twofish_avx_glue.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582
  1. /*
  2. * Glue Code for AVX assembler version of Twofish Cipher
  3. *
  4. * Copyright (C) 2012 Johannes Goetzfried
  5. * <Johannes.Goetzfried@informatik.stud.uni-erlangen.de>
  6. *
  7. * Copyright © 2013 Jussi Kivilinna <jussi.kivilinna@iki.fi>
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License as published by
  11. * the Free Software Foundation; either version 2 of the License, or
  12. * (at your option) any later version.
  13. *
  14. * This program is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  17. * GNU General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU General Public License
  20. * along with this program; if not, write to the Free Software
  21. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
  22. * USA
  23. *
  24. */
  25. #include <linux/module.h>
  26. #include <linux/hardirq.h>
  27. #include <linux/types.h>
  28. #include <linux/crypto.h>
  29. #include <linux/err.h>
  30. #include <crypto/algapi.h>
  31. #include <crypto/twofish.h>
  32. #include <crypto/cryptd.h>
  33. #include <crypto/b128ops.h>
  34. #include <crypto/ctr.h>
  35. #include <crypto/lrw.h>
  36. #include <crypto/xts.h>
  37. #include <asm/i387.h>
  38. #include <asm/xcr.h>
  39. #include <asm/xsave.h>
  40. #include <asm/crypto/twofish.h>
  41. #include <asm/crypto/ablk_helper.h>
  42. #include <asm/crypto/glue_helper.h>
  43. #include <crypto/scatterwalk.h>
  44. #include <linux/workqueue.h>
  45. #include <linux/spinlock.h>
  46. #define TWOFISH_PARALLEL_BLOCKS 8
  47. /* 8-way parallel cipher functions */
  48. asmlinkage void twofish_ecb_enc_8way(struct twofish_ctx *ctx, u8 *dst,
  49. const u8 *src);
  50. asmlinkage void twofish_ecb_dec_8way(struct twofish_ctx *ctx, u8 *dst,
  51. const u8 *src);
  52. asmlinkage void twofish_cbc_dec_8way(struct twofish_ctx *ctx, u8 *dst,
  53. const u8 *src);
  54. asmlinkage void twofish_ctr_8way(struct twofish_ctx *ctx, u8 *dst,
  55. const u8 *src, le128 *iv);
  56. asmlinkage void twofish_xts_enc_8way(struct twofish_ctx *ctx, u8 *dst,
  57. const u8 *src, le128 *iv);
  58. asmlinkage void twofish_xts_dec_8way(struct twofish_ctx *ctx, u8 *dst,
  59. const u8 *src, le128 *iv);
  60. static inline void twofish_enc_blk_3way(struct twofish_ctx *ctx, u8 *dst,
  61. const u8 *src)
  62. {
  63. __twofish_enc_blk_3way(ctx, dst, src, false);
  64. }
  65. static void twofish_xts_enc(void *ctx, u128 *dst, const u128 *src, le128 *iv)
  66. {
  67. glue_xts_crypt_128bit_one(ctx, dst, src, iv,
  68. GLUE_FUNC_CAST(twofish_enc_blk));
  69. }
  70. static void twofish_xts_dec(void *ctx, u128 *dst, const u128 *src, le128 *iv)
  71. {
  72. glue_xts_crypt_128bit_one(ctx, dst, src, iv,
  73. GLUE_FUNC_CAST(twofish_dec_blk));
  74. }
  75. static const struct common_glue_ctx twofish_enc = {
  76. .num_funcs = 3,
  77. .fpu_blocks_limit = TWOFISH_PARALLEL_BLOCKS,
  78. .funcs = { {
  79. .num_blocks = TWOFISH_PARALLEL_BLOCKS,
  80. .fn_u = { .ecb = GLUE_FUNC_CAST(twofish_ecb_enc_8way) }
  81. }, {
  82. .num_blocks = 3,
  83. .fn_u = { .ecb = GLUE_FUNC_CAST(twofish_enc_blk_3way) }
  84. }, {
  85. .num_blocks = 1,
  86. .fn_u = { .ecb = GLUE_FUNC_CAST(twofish_enc_blk) }
  87. } }
  88. };
  89. static const struct common_glue_ctx twofish_ctr = {
  90. .num_funcs = 3,
  91. .fpu_blocks_limit = TWOFISH_PARALLEL_BLOCKS,
  92. .funcs = { {
  93. .num_blocks = TWOFISH_PARALLEL_BLOCKS,
  94. .fn_u = { .ctr = GLUE_CTR_FUNC_CAST(twofish_ctr_8way) }
  95. }, {
  96. .num_blocks = 3,
  97. .fn_u = { .ctr = GLUE_CTR_FUNC_CAST(twofish_enc_blk_ctr_3way) }
  98. }, {
  99. .num_blocks = 1,
  100. .fn_u = { .ctr = GLUE_CTR_FUNC_CAST(twofish_enc_blk_ctr) }
  101. } }
  102. };
  103. static const struct common_glue_ctx twofish_enc_xts = {
  104. .num_funcs = 2,
  105. .fpu_blocks_limit = TWOFISH_PARALLEL_BLOCKS,
  106. .funcs = { {
  107. .num_blocks = TWOFISH_PARALLEL_BLOCKS,
  108. .fn_u = { .xts = GLUE_XTS_FUNC_CAST(twofish_xts_enc_8way) }
  109. }, {
  110. .num_blocks = 1,
  111. .fn_u = { .xts = GLUE_XTS_FUNC_CAST(twofish_xts_enc) }
  112. } }
  113. };
  114. static const struct common_glue_ctx twofish_dec = {
  115. .num_funcs = 3,
  116. .fpu_blocks_limit = TWOFISH_PARALLEL_BLOCKS,
  117. .funcs = { {
  118. .num_blocks = TWOFISH_PARALLEL_BLOCKS,
  119. .fn_u = { .ecb = GLUE_FUNC_CAST(twofish_ecb_dec_8way) }
  120. }, {
  121. .num_blocks = 3,
  122. .fn_u = { .ecb = GLUE_FUNC_CAST(twofish_dec_blk_3way) }
  123. }, {
  124. .num_blocks = 1,
  125. .fn_u = { .ecb = GLUE_FUNC_CAST(twofish_dec_blk) }
  126. } }
  127. };
  128. static const struct common_glue_ctx twofish_dec_cbc = {
  129. .num_funcs = 3,
  130. .fpu_blocks_limit = TWOFISH_PARALLEL_BLOCKS,
  131. .funcs = { {
  132. .num_blocks = TWOFISH_PARALLEL_BLOCKS,
  133. .fn_u = { .cbc = GLUE_CBC_FUNC_CAST(twofish_cbc_dec_8way) }
  134. }, {
  135. .num_blocks = 3,
  136. .fn_u = { .cbc = GLUE_CBC_FUNC_CAST(twofish_dec_blk_cbc_3way) }
  137. }, {
  138. .num_blocks = 1,
  139. .fn_u = { .cbc = GLUE_CBC_FUNC_CAST(twofish_dec_blk) }
  140. } }
  141. };
  142. static const struct common_glue_ctx twofish_dec_xts = {
  143. .num_funcs = 2,
  144. .fpu_blocks_limit = TWOFISH_PARALLEL_BLOCKS,
  145. .funcs = { {
  146. .num_blocks = TWOFISH_PARALLEL_BLOCKS,
  147. .fn_u = { .xts = GLUE_XTS_FUNC_CAST(twofish_xts_dec_8way) }
  148. }, {
  149. .num_blocks = 1,
  150. .fn_u = { .xts = GLUE_XTS_FUNC_CAST(twofish_xts_dec) }
  151. } }
  152. };
  153. static int ecb_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
  154. struct scatterlist *src, unsigned int nbytes)
  155. {
  156. return glue_ecb_crypt_128bit(&twofish_enc, desc, dst, src, nbytes);
  157. }
  158. static int ecb_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
  159. struct scatterlist *src, unsigned int nbytes)
  160. {
  161. return glue_ecb_crypt_128bit(&twofish_dec, desc, dst, src, nbytes);
  162. }
  163. static int cbc_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
  164. struct scatterlist *src, unsigned int nbytes)
  165. {
  166. return glue_cbc_encrypt_128bit(GLUE_FUNC_CAST(twofish_enc_blk), desc,
  167. dst, src, nbytes);
  168. }
  169. static int cbc_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
  170. struct scatterlist *src, unsigned int nbytes)
  171. {
  172. return glue_cbc_decrypt_128bit(&twofish_dec_cbc, desc, dst, src,
  173. nbytes);
  174. }
  175. static int ctr_crypt(struct blkcipher_desc *desc, struct scatterlist *dst,
  176. struct scatterlist *src, unsigned int nbytes)
  177. {
  178. return glue_ctr_crypt_128bit(&twofish_ctr, desc, dst, src, nbytes);
  179. }
  180. static inline bool twofish_fpu_begin(bool fpu_enabled, unsigned int nbytes)
  181. {
  182. return glue_fpu_begin(TF_BLOCK_SIZE, TWOFISH_PARALLEL_BLOCKS, NULL,
  183. fpu_enabled, nbytes);
  184. }
  185. static inline void twofish_fpu_end(bool fpu_enabled)
  186. {
  187. glue_fpu_end(fpu_enabled);
  188. }
  189. struct crypt_priv {
  190. struct twofish_ctx *ctx;
  191. bool fpu_enabled;
  192. };
  193. static void encrypt_callback(void *priv, u8 *srcdst, unsigned int nbytes)
  194. {
  195. const unsigned int bsize = TF_BLOCK_SIZE;
  196. struct crypt_priv *ctx = priv;
  197. int i;
  198. ctx->fpu_enabled = twofish_fpu_begin(ctx->fpu_enabled, nbytes);
  199. if (nbytes == bsize * TWOFISH_PARALLEL_BLOCKS) {
  200. twofish_ecb_enc_8way(ctx->ctx, srcdst, srcdst);
  201. return;
  202. }
  203. for (i = 0; i < nbytes / (bsize * 3); i++, srcdst += bsize * 3)
  204. twofish_enc_blk_3way(ctx->ctx, srcdst, srcdst);
  205. nbytes %= bsize * 3;
  206. for (i = 0; i < nbytes / bsize; i++, srcdst += bsize)
  207. twofish_enc_blk(ctx->ctx, srcdst, srcdst);
  208. }
  209. static void decrypt_callback(void *priv, u8 *srcdst, unsigned int nbytes)
  210. {
  211. const unsigned int bsize = TF_BLOCK_SIZE;
  212. struct crypt_priv *ctx = priv;
  213. int i;
  214. ctx->fpu_enabled = twofish_fpu_begin(ctx->fpu_enabled, nbytes);
  215. if (nbytes == bsize * TWOFISH_PARALLEL_BLOCKS) {
  216. twofish_ecb_dec_8way(ctx->ctx, srcdst, srcdst);
  217. return;
  218. }
  219. for (i = 0; i < nbytes / (bsize * 3); i++, srcdst += bsize * 3)
  220. twofish_dec_blk_3way(ctx->ctx, srcdst, srcdst);
  221. nbytes %= bsize * 3;
  222. for (i = 0; i < nbytes / bsize; i++, srcdst += bsize)
  223. twofish_dec_blk(ctx->ctx, srcdst, srcdst);
  224. }
  225. static int lrw_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
  226. struct scatterlist *src, unsigned int nbytes)
  227. {
  228. struct twofish_lrw_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
  229. be128 buf[TWOFISH_PARALLEL_BLOCKS];
  230. struct crypt_priv crypt_ctx = {
  231. .ctx = &ctx->twofish_ctx,
  232. .fpu_enabled = false,
  233. };
  234. struct lrw_crypt_req req = {
  235. .tbuf = buf,
  236. .tbuflen = sizeof(buf),
  237. .table_ctx = &ctx->lrw_table,
  238. .crypt_ctx = &crypt_ctx,
  239. .crypt_fn = encrypt_callback,
  240. };
  241. int ret;
  242. desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
  243. ret = lrw_crypt(desc, dst, src, nbytes, &req);
  244. twofish_fpu_end(crypt_ctx.fpu_enabled);
  245. return ret;
  246. }
  247. static int lrw_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
  248. struct scatterlist *src, unsigned int nbytes)
  249. {
  250. struct twofish_lrw_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
  251. be128 buf[TWOFISH_PARALLEL_BLOCKS];
  252. struct crypt_priv crypt_ctx = {
  253. .ctx = &ctx->twofish_ctx,
  254. .fpu_enabled = false,
  255. };
  256. struct lrw_crypt_req req = {
  257. .tbuf = buf,
  258. .tbuflen = sizeof(buf),
  259. .table_ctx = &ctx->lrw_table,
  260. .crypt_ctx = &crypt_ctx,
  261. .crypt_fn = decrypt_callback,
  262. };
  263. int ret;
  264. desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
  265. ret = lrw_crypt(desc, dst, src, nbytes, &req);
  266. twofish_fpu_end(crypt_ctx.fpu_enabled);
  267. return ret;
  268. }
  269. static int xts_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
  270. struct scatterlist *src, unsigned int nbytes)
  271. {
  272. struct twofish_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
  273. return glue_xts_crypt_128bit(&twofish_enc_xts, desc, dst, src, nbytes,
  274. XTS_TWEAK_CAST(twofish_enc_blk),
  275. &ctx->tweak_ctx, &ctx->crypt_ctx);
  276. }
  277. static int xts_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
  278. struct scatterlist *src, unsigned int nbytes)
  279. {
  280. struct twofish_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
  281. return glue_xts_crypt_128bit(&twofish_dec_xts, desc, dst, src, nbytes,
  282. XTS_TWEAK_CAST(twofish_enc_blk),
  283. &ctx->tweak_ctx, &ctx->crypt_ctx);
  284. }
  285. static struct crypto_alg twofish_algs[10] = { {
  286. .cra_name = "__ecb-twofish-avx",
  287. .cra_driver_name = "__driver-ecb-twofish-avx",
  288. .cra_priority = 0,
  289. .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
  290. .cra_blocksize = TF_BLOCK_SIZE,
  291. .cra_ctxsize = sizeof(struct twofish_ctx),
  292. .cra_alignmask = 0,
  293. .cra_type = &crypto_blkcipher_type,
  294. .cra_module = THIS_MODULE,
  295. .cra_u = {
  296. .blkcipher = {
  297. .min_keysize = TF_MIN_KEY_SIZE,
  298. .max_keysize = TF_MAX_KEY_SIZE,
  299. .setkey = twofish_setkey,
  300. .encrypt = ecb_encrypt,
  301. .decrypt = ecb_decrypt,
  302. },
  303. },
  304. }, {
  305. .cra_name = "__cbc-twofish-avx",
  306. .cra_driver_name = "__driver-cbc-twofish-avx",
  307. .cra_priority = 0,
  308. .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
  309. .cra_blocksize = TF_BLOCK_SIZE,
  310. .cra_ctxsize = sizeof(struct twofish_ctx),
  311. .cra_alignmask = 0,
  312. .cra_type = &crypto_blkcipher_type,
  313. .cra_module = THIS_MODULE,
  314. .cra_u = {
  315. .blkcipher = {
  316. .min_keysize = TF_MIN_KEY_SIZE,
  317. .max_keysize = TF_MAX_KEY_SIZE,
  318. .setkey = twofish_setkey,
  319. .encrypt = cbc_encrypt,
  320. .decrypt = cbc_decrypt,
  321. },
  322. },
  323. }, {
  324. .cra_name = "__ctr-twofish-avx",
  325. .cra_driver_name = "__driver-ctr-twofish-avx",
  326. .cra_priority = 0,
  327. .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
  328. .cra_blocksize = 1,
  329. .cra_ctxsize = sizeof(struct twofish_ctx),
  330. .cra_alignmask = 0,
  331. .cra_type = &crypto_blkcipher_type,
  332. .cra_module = THIS_MODULE,
  333. .cra_u = {
  334. .blkcipher = {
  335. .min_keysize = TF_MIN_KEY_SIZE,
  336. .max_keysize = TF_MAX_KEY_SIZE,
  337. .ivsize = TF_BLOCK_SIZE,
  338. .setkey = twofish_setkey,
  339. .encrypt = ctr_crypt,
  340. .decrypt = ctr_crypt,
  341. },
  342. },
  343. }, {
  344. .cra_name = "__lrw-twofish-avx",
  345. .cra_driver_name = "__driver-lrw-twofish-avx",
  346. .cra_priority = 0,
  347. .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
  348. .cra_blocksize = TF_BLOCK_SIZE,
  349. .cra_ctxsize = sizeof(struct twofish_lrw_ctx),
  350. .cra_alignmask = 0,
  351. .cra_type = &crypto_blkcipher_type,
  352. .cra_module = THIS_MODULE,
  353. .cra_exit = lrw_twofish_exit_tfm,
  354. .cra_u = {
  355. .blkcipher = {
  356. .min_keysize = TF_MIN_KEY_SIZE +
  357. TF_BLOCK_SIZE,
  358. .max_keysize = TF_MAX_KEY_SIZE +
  359. TF_BLOCK_SIZE,
  360. .ivsize = TF_BLOCK_SIZE,
  361. .setkey = lrw_twofish_setkey,
  362. .encrypt = lrw_encrypt,
  363. .decrypt = lrw_decrypt,
  364. },
  365. },
  366. }, {
  367. .cra_name = "__xts-twofish-avx",
  368. .cra_driver_name = "__driver-xts-twofish-avx",
  369. .cra_priority = 0,
  370. .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
  371. .cra_blocksize = TF_BLOCK_SIZE,
  372. .cra_ctxsize = sizeof(struct twofish_xts_ctx),
  373. .cra_alignmask = 0,
  374. .cra_type = &crypto_blkcipher_type,
  375. .cra_module = THIS_MODULE,
  376. .cra_u = {
  377. .blkcipher = {
  378. .min_keysize = TF_MIN_KEY_SIZE * 2,
  379. .max_keysize = TF_MAX_KEY_SIZE * 2,
  380. .ivsize = TF_BLOCK_SIZE,
  381. .setkey = xts_twofish_setkey,
  382. .encrypt = xts_encrypt,
  383. .decrypt = xts_decrypt,
  384. },
  385. },
  386. }, {
  387. .cra_name = "ecb(twofish)",
  388. .cra_driver_name = "ecb-twofish-avx",
  389. .cra_priority = 400,
  390. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  391. .cra_blocksize = TF_BLOCK_SIZE,
  392. .cra_ctxsize = sizeof(struct async_helper_ctx),
  393. .cra_alignmask = 0,
  394. .cra_type = &crypto_ablkcipher_type,
  395. .cra_module = THIS_MODULE,
  396. .cra_init = ablk_init,
  397. .cra_exit = ablk_exit,
  398. .cra_u = {
  399. .ablkcipher = {
  400. .min_keysize = TF_MIN_KEY_SIZE,
  401. .max_keysize = TF_MAX_KEY_SIZE,
  402. .setkey = ablk_set_key,
  403. .encrypt = ablk_encrypt,
  404. .decrypt = ablk_decrypt,
  405. },
  406. },
  407. }, {
  408. .cra_name = "cbc(twofish)",
  409. .cra_driver_name = "cbc-twofish-avx",
  410. .cra_priority = 400,
  411. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  412. .cra_blocksize = TF_BLOCK_SIZE,
  413. .cra_ctxsize = sizeof(struct async_helper_ctx),
  414. .cra_alignmask = 0,
  415. .cra_type = &crypto_ablkcipher_type,
  416. .cra_module = THIS_MODULE,
  417. .cra_init = ablk_init,
  418. .cra_exit = ablk_exit,
  419. .cra_u = {
  420. .ablkcipher = {
  421. .min_keysize = TF_MIN_KEY_SIZE,
  422. .max_keysize = TF_MAX_KEY_SIZE,
  423. .ivsize = TF_BLOCK_SIZE,
  424. .setkey = ablk_set_key,
  425. .encrypt = __ablk_encrypt,
  426. .decrypt = ablk_decrypt,
  427. },
  428. },
  429. }, {
  430. .cra_name = "ctr(twofish)",
  431. .cra_driver_name = "ctr-twofish-avx",
  432. .cra_priority = 400,
  433. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  434. .cra_blocksize = 1,
  435. .cra_ctxsize = sizeof(struct async_helper_ctx),
  436. .cra_alignmask = 0,
  437. .cra_type = &crypto_ablkcipher_type,
  438. .cra_module = THIS_MODULE,
  439. .cra_init = ablk_init,
  440. .cra_exit = ablk_exit,
  441. .cra_u = {
  442. .ablkcipher = {
  443. .min_keysize = TF_MIN_KEY_SIZE,
  444. .max_keysize = TF_MAX_KEY_SIZE,
  445. .ivsize = TF_BLOCK_SIZE,
  446. .setkey = ablk_set_key,
  447. .encrypt = ablk_encrypt,
  448. .decrypt = ablk_encrypt,
  449. .geniv = "chainiv",
  450. },
  451. },
  452. }, {
  453. .cra_name = "lrw(twofish)",
  454. .cra_driver_name = "lrw-twofish-avx",
  455. .cra_priority = 400,
  456. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  457. .cra_blocksize = TF_BLOCK_SIZE,
  458. .cra_ctxsize = sizeof(struct async_helper_ctx),
  459. .cra_alignmask = 0,
  460. .cra_type = &crypto_ablkcipher_type,
  461. .cra_module = THIS_MODULE,
  462. .cra_init = ablk_init,
  463. .cra_exit = ablk_exit,
  464. .cra_u = {
  465. .ablkcipher = {
  466. .min_keysize = TF_MIN_KEY_SIZE +
  467. TF_BLOCK_SIZE,
  468. .max_keysize = TF_MAX_KEY_SIZE +
  469. TF_BLOCK_SIZE,
  470. .ivsize = TF_BLOCK_SIZE,
  471. .setkey = ablk_set_key,
  472. .encrypt = ablk_encrypt,
  473. .decrypt = ablk_decrypt,
  474. },
  475. },
  476. }, {
  477. .cra_name = "xts(twofish)",
  478. .cra_driver_name = "xts-twofish-avx",
  479. .cra_priority = 400,
  480. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  481. .cra_blocksize = TF_BLOCK_SIZE,
  482. .cra_ctxsize = sizeof(struct async_helper_ctx),
  483. .cra_alignmask = 0,
  484. .cra_type = &crypto_ablkcipher_type,
  485. .cra_module = THIS_MODULE,
  486. .cra_init = ablk_init,
  487. .cra_exit = ablk_exit,
  488. .cra_u = {
  489. .ablkcipher = {
  490. .min_keysize = TF_MIN_KEY_SIZE * 2,
  491. .max_keysize = TF_MAX_KEY_SIZE * 2,
  492. .ivsize = TF_BLOCK_SIZE,
  493. .setkey = ablk_set_key,
  494. .encrypt = ablk_encrypt,
  495. .decrypt = ablk_decrypt,
  496. },
  497. },
  498. } };
  499. static int __init twofish_init(void)
  500. {
  501. u64 xcr0;
  502. if (!cpu_has_avx || !cpu_has_osxsave) {
  503. printk(KERN_INFO "AVX instructions are not detected.\n");
  504. return -ENODEV;
  505. }
  506. xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
  507. if ((xcr0 & (XSTATE_SSE | XSTATE_YMM)) != (XSTATE_SSE | XSTATE_YMM)) {
  508. printk(KERN_INFO "AVX detected but unusable.\n");
  509. return -ENODEV;
  510. }
  511. return crypto_register_algs(twofish_algs, ARRAY_SIZE(twofish_algs));
  512. }
  513. static void __exit twofish_exit(void)
  514. {
  515. crypto_unregister_algs(twofish_algs, ARRAY_SIZE(twofish_algs));
  516. }
  517. module_init(twofish_init);
  518. module_exit(twofish_exit);
  519. MODULE_DESCRIPTION("Twofish Cipher Algorithm, AVX optimized");
  520. MODULE_LICENSE("GPL");
  521. MODULE_ALIAS("twofish");