fpu-internal.h 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618
  1. /*
  2. * Copyright (C) 1994 Linus Torvalds
  3. *
  4. * Pentium III FXSR, SSE support
  5. * General FPU state handling cleanups
  6. * Gareth Hughes <gareth@valinux.com>, May 2000
  7. * x86-64 work by Andi Kleen 2002
  8. */
  9. #ifndef _FPU_INTERNAL_H
  10. #define _FPU_INTERNAL_H
  11. #include <linux/kernel_stat.h>
  12. #include <linux/regset.h>
  13. #include <linux/compat.h>
  14. #include <linux/slab.h>
  15. #include <asm/asm.h>
  16. #include <asm/cpufeature.h>
  17. #include <asm/processor.h>
  18. #include <asm/sigcontext.h>
  19. #include <asm/user.h>
  20. #include <asm/uaccess.h>
  21. #include <asm/xsave.h>
  22. #include <asm/smap.h>
  23. #ifdef CONFIG_X86_64
  24. # include <asm/sigcontext32.h>
  25. # include <asm/user32.h>
  26. struct ksignal;
  27. int ia32_setup_rt_frame(int sig, struct ksignal *ksig,
  28. compat_sigset_t *set, struct pt_regs *regs);
  29. int ia32_setup_frame(int sig, struct ksignal *ksig,
  30. compat_sigset_t *set, struct pt_regs *regs);
  31. #else
  32. # define user_i387_ia32_struct user_i387_struct
  33. # define user32_fxsr_struct user_fxsr_struct
  34. # define ia32_setup_frame __setup_frame
  35. # define ia32_setup_rt_frame __setup_rt_frame
  36. #endif
  37. extern unsigned int mxcsr_feature_mask;
  38. extern void fpu_init(void);
  39. extern void eager_fpu_init(void);
  40. DECLARE_PER_CPU(struct task_struct *, fpu_owner_task);
  41. extern void convert_from_fxsr(struct user_i387_ia32_struct *env,
  42. struct task_struct *tsk);
  43. extern void convert_to_fxsr(struct task_struct *tsk,
  44. const struct user_i387_ia32_struct *env);
  45. extern user_regset_active_fn fpregs_active, xfpregs_active;
  46. extern user_regset_get_fn fpregs_get, xfpregs_get, fpregs_soft_get,
  47. xstateregs_get;
  48. extern user_regset_set_fn fpregs_set, xfpregs_set, fpregs_soft_set,
  49. xstateregs_set;
  50. /*
  51. * xstateregs_active == fpregs_active. Please refer to the comment
  52. * at the definition of fpregs_active.
  53. */
  54. #define xstateregs_active fpregs_active
  55. #ifdef CONFIG_MATH_EMULATION
  56. extern void finit_soft_fpu(struct i387_soft_struct *soft);
  57. #else
  58. static inline void finit_soft_fpu(struct i387_soft_struct *soft) {}
  59. #endif
  60. static inline int is_ia32_compat_frame(void)
  61. {
  62. return config_enabled(CONFIG_IA32_EMULATION) &&
  63. test_thread_flag(TIF_IA32);
  64. }
  65. static inline int is_ia32_frame(void)
  66. {
  67. return config_enabled(CONFIG_X86_32) || is_ia32_compat_frame();
  68. }
  69. static inline int is_x32_frame(void)
  70. {
  71. return config_enabled(CONFIG_X86_X32_ABI) && test_thread_flag(TIF_X32);
  72. }
  73. #define X87_FSW_ES (1 << 7) /* Exception Summary */
  74. static __always_inline __pure bool use_eager_fpu(void)
  75. {
  76. return static_cpu_has(X86_FEATURE_EAGER_FPU);
  77. }
  78. static __always_inline __pure bool use_xsaveopt(void)
  79. {
  80. return static_cpu_has(X86_FEATURE_XSAVEOPT);
  81. }
  82. static __always_inline __pure bool use_xsave(void)
  83. {
  84. return static_cpu_has(X86_FEATURE_XSAVE);
  85. }
  86. static __always_inline __pure bool use_fxsr(void)
  87. {
  88. return static_cpu_has(X86_FEATURE_FXSR);
  89. }
  90. static inline void fx_finit(struct i387_fxsave_struct *fx)
  91. {
  92. memset(fx, 0, xstate_size);
  93. fx->cwd = 0x37f;
  94. fx->mxcsr = MXCSR_DEFAULT;
  95. }
  96. extern void __sanitize_i387_state(struct task_struct *);
  97. static inline void sanitize_i387_state(struct task_struct *tsk)
  98. {
  99. if (!use_xsaveopt())
  100. return;
  101. __sanitize_i387_state(tsk);
  102. }
  103. #define user_insn(insn, output, input...) \
  104. ({ \
  105. int err; \
  106. asm volatile(ASM_STAC "\n" \
  107. "1:" #insn "\n\t" \
  108. "2: " ASM_CLAC "\n" \
  109. ".section .fixup,\"ax\"\n" \
  110. "3: movl $-1,%[err]\n" \
  111. " jmp 2b\n" \
  112. ".previous\n" \
  113. _ASM_EXTABLE(1b, 3b) \
  114. : [err] "=r" (err), output \
  115. : "0"(0), input); \
  116. err; \
  117. })
  118. #define check_insn(insn, output, input...) \
  119. ({ \
  120. int err; \
  121. asm volatile("1:" #insn "\n\t" \
  122. "2:\n" \
  123. ".section .fixup,\"ax\"\n" \
  124. "3: movl $-1,%[err]\n" \
  125. " jmp 2b\n" \
  126. ".previous\n" \
  127. _ASM_EXTABLE(1b, 3b) \
  128. : [err] "=r" (err), output \
  129. : "0"(0), input); \
  130. err; \
  131. })
  132. static inline int fsave_user(struct i387_fsave_struct __user *fx)
  133. {
  134. return user_insn(fnsave %[fx]; fwait, [fx] "=m" (*fx), "m" (*fx));
  135. }
  136. static inline int fxsave_user(struct i387_fxsave_struct __user *fx)
  137. {
  138. if (config_enabled(CONFIG_X86_32))
  139. return user_insn(fxsave %[fx], [fx] "=m" (*fx), "m" (*fx));
  140. else if (config_enabled(CONFIG_AS_FXSAVEQ))
  141. return user_insn(fxsaveq %[fx], [fx] "=m" (*fx), "m" (*fx));
  142. /* See comment in fpu_fxsave() below. */
  143. return user_insn(rex64/fxsave (%[fx]), "=m" (*fx), [fx] "R" (fx));
  144. }
  145. static inline int fxrstor_checking(struct i387_fxsave_struct *fx)
  146. {
  147. if (config_enabled(CONFIG_X86_32))
  148. return check_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
  149. else if (config_enabled(CONFIG_AS_FXSAVEQ))
  150. return check_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
  151. /* See comment in fpu_fxsave() below. */
  152. return check_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx),
  153. "m" (*fx));
  154. }
  155. static inline int fxrstor_user(struct i387_fxsave_struct __user *fx)
  156. {
  157. if (config_enabled(CONFIG_X86_32))
  158. return user_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
  159. else if (config_enabled(CONFIG_AS_FXSAVEQ))
  160. return user_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
  161. /* See comment in fpu_fxsave() below. */
  162. return user_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx),
  163. "m" (*fx));
  164. }
  165. static inline int frstor_checking(struct i387_fsave_struct *fx)
  166. {
  167. return check_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
  168. }
  169. static inline int frstor_user(struct i387_fsave_struct __user *fx)
  170. {
  171. return user_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
  172. }
  173. static inline void fpu_fxsave(struct fpu *fpu)
  174. {
  175. if (config_enabled(CONFIG_X86_32))
  176. asm volatile( "fxsave %[fx]" : [fx] "=m" (fpu->state->fxsave));
  177. else if (config_enabled(CONFIG_AS_FXSAVEQ))
  178. asm volatile("fxsaveq %0" : "=m" (fpu->state->fxsave));
  179. else {
  180. /* Using "rex64; fxsave %0" is broken because, if the memory
  181. * operand uses any extended registers for addressing, a second
  182. * REX prefix will be generated (to the assembler, rex64
  183. * followed by semicolon is a separate instruction), and hence
  184. * the 64-bitness is lost.
  185. *
  186. * Using "fxsaveq %0" would be the ideal choice, but is only
  187. * supported starting with gas 2.16.
  188. *
  189. * Using, as a workaround, the properly prefixed form below
  190. * isn't accepted by any binutils version so far released,
  191. * complaining that the same type of prefix is used twice if
  192. * an extended register is needed for addressing (fix submitted
  193. * to mainline 2005-11-21).
  194. *
  195. * asm volatile("rex64/fxsave %0" : "=m" (fpu->state->fxsave));
  196. *
  197. * This, however, we can work around by forcing the compiler to
  198. * select an addressing mode that doesn't require extended
  199. * registers.
  200. */
  201. asm volatile( "rex64/fxsave (%[fx])"
  202. : "=m" (fpu->state->fxsave)
  203. : [fx] "R" (&fpu->state->fxsave));
  204. }
  205. }
  206. /*
  207. * These must be called with preempt disabled. Returns
  208. * 'true' if the FPU state is still intact.
  209. */
  210. static inline int fpu_save_init(struct fpu *fpu)
  211. {
  212. if (use_xsave()) {
  213. fpu_xsave(fpu);
  214. /*
  215. * xsave header may indicate the init state of the FP.
  216. */
  217. if (!(fpu->state->xsave.xsave_hdr.xstate_bv & XSTATE_FP))
  218. return 1;
  219. } else if (use_fxsr()) {
  220. fpu_fxsave(fpu);
  221. } else {
  222. asm volatile("fnsave %[fx]; fwait"
  223. : [fx] "=m" (fpu->state->fsave));
  224. return 0;
  225. }
  226. /*
  227. * If exceptions are pending, we need to clear them so
  228. * that we don't randomly get exceptions later.
  229. *
  230. * FIXME! Is this perhaps only true for the old-style
  231. * irq13 case? Maybe we could leave the x87 state
  232. * intact otherwise?
  233. */
  234. if (unlikely(fpu->state->fxsave.swd & X87_FSW_ES)) {
  235. asm volatile("fnclex");
  236. return 0;
  237. }
  238. return 1;
  239. }
  240. static inline int __save_init_fpu(struct task_struct *tsk)
  241. {
  242. return fpu_save_init(&tsk->thread.fpu);
  243. }
  244. static inline int fpu_restore_checking(struct fpu *fpu)
  245. {
  246. if (use_xsave())
  247. return fpu_xrstor_checking(&fpu->state->xsave);
  248. else if (use_fxsr())
  249. return fxrstor_checking(&fpu->state->fxsave);
  250. else
  251. return frstor_checking(&fpu->state->fsave);
  252. }
  253. static inline int restore_fpu_checking(struct task_struct *tsk)
  254. {
  255. /* AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception
  256. is pending. Clear the x87 state here by setting it to fixed
  257. values. "m" is a random variable that should be in L1 */
  258. alternative_input(
  259. ASM_NOP8 ASM_NOP2,
  260. "emms\n\t" /* clear stack tags */
  261. "fildl %P[addr]", /* set F?P to defined value */
  262. X86_FEATURE_FXSAVE_LEAK,
  263. [addr] "m" (tsk->thread.fpu.has_fpu));
  264. return fpu_restore_checking(&tsk->thread.fpu);
  265. }
  266. /*
  267. * Software FPU state helpers. Careful: these need to
  268. * be preemption protection *and* they need to be
  269. * properly paired with the CR0.TS changes!
  270. */
  271. static inline int __thread_has_fpu(struct task_struct *tsk)
  272. {
  273. return tsk->thread.fpu.has_fpu;
  274. }
  275. /* Must be paired with an 'stts' after! */
  276. static inline void __thread_clear_has_fpu(struct task_struct *tsk)
  277. {
  278. tsk->thread.fpu.has_fpu = 0;
  279. this_cpu_write(fpu_owner_task, NULL);
  280. }
  281. /* Must be paired with a 'clts' before! */
  282. static inline void __thread_set_has_fpu(struct task_struct *tsk)
  283. {
  284. tsk->thread.fpu.has_fpu = 1;
  285. this_cpu_write(fpu_owner_task, tsk);
  286. }
  287. /*
  288. * Encapsulate the CR0.TS handling together with the
  289. * software flag.
  290. *
  291. * These generally need preemption protection to work,
  292. * do try to avoid using these on their own.
  293. */
  294. static inline void __thread_fpu_end(struct task_struct *tsk)
  295. {
  296. __thread_clear_has_fpu(tsk);
  297. if (!use_eager_fpu())
  298. stts();
  299. }
  300. static inline void __thread_fpu_begin(struct task_struct *tsk)
  301. {
  302. if (!static_cpu_has_safe(X86_FEATURE_EAGER_FPU))
  303. clts();
  304. __thread_set_has_fpu(tsk);
  305. }
  306. static inline void __drop_fpu(struct task_struct *tsk)
  307. {
  308. if (__thread_has_fpu(tsk)) {
  309. /* Ignore delayed exceptions from user space */
  310. asm volatile("1: fwait\n"
  311. "2:\n"
  312. _ASM_EXTABLE(1b, 2b));
  313. __thread_fpu_end(tsk);
  314. }
  315. }
  316. static inline void drop_fpu(struct task_struct *tsk)
  317. {
  318. /*
  319. * Forget coprocessor state..
  320. */
  321. preempt_disable();
  322. tsk->fpu_counter = 0;
  323. __drop_fpu(tsk);
  324. clear_used_math();
  325. preempt_enable();
  326. }
  327. static inline void drop_init_fpu(struct task_struct *tsk)
  328. {
  329. if (!use_eager_fpu())
  330. drop_fpu(tsk);
  331. else {
  332. if (use_xsave())
  333. xrstor_state(init_xstate_buf, -1);
  334. else
  335. fxrstor_checking(&init_xstate_buf->i387);
  336. }
  337. }
  338. /*
  339. * FPU state switching for scheduling.
  340. *
  341. * This is a two-stage process:
  342. *
  343. * - switch_fpu_prepare() saves the old state and
  344. * sets the new state of the CR0.TS bit. This is
  345. * done within the context of the old process.
  346. *
  347. * - switch_fpu_finish() restores the new state as
  348. * necessary.
  349. */
  350. typedef struct { int preload; } fpu_switch_t;
  351. /*
  352. * Must be run with preemption disabled: this clears the fpu_owner_task,
  353. * on this CPU.
  354. *
  355. * This will disable any lazy FPU state restore of the current FPU state,
  356. * but if the current thread owns the FPU, it will still be saved by.
  357. */
  358. static inline void __cpu_disable_lazy_restore(unsigned int cpu)
  359. {
  360. per_cpu(fpu_owner_task, cpu) = NULL;
  361. }
  362. static inline int fpu_lazy_restore(struct task_struct *new, unsigned int cpu)
  363. {
  364. return new == this_cpu_read_stable(fpu_owner_task) &&
  365. cpu == new->thread.fpu.last_cpu;
  366. }
  367. static inline fpu_switch_t switch_fpu_prepare(struct task_struct *old, struct task_struct *new, int cpu)
  368. {
  369. fpu_switch_t fpu;
  370. /*
  371. * If the task has used the math, pre-load the FPU on xsave processors
  372. * or if the past 5 consecutive context-switches used math.
  373. */
  374. fpu.preload = tsk_used_math(new) && (use_eager_fpu() ||
  375. new->fpu_counter > 5);
  376. if (__thread_has_fpu(old)) {
  377. if (!__save_init_fpu(old))
  378. cpu = ~0;
  379. old->thread.fpu.last_cpu = cpu;
  380. old->thread.fpu.has_fpu = 0; /* But leave fpu_owner_task! */
  381. /* Don't change CR0.TS if we just switch! */
  382. if (fpu.preload) {
  383. new->fpu_counter++;
  384. __thread_set_has_fpu(new);
  385. prefetch(new->thread.fpu.state);
  386. } else if (!use_eager_fpu())
  387. stts();
  388. } else {
  389. old->fpu_counter = 0;
  390. old->thread.fpu.last_cpu = ~0;
  391. if (fpu.preload) {
  392. new->fpu_counter++;
  393. if (!use_eager_fpu() && fpu_lazy_restore(new, cpu))
  394. fpu.preload = 0;
  395. else
  396. prefetch(new->thread.fpu.state);
  397. __thread_fpu_begin(new);
  398. }
  399. }
  400. return fpu;
  401. }
  402. /*
  403. * By the time this gets called, we've already cleared CR0.TS and
  404. * given the process the FPU if we are going to preload the FPU
  405. * state - all we need to do is to conditionally restore the register
  406. * state itself.
  407. */
  408. static inline void switch_fpu_finish(struct task_struct *new, fpu_switch_t fpu)
  409. {
  410. if (fpu.preload) {
  411. if (unlikely(restore_fpu_checking(new)))
  412. drop_init_fpu(new);
  413. }
  414. }
  415. /*
  416. * Signal frame handlers...
  417. */
  418. extern int save_xstate_sig(void __user *buf, void __user *fx, int size);
  419. extern int __restore_xstate_sig(void __user *buf, void __user *fx, int size);
  420. static inline int xstate_sigframe_size(void)
  421. {
  422. return use_xsave() ? xstate_size + FP_XSTATE_MAGIC2_SIZE : xstate_size;
  423. }
  424. static inline int restore_xstate_sig(void __user *buf, int ia32_frame)
  425. {
  426. void __user *buf_fx = buf;
  427. int size = xstate_sigframe_size();
  428. if (ia32_frame && use_fxsr()) {
  429. buf_fx = buf + sizeof(struct i387_fsave_struct);
  430. size += sizeof(struct i387_fsave_struct);
  431. }
  432. return __restore_xstate_sig(buf, buf_fx, size);
  433. }
  434. /*
  435. * Need to be preemption-safe.
  436. *
  437. * NOTE! user_fpu_begin() must be used only immediately before restoring
  438. * it. This function does not do any save/restore on their own.
  439. */
  440. static inline void user_fpu_begin(void)
  441. {
  442. preempt_disable();
  443. if (!user_has_fpu())
  444. __thread_fpu_begin(current);
  445. preempt_enable();
  446. }
  447. static inline void __save_fpu(struct task_struct *tsk)
  448. {
  449. if (use_xsave())
  450. xsave_state(&tsk->thread.fpu.state->xsave, -1);
  451. else
  452. fpu_fxsave(&tsk->thread.fpu);
  453. }
  454. /*
  455. * These disable preemption on their own and are safe
  456. */
  457. static inline void save_init_fpu(struct task_struct *tsk)
  458. {
  459. WARN_ON_ONCE(!__thread_has_fpu(tsk));
  460. if (use_eager_fpu()) {
  461. __save_fpu(tsk);
  462. return;
  463. }
  464. preempt_disable();
  465. __save_init_fpu(tsk);
  466. __thread_fpu_end(tsk);
  467. preempt_enable();
  468. }
  469. /*
  470. * i387 state interaction
  471. */
  472. static inline unsigned short get_fpu_cwd(struct task_struct *tsk)
  473. {
  474. if (cpu_has_fxsr) {
  475. return tsk->thread.fpu.state->fxsave.cwd;
  476. } else {
  477. return (unsigned short)tsk->thread.fpu.state->fsave.cwd;
  478. }
  479. }
  480. static inline unsigned short get_fpu_swd(struct task_struct *tsk)
  481. {
  482. if (cpu_has_fxsr) {
  483. return tsk->thread.fpu.state->fxsave.swd;
  484. } else {
  485. return (unsigned short)tsk->thread.fpu.state->fsave.swd;
  486. }
  487. }
  488. static inline unsigned short get_fpu_mxcsr(struct task_struct *tsk)
  489. {
  490. if (cpu_has_xmm) {
  491. return tsk->thread.fpu.state->fxsave.mxcsr;
  492. } else {
  493. return MXCSR_DEFAULT;
  494. }
  495. }
  496. static bool fpu_allocated(struct fpu *fpu)
  497. {
  498. return fpu->state != NULL;
  499. }
  500. static inline int fpu_alloc(struct fpu *fpu)
  501. {
  502. if (fpu_allocated(fpu))
  503. return 0;
  504. fpu->state = kmem_cache_alloc(task_xstate_cachep, GFP_KERNEL);
  505. if (!fpu->state)
  506. return -ENOMEM;
  507. WARN_ON((unsigned long)fpu->state & 15);
  508. return 0;
  509. }
  510. static inline void fpu_free(struct fpu *fpu)
  511. {
  512. if (fpu->state) {
  513. kmem_cache_free(task_xstate_cachep, fpu->state);
  514. fpu->state = NULL;
  515. }
  516. }
  517. static inline void fpu_copy(struct task_struct *dst, struct task_struct *src)
  518. {
  519. if (use_eager_fpu()) {
  520. memset(&dst->thread.fpu.state->xsave, 0, xstate_size);
  521. __save_fpu(dst);
  522. } else {
  523. struct fpu *dfpu = &dst->thread.fpu;
  524. struct fpu *sfpu = &src->thread.fpu;
  525. unlazy_fpu(src);
  526. memcpy(dfpu->state, sfpu->state, xstate_size);
  527. }
  528. }
  529. static inline unsigned long
  530. alloc_mathframe(unsigned long sp, int ia32_frame, unsigned long *buf_fx,
  531. unsigned long *size)
  532. {
  533. unsigned long frame_size = xstate_sigframe_size();
  534. *buf_fx = sp = round_down(sp - frame_size, 64);
  535. if (ia32_frame && use_fxsr()) {
  536. frame_size += sizeof(struct i387_fsave_struct);
  537. sp -= sizeof(struct i387_fsave_struct);
  538. }
  539. *size = frame_size;
  540. return sp;
  541. }
  542. #endif