init.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584
  1. #include <linux/gfp.h>
  2. #include <linux/initrd.h>
  3. #include <linux/ioport.h>
  4. #include <linux/swap.h>
  5. #include <linux/memblock.h>
  6. #include <linux/bootmem.h> /* for max_low_pfn */
  7. #include <asm/cacheflush.h>
  8. #include <asm/e820.h>
  9. #include <asm/init.h>
  10. #include <asm/page.h>
  11. #include <asm/page_types.h>
  12. #include <asm/sections.h>
  13. #include <asm/setup.h>
  14. #include <asm/tlbflush.h>
  15. #include <asm/tlb.h>
  16. #include <asm/proto.h>
  17. #include <asm/dma.h> /* for MAX_DMA_PFN */
  18. #include <asm/microcode.h>
  19. #include "mm_internal.h"
  20. static unsigned long __initdata pgt_buf_start;
  21. static unsigned long __initdata pgt_buf_end;
  22. static unsigned long __initdata pgt_buf_top;
  23. static unsigned long min_pfn_mapped;
  24. static bool __initdata can_use_brk_pgt = true;
  25. /*
  26. * Pages returned are already directly mapped.
  27. *
  28. * Changing that is likely to break Xen, see commit:
  29. *
  30. * 279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
  31. *
  32. * for detailed information.
  33. */
  34. __ref void *alloc_low_pages(unsigned int num)
  35. {
  36. unsigned long pfn;
  37. int i;
  38. if (after_bootmem) {
  39. unsigned int order;
  40. order = get_order((unsigned long)num << PAGE_SHIFT);
  41. return (void *)__get_free_pages(GFP_ATOMIC | __GFP_NOTRACK |
  42. __GFP_ZERO, order);
  43. }
  44. if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
  45. unsigned long ret;
  46. if (min_pfn_mapped >= max_pfn_mapped)
  47. panic("alloc_low_page: ran out of memory");
  48. ret = memblock_find_in_range(min_pfn_mapped << PAGE_SHIFT,
  49. max_pfn_mapped << PAGE_SHIFT,
  50. PAGE_SIZE * num , PAGE_SIZE);
  51. if (!ret)
  52. panic("alloc_low_page: can not alloc memory");
  53. memblock_reserve(ret, PAGE_SIZE * num);
  54. pfn = ret >> PAGE_SHIFT;
  55. } else {
  56. pfn = pgt_buf_end;
  57. pgt_buf_end += num;
  58. printk(KERN_DEBUG "BRK [%#010lx, %#010lx] PGTABLE\n",
  59. pfn << PAGE_SHIFT, (pgt_buf_end << PAGE_SHIFT) - 1);
  60. }
  61. for (i = 0; i < num; i++) {
  62. void *adr;
  63. adr = __va((pfn + i) << PAGE_SHIFT);
  64. clear_page(adr);
  65. }
  66. return __va(pfn << PAGE_SHIFT);
  67. }
  68. /* need 4 4k for initial PMD_SIZE, 4k for 0-ISA_END_ADDRESS */
  69. #define INIT_PGT_BUF_SIZE (5 * PAGE_SIZE)
  70. RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
  71. void __init early_alloc_pgt_buf(void)
  72. {
  73. unsigned long tables = INIT_PGT_BUF_SIZE;
  74. phys_addr_t base;
  75. base = __pa(extend_brk(tables, PAGE_SIZE));
  76. pgt_buf_start = base >> PAGE_SHIFT;
  77. pgt_buf_end = pgt_buf_start;
  78. pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
  79. }
  80. int after_bootmem;
  81. int direct_gbpages
  82. #ifdef CONFIG_DIRECT_GBPAGES
  83. = 1
  84. #endif
  85. ;
  86. static void __init init_gbpages(void)
  87. {
  88. #ifdef CONFIG_X86_64
  89. if (direct_gbpages && cpu_has_gbpages)
  90. printk(KERN_INFO "Using GB pages for direct mapping\n");
  91. else
  92. direct_gbpages = 0;
  93. #endif
  94. }
  95. struct map_range {
  96. unsigned long start;
  97. unsigned long end;
  98. unsigned page_size_mask;
  99. };
  100. static int page_size_mask;
  101. static void __init probe_page_size_mask(void)
  102. {
  103. init_gbpages();
  104. #if !defined(CONFIG_DEBUG_PAGEALLOC) && !defined(CONFIG_KMEMCHECK)
  105. /*
  106. * For CONFIG_DEBUG_PAGEALLOC, identity mapping will use small pages.
  107. * This will simplify cpa(), which otherwise needs to support splitting
  108. * large pages into small in interrupt context, etc.
  109. */
  110. if (direct_gbpages)
  111. page_size_mask |= 1 << PG_LEVEL_1G;
  112. if (cpu_has_pse)
  113. page_size_mask |= 1 << PG_LEVEL_2M;
  114. #endif
  115. /* Enable PSE if available */
  116. if (cpu_has_pse)
  117. set_in_cr4(X86_CR4_PSE);
  118. /* Enable PGE if available */
  119. if (cpu_has_pge) {
  120. set_in_cr4(X86_CR4_PGE);
  121. __supported_pte_mask |= _PAGE_GLOBAL;
  122. }
  123. }
  124. #ifdef CONFIG_X86_32
  125. #define NR_RANGE_MR 3
  126. #else /* CONFIG_X86_64 */
  127. #define NR_RANGE_MR 5
  128. #endif
  129. static int __meminit save_mr(struct map_range *mr, int nr_range,
  130. unsigned long start_pfn, unsigned long end_pfn,
  131. unsigned long page_size_mask)
  132. {
  133. if (start_pfn < end_pfn) {
  134. if (nr_range >= NR_RANGE_MR)
  135. panic("run out of range for init_memory_mapping\n");
  136. mr[nr_range].start = start_pfn<<PAGE_SHIFT;
  137. mr[nr_range].end = end_pfn<<PAGE_SHIFT;
  138. mr[nr_range].page_size_mask = page_size_mask;
  139. nr_range++;
  140. }
  141. return nr_range;
  142. }
  143. /*
  144. * adjust the page_size_mask for small range to go with
  145. * big page size instead small one if nearby are ram too.
  146. */
  147. static void __init_refok adjust_range_page_size_mask(struct map_range *mr,
  148. int nr_range)
  149. {
  150. int i;
  151. for (i = 0; i < nr_range; i++) {
  152. if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
  153. !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
  154. unsigned long start = round_down(mr[i].start, PMD_SIZE);
  155. unsigned long end = round_up(mr[i].end, PMD_SIZE);
  156. #ifdef CONFIG_X86_32
  157. if ((end >> PAGE_SHIFT) > max_low_pfn)
  158. continue;
  159. #endif
  160. if (memblock_is_region_memory(start, end - start))
  161. mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
  162. }
  163. if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
  164. !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
  165. unsigned long start = round_down(mr[i].start, PUD_SIZE);
  166. unsigned long end = round_up(mr[i].end, PUD_SIZE);
  167. if (memblock_is_region_memory(start, end - start))
  168. mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
  169. }
  170. }
  171. }
  172. static int __meminit split_mem_range(struct map_range *mr, int nr_range,
  173. unsigned long start,
  174. unsigned long end)
  175. {
  176. unsigned long start_pfn, end_pfn, limit_pfn;
  177. unsigned long pfn;
  178. int i;
  179. limit_pfn = PFN_DOWN(end);
  180. /* head if not big page alignment ? */
  181. pfn = start_pfn = PFN_DOWN(start);
  182. #ifdef CONFIG_X86_32
  183. /*
  184. * Don't use a large page for the first 2/4MB of memory
  185. * because there are often fixed size MTRRs in there
  186. * and overlapping MTRRs into large pages can cause
  187. * slowdowns.
  188. */
  189. if (pfn == 0)
  190. end_pfn = PFN_DOWN(PMD_SIZE);
  191. else
  192. end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
  193. #else /* CONFIG_X86_64 */
  194. end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
  195. #endif
  196. if (end_pfn > limit_pfn)
  197. end_pfn = limit_pfn;
  198. if (start_pfn < end_pfn) {
  199. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
  200. pfn = end_pfn;
  201. }
  202. /* big page (2M) range */
  203. start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
  204. #ifdef CONFIG_X86_32
  205. end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
  206. #else /* CONFIG_X86_64 */
  207. end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
  208. if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
  209. end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
  210. #endif
  211. if (start_pfn < end_pfn) {
  212. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
  213. page_size_mask & (1<<PG_LEVEL_2M));
  214. pfn = end_pfn;
  215. }
  216. #ifdef CONFIG_X86_64
  217. /* big page (1G) range */
  218. start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
  219. end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
  220. if (start_pfn < end_pfn) {
  221. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
  222. page_size_mask &
  223. ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
  224. pfn = end_pfn;
  225. }
  226. /* tail is not big page (1G) alignment */
  227. start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
  228. end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
  229. if (start_pfn < end_pfn) {
  230. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
  231. page_size_mask & (1<<PG_LEVEL_2M));
  232. pfn = end_pfn;
  233. }
  234. #endif
  235. /* tail is not big page (2M) alignment */
  236. start_pfn = pfn;
  237. end_pfn = limit_pfn;
  238. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
  239. if (!after_bootmem)
  240. adjust_range_page_size_mask(mr, nr_range);
  241. /* try to merge same page size and continuous */
  242. for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
  243. unsigned long old_start;
  244. if (mr[i].end != mr[i+1].start ||
  245. mr[i].page_size_mask != mr[i+1].page_size_mask)
  246. continue;
  247. /* move it */
  248. old_start = mr[i].start;
  249. memmove(&mr[i], &mr[i+1],
  250. (nr_range - 1 - i) * sizeof(struct map_range));
  251. mr[i--].start = old_start;
  252. nr_range--;
  253. }
  254. for (i = 0; i < nr_range; i++)
  255. printk(KERN_DEBUG " [mem %#010lx-%#010lx] page %s\n",
  256. mr[i].start, mr[i].end - 1,
  257. (mr[i].page_size_mask & (1<<PG_LEVEL_1G))?"1G":(
  258. (mr[i].page_size_mask & (1<<PG_LEVEL_2M))?"2M":"4k"));
  259. return nr_range;
  260. }
  261. struct range pfn_mapped[E820_X_MAX];
  262. int nr_pfn_mapped;
  263. static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
  264. {
  265. nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_X_MAX,
  266. nr_pfn_mapped, start_pfn, end_pfn);
  267. nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_X_MAX);
  268. max_pfn_mapped = max(max_pfn_mapped, end_pfn);
  269. if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
  270. max_low_pfn_mapped = max(max_low_pfn_mapped,
  271. min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
  272. }
  273. bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
  274. {
  275. int i;
  276. for (i = 0; i < nr_pfn_mapped; i++)
  277. if ((start_pfn >= pfn_mapped[i].start) &&
  278. (end_pfn <= pfn_mapped[i].end))
  279. return true;
  280. return false;
  281. }
  282. /*
  283. * Setup the direct mapping of the physical memory at PAGE_OFFSET.
  284. * This runs before bootmem is initialized and gets pages directly from
  285. * the physical memory. To access them they are temporarily mapped.
  286. */
  287. unsigned long __init_refok init_memory_mapping(unsigned long start,
  288. unsigned long end)
  289. {
  290. struct map_range mr[NR_RANGE_MR];
  291. unsigned long ret = 0;
  292. int nr_range, i;
  293. pr_info("init_memory_mapping: [mem %#010lx-%#010lx]\n",
  294. start, end - 1);
  295. memset(mr, 0, sizeof(mr));
  296. nr_range = split_mem_range(mr, 0, start, end);
  297. for (i = 0; i < nr_range; i++)
  298. ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
  299. mr[i].page_size_mask);
  300. add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
  301. return ret >> PAGE_SHIFT;
  302. }
  303. /*
  304. * We need to iterate through the E820 memory map and create direct mappings
  305. * for only E820_RAM and E820_KERN_RESERVED regions. We cannot simply
  306. * create direct mappings for all pfns from [0 to max_low_pfn) and
  307. * [4GB to max_pfn) because of possible memory holes in high addresses
  308. * that cannot be marked as UC by fixed/variable range MTRRs.
  309. * Depending on the alignment of E820 ranges, this may possibly result
  310. * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
  311. *
  312. * init_mem_mapping() calls init_range_memory_mapping() with big range.
  313. * That range would have hole in the middle or ends, and only ram parts
  314. * will be mapped in init_range_memory_mapping().
  315. */
  316. static unsigned long __init init_range_memory_mapping(
  317. unsigned long r_start,
  318. unsigned long r_end)
  319. {
  320. unsigned long start_pfn, end_pfn;
  321. unsigned long mapped_ram_size = 0;
  322. int i;
  323. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
  324. u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
  325. u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
  326. if (start >= end)
  327. continue;
  328. /*
  329. * if it is overlapping with brk pgt, we need to
  330. * alloc pgt buf from memblock instead.
  331. */
  332. can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
  333. min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
  334. init_memory_mapping(start, end);
  335. mapped_ram_size += end - start;
  336. can_use_brk_pgt = true;
  337. }
  338. return mapped_ram_size;
  339. }
  340. /* (PUD_SHIFT-PMD_SHIFT)/2 */
  341. #define STEP_SIZE_SHIFT 5
  342. void __init init_mem_mapping(void)
  343. {
  344. unsigned long end, real_end, start, last_start;
  345. unsigned long step_size;
  346. unsigned long addr;
  347. unsigned long mapped_ram_size = 0;
  348. unsigned long new_mapped_ram_size;
  349. probe_page_size_mask();
  350. #ifdef CONFIG_X86_64
  351. end = max_pfn << PAGE_SHIFT;
  352. #else
  353. end = max_low_pfn << PAGE_SHIFT;
  354. #endif
  355. /* the ISA range is always mapped regardless of memory holes */
  356. init_memory_mapping(0, ISA_END_ADDRESS);
  357. /* xen has big range in reserved near end of ram, skip it at first.*/
  358. addr = memblock_find_in_range(ISA_END_ADDRESS, end, PMD_SIZE, PMD_SIZE);
  359. real_end = addr + PMD_SIZE;
  360. /* step_size need to be small so pgt_buf from BRK could cover it */
  361. step_size = PMD_SIZE;
  362. max_pfn_mapped = 0; /* will get exact value next */
  363. min_pfn_mapped = real_end >> PAGE_SHIFT;
  364. last_start = start = real_end;
  365. /*
  366. * We start from the top (end of memory) and go to the bottom.
  367. * The memblock_find_in_range() gets us a block of RAM from the
  368. * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
  369. * for page table.
  370. */
  371. while (last_start > ISA_END_ADDRESS) {
  372. if (last_start > step_size) {
  373. start = round_down(last_start - 1, step_size);
  374. if (start < ISA_END_ADDRESS)
  375. start = ISA_END_ADDRESS;
  376. } else
  377. start = ISA_END_ADDRESS;
  378. new_mapped_ram_size = init_range_memory_mapping(start,
  379. last_start);
  380. last_start = start;
  381. min_pfn_mapped = last_start >> PAGE_SHIFT;
  382. /* only increase step_size after big range get mapped */
  383. if (new_mapped_ram_size > mapped_ram_size)
  384. step_size <<= STEP_SIZE_SHIFT;
  385. mapped_ram_size += new_mapped_ram_size;
  386. }
  387. if (real_end < end)
  388. init_range_memory_mapping(real_end, end);
  389. #ifdef CONFIG_X86_64
  390. if (max_pfn > max_low_pfn) {
  391. /* can we preseve max_low_pfn ?*/
  392. max_low_pfn = max_pfn;
  393. }
  394. #else
  395. early_ioremap_page_table_range_init();
  396. #endif
  397. load_cr3(swapper_pg_dir);
  398. __flush_tlb_all();
  399. early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
  400. }
  401. /*
  402. * devmem_is_allowed() checks to see if /dev/mem access to a certain address
  403. * is valid. The argument is a physical page number.
  404. *
  405. *
  406. * On x86, access has to be given to the first megabyte of ram because that area
  407. * contains bios code and data regions used by X and dosemu and similar apps.
  408. * Access has to be given to non-kernel-ram areas as well, these contain the PCI
  409. * mmio resources as well as potential bios/acpi data regions.
  410. */
  411. int devmem_is_allowed(unsigned long pagenr)
  412. {
  413. if (pagenr < 256)
  414. return 1;
  415. if (iomem_is_exclusive(pagenr << PAGE_SHIFT))
  416. return 0;
  417. if (!page_is_ram(pagenr))
  418. return 1;
  419. return 0;
  420. }
  421. void free_init_pages(char *what, unsigned long begin, unsigned long end)
  422. {
  423. unsigned long begin_aligned, end_aligned;
  424. /* Make sure boundaries are page aligned */
  425. begin_aligned = PAGE_ALIGN(begin);
  426. end_aligned = end & PAGE_MASK;
  427. if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
  428. begin = begin_aligned;
  429. end = end_aligned;
  430. }
  431. if (begin >= end)
  432. return;
  433. /*
  434. * If debugging page accesses then do not free this memory but
  435. * mark them not present - any buggy init-section access will
  436. * create a kernel page fault:
  437. */
  438. #ifdef CONFIG_DEBUG_PAGEALLOC
  439. printk(KERN_INFO "debug: unmapping init [mem %#010lx-%#010lx]\n",
  440. begin, end - 1);
  441. set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
  442. #else
  443. /*
  444. * We just marked the kernel text read only above, now that
  445. * we are going to free part of that, we need to make that
  446. * writeable and non-executable first.
  447. */
  448. set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
  449. set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
  450. free_reserved_area((void *)begin, (void *)end, POISON_FREE_INITMEM, what);
  451. #endif
  452. }
  453. void free_initmem(void)
  454. {
  455. free_init_pages("unused kernel",
  456. (unsigned long)(&__init_begin),
  457. (unsigned long)(&__init_end));
  458. }
  459. #ifdef CONFIG_BLK_DEV_INITRD
  460. void __init free_initrd_mem(unsigned long start, unsigned long end)
  461. {
  462. #ifdef CONFIG_MICROCODE_EARLY
  463. /*
  464. * Remember, initrd memory may contain microcode or other useful things.
  465. * Before we lose initrd mem, we need to find a place to hold them
  466. * now that normal virtual memory is enabled.
  467. */
  468. save_microcode_in_initrd();
  469. #endif
  470. /*
  471. * end could be not aligned, and We can not align that,
  472. * decompresser could be confused by aligned initrd_end
  473. * We already reserve the end partial page before in
  474. * - i386_start_kernel()
  475. * - x86_64_start_kernel()
  476. * - relocate_initrd()
  477. * So here We can do PAGE_ALIGN() safely to get partial page to be freed
  478. */
  479. free_init_pages("initrd", start, PAGE_ALIGN(end));
  480. }
  481. #endif
  482. void __init zone_sizes_init(void)
  483. {
  484. unsigned long max_zone_pfns[MAX_NR_ZONES];
  485. memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
  486. #ifdef CONFIG_ZONE_DMA
  487. max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
  488. #endif
  489. #ifdef CONFIG_ZONE_DMA32
  490. max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
  491. #endif
  492. max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
  493. #ifdef CONFIG_HIGHMEM
  494. max_zone_pfns[ZONE_HIGHMEM] = max_pfn;
  495. #endif
  496. free_area_init_nodes(max_zone_pfns);
  497. }