kvmclock.c 7.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307
  1. /* KVM paravirtual clock driver. A clocksource implementation
  2. Copyright (C) 2008 Glauber de Oliveira Costa, Red Hat Inc.
  3. This program is free software; you can redistribute it and/or modify
  4. it under the terms of the GNU General Public License as published by
  5. the Free Software Foundation; either version 2 of the License, or
  6. (at your option) any later version.
  7. This program is distributed in the hope that it will be useful,
  8. but WITHOUT ANY WARRANTY; without even the implied warranty of
  9. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  10. GNU General Public License for more details.
  11. You should have received a copy of the GNU General Public License
  12. along with this program; if not, write to the Free Software
  13. Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  14. */
  15. #include <linux/clocksource.h>
  16. #include <linux/kvm_para.h>
  17. #include <asm/pvclock.h>
  18. #include <asm/msr.h>
  19. #include <asm/apic.h>
  20. #include <linux/percpu.h>
  21. #include <linux/hardirq.h>
  22. #include <linux/memblock.h>
  23. #include <asm/x86_init.h>
  24. #include <asm/reboot.h>
  25. static int kvmclock = 1;
  26. static int msr_kvm_system_time = MSR_KVM_SYSTEM_TIME;
  27. static int msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK;
  28. static int parse_no_kvmclock(char *arg)
  29. {
  30. kvmclock = 0;
  31. return 0;
  32. }
  33. early_param("no-kvmclock", parse_no_kvmclock);
  34. /* The hypervisor will put information about time periodically here */
  35. static struct pvclock_vsyscall_time_info *hv_clock;
  36. static struct pvclock_wall_clock wall_clock;
  37. /*
  38. * The wallclock is the time of day when we booted. Since then, some time may
  39. * have elapsed since the hypervisor wrote the data. So we try to account for
  40. * that with system time
  41. */
  42. static void kvm_get_wallclock(struct timespec *now)
  43. {
  44. struct pvclock_vcpu_time_info *vcpu_time;
  45. int low, high;
  46. int cpu;
  47. low = (int)__pa_symbol(&wall_clock);
  48. high = ((u64)__pa_symbol(&wall_clock) >> 32);
  49. native_write_msr(msr_kvm_wall_clock, low, high);
  50. preempt_disable();
  51. cpu = smp_processor_id();
  52. vcpu_time = &hv_clock[cpu].pvti;
  53. pvclock_read_wallclock(&wall_clock, vcpu_time, now);
  54. preempt_enable();
  55. }
  56. static int kvm_set_wallclock(const struct timespec *now)
  57. {
  58. return -1;
  59. }
  60. static cycle_t kvm_clock_read(void)
  61. {
  62. struct pvclock_vcpu_time_info *src;
  63. cycle_t ret;
  64. int cpu;
  65. preempt_disable_notrace();
  66. cpu = smp_processor_id();
  67. src = &hv_clock[cpu].pvti;
  68. ret = pvclock_clocksource_read(src);
  69. preempt_enable_notrace();
  70. return ret;
  71. }
  72. static cycle_t kvm_clock_get_cycles(struct clocksource *cs)
  73. {
  74. return kvm_clock_read();
  75. }
  76. /*
  77. * If we don't do that, there is the possibility that the guest
  78. * will calibrate under heavy load - thus, getting a lower lpj -
  79. * and execute the delays themselves without load. This is wrong,
  80. * because no delay loop can finish beforehand.
  81. * Any heuristics is subject to fail, because ultimately, a large
  82. * poll of guests can be running and trouble each other. So we preset
  83. * lpj here
  84. */
  85. static unsigned long kvm_get_tsc_khz(void)
  86. {
  87. struct pvclock_vcpu_time_info *src;
  88. int cpu;
  89. unsigned long tsc_khz;
  90. preempt_disable();
  91. cpu = smp_processor_id();
  92. src = &hv_clock[cpu].pvti;
  93. tsc_khz = pvclock_tsc_khz(src);
  94. preempt_enable();
  95. return tsc_khz;
  96. }
  97. static void kvm_get_preset_lpj(void)
  98. {
  99. unsigned long khz;
  100. u64 lpj;
  101. khz = kvm_get_tsc_khz();
  102. lpj = ((u64)khz * 1000);
  103. do_div(lpj, HZ);
  104. preset_lpj = lpj;
  105. }
  106. bool kvm_check_and_clear_guest_paused(void)
  107. {
  108. bool ret = false;
  109. struct pvclock_vcpu_time_info *src;
  110. int cpu = smp_processor_id();
  111. if (!hv_clock)
  112. return ret;
  113. src = &hv_clock[cpu].pvti;
  114. if ((src->flags & PVCLOCK_GUEST_STOPPED) != 0) {
  115. src->flags &= ~PVCLOCK_GUEST_STOPPED;
  116. ret = true;
  117. }
  118. return ret;
  119. }
  120. static struct clocksource kvm_clock = {
  121. .name = "kvm-clock",
  122. .read = kvm_clock_get_cycles,
  123. .rating = 400,
  124. .mask = CLOCKSOURCE_MASK(64),
  125. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  126. };
  127. int kvm_register_clock(char *txt)
  128. {
  129. int cpu = smp_processor_id();
  130. int low, high, ret;
  131. struct pvclock_vcpu_time_info *src;
  132. if (!hv_clock)
  133. return 0;
  134. src = &hv_clock[cpu].pvti;
  135. low = (int)slow_virt_to_phys(src) | 1;
  136. high = ((u64)slow_virt_to_phys(src) >> 32);
  137. ret = native_write_msr_safe(msr_kvm_system_time, low, high);
  138. printk(KERN_INFO "kvm-clock: cpu %d, msr %x:%x, %s\n",
  139. cpu, high, low, txt);
  140. return ret;
  141. }
  142. static void kvm_save_sched_clock_state(void)
  143. {
  144. }
  145. static void kvm_restore_sched_clock_state(void)
  146. {
  147. kvm_register_clock("primary cpu clock, resume");
  148. }
  149. #ifdef CONFIG_X86_LOCAL_APIC
  150. static void kvm_setup_secondary_clock(void)
  151. {
  152. /*
  153. * Now that the first cpu already had this clocksource initialized,
  154. * we shouldn't fail.
  155. */
  156. WARN_ON(kvm_register_clock("secondary cpu clock"));
  157. }
  158. #endif
  159. /*
  160. * After the clock is registered, the host will keep writing to the
  161. * registered memory location. If the guest happens to shutdown, this memory
  162. * won't be valid. In cases like kexec, in which you install a new kernel, this
  163. * means a random memory location will be kept being written. So before any
  164. * kind of shutdown from our side, we unregister the clock by writting anything
  165. * that does not have the 'enable' bit set in the msr
  166. */
  167. #ifdef CONFIG_KEXEC
  168. static void kvm_crash_shutdown(struct pt_regs *regs)
  169. {
  170. native_write_msr(msr_kvm_system_time, 0, 0);
  171. kvm_disable_steal_time();
  172. native_machine_crash_shutdown(regs);
  173. }
  174. #endif
  175. static void kvm_shutdown(void)
  176. {
  177. native_write_msr(msr_kvm_system_time, 0, 0);
  178. kvm_disable_steal_time();
  179. native_machine_shutdown();
  180. }
  181. void __init kvmclock_init(void)
  182. {
  183. unsigned long mem;
  184. int size;
  185. size = PAGE_ALIGN(sizeof(struct pvclock_vsyscall_time_info)*NR_CPUS);
  186. if (!kvm_para_available())
  187. return;
  188. if (kvmclock && kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE2)) {
  189. msr_kvm_system_time = MSR_KVM_SYSTEM_TIME_NEW;
  190. msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK_NEW;
  191. } else if (!(kvmclock && kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE)))
  192. return;
  193. printk(KERN_INFO "kvm-clock: Using msrs %x and %x",
  194. msr_kvm_system_time, msr_kvm_wall_clock);
  195. mem = memblock_alloc(size, PAGE_SIZE);
  196. if (!mem)
  197. return;
  198. hv_clock = __va(mem);
  199. memset(hv_clock, 0, size);
  200. if (kvm_register_clock("boot clock")) {
  201. hv_clock = NULL;
  202. memblock_free(mem, size);
  203. return;
  204. }
  205. pv_time_ops.sched_clock = kvm_clock_read;
  206. x86_platform.calibrate_tsc = kvm_get_tsc_khz;
  207. x86_platform.get_wallclock = kvm_get_wallclock;
  208. x86_platform.set_wallclock = kvm_set_wallclock;
  209. #ifdef CONFIG_X86_LOCAL_APIC
  210. x86_cpuinit.early_percpu_clock_init =
  211. kvm_setup_secondary_clock;
  212. #endif
  213. x86_platform.save_sched_clock_state = kvm_save_sched_clock_state;
  214. x86_platform.restore_sched_clock_state = kvm_restore_sched_clock_state;
  215. machine_ops.shutdown = kvm_shutdown;
  216. #ifdef CONFIG_KEXEC
  217. machine_ops.crash_shutdown = kvm_crash_shutdown;
  218. #endif
  219. kvm_get_preset_lpj();
  220. clocksource_register_hz(&kvm_clock, NSEC_PER_SEC);
  221. pv_info.paravirt_enabled = 1;
  222. pv_info.name = "KVM";
  223. if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE_STABLE_BIT))
  224. pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT);
  225. }
  226. int __init kvm_setup_vsyscall_timeinfo(void)
  227. {
  228. #ifdef CONFIG_X86_64
  229. int cpu;
  230. int ret;
  231. u8 flags;
  232. struct pvclock_vcpu_time_info *vcpu_time;
  233. unsigned int size;
  234. if (!hv_clock)
  235. return 0;
  236. size = PAGE_ALIGN(sizeof(struct pvclock_vsyscall_time_info)*NR_CPUS);
  237. preempt_disable();
  238. cpu = smp_processor_id();
  239. vcpu_time = &hv_clock[cpu].pvti;
  240. flags = pvclock_read_flags(vcpu_time);
  241. if (!(flags & PVCLOCK_TSC_STABLE_BIT)) {
  242. preempt_enable();
  243. return 1;
  244. }
  245. if ((ret = pvclock_init_vsyscall(hv_clock, size))) {
  246. preempt_enable();
  247. return ret;
  248. }
  249. preempt_enable();
  250. kvm_clock.archdata.vclock_mode = VCLOCK_PVCLOCK;
  251. #endif
  252. return 0;
  253. }