {
  436. unsigned cpu;
  437. for_each_cpu_and(cpu, mask, cpu_online_mask)
  438. xen_send_IPI_one(cpu, vector);
  439. }
  440. static void xen_smp_send_call_function_ipi(const struct cpumask *mask)
  441. {
  442. int cpu;
  443. __xen_send_IPI_mask(mask, XEN_CALL_FUNCTION_VECTOR);
  444. /* Make sure other vcpus get a chance to run if they need to. */
  445. for_each_cpu(cpu, mask) {
  446. if (xen_vcpu_stolen(cpu)) {
  447. HYPERVISOR_sched_op(SCHEDOP_yield, NULL);
  448. break;
  449. }
  450. }
  451. }
  452. static void xen_smp_send_call_function_single_ipi(int cpu)
  453. {
  454. __xen_send_IPI_mask(cpumask_of(cpu),
  455. XEN_CALL_FUNCTION_SINGLE_VECTOR);
  456. }
  457. static inline int xen_map_vector(int vector)
  458. {
  459. int xen_vector;
  460. switch (vector) {
  461. case RESCHEDULE_VECTOR:
  462. xen_vector = XEN_RESCHEDULE_VECTOR;
  463. break;
  464. case CALL_FUNCTION_VECTOR:
  465. xen_vector = XEN_CALL_FUNCTION_VECTOR;
  466. break;
  467. case CALL_FUNCTION_SINGLE_VECTOR:
  468. xen_vector = XEN_CALL_FUNCTION_SINGLE_VECTOR;
  469. break;
  470. case IRQ_WORK_VECTOR:
  471. xen_vector = XEN_IRQ_WORK_VECTOR;
  472. break;
  473. default:
  474. xen_vector = -1;
  475. printk(KERN_ERR "xen: vector 0x%x is not implemented\n",
  476. vector);
  477. }
  478. return xen_vector;
  479. }
  480. void xen_send_IPI_mask(const struct cpumask *mask,
  481. int vector)
  482. {
  483. int xen_vector = xen_map_vector(vector);
  484. if (xen_vector >= 0)
  485. __xen_send_IPI_mask(mask, xen_vector);
  486. }
  487. void xen_send_IPI_all(int vector)
  488. {
  489. int xen_vector = xen_map_vector(vector);
  490. if (xen_vector >= 0)
  491. __xen_send_IPI_mask(cpu_online_mask, xen_vector);
  492. }
  493. void xen_send_IPI_self(int vector)
  494. {
  495. int xen_vector = xen_map_vector(vector);
  496. if (xen_vector >= 0)
  497. xen_send_IPI_one(smp_processor_id(), xen_vector);
  498. }
  499. void xen_send_IPI_mask_allbutself(const struct cpumask *mask,
  500. int vector)
  501. {
  502. unsigned cpu;
  503. unsigned int this_cpu = smp_processor_id();
  504. int xen_vector = xen_map_vector(vector);
  505. if (!(num_online_cpus() > 1) || (xen_vector < 0))
  506. return;
  507. for_each_cpu_and(cpu, mask, cpu_online_mask) {
  508. if (this_cpu == cpu)
  509. continue;
  510. xen_send_IPI_one(cpu, xen_vector);
  511. }
  512. }
  513. void xen_send_IPI_allbutself(int vector)
  514. {
  515. xen_send_IPI_mask_allbutself(cpu_online_mask, vector);
  516. }
  517. static irqreturn_t xen_call_function_interrupt(int irq, void *dev_id)
  518. {
  519. irq_enter();
  520. generic_smp_call_function_interrupt();
  521. inc_irq_stat(irq_call_count);
  522. irq_exit();
  523. return IRQ_HANDLED;
  524. }
  525. static irqreturn_t xen_call_function_single_interrupt(int irq, void *dev_id)
  526. {
  527. irq_enter();
  528. generic_smp_call_function_single_interrupt();
  529. inc_irq_stat(irq_call_count);
  530. irq_exit();
  531. return IRQ_HANDLED;
  532. }
  533. static irqreturn_t xen_irq_work_interrupt(int irq, void *dev_id)
  534. {
  535. irq_enter();
  536. irq_work_run();
  537. inc_irq_stat(apic_irq_work_irqs);
  538. irq_exit();
  539. return IRQ_HANDLED;
  540. }
  541. static const struct smp_ops xen_smp_ops __initconst = {
  542. .smp_prepare_boot_cpu = xen_smp_prepare_boot_cpu,
  543. .smp_prepare_cpus = xen_smp_prepare_cpus,
  544. .smp_cpus_done = xen_smp_cpus_done,
  545. .cpu_up = xen_cpu_up,
  546. .cpu_die = xen_cpu_die,
  547. .cpu_disable = xen_cpu_disable,
  548. .play_dead = xen_play_dead,
  549. .stop_other_cpus = xen_stop_other_cpus,
  550. .smp_send_reschedule = xen_smp_send_reschedule,
  551. .send_call_func_ipi = xen_smp_send_call_function_ipi,
  552. .send_call_func_single_ipi = xen_smp_send_call_function_single_ipi,
  553. };
  554. void __init xen_smp_init(void)
  555. {
  556. smp_ops = xen_smp_ops;
  557. xen_fill_possible_map();
  558. xen_init_spinlocks();
  559. }
  560. static void __init xen_hvm_smp_prepare_cpus(unsigned int max_cpus)
  561. {
  562. native_smp_prepare_cpus(max_cpus);
  563. WARN_ON(xen_smp_intr_init(0));
  564. xen_init_lock_cpu(0);
  565. }
  566. static int xen_hvm_cpu_up(unsigned int cpu, struct task_struct *tidle)
  567. {
  568. int rc;
  569. rc = native_cpu_up(cpu, tidle);
  570. WARN_ON (xen_smp_intr_init(cpu));
  571. return rc;
  572. }
  573. static void xen_hvm_cpu_die(unsigned int cpu)
  574. {
  575. xen_cpu_die(cpu);
  576. native_cpu_die(cpu);
  577. }
  578. void __init xen_hvm_smp_init(void)
  579. {
  580. if (!xen_have_vector_callback)
  581. return;
  582. smp_ops.smp_prepare_cpus = xen_hvm_smp_prepare_cpus;
  583. smp_ops.smp_send_reschedule = xen_smp_send_reschedule;
  584. smp_ops.cpu_up = xen_hvm_cpu_up;
  585. smp_ops.cpu_die = xen_hvm_cpu_die;
  586. smp_ops.send_call_func_ipi = xen_smp_send_call_function_ipi;
  587. smp_ops.send_call_func_single_ipi = xen_smp_send_call_function_single_ipi;
  588. }