enlighten.c 42 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753
  1. /*
  2. * Core of Xen paravirt_ops implementation.
  3. *
  4. * This file contains the xen_paravirt_ops structure itself, and the
  5. * implementations for:
  6. * - privileged instructions
  7. * - interrupt flags
  8. * - segment operations
  9. * - booting and setup
  10. *
  11. * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
  12. */
  13. #include <linux/cpu.h>
  14. #include <linux/kernel.h>
  15. #include <linux/init.h>
  16. #include <linux/smp.h>
  17. #include <linux/preempt.h>
  18. #include <linux/hardirq.h>
  19. #include <linux/percpu.h>
  20. #include <linux/delay.h>
  21. #include <linux/start_kernel.h>
  22. #include <linux/sched.h>
  23. #include <linux/kprobes.h>
  24. #include <linux/bootmem.h>
  25. #include <linux/module.h>
  26. #include <linux/mm.h>
  27. #include <linux/page-flags.h>
  28. #include <linux/highmem.h>
  29. #include <linux/console.h>
  30. #include <linux/pci.h>
  31. #include <linux/gfp.h>
  32. #include <linux/memblock.h>
  33. #include <linux/edd.h>
  34. #include <xen/xen.h>
  35. #include <xen/events.h>
  36. #include <xen/interface/xen.h>
  37. #include <xen/interface/version.h>
  38. #include <xen/interface/physdev.h>
  39. #include <xen/interface/vcpu.h>
  40. #include <xen/interface/memory.h>
  41. #include <xen/interface/xen-mca.h>
  42. #include <xen/features.h>
  43. #include <xen/page.h>
  44. #include <xen/hvm.h>
  45. #include <xen/hvc-console.h>
  46. #include <xen/acpi.h>
  47. #include <asm/paravirt.h>
  48. #include <asm/apic.h>
  49. #include <asm/page.h>
  50. #include <asm/xen/pci.h>
  51. #include <asm/xen/hypercall.h>
  52. #include <asm/xen/hypervisor.h>
  53. #include <asm/fixmap.h>
  54. #include <asm/processor.h>
  55. #include <asm/proto.h>
  56. #include <asm/msr-index.h>
  57. #include <asm/traps.h>
  58. #include <asm/setup.h>
  59. #include <asm/desc.h>
  60. #include <asm/pgalloc.h>
  61. #include <asm/pgtable.h>
  62. #include <asm/tlbflush.h>
  63. #include <asm/reboot.h>
  64. #include <asm/stackprotector.h>
  65. #include <asm/hypervisor.h>
  66. #include <asm/mwait.h>
  67. #include <asm/pci_x86.h>
  68. #include <asm/pat.h>
  69. #ifdef CONFIG_ACPI
  70. #include <linux/acpi.h>
  71. #include <asm/acpi.h>
  72. #include <acpi/pdc_intel.h>
  73. #include <acpi/processor.h>
  74. #include <xen/interface/platform.h>
  75. #endif
  76. #include "xen-ops.h"
  77. #include "mmu.h"
  78. #include "smp.h"
  79. #include "multicalls.h"
  80. EXPORT_SYMBOL_GPL(hypercall_page);
  81. /*
  82. * Pointer to the xen_vcpu_info structure or
  83. * &HYPERVISOR_shared_info->vcpu_info[cpu]. See xen_hvm_init_shared_info
  84. * and xen_vcpu_setup for details. By default it points to share_info->vcpu_info
  85. * but if the hypervisor supports VCPUOP_register_vcpu_info then it can point
  86. * to xen_vcpu_info. The pointer is used in __xen_evtchn_do_upcall to
  87. * acknowledge pending events.
  88. * Also more subtly it is used by the patched version of irq enable/disable
  89. * e.g. xen_irq_enable_direct and xen_iret in PV mode.
  90. *
  91. * The desire to be able to do those mask/unmask operations as a single
  92. * instruction by using the per-cpu offset held in %gs is the real reason
  93. * vcpu info is in a per-cpu pointer and the original reason for this
  94. * hypercall.
  95. *
  96. */
  97. DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
  98. /*
  99. * Per CPU pages used if hypervisor supports VCPUOP_register_vcpu_info
  100. * hypercall. This can be used both in PV and PVHVM mode. The structure
  101. * overrides the default per_cpu(xen_vcpu, cpu) value.
  102. */
  103. DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
  104. enum xen_domain_type xen_domain_type = XEN_NATIVE;
  105. EXPORT_SYMBOL_GPL(xen_domain_type);
  106. unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START;
  107. EXPORT_SYMBOL(machine_to_phys_mapping);
  108. unsigned long machine_to_phys_nr;
  109. EXPORT_SYMBOL(machine_to_phys_nr);
  110. struct start_info *xen_start_info;
  111. EXPORT_SYMBOL_GPL(xen_start_info);
  112. struct shared_info xen_dummy_shared_info;
  113. void *xen_initial_gdt;
  114. RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
  115. __read_mostly int xen_have_vector_callback;
  116. EXPORT_SYMBOL_GPL(xen_have_vector_callback);
  117. /*
  118. * Point at some empty memory to start with. We map the real shared_info
  119. * page as soon as fixmap is up and running.
  120. */
  121. struct shared_info *HYPERVISOR_shared_info = &xen_dummy_shared_info;
  122. /*
  123. * Flag to determine whether vcpu info placement is available on all
  124. * VCPUs. We assume it is to start with, and then set it to zero on
  125. * the first failure. This is because it can succeed on some VCPUs
  126. * and not others, since it can involve hypervisor memory allocation,
  127. * or because the guest failed to guarantee all the appropriate
  128. * constraints on all VCPUs (ie buffer can't cross a page boundary).
  129. *
  130. * Note that any particular CPU may be using a placed vcpu structure,
  131. * but we can only optimise if the all are.
  132. *
  133. * 0: not available, 1: available
  134. */
  135. static int have_vcpu_info_placement = 1;
  136. struct tls_descs {
  137. struct desc_struct desc[3];
  138. };
  139. /*
  140. * Updating the 3 TLS descriptors in the GDT on every task switch is
  141. * surprisingly expensive so we avoid updating them if they haven't
  142. * changed. Since Xen writes different descriptors than the one
  143. * passed in the update_descriptor hypercall we keep shadow copies to
  144. * compare against.
  145. */
  146. static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
  147. static void clamp_max_cpus(void)
  148. {
  149. #ifdef CONFIG_SMP
  150. if (setup_max_cpus > MAX_VIRT_CPUS)
  151. setup_max_cpus = MAX_VIRT_CPUS;
  152. #endif
  153. }
  154. static void xen_vcpu_setup(int cpu)
  155. {
  156. struct vcpu_register_vcpu_info info;
  157. int err;
  158. struct vcpu_info *vcpup;
  159. BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
  160. /*
  161. * This path is called twice on PVHVM - first during bootup via
  162. * smp_init -> xen_hvm_cpu_notify, and then if the VCPU is being
  163. * hotplugged: cpu_up -> xen_hvm_cpu_notify.
  164. * As we can only do the VCPUOP_register_vcpu_info once lets
  165. * not over-write its result.
  166. *
  167. * For PV it is called during restore (xen_vcpu_restore) and bootup
  168. * (xen_setup_vcpu_info_placement). The hotplug mechanism does not
  169. * use this function.
  170. */
  171. if (xen_hvm_domain()) {
  172. if (per_cpu(xen_vcpu, cpu) == &per_cpu(xen_vcpu_info, cpu))
  173. return;
  174. }
  175. if (cpu < MAX_VIRT_CPUS)
  176. per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
  177. if (!have_vcpu_info_placement) {
  178. if (cpu >= MAX_VIRT_CPUS)
  179. clamp_max_cpus();
  180. return;
  181. }
  182. vcpup = &per_cpu(xen_vcpu_info, cpu);
  183. info.mfn = arbitrary_virt_to_mfn(vcpup);
  184. info.offset = offset_in_page(vcpup);
  185. /* Check to see if the hypervisor will put the vcpu_info
  186. structure where we want it, which allows direct access via
  187. a percpu-variable.
  188. N.B. This hypercall can _only_ be called once per CPU. Subsequent
  189. calls will error out with -EINVAL. This is due to the fact that
  190. hypervisor has no unregister variant and this hypercall does not
  191. allow to over-write info.mfn and info.offset.
  192. */
  193. err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
  194. if (err) {
  195. printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
  196. have_vcpu_info_placement = 0;
  197. clamp_max_cpus();
  198. } else {
  199. /* This cpu is using the registered vcpu info, even if
  200. later ones fail to. */
  201. per_cpu(xen_vcpu, cpu) = vcpup;
  202. }
  203. }
  204. /*
  205. * On restore, set the vcpu placement up again.
  206. * If it fails, then we're in a bad state, since
  207. * we can't back out from using it...
  208. */
  209. void xen_vcpu_restore(void)
  210. {
  211. int cpu;
  212. for_each_possible_cpu(cpu) {
  213. bool other_cpu = (cpu != smp_processor_id());
  214. bool is_up = HYPERVISOR_vcpu_op(VCPUOP_is_up, cpu, NULL);
  215. if (other_cpu && is_up &&
  216. HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
  217. BUG();
  218. xen_setup_runstate_info(cpu);
  219. if (have_vcpu_info_placement)
  220. xen_vcpu_setup(cpu);
  221. if (other_cpu && is_up &&
  222. HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
  223. BUG();
  224. }
  225. }
  226. static void __init xen_banner(void)
  227. {
  228. unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
  229. struct xen_extraversion extra;
  230. HYPERVISOR_xen_version(XENVER_extraversion, &extra);
  231. printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
  232. pv_info.name);
  233. printk(KERN_INFO "Xen version: %d.%d%s%s\n",
  234. version >> 16, version & 0xffff, extra.extraversion,
  235. xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
  236. }
  237. /* Check if running on Xen version (major, minor) or later */
  238. bool
  239. xen_running_on_version_or_later(unsigned int major, unsigned int minor)
  240. {
  241. unsigned int version;
  242. if (!xen_domain())
  243. return false;
  244. version = HYPERVISOR_xen_version(XENVER_version, NULL);
  245. if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) ||
  246. ((version >> 16) > major))
  247. return true;
  248. return false;
  249. }
  250. #define CPUID_THERM_POWER_LEAF 6
  251. #define APERFMPERF_PRESENT 0
  252. static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
  253. static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
  254. static __read_mostly unsigned int cpuid_leaf1_ecx_set_mask;
  255. static __read_mostly unsigned int cpuid_leaf5_ecx_val;
  256. static __read_mostly unsigned int cpuid_leaf5_edx_val;
  257. static void xen_cpuid(unsigned int *ax, unsigned int *bx,
  258. unsigned int *cx, unsigned int *dx)
  259. {
  260. unsigned maskebx = ~0;
  261. unsigned maskecx = ~0;
  262. unsigned maskedx = ~0;
  263. unsigned setecx = 0;
  264. /*
  265. * Mask out inconvenient features, to try and disable as many
  266. * unsupported kernel subsystems as possible.
  267. */
  268. switch (*ax) {
  269. case 1:
  270. maskecx = cpuid_leaf1_ecx_mask;
  271. setecx = cpuid_leaf1_ecx_set_mask;
  272. maskedx = cpuid_leaf1_edx_mask;
  273. break;
  274. case CPUID_MWAIT_LEAF:
  275. /* Synthesize the values.. */
  276. *ax = 0;
  277. *bx = 0;
  278. *cx = cpuid_leaf5_ecx_val;
  279. *dx = cpuid_leaf5_edx_val;
  280. return;
  281. case CPUID_THERM_POWER_LEAF:
  282. /* Disabling APERFMPERF for kernel usage */
  283. maskecx = ~(1 << APERFMPERF_PRESENT);
  284. break;
  285. case 0xb:
  286. /* Suppress extended topology stuff */
  287. maskebx = 0;
  288. break;
  289. }
  290. asm(XEN_EMULATE_PREFIX "cpuid"
  291. : "=a" (*ax),
  292. "=b" (*bx),
  293. "=c" (*cx),
  294. "=d" (*dx)
  295. : "0" (*ax), "2" (*cx));
  296. *bx &= maskebx;
  297. *cx &= maskecx;
  298. *cx |= setecx;
  299. *dx &= maskedx;
  300. }
  301. static bool __init xen_check_mwait(void)
  302. {
  303. #ifdef CONFIG_ACPI
  304. struct xen_platform_op op = {
  305. .cmd = XENPF_set_processor_pminfo,
  306. .u.set_pminfo.id = -1,
  307. .u.set_pminfo.type = XEN_PM_PDC,
  308. };
  309. uint32_t buf[3];
  310. unsigned int ax, bx, cx, dx;
  311. unsigned int mwait_mask;
  312. /* We need to determine whether it is OK to expose the MWAIT
  313. * capability to the kernel to harvest deeper than C3 states from ACPI
  314. * _CST using the processor_harvest_xen.c module. For this to work, we
  315. * need to gather the MWAIT_LEAF values (which the cstate.c code
  316. * checks against). The hypervisor won't expose the MWAIT flag because
  317. * it would break backwards compatibility; so we will find out directly
  318. * from the hardware and hypercall.
  319. */
  320. if (!xen_initial_domain())
  321. return false;
  322. /*
  323. * When running under platform earlier than Xen4.2, do not expose
  324. * mwait, to avoid the risk of loading native acpi pad driver
  325. */
  326. if (!xen_running_on_version_or_later(4, 2))
  327. return false;
  328. ax = 1;
  329. cx = 0;
  330. native_cpuid(&ax, &bx, &cx, &dx);
  331. mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
  332. (1 << (X86_FEATURE_MWAIT % 32));
  333. if ((cx & mwait_mask) != mwait_mask)
  334. return false;
  335. /* We need to emulate the MWAIT_LEAF and for that we need both
  336. * ecx and edx. The hypercall provides only partial information.
  337. */
  338. ax = CPUID_MWAIT_LEAF;
  339. bx = 0;
  340. cx = 0;
  341. dx = 0;
  342. native_cpuid(&ax, &bx, &cx, &dx);
  343. /* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
  344. * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
  345. */
  346. buf[0] = ACPI_PDC_REVISION_ID;
  347. buf[1] = 1;
  348. buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
  349. set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
  350. if ((HYPERVISOR_dom0_op(&op) == 0) &&
  351. (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
  352. cpuid_leaf5_ecx_val = cx;
  353. cpuid_leaf5_edx_val = dx;
  354. }
  355. return true;
  356. #else
  357. return false;
  358. #endif
  359. }
  360. static void __init xen_init_cpuid_mask(void)
  361. {
  362. unsigned int ax, bx, cx, dx;
  363. unsigned int xsave_mask;
  364. cpuid_leaf1_edx_mask =
  365. ~((1 << X86_FEATURE_MTRR) | /* disable MTRR */
  366. (1 << X86_FEATURE_ACC)); /* thermal monitoring */
  367. if (!xen_initial_domain())
  368. cpuid_leaf1_edx_mask &=
  369. ~((1 << X86_FEATURE_APIC) | /* disable local APIC */
  370. (1 << X86_FEATURE_ACPI)); /* disable ACPI */
  371. cpuid_leaf1_ecx_mask &= ~(1 << (X86_FEATURE_X2APIC % 32));
  372. ax = 1;
  373. cx = 0;
  374. xen_cpuid(&ax, &bx, &cx, &dx);
  375. xsave_mask =
  376. (1 << (X86_FEATURE_XSAVE % 32)) |
  377. (1 << (X86_FEATURE_OSXSAVE % 32));
  378. /* Xen will set CR4.OSXSAVE if supported and not disabled by force */
  379. if ((cx & xsave_mask) != xsave_mask)
  380. cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */
  381. if (xen_check_mwait())
  382. cpuid_leaf1_ecx_set_mask = (1 << (X86_FEATURE_MWAIT % 32));
  383. }
  384. static void xen_set_debugreg(int reg, unsigned long val)
  385. {
  386. HYPERVISOR_set_debugreg(reg, val);
  387. }
  388. static unsigned long xen_get_debugreg(int reg)
  389. {
  390. return HYPERVISOR_get_debugreg(reg);
  391. }
  392. static void xen_end_context_switch(struct task_struct *next)
  393. {
  394. xen_mc_flush();
  395. paravirt_end_context_switch(next);
  396. }
  397. static unsigned long xen_store_tr(void)
  398. {
  399. return 0;
  400. }
  401. /*
  402. * Set the page permissions for a particular virtual address. If the
  403. * address is a vmalloc mapping (or other non-linear mapping), then
  404. * find the linear mapping of the page and also set its protections to
  405. * match.
  406. */
  407. static void set_aliased_prot(void *v, pgprot_t prot)
  408. {
  409. int level;
  410. pte_t *ptep;
  411. pte_t pte;
  412. unsigned long pfn;
  413. struct page *page;
  414. ptep = lookup_address((unsigned long)v, &level);
  415. BUG_ON(ptep == NULL);
  416. pfn = pte_pfn(*ptep);
  417. page = pfn_to_page(pfn);
  418. pte = pfn_pte(pfn, prot);
  419. if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
  420. BUG();
  421. if (!PageHighMem(page)) {
  422. void *av = __va(PFN_PHYS(pfn));
  423. if (av != v)
  424. if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
  425. BUG();
  426. } else
  427. kmap_flush_unused();
  428. }
  429. static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
  430. {
  431. const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
  432. int i;
  433. for(i = 0; i < entries; i += entries_per_page)
  434. set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
  435. }
  436. static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
  437. {
  438. const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
  439. int i;
  440. for(i = 0; i < entries; i += entries_per_page)
  441. set_aliased_prot(ldt + i, PAGE_KERNEL);
  442. }
  443. static void xen_set_ldt(const void *addr, unsigned entries)
  444. {
  445. struct mmuext_op *op;
  446. struct multicall_space mcs = xen_mc_entry(sizeof(*op));
  447. trace_xen_cpu_set_ldt(addr, entries);
  448. op = mcs.args;
  449. op->cmd = MMUEXT_SET_LDT;
  450. op->arg1.linear_addr = (unsigned long)addr;
  451. op->arg2.nr_ents = entries;
  452. MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
  453. xen_mc_issue(PARAVIRT_LAZY_CPU);
  454. }
  455. static void xen_load_gdt(const struct desc_ptr *dtr)
  456. {
  457. unsigned long va = dtr->address;
  458. unsigned int size = dtr->size + 1;
  459. unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
  460. unsigned long frames[pages];
  461. int f;
  462. /*
  463. * A GDT can be up to 64k in size, which corresponds to 8192
  464. * 8-byte entries, or 16 4k pages..
  465. */
  466. BUG_ON(size > 65536);
  467. BUG_ON(va & ~PAGE_MASK);
  468. for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
  469. int level;
  470. pte_t *ptep;
  471. unsigned long pfn, mfn;
  472. void *virt;
  473. /*
  474. * The GDT is per-cpu and is in the percpu data area.
  475. * That can be virtually mapped, so we need to do a
  476. * page-walk to get the underlying MFN for the
  477. * hypercall. The page can also be in the kernel's
  478. * linear range, so we need to RO that mapping too.
  479. */
  480. ptep = lookup_address(va, &level);
  481. BUG_ON(ptep == NULL);
  482. pfn = pte_pfn(*ptep);
  483. mfn = pfn_to_mfn(pfn);
  484. virt = __va(PFN_PHYS(pfn));
  485. frames[f] = mfn;
  486. make_lowmem_page_readonly((void *)va);
  487. make_lowmem_page_readonly(virt);
  488. }
  489. if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
  490. BUG();
  491. }
  492. /*
  493. * load_gdt for early boot, when the gdt is only mapped once
  494. */
  495. static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
  496. {
  497. unsigned long va = dtr->address;
  498. unsigned int size = dtr->size + 1;
  499. unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
  500. unsigned long frames[pages];
  501. int f;
  502. /*
  503. * A GDT can be up to 64k in size, which corresponds to 8192
  504. * 8-byte entries, or 16 4k pages..
  505. */
  506. BUG_ON(size > 65536);
  507. BUG_ON(va & ~PAGE_MASK);
  508. for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
  509. pte_t pte;
  510. unsigned long pfn, mfn;
  511. pfn = virt_to_pfn(va);
  512. mfn = pfn_to_mfn(pfn);
  513. pte = pfn_pte(pfn, PAGE_KERNEL_RO);
  514. if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
  515. BUG();
  516. frames[f] = mfn;
  517. }
  518. if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
  519. BUG();
  520. }
  521. static inline bool desc_equal(const struct desc_struct *d1,
  522. const struct desc_struct *d2)
  523. {
  524. return d1->a == d2->a && d1->b == d2->b;
  525. }
  526. static void load_TLS_descriptor(struct thread_struct *t,
  527. unsigned int cpu, unsigned int i)
  528. {
  529. struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
  530. struct desc_struct *gdt;
  531. xmaddr_t maddr;
  532. struct multicall_space mc;
  533. if (desc_equal(shadow, &t->tls_array[i]))
  534. return;
  535. *shadow = t->tls_array[i];
  536. gdt = get_cpu_gdt_table(cpu);
  537. maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
  538. mc = __xen_mc_entry(0);
  539. MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
  540. }
  541. static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
  542. {
  543. /*
  544. * XXX sleazy hack: If we're being called in a lazy-cpu zone
  545. * and lazy gs handling is enabled, it means we're in a
  546. * context switch, and %gs has just been saved. This means we
  547. * can zero it out to prevent faults on exit from the
  548. * hypervisor if the next process has no %gs. Either way, it
  549. * has been saved, and the new value will get loaded properly.
  550. * This will go away as soon as Xen has been modified to not
  551. * save/restore %gs for normal hypercalls.
  552. *
  553. * On x86_64, this hack is not used for %gs, because gs points
  554. * to KERNEL_GS_BASE (and uses it for PDA references), so we
  555. * must not zero %gs on x86_64
  556. *
  557. * For x86_64, we need to zero %fs, otherwise we may get an
  558. * exception between the new %fs descriptor being loaded and
  559. * %fs being effectively cleared at __switch_to().
  560. */
  561. if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
  562. #ifdef CONFIG_X86_32
  563. lazy_load_gs(0);
  564. #else
  565. loadsegment(fs, 0);
  566. #endif
  567. }
  568. xen_mc_batch();
  569. load_TLS_descriptor(t, cpu, 0);
  570. load_TLS_descriptor(t, cpu, 1);
  571. load_TLS_descriptor(t, cpu, 2);
  572. xen_mc_issue(PARAVIRT_LAZY_CPU);
  573. }
  574. #ifdef CONFIG_X86_64
  575. static void xen_load_gs_index(unsigned int idx)
  576. {
  577. if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
  578. BUG();
  579. }
  580. #endif
  581. static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
  582. const void *ptr)
  583. {
  584. xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
  585. u64 entry = *(u64 *)ptr;
  586. trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
  587. preempt_disable();
  588. xen_mc_flush();
  589. if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
  590. BUG();
  591. preempt_enable();
  592. }
  593. static int cvt_gate_to_trap(int vector, const gate_desc *val,
  594. struct trap_info *info)
  595. {
  596. unsigned long addr;
  597. if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
  598. return 0;
  599. info->vector = vector;
  600. addr = gate_offset(*val);
  601. #ifdef CONFIG_X86_64
  602. /*
  603. * Look for known traps using IST, and substitute them
  604. * appropriately. The debugger ones are the only ones we care
  605. * about. Xen will handle faults like double_fault,
  606. * so we should never see them. Warn if
  607. * there's an unexpected IST-using fault handler.
  608. */
  609. if (addr == (unsigned long)debug)
  610. addr = (unsigned long)xen_debug;
  611. else if (addr == (unsigned long)int3)
  612. addr = (unsigned long)xen_int3;
  613. else if (addr == (unsigned long)stack_segment)
  614. addr = (unsigned long)xen_stack_segment;
  615. else if (addr == (unsigned long)double_fault ||
  616. addr == (unsigned long)nmi) {
  617. /* Don't need to handle these */
  618. return 0;
  619. #ifdef CONFIG_X86_MCE
  620. } else if (addr == (unsigned long)machine_check) {
  621. /*
  622. * when xen hypervisor inject vMCE to guest,
  623. * use native mce handler to handle it
  624. */
  625. ;
  626. #endif
  627. } else {
  628. /* Some other trap using IST? */
  629. if (WARN_ON(val->ist != 0))
  630. return 0;
  631. }
  632. #endif /* CONFIG_X86_64 */
  633. info->address = addr;
  634. info->cs = gate_segment(*val);
  635. info->flags = val->dpl;
  636. /* interrupt gates clear IF */
  637. if (val->type == GATE_INTERRUPT)
  638. info->flags |= 1 << 2;
  639. return 1;
  640. }
  641. /* Locations of each CPU's IDT */
  642. static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
  643. /* Set an IDT entry. If the entry is part of the current IDT, then
  644. also update Xen. */
  645. static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
  646. {
  647. unsigned long p = (unsigned long)&dt[entrynum];
  648. unsigned long start, end;
  649. trace_xen_cpu_write_idt_entry(dt, entrynum, g);
  650. preempt_disable();
  651. start = __this_cpu_read(idt_desc.address);
  652. end = start + __this_cpu_read(idt_desc.size) + 1;
  653. xen_mc_flush();
  654. native_write_idt_entry(dt, entrynum, g);
  655. if (p >= start && (p + 8) <= end) {
  656. struct trap_info info[2];
  657. info[1].address = 0;
  658. if (cvt_gate_to_trap(entrynum, g, &info[0]))
  659. if (HYPERVISOR_set_trap_table(info))
  660. BUG();
  661. }
  662. preempt_enable();
  663. }
  664. static void xen_convert_trap_info(const struct desc_ptr *desc,
  665. struct trap_info *traps)
  666. {
  667. unsigned in, out, count;
  668. count = (desc->size+1) / sizeof(gate_desc);
  669. BUG_ON(count > 256);
  670. for (in = out = 0; in < count; in++) {
  671. gate_desc *entry = (gate_desc*)(desc->address) + in;
  672. if (cvt_gate_to_trap(in, entry, &traps[out]))
  673. out++;
  674. }
  675. traps[out].address = 0;
  676. }
  677. void xen_copy_trap_info(struct trap_info *traps)
  678. {
  679. const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
  680. xen_convert_trap_info(desc, traps);
  681. }
  682. /* Load a new IDT into Xen. In principle this can be per-CPU, so we
  683. hold a spinlock to protect the static traps[] array (static because
  684. it avoids allocation, and saves stack space). */
  685. static void xen_load_idt(const struct desc_ptr *desc)
  686. {
  687. static DEFINE_SPINLOCK(lock);
  688. static struct trap_info traps[257];
  689. trace_xen_cpu_load_idt(desc);
  690. spin_lock(&lock);
  691. __get_cpu_var(idt_desc) = *desc;
  692. xen_convert_trap_info(desc, traps);
  693. xen_mc_flush();
  694. if (HYPERVISOR_set_trap_table(traps))
  695. BUG();
  696. spin_unlock(&lock);
  697. }
  698. /* Write a GDT descriptor entry. Ignore LDT descriptors, since
  699. they're handled differently. */
  700. static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
  701. const void *desc, int type)
  702. {
  703. trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
  704. preempt_disable();
  705. switch (type) {
  706. case DESC_LDT:
  707. case DESC_TSS:
  708. /* ignore */
  709. break;
  710. default: {
  711. xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
  712. xen_mc_flush();
  713. if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
  714. BUG();
  715. }
  716. }
  717. preempt_enable();
  718. }
  719. /*
  720. * Version of write_gdt_entry for use at early boot-time needed to
  721. * update an entry as simply as possible.
  722. */
  723. static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
  724. const void *desc, int type)
  725. {
  726. trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
  727. switch (type) {
  728. case DESC_LDT:
  729. case DESC_TSS:
  730. /* ignore */
  731. break;
  732. default: {
  733. xmaddr_t maddr = virt_to_machine(&dt[entry]);
  734. if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
  735. dt[entry] = *(struct desc_struct *)desc;
  736. }
  737. }
  738. }
  739. static void xen_load_sp0(struct tss_struct *tss,
  740. struct thread_struct *thread)
  741. {
  742. struct multicall_space mcs;
  743. mcs = xen_mc_entry(0);
  744. MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
  745. xen_mc_issue(PARAVIRT_LAZY_CPU);
  746. }
  747. static void xen_set_iopl_mask(unsigned mask)
  748. {
  749. struct physdev_set_iopl set_iopl;
  750. /* Force the change at ring 0. */
  751. set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
  752. HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
  753. }
  754. static void xen_io_delay(void)
  755. {
  756. }
  757. #ifdef CONFIG_X86_LOCAL_APIC
  758. static unsigned long xen_set_apic_id(unsigned int x)
  759. {
  760. WARN_ON(1);
  761. return x;
  762. }
  763. static unsigned int xen_get_apic_id(unsigned long x)
  764. {
  765. return ((x)>>24) & 0xFFu;
  766. }
  767. static u32 xen_apic_read(u32 reg)
  768. {
  769. struct xen_platform_op op = {
  770. .cmd = XENPF_get_cpuinfo,
  771. .interface_version = XENPF_INTERFACE_VERSION,
  772. .u.pcpu_info.xen_cpuid = 0,
  773. };
  774. int ret = 0;
  775. /* Shouldn't need this as APIC is turned off for PV, and we only
  776. * get called on the bootup processor. But just in case. */
  777. if (!xen_initial_domain() || smp_processor_id())
  778. return 0;
  779. if (reg == APIC_LVR)
  780. return 0x10;
  781. if (reg != APIC_ID)
  782. return 0;
  783. ret = HYPERVISOR_dom0_op(&op);
  784. if (ret)
  785. return 0;
  786. return op.u.pcpu_info.apic_id << 24;
  787. }
  788. static void xen_apic_write(u32 reg, u32 val)
  789. {
  790. /* Warn to see if there's any stray references */
  791. WARN_ON(1);
  792. }
  793. static u64 xen_apic_icr_read(void)
  794. {
  795. return 0;
  796. }
  797. static void xen_apic_icr_write(u32 low, u32 id)
  798. {
  799. /* Warn to see if there's any stray references */
  800. WARN_ON(1);
  801. }
  802. static void xen_apic_wait_icr_idle(void)
  803. {
  804. return;
  805. }
  806. static u32 xen_safe_apic_wait_icr_idle(void)
  807. {
  808. return 0;
  809. }
  810. static void set_xen_basic_apic_ops(void)
  811. {
  812. apic->read = xen_apic_read;
  813. apic->write = xen_apic_write;
  814. apic->icr_read = xen_apic_icr_read;
  815. apic->icr_write = xen_apic_icr_write;
  816. apic->wait_icr_idle = xen_apic_wait_icr_idle;
  817. apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
  818. apic->set_apic_id = xen_set_apic_id;
  819. apic->get_apic_id = xen_get_apic_id;
  820. #ifdef CONFIG_SMP
  821. apic->send_IPI_allbutself = xen_send_IPI_allbutself;
  822. apic->send_IPI_mask_allbutself = xen_send_IPI_mask_allbutself;
  823. apic->send_IPI_mask = xen_send_IPI_mask;
  824. apic->send_IPI_all = xen_send_IPI_all;
  825. apic->send_IPI_self = xen_send_IPI_self;
  826. #endif
  827. }
  828. #endif
  829. static void xen_clts(void)
  830. {
  831. struct multicall_space mcs;
  832. mcs = xen_mc_entry(0);
  833. MULTI_fpu_taskswitch(mcs.mc, 0);
  834. xen_mc_issue(PARAVIRT_LAZY_CPU);
  835. }
  836. static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
  837. static unsigned long xen_read_cr0(void)
  838. {
  839. unsigned long cr0 = this_cpu_read(xen_cr0_value);
  840. if (unlikely(cr0 == 0)) {
  841. cr0 = native_read_cr0();
  842. this_cpu_write(xen_cr0_value, cr0);
  843. }
  844. return cr0;
  845. }
  846. static void xen_write_cr0(unsigned long cr0)
  847. {
  848. struct multicall_space mcs;
  849. this_cpu_write(xen_cr0_value, cr0);
  850. /* Only pay attention to cr0.TS; everything else is
  851. ignored. */
  852. mcs = xen_mc_entry(0);
  853. MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
  854. xen_mc_issue(PARAVIRT_LAZY_CPU);
  855. }
  856. static void xen_write_cr4(unsigned long cr4)
  857. {
  858. cr4 &= ~X86_CR4_PGE;
  859. cr4 &= ~X86_CR4_PSE;
  860. native_write_cr4(cr4);
  861. }
  862. #ifdef CONFIG_X86_64
  863. static inline unsigned long xen_read_cr8(void)
  864. {
  865. return 0;
  866. }
  867. static inline void xen_write_cr8(unsigned long val)
  868. {
  869. BUG_ON(val);
  870. }
  871. #endif
  872. static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
  873. {
  874. int ret;
  875. ret = 0;
  876. switch (msr) {
  877. #ifdef CONFIG_X86_64
  878. unsigned which;
  879. u64 base;
  880. case MSR_FS_BASE: which = SEGBASE_FS; goto set;
  881. case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set;
  882. case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set;
  883. set:
  884. base = ((u64)high << 32) | low;
  885. if (HYPERVISOR_set_segment_base(which, base) != 0)
  886. ret = -EIO;
  887. break;
  888. #endif
  889. case MSR_STAR:
  890. case MSR_CSTAR:
  891. case MSR_LSTAR:
  892. case MSR_SYSCALL_MASK:
  893. case MSR_IA32_SYSENTER_CS:
  894. case MSR_IA32_SYSENTER_ESP:
  895. case MSR_IA32_SYSENTER_EIP:
  896. /* Fast syscall setup is all done in hypercalls, so
  897. these are all ignored. Stub them out here to stop
  898. Xen console noise. */
  899. break;
  900. case MSR_IA32_CR_PAT:
  901. if (smp_processor_id() == 0)
  902. xen_set_pat(((u64)high << 32) | low);
  903. break;
  904. default:
  905. ret = native_write_msr_safe(msr, low, high);
  906. }
  907. return ret;
  908. }
  909. void xen_setup_shared_info(void)
  910. {
  911. if (!xen_feature(XENFEAT_auto_translated_physmap)) {
  912. set_fixmap(FIX_PARAVIRT_BOOTMAP,
  913. xen_start_info->shared_info);
  914. HYPERVISOR_shared_info =
  915. (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
  916. } else
  917. HYPERVISOR_shared_info =
  918. (struct shared_info *)__va(xen_start_info->shared_info);
  919. #ifndef CONFIG_SMP
  920. /* In UP this is as good a place as any to set up shared info */
  921. xen_setup_vcpu_info_placement();
  922. #endif
  923. xen_setup_mfn_list_list();
  924. }
  925. /* This is called once we have the cpu_possible_mask */
  926. void xen_setup_vcpu_info_placement(void)
  927. {
  928. int cpu;
  929. for_each_possible_cpu(cpu)
  930. xen_vcpu_setup(cpu);
  931. /* xen_vcpu_setup managed to place the vcpu_info within the
  932. percpu area for all cpus, so make use of it */
  933. if (have_vcpu_info_placement) {
  934. pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
  935. pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
  936. pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
  937. pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
  938. pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
  939. }
  940. }
  941. static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
  942. unsigned long addr, unsigned len)
  943. {
  944. char *start, *end, *reloc;
  945. unsigned ret;
  946. start = end = reloc = NULL;
  947. #define SITE(op, x) \
  948. case PARAVIRT_PATCH(op.x): \
  949. if (have_vcpu_info_placement) { \
  950. start = (char *)xen_##x##_direct; \
  951. end = xen_##x##_direct_end; \
  952. reloc = xen_##x##_direct_reloc; \
  953. } \
  954. goto patch_site
  955. switch (type) {
  956. SITE(pv_irq_ops, irq_enable);
  957. SITE(pv_irq_ops, irq_disable);
  958. SITE(pv_irq_ops, save_fl);
  959. SITE(pv_irq_ops, restore_fl);
  960. #undef SITE
  961. patch_site:
  962. if (start == NULL || (end-start) > len)
  963. goto default_patch;
  964. ret = paravirt_patch_insns(insnbuf, len, start, end);
  965. /* Note: because reloc is assigned from something that
  966. appears to be an array, gcc assumes it's non-null,
  967. but doesn't know its relationship with start and
  968. end. */
  969. if (reloc > start && reloc < end) {
  970. int reloc_off = reloc - start;
  971. long *relocp = (long *)(insnbuf + reloc_off);
  972. long delta = start - (char *)addr;
  973. *relocp += delta;
  974. }
  975. break;
  976. default_patch:
  977. default:
  978. ret = paravirt_patch_default(type, clobbers, insnbuf,
  979. addr, len);
  980. break;
  981. }
  982. return ret;
  983. }
  984. static const struct pv_info xen_info __initconst = {
  985. .paravirt_enabled = 1,
  986. .shared_kernel_pmd = 0,
  987. #ifdef CONFIG_X86_64
  988. .extra_user_64bit_cs = FLAT_USER_CS64,
  989. #endif
  990. .name = "Xen",
  991. };
  992. static const struct pv_init_ops xen_init_ops __initconst = {
  993. .patch = xen_patch,
  994. };
  995. static const struct pv_cpu_ops xen_cpu_ops __initconst = {
  996. .cpuid = xen_cpuid,
  997. .set_debugreg = xen_set_debugreg,
  998. .get_debugreg = xen_get_debugreg,
  999. .clts = xen_clts,
  1000. .read_cr0 = xen_read_cr0,
  1001. .write_cr0 = xen_write_cr0,
  1002. .read_cr4 = native_read_cr4,
  1003. .read_cr4_safe = native_read_cr4_safe,
  1004. .write_cr4 = xen_write_cr4,
  1005. #ifdef CONFIG_X86_64
  1006. .read_cr8 = xen_read_cr8,
  1007. .write_cr8 = xen_write_cr8,
  1008. #endif
  1009. .wbinvd = native_wbinvd,
  1010. .read_msr = native_read_msr_safe,
  1011. .write_msr = xen_write_msr_safe,
  1012. .read_tsc = native_read_tsc,
  1013. .read_pmc = native_read_pmc,
  1014. .read_tscp = native_read_tscp,
  1015. .iret = xen_iret,
  1016. .irq_enable_sysexit = xen_sysexit,
  1017. #ifdef CONFIG_X86_64
  1018. .usergs_sysret32 = xen_sysret32,
  1019. .usergs_sysret64 = xen_sysret64,
  1020. #endif
  1021. .load_tr_desc = paravirt_nop,
  1022. .set_ldt = xen_set_ldt,
  1023. .load_gdt = xen_load_gdt,
  1024. .load_idt = xen_load_idt,
  1025. .load_tls = xen_load_tls,
  1026. #ifdef CONFIG_X86_64
  1027. .load_gs_index = xen_load_gs_index,
  1028. #endif
  1029. .alloc_ldt = xen_alloc_ldt,
  1030. .free_ldt = xen_free_ldt,
  1031. .store_idt = native_store_idt,
  1032. .store_tr = xen_store_tr,
  1033. .write_ldt_entry = xen_write_ldt_entry,
  1034. .write_gdt_entry = xen_write_gdt_entry,
  1035. .write_idt_entry = xen_write_idt_entry,
  1036. .load_sp0 = xen_load_sp0,
  1037. .set_iopl_mask = xen_set_iopl_mask,
  1038. .io_delay = xen_io_delay,
  1039. /* Xen takes care of %gs when switching to usermode for us */
  1040. .swapgs = paravirt_nop,
  1041. .start_context_switch = paravirt_start_context_switch,
  1042. .end_context_switch = xen_end_context_switch,
  1043. };
  1044. static const struct pv_apic_ops xen_apic_ops __initconst = {
  1045. #ifdef CONFIG_X86_LOCAL_APIC
  1046. .startup_ipi_hook = paravirt_nop,
  1047. #endif
  1048. };
  1049. static void xen_reboot(int reason)
  1050. {
  1051. struct sched_shutdown r = { .reason = reason };
  1052. if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
  1053. BUG();
  1054. }
  1055. static void xen_restart(char *msg)
  1056. {
  1057. xen_reboot(SHUTDOWN_reboot);
  1058. }
  1059. static void xen_emergency_restart(void)
  1060. {
  1061. xen_reboot(SHUTDOWN_reboot);
  1062. }
  1063. static void xen_machine_halt(void)
  1064. {
  1065. xen_reboot(SHUTDOWN_poweroff);
  1066. }
  1067. static void xen_machine_power_off(void)
  1068. {
  1069. if (pm_power_off)
  1070. pm_power_off();
  1071. xen_reboot(SHUTDOWN_poweroff);
  1072. }
  1073. static void xen_crash_shutdown(struct pt_regs *regs)
  1074. {
  1075. xen_reboot(SHUTDOWN_crash);
  1076. }
  1077. static int
  1078. xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
  1079. {
  1080. xen_reboot(SHUTDOWN_crash);
  1081. return NOTIFY_DONE;
  1082. }
  1083. static struct notifier_block xen_panic_block = {
  1084. .notifier_call= xen_panic_event,
  1085. };
  1086. int xen_panic_handler_init(void)
  1087. {
  1088. atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
  1089. return 0;
  1090. }
  1091. static const struct machine_ops xen_machine_ops __initconst = {
  1092. .restart = xen_restart,
  1093. .halt = xen_machine_halt,
  1094. .power_off = xen_machine_power_off,
  1095. .shutdown = xen_machine_halt,
  1096. .crash_shutdown = xen_crash_shutdown,
  1097. .emergency_restart = xen_emergency_restart,
  1098. };
  1099. static void __init xen_boot_params_init_edd(void)
  1100. {
  1101. #if IS_ENABLED(CONFIG_EDD)
  1102. struct xen_platform_op op;
  1103. struct edd_info *edd_info;
  1104. u32 *mbr_signature;
  1105. unsigned nr;
  1106. int ret;
  1107. edd_info = boot_params.eddbuf;
  1108. mbr_signature = boot_params.edd_mbr_sig_buffer;
  1109. op.cmd = XENPF_firmware_info;
  1110. op.u.firmware_info.type = XEN_FW_DISK_INFO;
  1111. for (nr = 0; nr < EDDMAXNR; nr++) {
  1112. struct edd_info *info = edd_info + nr;
  1113. op.u.firmware_info.index = nr;
  1114. info->params.length = sizeof(info->params);
  1115. set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
  1116. &info->params);
  1117. ret = HYPERVISOR_dom0_op(&op);
  1118. if (ret)
  1119. break;
  1120. #define C(x) info->x = op.u.firmware_info.u.disk_info.x
  1121. C(device);
  1122. C(version);
  1123. C(interface_support);
  1124. C(legacy_max_cylinder);
  1125. C(legacy_max_head);
  1126. C(legacy_sectors_per_track);
  1127. #undef C
  1128. }
  1129. boot_params.eddbuf_entries = nr;
  1130. op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
  1131. for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
  1132. op.u.firmware_info.index = nr;
  1133. ret = HYPERVISOR_dom0_op(&op);
  1134. if (ret)
  1135. break;
  1136. mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
  1137. }
  1138. boot_params.edd_mbr_sig_buf_entries = nr;
  1139. #endif
  1140. }
  1141. /*
  1142. * Set up the GDT and segment registers for -fstack-protector. Until
  1143. * we do this, we have to be careful not to call any stack-protected
  1144. * function, which is most of the kernel.
  1145. */
  1146. static void __init xen_setup_stackprotector(void)
  1147. {
  1148. pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
  1149. pv_cpu_ops.load_gdt = xen_load_gdt_boot;
  1150. setup_stack_canary_segment(0);
  1151. switch_to_new_gdt(0);
  1152. pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
  1153. pv_cpu_ops.load_gdt = xen_load_gdt;
  1154. }
  1155. /* First C function to be called on Xen boot */
  1156. asmlinkage void __init xen_start_kernel(void)
  1157. {
  1158. struct physdev_set_iopl set_iopl;
  1159. int rc;
  1160. if (!xen_start_info)
  1161. return;
  1162. xen_domain_type = XEN_PV_DOMAIN;
  1163. xen_setup_machphys_mapping();
  1164. /* Install Xen paravirt ops */
  1165. pv_info = xen_info;
  1166. pv_init_ops = xen_init_ops;
  1167. pv_cpu_ops = xen_cpu_ops;
  1168. pv_apic_ops = xen_apic_ops;
  1169. x86_init.resources.memory_setup = xen_memory_setup;
  1170. x86_init.oem.arch_setup = xen_arch_setup;
  1171. x86_init.oem.banner = xen_banner;
  1172. xen_init_time_ops();
  1173. /*
  1174. * Set up some pagetable state before starting to set any ptes.
  1175. */
  1176. xen_init_mmu_ops();
  1177. /* Prevent unwanted bits from being set in PTEs. */
  1178. __supported_pte_mask &= ~_PAGE_GLOBAL;
  1179. #if 0
  1180. if (!xen_initial_domain())
  1181. #endif
  1182. __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
  1183. __supported_pte_mask |= _PAGE_IOMAP;
  1184. /*
  1185. * Prevent page tables from being allocated in highmem, even
  1186. * if CONFIG_HIGHPTE is enabled.
  1187. */
  1188. __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
  1189. /* Work out if we support NX */
  1190. x86_configure_nx();
  1191. xen_setup_features();
  1192. /* Get mfn list */
  1193. if (!xen_feature(XENFEAT_auto_translated_physmap))
  1194. xen_build_dynamic_phys_to_machine();
  1195. /*
  1196. * Set up kernel GDT and segment registers, mainly so that
  1197. * -fstack-protector code can be executed.
  1198. */
  1199. xen_setup_stackprotector();
  1200. xen_init_irq_ops();
  1201. xen_init_cpuid_mask();
  1202. #ifdef CONFIG_X86_LOCAL_APIC
  1203. /*
  1204. * set up the basic apic ops.
  1205. */
  1206. set_xen_basic_apic_ops();
  1207. #endif
  1208. if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
  1209. pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
  1210. pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
  1211. }
  1212. machine_ops = xen_machine_ops;
  1213. /*
  1214. * The only reliable way to retain the initial address of the
  1215. * percpu gdt_page is to remember it here, so we can go and
  1216. * mark it RW later, when the initial percpu area is freed.
  1217. */
  1218. xen_initial_gdt = &per_cpu(gdt_page, 0);
  1219. xen_smp_init();
  1220. #ifdef CONFIG_ACPI_NUMA
  1221. /*
  1222. * The pages we from Xen are not related to machine pages, so
  1223. * any NUMA information the kernel tries to get from ACPI will
  1224. * be meaningless. Prevent it from trying.
  1225. */
  1226. acpi_numa = -1;
  1227. #endif
  1228. #ifdef CONFIG_X86_PAT
  1229. /*
  1230. * For right now disable the PAT. We should remove this once
  1231. * git commit 8eaffa67b43e99ae581622c5133e20b0f48bcef1
  1232. * (xen/pat: Disable PAT support for now) is reverted.
  1233. */
  1234. pat_enabled = 0;
  1235. #endif
  1236. /* Don't do the full vcpu_info placement stuff until we have a
  1237. possible map and a non-dummy shared_info. */
  1238. per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
  1239. local_irq_disable();
  1240. early_boot_irqs_disabled = true;
  1241. xen_raw_console_write("mapping kernel into physical memory\n");
  1242. xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base, xen_start_info->nr_pages);
  1243. /* Allocate and initialize top and mid mfn levels for p2m structure */
  1244. xen_build_mfn_list_list();
  1245. /* keep using Xen gdt for now; no urgent need to change it */
  1246. #ifdef CONFIG_X86_32
  1247. pv_info.kernel_rpl = 1;
  1248. if (xen_feature(XENFEAT_supervisor_mode_kernel))
  1249. pv_info.kernel_rpl = 0;
  1250. #else
  1251. pv_info.kernel_rpl = 0;
  1252. #endif
  1253. /* set the limit of our address space */
  1254. xen_reserve_top();
  1255. /* We used to do this in xen_arch_setup, but that is too late on AMD
  1256. * were early_cpu_init (run before ->arch_setup()) calls early_amd_init
  1257. * which pokes 0xcf8 port.
  1258. */
  1259. set_iopl.iopl = 1;
  1260. rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
  1261. if (rc != 0)
  1262. xen_raw_printk("physdev_op failed %d\n", rc);
  1263. #ifdef CONFIG_X86_32
  1264. /* set up basic CPUID stuff */
  1265. cpu_detect(&new_cpu_data);
  1266. set_cpu_cap(&new_cpu_data, X86_FEATURE_FPU);
  1267. new_cpu_data.wp_works_ok = 1;
  1268. new_cpu_data.x86_capability[0] = cpuid_edx(1);
  1269. #endif
  1270. /* Poke various useful things into boot_params */
  1271. boot_params.hdr.type_of_loader = (9 << 4) | 0;
  1272. boot_params.hdr.ramdisk_image = xen_start_info->mod_start
  1273. ? __pa(xen_start_info->mod_start) : 0;
  1274. boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
  1275. boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
  1276. if (!xen_initial_domain()) {
  1277. add_preferred_console("xenboot", 0, NULL);
  1278. add_preferred_console("tty", 0, NULL);
  1279. add_preferred_console("hvc", 0, NULL);
  1280. if (pci_xen)
  1281. x86_init.pci.arch_init = pci_xen_init;
  1282. } else {
  1283. const struct dom0_vga_console_info *info =
  1284. (void *)((char *)xen_start_info +
  1285. xen_start_info->console.dom0.info_off);
  1286. struct xen_platform_op op = {
  1287. .cmd = XENPF_firmware_info,
  1288. .interface_version = XENPF_INTERFACE_VERSION,
  1289. .u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
  1290. };
  1291. xen_init_vga(info, xen_start_info->console.dom0.info_size);
  1292. xen_start_info->console.domU.mfn = 0;
  1293. xen_start_info->console.domU.evtchn = 0;
  1294. if (HYPERVISOR_dom0_op(&op) == 0)
  1295. boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
  1296. xen_init_apic();
  1297. /* Make sure ACS will be enabled */
  1298. pci_request_acs();
  1299. xen_acpi_sleep_register();
  1300. /* Avoid searching for BIOS MP tables */
  1301. x86_init.mpparse.find_smp_config = x86_init_noop;
  1302. x86_init.mpparse.get_smp_config = x86_init_uint_noop;
  1303. xen_boot_params_init_edd();
  1304. }
  1305. #ifdef CONFIG_PCI
  1306. /* PCI BIOS service won't work from a PV guest. */
  1307. pci_probe &= ~PCI_PROBE_BIOS;
  1308. #endif
  1309. xen_raw_console_write("about to get started...\n");
  1310. xen_setup_runstate_info(0);
  1311. /* Start the world */
  1312. #ifdef CONFIG_X86_32
  1313. i386_start_kernel();
  1314. #else
  1315. x86_64_start_reservations((char *)__pa_symbol(&boot_params));
  1316. #endif
  1317. }
  1318. void __ref xen_hvm_init_shared_info(void)
  1319. {
  1320. int cpu;
  1321. struct xen_add_to_physmap xatp;
  1322. static struct shared_info *shared_info_page = 0;
  1323. if (!shared_info_page)
  1324. shared_info_page = (struct shared_info *)
  1325. extend_brk(PAGE_SIZE, PAGE_SIZE);
  1326. xatp.domid = DOMID_SELF;
  1327. xatp.idx = 0;
  1328. xatp.space = XENMAPSPACE_shared_info;
  1329. xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT;
  1330. if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
  1331. BUG();
  1332. HYPERVISOR_shared_info = (struct shared_info *)shared_info_page;
  1333. /* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
  1334. * page, we use it in the event channel upcall and in some pvclock
  1335. * related functions. We don't need the vcpu_info placement
  1336. * optimizations because we don't use any pv_mmu or pv_irq op on
  1337. * HVM.
  1338. * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is
  1339. * online but xen_hvm_init_shared_info is run at resume time too and
  1340. * in that case multiple vcpus might be online. */
  1341. for_each_online_cpu(cpu) {
  1342. /* Leave it to be NULL. */
  1343. if (cpu >= MAX_VIRT_CPUS)
  1344. continue;
  1345. per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
  1346. }
  1347. }
  1348. #ifdef CONFIG_XEN_PVHVM
  1349. static void __init init_hvm_pv_info(void)
  1350. {
  1351. int major, minor;
  1352. uint32_t eax, ebx, ecx, edx, pages, msr, base;
  1353. u64 pfn;
  1354. base = xen_cpuid_base();
  1355. cpuid(base + 1, &eax, &ebx, &ecx, &edx);
  1356. major = eax >> 16;
  1357. minor = eax & 0xffff;
  1358. printk(KERN_INFO "Xen version %d.%d.\n", major, minor);
  1359. cpuid(base + 2, &pages, &msr, &ecx, &edx);
  1360. pfn = __pa(hypercall_page);
  1361. wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
  1362. xen_setup_features();
  1363. pv_info.name = "Xen HVM";
  1364. xen_domain_type = XEN_HVM_DOMAIN;
  1365. }
  1366. static int xen_hvm_cpu_notify(struct notifier_block *self, unsigned long action,
  1367. void *hcpu)
  1368. {
  1369. int cpu = (long)hcpu;
  1370. switch (action) {
  1371. case CPU_UP_PREPARE:
  1372. xen_vcpu_setup(cpu);
  1373. if (xen_have_vector_callback) {
  1374. xen_init_lock_cpu(cpu);
  1375. if (xen_feature(XENFEAT_hvm_safe_pvclock))
  1376. xen_setup_timer(cpu);
  1377. }
  1378. break;
  1379. default:
  1380. break;
  1381. }
  1382. return NOTIFY_OK;
  1383. }
  1384. static struct notifier_block xen_hvm_cpu_notifier = {
  1385. .notifier_call = xen_hvm_cpu_notify,
  1386. };
  1387. static void __init xen_hvm_guest_init(void)
  1388. {
  1389. init_hvm_pv_info();
  1390. xen_hvm_init_shared_info();
  1391. if (xen_feature(XENFEAT_hvm_callback_vector))
  1392. xen_have_vector_callback = 1;
  1393. xen_hvm_smp_init();
  1394. register_cpu_notifier(&xen_hvm_cpu_notifier);
  1395. xen_unplug_emulated_devices();
  1396. x86_init.irqs.intr_init = xen_init_IRQ;
  1397. xen_hvm_init_time_ops();
  1398. xen_hvm_init_mmu_ops();
  1399. }
  1400. static bool __init xen_hvm_platform(void)
  1401. {
  1402. if (xen_pv_domain())
  1403. return false;
  1404. if (!xen_cpuid_base())
  1405. return false;
  1406. return true;
  1407. }
  1408. bool xen_hvm_need_lapic(void)
  1409. {
  1410. if (xen_pv_domain())
  1411. return false;
  1412. if (!xen_hvm_domain())
  1413. return false;
  1414. if (xen_feature(XENFEAT_hvm_pirqs) && xen_have_vector_callback)
  1415. return false;
  1416. return true;
  1417. }
  1418. EXPORT_SYMBOL_GPL(xen_hvm_need_lapic);
  1419. const struct hypervisor_x86 x86_hyper_xen_hvm __refconst = {
  1420. .name = "Xen HVM",
  1421. .detect = xen_hvm_platform,
  1422. .init_platform = xen_hvm_guest_init,
  1423. .x2apic_available = xen_x2apic_para_available,
  1424. };
  1425. EXPORT_SYMBOL(x86_hyper_xen_hvm);
  1426. #endif