irq.c 9.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365
  1. /*
  2. * Common interrupt code for 32 and 64 bit
  3. */
  4. #include <linux/cpu.h>
  5. #include <linux/interrupt.h>
  6. #include <linux/kernel_stat.h>
  7. #include <linux/of.h>
  8. #include <linux/seq_file.h>
  9. #include <linux/smp.h>
  10. #include <linux/ftrace.h>
  11. #include <linux/delay.h>
  12. #include <linux/export.h>
  13. #include <asm/apic.h>
  14. #include <asm/io_apic.h>
  15. #include <asm/irq.h>
  16. #include <asm/idle.h>
  17. #include <asm/mce.h>
  18. #include <asm/hw_irq.h>
  19. #define CREATE_TRACE_POINTS
  20. #include <asm/trace/irq_vectors.h>
  21. atomic_t irq_err_count;
  22. /* Function pointer for generic interrupt vector handling */
  23. void (*x86_platform_ipi_callback)(void) = NULL;
  24. /*
  25. * 'what should we do if we get a hw irq event on an illegal vector'.
  26. * each architecture has to answer this themselves.
  27. */
  28. void ack_bad_irq(unsigned int irq)
  29. {
  30. if (printk_ratelimit())
  31. pr_err("unexpected IRQ trap at vector %02x\n", irq);
  32. /*
  33. * Currently unexpected vectors happen only on SMP and APIC.
  34. * We _must_ ack these because every local APIC has only N
  35. * irq slots per priority level, and a 'hanging, unacked' IRQ
  36. * holds up an irq slot - in excessive cases (when multiple
  37. * unexpected vectors occur) that might lock up the APIC
  38. * completely.
  39. * But only ack when the APIC is enabled -AK
  40. */
  41. ack_APIC_irq();
  42. }
  43. #define irq_stats(x) (&per_cpu(irq_stat, x))
  44. /*
  45. * /proc/interrupts printing for arch specific interrupts
  46. */
  47. int arch_show_interrupts(struct seq_file *p, int prec)
  48. {
  49. int j;
  50. seq_printf(p, "%*s: ", prec, "NMI");
  51. for_each_online_cpu(j)
  52. seq_printf(p, "%10u ", irq_stats(j)->__nmi_count);
  53. seq_printf(p, " Non-maskable interrupts\n");
  54. #ifdef CONFIG_X86_LOCAL_APIC
  55. seq_printf(p, "%*s: ", prec, "LOC");
  56. for_each_online_cpu(j)
  57. seq_printf(p, "%10u ", irq_stats(j)->apic_timer_irqs);
  58. seq_printf(p, " Local timer interrupts\n");
  59. seq_printf(p, "%*s: ", prec, "SPU");
  60. for_each_online_cpu(j)
  61. seq_printf(p, "%10u ", irq_stats(j)->irq_spurious_count);
  62. seq_printf(p, " Spurious interrupts\n");
  63. seq_printf(p, "%*s: ", prec, "PMI");
  64. for_each_online_cpu(j)
  65. seq_printf(p, "%10u ", irq_stats(j)->apic_perf_irqs);
  66. seq_printf(p, " Performance monitoring interrupts\n");
  67. seq_printf(p, "%*s: ", prec, "IWI");
  68. for_each_online_cpu(j)
  69. seq_printf(p, "%10u ", irq_stats(j)->apic_irq_work_irqs);
  70. seq_printf(p, " IRQ work interrupts\n");
  71. seq_printf(p, "%*s: ", prec, "RTR");
  72. for_each_online_cpu(j)
  73. seq_printf(p, "%10u ", irq_stats(j)->icr_read_retry_count);
  74. seq_printf(p, " APIC ICR read retries\n");
  75. #endif
  76. if (x86_platform_ipi_callback) {
  77. seq_printf(p, "%*s: ", prec, "PLT");
  78. for_each_online_cpu(j)
  79. seq_printf(p, "%10u ", irq_stats(j)->x86_platform_ipis);
  80. seq_printf(p, " Platform interrupts\n");
  81. }
  82. #ifdef CONFIG_SMP
  83. seq_printf(p, "%*s: ", prec, "RES");
  84. for_each_online_cpu(j)
  85. seq_printf(p, "%10u ", irq_stats(j)->irq_resched_count);
  86. seq_printf(p, " Rescheduling interrupts\n");
  87. seq_printf(p, "%*s: ", prec, "CAL");
  88. for_each_online_cpu(j)
  89. seq_printf(p, "%10u ", irq_stats(j)->irq_call_count -
  90. irq_stats(j)->irq_tlb_count);
  91. seq_printf(p, " Function call interrupts\n");
  92. seq_printf(p, "%*s: ", prec, "TLB");
  93. for_each_online_cpu(j)
  94. seq_printf(p, "%10u ", irq_stats(j)->irq_tlb_count);
  95. seq_printf(p, " TLB shootdowns\n");
  96. #endif
  97. #ifdef CONFIG_X86_THERMAL_VECTOR
  98. seq_printf(p, "%*s: ", prec, "TRM");
  99. for_each_online_cpu(j)
  100. seq_printf(p, "%10u ", irq_stats(j)->irq_thermal_count);
  101. seq_printf(p, " Thermal event interrupts\n");
  102. #endif
  103. #ifdef CONFIG_X86_MCE_THRESHOLD
  104. seq_printf(p, "%*s: ", prec, "THR");
  105. for_each_online_cpu(j)
  106. seq_printf(p, "%10u ", irq_stats(j)->irq_threshold_count);
  107. seq_printf(p, " Threshold APIC interrupts\n");
  108. #endif
  109. #ifdef CONFIG_X86_MCE
  110. seq_printf(p, "%*s: ", prec, "MCE");
  111. for_each_online_cpu(j)
  112. seq_printf(p, "%10u ", per_cpu(mce_exception_count, j));
  113. seq_printf(p, " Machine check exceptions\n");
  114. seq_printf(p, "%*s: ", prec, "MCP");
  115. for_each_online_cpu(j)
  116. seq_printf(p, "%10u ", per_cpu(mce_poll_count, j));
  117. seq_printf(p, " Machine check polls\n");
  118. #endif
  119. seq_printf(p, "%*s: %10u\n", prec, "ERR", atomic_read(&irq_err_count));
  120. #if defined(CONFIG_X86_IO_APIC)
  121. seq_printf(p, "%*s: %10u\n", prec, "MIS", atomic_read(&irq_mis_count));
  122. #endif
  123. return 0;
  124. }
  125. /*
  126. * /proc/stat helpers
  127. */
  128. u64 arch_irq_stat_cpu(unsigned int cpu)
  129. {
  130. u64 sum = irq_stats(cpu)->__nmi_count;
  131. #ifdef CONFIG_X86_LOCAL_APIC
  132. sum += irq_stats(cpu)->apic_timer_irqs;
  133. sum += irq_stats(cpu)->irq_spurious_count;
  134. sum += irq_stats(cpu)->apic_perf_irqs;
  135. sum += irq_stats(cpu)->apic_irq_work_irqs;
  136. sum += irq_stats(cpu)->icr_read_retry_count;
  137. #endif
  138. if (x86_platform_ipi_callback)
  139. sum += irq_stats(cpu)->x86_platform_ipis;
  140. #ifdef CONFIG_SMP
  141. sum += irq_stats(cpu)->irq_resched_count;
  142. sum += irq_stats(cpu)->irq_call_count;
  143. #endif
  144. #ifdef CONFIG_X86_THERMAL_VECTOR
  145. sum += irq_stats(cpu)->irq_thermal_count;
  146. #endif
  147. #ifdef CONFIG_X86_MCE_THRESHOLD
  148. sum += irq_stats(cpu)->irq_threshold_count;
  149. #endif
  150. #ifdef CONFIG_X86_MCE
  151. sum += per_cpu(mce_exception_count, cpu);
  152. sum += per_cpu(mce_poll_count, cpu);
  153. #endif
  154. return sum;
  155. }
  156. u64 arch_irq_stat(void)
  157. {
  158. u64 sum = atomic_read(&irq_err_count);
  159. return sum;
  160. }
  161. /*
  162. * do_IRQ handles all normal device IRQ's (the special
  163. * SMP cross-CPU interrupts have their own specific
  164. * handlers).
  165. */
  166. unsigned int __irq_entry do_IRQ(struct pt_regs *regs)
  167. {
  168. struct pt_regs *old_regs = set_irq_regs(regs);
  169. /* high bit used in ret_from_ code */
  170. unsigned vector = ~regs->orig_ax;
  171. unsigned irq;
  172. irq_enter();
  173. exit_idle();
  174. irq = __this_cpu_read(vector_irq[vector]);
  175. if (!handle_irq(irq, regs)) {
  176. ack_APIC_irq();
  177. if (printk_ratelimit())
  178. pr_emerg("%s: %d.%d No irq handler for vector (irq %d)\n",
  179. __func__, smp_processor_id(), vector, irq);
  180. }
  181. irq_exit();
  182. set_irq_regs(old_regs);
  183. return 1;
  184. }
  185. /*
  186. * Handler for X86_PLATFORM_IPI_VECTOR.
  187. */
  188. void __smp_x86_platform_ipi(void)
  189. {
  190. inc_irq_stat(x86_platform_ipis);
  191. if (x86_platform_ipi_callback)
  192. x86_platform_ipi_callback();
  193. }
  194. void smp_x86_platform_ipi(struct pt_regs *regs)
  195. {
  196. struct pt_regs *old_regs = set_irq_regs(regs);
  197. entering_ack_irq();
  198. __smp_x86_platform_ipi();
  199. exiting_irq();
  200. set_irq_regs(old_regs);
  201. }
  202. #ifdef CONFIG_HAVE_KVM
  203. /*
  204. * Handler for POSTED_INTERRUPT_VECTOR.
  205. */
  206. void smp_kvm_posted_intr_ipi(struct pt_regs *regs)
  207. {
  208. struct pt_regs *old_regs = set_irq_regs(regs);
  209. ack_APIC_irq();
  210. irq_enter();
  211. exit_idle();
  212. inc_irq_stat(kvm_posted_intr_ipis);
  213. irq_exit();
  214. set_irq_regs(old_regs);
  215. }
  216. #endif
  217. void smp_trace_x86_platform_ipi(struct pt_regs *regs)
  218. {
  219. struct pt_regs *old_regs = set_irq_regs(regs);
  220. entering_ack_irq();
  221. trace_x86_platform_ipi_entry(X86_PLATFORM_IPI_VECTOR);
  222. __smp_x86_platform_ipi();
  223. trace_x86_platform_ipi_exit(X86_PLATFORM_IPI_VECTOR);
  224. exiting_irq();
  225. set_irq_regs(old_regs);
  226. }
  227. EXPORT_SYMBOL_GPL(vector_used_by_percpu_irq);
  228. #ifdef CONFIG_HOTPLUG_CPU
  229. /* A cpu has been removed from cpu_online_mask. Reset irq affinities. */
  230. void fixup_irqs(void)
  231. {
  232. unsigned int irq, vector;
  233. static int warned;
  234. struct irq_desc *desc;
  235. struct irq_data *data;
  236. struct irq_chip *chip;
  237. for_each_irq_desc(irq, desc) {
  238. int break_affinity = 0;
  239. int set_affinity = 1;
  240. const struct cpumask *affinity;
  241. if (!desc)
  242. continue;
  243. if (irq == 2)
  244. continue;
  245. /* interrupt's are disabled at this point */
  246. raw_spin_lock(&desc->lock);
  247. data = irq_desc_get_irq_data(desc);
  248. affinity = data->affinity;
  249. if (!irq_has_action(irq) || irqd_is_per_cpu(data) ||
  250. cpumask_subset(affinity, cpu_online_mask)) {
  251. raw_spin_unlock(&desc->lock);
  252. continue;
  253. }
  254. /*
  255. * Complete the irq move. This cpu is going down and for
  256. * non intr-remapping case, we can't wait till this interrupt
  257. * arrives at this cpu before completing the irq move.
  258. */
  259. irq_force_complete_move(irq);
  260. if (cpumask_any_and(affinity, cpu_online_mask) >= nr_cpu_ids) {
  261. break_affinity = 1;
  262. affinity = cpu_online_mask;
  263. }
  264. chip = irq_data_get_irq_chip(data);
  265. if (!irqd_can_move_in_process_context(data) && chip->irq_mask)
  266. chip->irq_mask(data);
  267. if (chip->irq_set_affinity)
  268. chip->irq_set_affinity(data, affinity, true);
  269. else if (!(warned++))
  270. set_affinity = 0;
  271. /*
  272. * We unmask if the irq was not marked masked by the
  273. * core code. That respects the lazy irq disable
  274. * behaviour.
  275. */
  276. if (!irqd_can_move_in_process_context(data) &&
  277. !irqd_irq_masked(data) && chip->irq_unmask)
  278. chip->irq_unmask(data);
  279. raw_spin_unlock(&desc->lock);
  280. if (break_affinity && set_affinity)
  281. pr_notice("Broke affinity for irq %i\n", irq);
  282. else if (!set_affinity)
  283. pr_notice("Cannot set affinity for irq %i\n", irq);
  284. }
  285. /*
  286. * We can remove mdelay() and then send spuriuous interrupts to
  287. * new cpu targets for all the irqs that were handled previously by
  288. * this cpu. While it works, I have seen spurious interrupt messages
  289. * (nothing wrong but still...).
  290. *
  291. * So for now, retain mdelay(1) and check the IRR and then send those
  292. * interrupts to new targets as this cpu is already offlined...
  293. */
  294. mdelay(1);
  295. for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
  296. unsigned int irr;
  297. if (__this_cpu_read(vector_irq[vector]) < 0)
  298. continue;
  299. irr = apic_read(APIC_IRR + (vector / 32 * 0x10));
  300. if (irr & (1 << (vector % 32))) {
  301. irq = __this_cpu_read(vector_irq[vector]);
  302. desc = irq_to_desc(irq);
  303. data = irq_desc_get_irq_data(desc);
  304. chip = irq_data_get_irq_chip(data);
  305. raw_spin_lock(&desc->lock);
  306. if (chip->irq_retrigger)
  307. chip->irq_retrigger(data);
  308. raw_spin_unlock(&desc->lock);
  309. }
  310. __this_cpu_write(vector_irq[vector], -1);
  311. }
  312. }
  313. #endif