vm86_32.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841
  1. /*
  2. * Copyright (C) 1994 Linus Torvalds
  3. *
  4. * 29 dec 2001 - Fixed oopses caused by unchecked access to the vm86
  5. * stack - Manfred Spraul <manfred@colorfullife.com>
  6. *
  7. * 22 mar 2002 - Manfred detected the stackfaults, but didn't handle
  8. * them correctly. Now the emulation will be in a
  9. * consistent state after stackfaults - Kasper Dupont
  10. * <kasperd@daimi.au.dk>
  11. *
  12. * 22 mar 2002 - Added missing clear_IF in set_vflags_* Kasper Dupont
  13. * <kasperd@daimi.au.dk>
  14. *
  15. * ?? ??? 2002 - Fixed premature returns from handle_vm86_fault
  16. * caused by Kasper Dupont's changes - Stas Sergeev
  17. *
  18. * 4 apr 2002 - Fixed CHECK_IF_IN_TRAP broken by Stas' changes.
  19. * Kasper Dupont <kasperd@daimi.au.dk>
  20. *
  21. * 9 apr 2002 - Changed syntax of macros in handle_vm86_fault.
  22. * Kasper Dupont <kasperd@daimi.au.dk>
  23. *
  24. * 9 apr 2002 - Changed stack access macros to jump to a label
  25. * instead of returning to userspace. This simplifies
  26. * do_int, and is needed by handle_vm6_fault. Kasper
  27. * Dupont <kasperd@daimi.au.dk>
  28. *
  29. */
  30. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  31. #include <linux/capability.h>
  32. #include <linux/errno.h>
  33. #include <linux/interrupt.h>
  34. #include <linux/syscalls.h>
  35. #include <linux/sched.h>
  36. #include <linux/kernel.h>
  37. #include <linux/signal.h>
  38. #include <linux/string.h>
  39. #include <linux/mm.h>
  40. #include <linux/smp.h>
  41. #include <linux/highmem.h>
  42. #include <linux/ptrace.h>
  43. #include <linux/audit.h>
  44. #include <linux/stddef.h>
  45. #include <asm/uaccess.h>
  46. #include <asm/io.h>
  47. #include <asm/tlbflush.h>
  48. #include <asm/irq.h>
  49. /*
  50. * Known problems:
  51. *
  52. * Interrupt handling is not guaranteed:
  53. * - a real x86 will disable all interrupts for one instruction
  54. * after a "mov ss,xx" to make stack handling atomic even without
  55. * the 'lss' instruction. We can't guarantee this in v86 mode,
  56. * as the next instruction might result in a page fault or similar.
  57. * - a real x86 will have interrupts disabled for one instruction
  58. * past the 'sti' that enables them. We don't bother with all the
  59. * details yet.
  60. *
  61. * Let's hope these problems do not actually matter for anything.
  62. */
  63. #define KVM86 ((struct kernel_vm86_struct *)regs)
  64. #define VMPI KVM86->vm86plus
  65. /*
  66. * 8- and 16-bit register defines..
  67. */
  68. #define AL(regs) (((unsigned char *)&((regs)->pt.ax))[0])
  69. #define AH(regs) (((unsigned char *)&((regs)->pt.ax))[1])
  70. #define IP(regs) (*(unsigned short *)&((regs)->pt.ip))
  71. #define SP(regs) (*(unsigned short *)&((regs)->pt.sp))
  72. /*
  73. * virtual flags (16 and 32-bit versions)
  74. */
  75. #define VFLAGS (*(unsigned short *)&(current->thread.v86flags))
  76. #define VEFLAGS (current->thread.v86flags)
  77. #define set_flags(X, new, mask) \
  78. ((X) = ((X) & ~(mask)) | ((new) & (mask)))
  79. #define SAFE_MASK (0xDD5)
  80. #define RETURN_MASK (0xDFF)
  81. /* convert kernel_vm86_regs to vm86_regs */
  82. static int copy_vm86_regs_to_user(struct vm86_regs __user *user,
  83. const struct kernel_vm86_regs *regs)
  84. {
  85. int ret = 0;
  86. /*
  87. * kernel_vm86_regs is missing gs, so copy everything up to
  88. * (but not including) orig_eax, and then rest including orig_eax.
  89. */
  90. ret += copy_to_user(user, regs, offsetof(struct kernel_vm86_regs, pt.orig_ax));
  91. ret += copy_to_user(&user->orig_eax, &regs->pt.orig_ax,
  92. sizeof(struct kernel_vm86_regs) -
  93. offsetof(struct kernel_vm86_regs, pt.orig_ax));
  94. return ret;
  95. }
  96. /* convert vm86_regs to kernel_vm86_regs */
  97. static int copy_vm86_regs_from_user(struct kernel_vm86_regs *regs,
  98. const struct vm86_regs __user *user,
  99. unsigned extra)
  100. {
  101. int ret = 0;
  102. /* copy ax-fs inclusive */
  103. ret += copy_from_user(regs, user, offsetof(struct kernel_vm86_regs, pt.orig_ax));
  104. /* copy orig_ax-__gsh+extra */
  105. ret += copy_from_user(&regs->pt.orig_ax, &user->orig_eax,
  106. sizeof(struct kernel_vm86_regs) -
  107. offsetof(struct kernel_vm86_regs, pt.orig_ax) +
  108. extra);
  109. return ret;
  110. }
  111. struct pt_regs *save_v86_state(struct kernel_vm86_regs *regs)
  112. {
  113. struct tss_struct *tss;
  114. struct pt_regs *ret;
  115. unsigned long tmp;
  116. /*
  117. * This gets called from entry.S with interrupts disabled, but
  118. * from process context. Enable interrupts here, before trying
  119. * to access user space.
  120. */
  121. local_irq_enable();
  122. if (!current->thread.vm86_info) {
  123. pr_alert("no vm86_info: BAD\n");
  124. do_exit(SIGSEGV);
  125. }
  126. set_flags(regs->pt.flags, VEFLAGS, X86_EFLAGS_VIF | current->thread.v86mask);
  127. tmp = copy_vm86_regs_to_user(&current->thread.vm86_info->regs, regs);
  128. tmp += put_user(current->thread.screen_bitmap, &current->thread.vm86_info->screen_bitmap);
  129. if (tmp) {
  130. pr_alert("could not access userspace vm86_info\n");
  131. do_exit(SIGSEGV);
  132. }
  133. tss = &per_cpu(init_tss, get_cpu());
  134. current->thread.sp0 = current->thread.saved_sp0;
  135. current->thread.sysenter_cs = __KERNEL_CS;
  136. load_sp0(tss, &current->thread);
  137. current->thread.saved_sp0 = 0;
  138. put_cpu();
  139. ret = KVM86->regs32;
  140. ret->fs = current->thread.saved_fs;
  141. set_user_gs(ret, current->thread.saved_gs);
  142. return ret;
  143. }
  144. static void mark_screen_rdonly(struct mm_struct *mm)
  145. {
  146. pgd_t *pgd;
  147. pud_t *pud;
  148. pmd_t *pmd;
  149. pte_t *pte;
  150. spinlock_t *ptl;
  151. int i;
  152. down_write(&mm->mmap_sem);
  153. pgd = pgd_offset(mm, 0xA0000);
  154. if (pgd_none_or_clear_bad(pgd))
  155. goto out;
  156. pud = pud_offset(pgd, 0xA0000);
  157. if (pud_none_or_clear_bad(pud))
  158. goto out;
  159. pmd = pmd_offset(pud, 0xA0000);
  160. split_huge_page_pmd_mm(mm, 0xA0000, pmd);
  161. if (pmd_none_or_clear_bad(pmd))
  162. goto out;
  163. pte = pte_offset_map_lock(mm, pmd, 0xA0000, &ptl);
  164. for (i = 0; i < 32; i++) {
  165. if (pte_present(*pte))
  166. set_pte(pte, pte_wrprotect(*pte));
  167. pte++;
  168. }
  169. pte_unmap_unlock(pte, ptl);
  170. out:
  171. up_write(&mm->mmap_sem);
  172. flush_tlb();
  173. }
  174. static int do_vm86_irq_handling(int subfunction, int irqnumber);
  175. static void do_sys_vm86(struct kernel_vm86_struct *info, struct task_struct *tsk);
  176. SYSCALL_DEFINE1(vm86old, struct vm86_struct __user *, v86)
  177. {
  178. struct kernel_vm86_struct info; /* declare this _on top_,
  179. * this avoids wasting of stack space.
  180. * This remains on the stack until we
  181. * return to 32 bit user space.
  182. */
  183. struct task_struct *tsk = current;
  184. int tmp;
  185. if (tsk->thread.saved_sp0)
  186. return -EPERM;
  187. tmp = copy_vm86_regs_from_user(&info.regs, &v86->regs,
  188. offsetof(struct kernel_vm86_struct, vm86plus) -
  189. sizeof(info.regs));
  190. if (tmp)
  191. return -EFAULT;
  192. memset(&info.vm86plus, 0, (int)&info.regs32 - (int)&info.vm86plus);
  193. info.regs32 = current_pt_regs();
  194. tsk->thread.vm86_info = v86;
  195. do_sys_vm86(&info, tsk);
  196. return 0; /* we never return here */
  197. }
  198. SYSCALL_DEFINE2(vm86, unsigned long, cmd, unsigned long, arg)
  199. {
  200. struct kernel_vm86_struct info; /* declare this _on top_,
  201. * this avoids wasting of stack space.
  202. * This remains on the stack until we
  203. * return to 32 bit user space.
  204. */
  205. struct task_struct *tsk;
  206. int tmp;
  207. struct vm86plus_struct __user *v86;
  208. tsk = current;
  209. switch (cmd) {
  210. case VM86_REQUEST_IRQ:
  211. case VM86_FREE_IRQ:
  212. case VM86_GET_IRQ_BITS:
  213. case VM86_GET_AND_RESET_IRQ:
  214. return do_vm86_irq_handling(cmd, (int)arg);
  215. case VM86_PLUS_INSTALL_CHECK:
  216. /*
  217. * NOTE: on old vm86 stuff this will return the error
  218. * from access_ok(), because the subfunction is
  219. * interpreted as (invalid) address to vm86_struct.
  220. * So the installation check works.
  221. */
  222. return 0;
  223. }
  224. /* we come here only for functions VM86_ENTER, VM86_ENTER_NO_BYPASS */
  225. if (tsk->thread.saved_sp0)
  226. return -EPERM;
  227. v86 = (struct vm86plus_struct __user *)arg;
  228. tmp = copy_vm86_regs_from_user(&info.regs, &v86->regs,
  229. offsetof(struct kernel_vm86_struct, regs32) -
  230. sizeof(info.regs));
  231. if (tmp)
  232. return -EFAULT;
  233. info.regs32 = current_pt_regs();
  234. info.vm86plus.is_vm86pus = 1;
  235. tsk->thread.vm86_info = (struct vm86_struct __user *)v86;
  236. do_sys_vm86(&info, tsk);
  237. return 0; /* we never return here */
  238. }
  239. static void do_sys_vm86(struct kernel_vm86_struct *info, struct task_struct *tsk)
  240. {
  241. struct tss_struct *tss;
  242. /*
  243. * make sure the vm86() system call doesn't try to do anything silly
  244. */
  245. info->regs.pt.ds = 0;
  246. info->regs.pt.es = 0;
  247. info->regs.pt.fs = 0;
  248. #ifndef CONFIG_X86_32_LAZY_GS
  249. info->regs.pt.gs = 0;
  250. #endif
  251. /*
  252. * The flags register is also special: we cannot trust that the user
  253. * has set it up safely, so this makes sure interrupt etc flags are
  254. * inherited from protected mode.
  255. */
  256. VEFLAGS = info->regs.pt.flags;
  257. info->regs.pt.flags &= SAFE_MASK;
  258. info->regs.pt.flags |= info->regs32->flags & ~SAFE_MASK;
  259. info->regs.pt.flags |= X86_VM_MASK;
  260. switch (info->cpu_type) {
  261. case CPU_286:
  262. tsk->thread.v86mask = 0;
  263. break;
  264. case CPU_386:
  265. tsk->thread.v86mask = X86_EFLAGS_NT | X86_EFLAGS_IOPL;
  266. break;
  267. case CPU_486:
  268. tsk->thread.v86mask = X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
  269. break;
  270. default:
  271. tsk->thread.v86mask = X86_EFLAGS_ID | X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
  272. break;
  273. }
  274. /*
  275. * Save old state, set default return value (%ax) to 0 (VM86_SIGNAL)
  276. */
  277. info->regs32->ax = VM86_SIGNAL;
  278. tsk->thread.saved_sp0 = tsk->thread.sp0;
  279. tsk->thread.saved_fs = info->regs32->fs;
  280. tsk->thread.saved_gs = get_user_gs(info->regs32);
  281. tss = &per_cpu(init_tss, get_cpu());
  282. tsk->thread.sp0 = (unsigned long) &info->VM86_TSS_ESP0;
  283. if (cpu_has_sep)
  284. tsk->thread.sysenter_cs = 0;
  285. load_sp0(tss, &tsk->thread);
  286. put_cpu();
  287. tsk->thread.screen_bitmap = info->screen_bitmap;
  288. if (info->flags & VM86_SCREEN_BITMAP)
  289. mark_screen_rdonly(tsk->mm);
  290. /*call __audit_syscall_exit since we do not exit via the normal paths */
  291. #ifdef CONFIG_AUDITSYSCALL
  292. if (unlikely(current->audit_context))
  293. __audit_syscall_exit(1, 0);
  294. #endif
  295. __asm__ __volatile__(
  296. "movl %0,%%esp\n\t"
  297. "movl %1,%%ebp\n\t"
  298. #ifdef CONFIG_X86_32_LAZY_GS
  299. "mov %2, %%gs\n\t"
  300. #endif
  301. "jmp resume_userspace"
  302. : /* no outputs */
  303. :"r" (&info->regs), "r" (task_thread_info(tsk)), "r" (0));
  304. /* we never return here */
  305. }
  306. static inline void return_to_32bit(struct kernel_vm86_regs *regs16, int retval)
  307. {
  308. struct pt_regs *regs32;
  309. regs32 = save_v86_state(regs16);
  310. regs32->ax = retval;
  311. __asm__ __volatile__("movl %0,%%esp\n\t"
  312. "movl %1,%%ebp\n\t"
  313. "jmp resume_userspace"
  314. : : "r" (regs32), "r" (current_thread_info()));
  315. }
  316. static inline void set_IF(struct kernel_vm86_regs *regs)
  317. {
  318. VEFLAGS |= X86_EFLAGS_VIF;
  319. if (VEFLAGS & X86_EFLAGS_VIP)
  320. return_to_32bit(regs, VM86_STI);
  321. }
  322. static inline void clear_IF(struct kernel_vm86_regs *regs)
  323. {
  324. VEFLAGS &= ~X86_EFLAGS_VIF;
  325. }
  326. static inline void clear_TF(struct kernel_vm86_regs *regs)
  327. {
  328. regs->pt.flags &= ~X86_EFLAGS_TF;
  329. }
  330. static inline void clear_AC(struct kernel_vm86_regs *regs)
  331. {
  332. regs->pt.flags &= ~X86_EFLAGS_AC;
  333. }
  334. /*
  335. * It is correct to call set_IF(regs) from the set_vflags_*
  336. * functions. However someone forgot to call clear_IF(regs)
  337. * in the opposite case.
  338. * After the command sequence CLI PUSHF STI POPF you should
  339. * end up with interrupts disabled, but you ended up with
  340. * interrupts enabled.
  341. * ( I was testing my own changes, but the only bug I
  342. * could find was in a function I had not changed. )
  343. * [KD]
  344. */
  345. static inline void set_vflags_long(unsigned long flags, struct kernel_vm86_regs *regs)
  346. {
  347. set_flags(VEFLAGS, flags, current->thread.v86mask);
  348. set_flags(regs->pt.flags, flags, SAFE_MASK);
  349. if (flags & X86_EFLAGS_IF)
  350. set_IF(regs);
  351. else
  352. clear_IF(regs);
  353. }
  354. static inline void set_vflags_short(unsigned short flags, struct kernel_vm86_regs *regs)
  355. {
  356. set_flags(VFLAGS, flags, current->thread.v86mask);
  357. set_flags(regs->pt.flags, flags, SAFE_MASK);
  358. if (flags & X86_EFLAGS_IF)
  359. set_IF(regs);
  360. else
  361. clear_IF(regs);
  362. }
  363. static inline unsigned long get_vflags(struct kernel_vm86_regs *regs)
  364. {
  365. unsigned long flags = regs->pt.flags & RETURN_MASK;
  366. if (VEFLAGS & X86_EFLAGS_VIF)
  367. flags |= X86_EFLAGS_IF;
  368. flags |= X86_EFLAGS_IOPL;
  369. return flags | (VEFLAGS & current->thread.v86mask);
  370. }
  371. static inline int is_revectored(int nr, struct revectored_struct *bitmap)
  372. {
  373. __asm__ __volatile__("btl %2,%1\n\tsbbl %0,%0"
  374. :"=r" (nr)
  375. :"m" (*bitmap), "r" (nr));
  376. return nr;
  377. }
  378. #define val_byte(val, n) (((__u8 *)&val)[n])
  379. #define pushb(base, ptr, val, err_label) \
  380. do { \
  381. __u8 __val = val; \
  382. ptr--; \
  383. if (put_user(__val, base + ptr) < 0) \
  384. goto err_label; \
  385. } while (0)
  386. #define pushw(base, ptr, val, err_label) \
  387. do { \
  388. __u16 __val = val; \
  389. ptr--; \
  390. if (put_user(val_byte(__val, 1), base + ptr) < 0) \
  391. goto err_label; \
  392. ptr--; \
  393. if (put_user(val_byte(__val, 0), base + ptr) < 0) \
  394. goto err_label; \
  395. } while (0)
  396. #define pushl(base, ptr, val, err_label) \
  397. do { \
  398. __u32 __val = val; \
  399. ptr--; \
  400. if (put_user(val_byte(__val, 3), base + ptr) < 0) \
  401. goto err_label; \
  402. ptr--; \
  403. if (put_user(val_byte(__val, 2), base + ptr) < 0) \
  404. goto err_label; \
  405. ptr--; \
  406. if (put_user(val_byte(__val, 1), base + ptr) < 0) \
  407. goto err_label; \
  408. ptr--; \
  409. if (put_user(val_byte(__val, 0), base + ptr) < 0) \
  410. goto err_label; \
  411. } while (0)
  412. #define popb(base, ptr, err_label) \
  413. ({ \
  414. __u8 __res; \
  415. if (get_user(__res, base + ptr) < 0) \
  416. goto err_label; \
  417. ptr++; \
  418. __res; \
  419. })
  420. #define popw(base, ptr, err_label) \
  421. ({ \
  422. __u16 __res; \
  423. if (get_user(val_byte(__res, 0), base + ptr) < 0) \
  424. goto err_label; \
  425. ptr++; \
  426. if (get_user(val_byte(__res, 1), base + ptr) < 0) \
  427. goto err_label; \
  428. ptr++; \
  429. __res; \
  430. })
  431. #define popl(base, ptr, err_label) \
  432. ({ \
  433. __u32 __res; \
  434. if (get_user(val_byte(__res, 0), base + ptr) < 0) \
  435. goto err_label; \
  436. ptr++; \
  437. if (get_user(val_byte(__res, 1), base + ptr) < 0) \
  438. goto err_label; \
  439. ptr++; \
  440. if (get_user(val_byte(__res, 2), base + ptr) < 0) \
  441. goto err_label; \
  442. ptr++; \
  443. if (get_user(val_byte(__res, 3), base + ptr) < 0) \
  444. goto err_label; \
  445. ptr++; \
  446. __res; \
  447. })
  448. /* There are so many possible reasons for this function to return
  449. * VM86_INTx, so adding another doesn't bother me. We can expect
  450. * userspace programs to be able to handle it. (Getting a problem
  451. * in userspace is always better than an Oops anyway.) [KD]
  452. */
  453. static void do_int(struct kernel_vm86_regs *regs, int i,
  454. unsigned char __user *ssp, unsigned short sp)
  455. {
  456. unsigned long __user *intr_ptr;
  457. unsigned long segoffs;
  458. if (regs->pt.cs == BIOSSEG)
  459. goto cannot_handle;
  460. if (is_revectored(i, &KVM86->int_revectored))
  461. goto cannot_handle;
  462. if (i == 0x21 && is_revectored(AH(regs), &KVM86->int21_revectored))
  463. goto cannot_handle;
  464. intr_ptr = (unsigned long __user *) (i << 2);
  465. if (get_user(segoffs, intr_ptr))
  466. goto cannot_handle;
  467. if ((segoffs >> 16) == BIOSSEG)
  468. goto cannot_handle;
  469. pushw(ssp, sp, get_vflags(regs), cannot_handle);
  470. pushw(ssp, sp, regs->pt.cs, cannot_handle);
  471. pushw(ssp, sp, IP(regs), cannot_handle);
  472. regs->pt.cs = segoffs >> 16;
  473. SP(regs) -= 6;
  474. IP(regs) = segoffs & 0xffff;
  475. clear_TF(regs);
  476. clear_IF(regs);
  477. clear_AC(regs);
  478. return;
  479. cannot_handle:
  480. return_to_32bit(regs, VM86_INTx + (i << 8));
  481. }
  482. int handle_vm86_trap(struct kernel_vm86_regs *regs, long error_code, int trapno)
  483. {
  484. if (VMPI.is_vm86pus) {
  485. if ((trapno == 3) || (trapno == 1)) {
  486. KVM86->regs32->ax = VM86_TRAP + (trapno << 8);
  487. /* setting this flag forces the code in entry_32.S to
  488. the path where we call save_v86_state() and change
  489. the stack pointer to KVM86->regs32 */
  490. set_thread_flag(TIF_NOTIFY_RESUME);
  491. return 0;
  492. }
  493. do_int(regs, trapno, (unsigned char __user *) (regs->pt.ss << 4), SP(regs));
  494. return 0;
  495. }
  496. if (trapno != 1)
  497. return 1; /* we let this handle by the calling routine */
  498. current->thread.trap_nr = trapno;
  499. current->thread.error_code = error_code;
  500. force_sig(SIGTRAP, current);
  501. return 0;
  502. }
  503. void handle_vm86_fault(struct kernel_vm86_regs *regs, long error_code)
  504. {
  505. unsigned char opcode;
  506. unsigned char __user *csp;
  507. unsigned char __user *ssp;
  508. unsigned short ip, sp, orig_flags;
  509. int data32, pref_done;
  510. #define CHECK_IF_IN_TRAP \
  511. if (VMPI.vm86dbg_active && VMPI.vm86dbg_TFpendig) \
  512. newflags |= X86_EFLAGS_TF
  513. #define VM86_FAULT_RETURN do { \
  514. if (VMPI.force_return_for_pic && (VEFLAGS & (X86_EFLAGS_IF | X86_EFLAGS_VIF))) \
  515. return_to_32bit(regs, VM86_PICRETURN); \
  516. if (orig_flags & X86_EFLAGS_TF) \
  517. handle_vm86_trap(regs, 0, 1); \
  518. return; } while (0)
  519. orig_flags = *(unsigned short *)&regs->pt.flags;
  520. csp = (unsigned char __user *) (regs->pt.cs << 4);
  521. ssp = (unsigned char __user *) (regs->pt.ss << 4);
  522. sp = SP(regs);
  523. ip = IP(regs);
  524. data32 = 0;
  525. pref_done = 0;
  526. do {
  527. switch (opcode = popb(csp, ip, simulate_sigsegv)) {
  528. case 0x66: /* 32-bit data */ data32 = 1; break;
  529. case 0x67: /* 32-bit address */ break;
  530. case 0x2e: /* CS */ break;
  531. case 0x3e: /* DS */ break;
  532. case 0x26: /* ES */ break;
  533. case 0x36: /* SS */ break;
  534. case 0x65: /* GS */ break;
  535. case 0x64: /* FS */ break;
  536. case 0xf2: /* repnz */ break;
  537. case 0xf3: /* rep */ break;
  538. default: pref_done = 1;
  539. }
  540. } while (!pref_done);
  541. switch (opcode) {
  542. /* pushf */
  543. case 0x9c:
  544. if (data32) {
  545. pushl(ssp, sp, get_vflags(regs), simulate_sigsegv);
  546. SP(regs) -= 4;
  547. } else {
  548. pushw(ssp, sp, get_vflags(regs), simulate_sigsegv);
  549. SP(regs) -= 2;
  550. }
  551. IP(regs) = ip;
  552. VM86_FAULT_RETURN;
  553. /* popf */
  554. case 0x9d:
  555. {
  556. unsigned long newflags;
  557. if (data32) {
  558. newflags = popl(ssp, sp, simulate_sigsegv);
  559. SP(regs) += 4;
  560. } else {
  561. newflags = popw(ssp, sp, simulate_sigsegv);
  562. SP(regs) += 2;
  563. }
  564. IP(regs) = ip;
  565. CHECK_IF_IN_TRAP;
  566. if (data32)
  567. set_vflags_long(newflags, regs);
  568. else
  569. set_vflags_short(newflags, regs);
  570. VM86_FAULT_RETURN;
  571. }
  572. /* int xx */
  573. case 0xcd: {
  574. int intno = popb(csp, ip, simulate_sigsegv);
  575. IP(regs) = ip;
  576. if (VMPI.vm86dbg_active) {
  577. if ((1 << (intno & 7)) & VMPI.vm86dbg_intxxtab[intno >> 3])
  578. return_to_32bit(regs, VM86_INTx + (intno << 8));
  579. }
  580. do_int(regs, intno, ssp, sp);
  581. return;
  582. }
  583. /* iret */
  584. case 0xcf:
  585. {
  586. unsigned long newip;
  587. unsigned long newcs;
  588. unsigned long newflags;
  589. if (data32) {
  590. newip = popl(ssp, sp, simulate_sigsegv);
  591. newcs = popl(ssp, sp, simulate_sigsegv);
  592. newflags = popl(ssp, sp, simulate_sigsegv);
  593. SP(regs) += 12;
  594. } else {
  595. newip = popw(ssp, sp, simulate_sigsegv);
  596. newcs = popw(ssp, sp, simulate_sigsegv);
  597. newflags = popw(ssp, sp, simulate_sigsegv);
  598. SP(regs) += 6;
  599. }
  600. IP(regs) = newip;
  601. regs->pt.cs = newcs;
  602. CHECK_IF_IN_TRAP;
  603. if (data32) {
  604. set_vflags_long(newflags, regs);
  605. } else {
  606. set_vflags_short(newflags, regs);
  607. }
  608. VM86_FAULT_RETURN;
  609. }
  610. /* cli */
  611. case 0xfa:
  612. IP(regs) = ip;
  613. clear_IF(regs);
  614. VM86_FAULT_RETURN;
  615. /* sti */
  616. /*
  617. * Damn. This is incorrect: the 'sti' instruction should actually
  618. * enable interrupts after the /next/ instruction. Not good.
  619. *
  620. * Probably needs some horsing around with the TF flag. Aiee..
  621. */
  622. case 0xfb:
  623. IP(regs) = ip;
  624. set_IF(regs);
  625. VM86_FAULT_RETURN;
  626. default:
  627. return_to_32bit(regs, VM86_UNKNOWN);
  628. }
  629. return;
  630. simulate_sigsegv:
  631. /* FIXME: After a long discussion with Stas we finally
  632. * agreed, that this is wrong. Here we should
  633. * really send a SIGSEGV to the user program.
  634. * But how do we create the correct context? We
  635. * are inside a general protection fault handler
  636. * and has just returned from a page fault handler.
  637. * The correct context for the signal handler
  638. * should be a mixture of the two, but how do we
  639. * get the information? [KD]
  640. */
  641. return_to_32bit(regs, VM86_UNKNOWN);
  642. }
  643. /* ---------------- vm86 special IRQ passing stuff ----------------- */
  644. #define VM86_IRQNAME "vm86irq"
  645. static struct vm86_irqs {
  646. struct task_struct *tsk;
  647. int sig;
  648. } vm86_irqs[16];
  649. static DEFINE_SPINLOCK(irqbits_lock);
  650. static int irqbits;
  651. #define ALLOWED_SIGS (1 /* 0 = don't send a signal */ \
  652. | (1 << SIGUSR1) | (1 << SIGUSR2) | (1 << SIGIO) | (1 << SIGURG) \
  653. | (1 << SIGUNUSED))
  654. static irqreturn_t irq_handler(int intno, void *dev_id)
  655. {
  656. int irq_bit;
  657. unsigned long flags;
  658. spin_lock_irqsave(&irqbits_lock, flags);
  659. irq_bit = 1 << intno;
  660. if ((irqbits & irq_bit) || !vm86_irqs[intno].tsk)
  661. goto out;
  662. irqbits |= irq_bit;
  663. if (vm86_irqs[intno].sig)
  664. send_sig(vm86_irqs[intno].sig, vm86_irqs[intno].tsk, 1);
  665. /*
  666. * IRQ will be re-enabled when user asks for the irq (whether
  667. * polling or as a result of the signal)
  668. */
  669. disable_irq_nosync(intno);
  670. spin_unlock_irqrestore(&irqbits_lock, flags);
  671. return IRQ_HANDLED;
  672. out:
  673. spin_unlock_irqrestore(&irqbits_lock, flags);
  674. return IRQ_NONE;
  675. }
  676. static inline void free_vm86_irq(int irqnumber)
  677. {
  678. unsigned long flags;
  679. free_irq(irqnumber, NULL);
  680. vm86_irqs[irqnumber].tsk = NULL;
  681. spin_lock_irqsave(&irqbits_lock, flags);
  682. irqbits &= ~(1 << irqnumber);
  683. spin_unlock_irqrestore(&irqbits_lock, flags);
  684. }
  685. void release_vm86_irqs(struct task_struct *task)
  686. {
  687. int i;
  688. for (i = FIRST_VM86_IRQ ; i <= LAST_VM86_IRQ; i++)
  689. if (vm86_irqs[i].tsk == task)
  690. free_vm86_irq(i);
  691. }
  692. static inline int get_and_reset_irq(int irqnumber)
  693. {
  694. int bit;
  695. unsigned long flags;
  696. int ret = 0;
  697. if (invalid_vm86_irq(irqnumber)) return 0;
  698. if (vm86_irqs[irqnumber].tsk != current) return 0;
  699. spin_lock_irqsave(&irqbits_lock, flags);
  700. bit = irqbits & (1 << irqnumber);
  701. irqbits &= ~bit;
  702. if (bit) {
  703. enable_irq(irqnumber);
  704. ret = 1;
  705. }
  706. spin_unlock_irqrestore(&irqbits_lock, flags);
  707. return ret;
  708. }
  709. static int do_vm86_irq_handling(int subfunction, int irqnumber)
  710. {
  711. int ret;
  712. switch (subfunction) {
  713. case VM86_GET_AND_RESET_IRQ: {
  714. return get_and_reset_irq(irqnumber);
  715. }
  716. case VM86_GET_IRQ_BITS: {
  717. return irqbits;
  718. }
  719. case VM86_REQUEST_IRQ: {
  720. int sig = irqnumber >> 8;
  721. int irq = irqnumber & 255;
  722. if (!capable(CAP_SYS_ADMIN)) return -EPERM;
  723. if (!((1 << sig) & ALLOWED_SIGS)) return -EPERM;
  724. if (invalid_vm86_irq(irq)) return -EPERM;
  725. if (vm86_irqs[irq].tsk) return -EPERM;
  726. ret = request_irq(irq, &irq_handler, 0, VM86_IRQNAME, NULL);
  727. if (ret) return ret;
  728. vm86_irqs[irq].sig = sig;
  729. vm86_irqs[irq].tsk = current;
  730. return irq;
  731. }
  732. case VM86_FREE_IRQ: {
  733. if (invalid_vm86_irq(irqnumber)) return -EPERM;
  734. if (!vm86_irqs[irqnumber].tsk) return 0;
  735. if (vm86_irqs[irqnumber].tsk != current) return -EPERM;
  736. free_vm86_irq(irqnumber);
  737. return 0;
  738. }
  739. }
  740. return -EINVAL;
  741. }