init_64.c 66 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748
  1. /*
  2. * arch/sparc64/mm/init.c
  3. *
  4. * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
  5. * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
  6. */
  7. #include <linux/module.h>
  8. #include <linux/kernel.h>
  9. #include <linux/sched.h>
  10. #include <linux/string.h>
  11. #include <linux/init.h>
  12. #include <linux/bootmem.h>
  13. #include <linux/mm.h>
  14. #include <linux/hugetlb.h>
  15. #include <linux/initrd.h>
  16. #include <linux/swap.h>
  17. #include <linux/pagemap.h>
  18. #include <linux/poison.h>
  19. #include <linux/fs.h>
  20. #include <linux/seq_file.h>
  21. #include <linux/kprobes.h>
  22. #include <linux/cache.h>
  23. #include <linux/sort.h>
  24. #include <linux/percpu.h>
  25. #include <linux/memblock.h>
  26. #include <linux/mmzone.h>
  27. #include <linux/gfp.h>
  28. #include <asm/head.h>
  29. #include <asm/page.h>
  30. #include <asm/pgalloc.h>
  31. #include <asm/pgtable.h>
  32. #include <asm/oplib.h>
  33. #include <asm/iommu.h>
  34. #include <asm/io.h>
  35. #include <asm/uaccess.h>
  36. #include <asm/mmu_context.h>
  37. #include <asm/tlbflush.h>
  38. #include <asm/dma.h>
  39. #include <asm/starfire.h>
  40. #include <asm/tlb.h>
  41. #include <asm/spitfire.h>
  42. #include <asm/sections.h>
  43. #include <asm/tsb.h>
  44. #include <asm/hypervisor.h>
  45. #include <asm/prom.h>
  46. #include <asm/mdesc.h>
  47. #include <asm/cpudata.h>
  48. #include <asm/irq.h>
  49. #include "init_64.h"
  50. unsigned long kern_linear_pte_xor[4] __read_mostly;
  51. /* A bitmap, two bits for every 256MB of physical memory. These two
  52. * bits determine what page size we use for kernel linear
  53. * translations. They form an index into kern_linear_pte_xor[]. The
  54. * value in the indexed slot is XOR'd with the TLB miss virtual
  55. * address to form the resulting TTE. The mapping is:
  56. *
  57. * 0 ==> 4MB
  58. * 1 ==> 256MB
  59. * 2 ==> 2GB
  60. * 3 ==> 16GB
  61. *
  62. * All sun4v chips support 256MB pages. Only SPARC-T4 and later
  63. * support 2GB pages, and hopefully future cpus will support the 16GB
  64. * pages as well. For slots 2 and 3, we encode a 256MB TTE xor there
  65. * if these larger page sizes are not supported by the cpu.
  66. *
  67. * It would be nice to determine this from the machine description
  68. * 'cpu' properties, but we need to have this table setup before the
  69. * MDESC is initialized.
  70. */
  71. unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
  72. #ifndef CONFIG_DEBUG_PAGEALLOC
  73. /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
  74. * Space is allocated for this right after the trap table in
  75. * arch/sparc64/kernel/head.S
  76. */
  77. extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
  78. #endif
  79. static unsigned long cpu_pgsz_mask;
  80. #define MAX_BANKS 32
  81. static struct linux_prom64_registers pavail[MAX_BANKS];
  82. static int pavail_ents;
  83. static int cmp_p64(const void *a, const void *b)
  84. {
  85. const struct linux_prom64_registers *x = a, *y = b;
  86. if (x->phys_addr > y->phys_addr)
  87. return 1;
  88. if (x->phys_addr < y->phys_addr)
  89. return -1;
  90. return 0;
  91. }
  92. static void __init read_obp_memory(const char *property,
  93. struct linux_prom64_registers *regs,
  94. int *num_ents)
  95. {
  96. phandle node = prom_finddevice("/memory");
  97. int prop_size = prom_getproplen(node, property);
  98. int ents, ret, i;
  99. ents = prop_size / sizeof(struct linux_prom64_registers);
  100. if (ents > MAX_BANKS) {
  101. prom_printf("The machine has more %s property entries than "
  102. "this kernel can support (%d).\n",
  103. property, MAX_BANKS);
  104. prom_halt();
  105. }
  106. ret = prom_getproperty(node, property, (char *) regs, prop_size);
  107. if (ret == -1) {
  108. prom_printf("Couldn't get %s property from /memory.\n",
  109. property);
  110. prom_halt();
  111. }
  112. /* Sanitize what we got from the firmware, by page aligning
  113. * everything.
  114. */
  115. for (i = 0; i < ents; i++) {
  116. unsigned long base, size;
  117. base = regs[i].phys_addr;
  118. size = regs[i].reg_size;
  119. size &= PAGE_MASK;
  120. if (base & ~PAGE_MASK) {
  121. unsigned long new_base = PAGE_ALIGN(base);
  122. size -= new_base - base;
  123. if ((long) size < 0L)
  124. size = 0UL;
  125. base = new_base;
  126. }
  127. if (size == 0UL) {
  128. /* If it is empty, simply get rid of it.
  129. * This simplifies the logic of the other
  130. * functions that process these arrays.
  131. */
  132. memmove(&regs[i], &regs[i + 1],
  133. (ents - i - 1) * sizeof(regs[0]));
  134. i--;
  135. ents--;
  136. continue;
  137. }
  138. regs[i].phys_addr = base;
  139. regs[i].reg_size = size;
  140. }
  141. *num_ents = ents;
  142. sort(regs, ents, sizeof(struct linux_prom64_registers),
  143. cmp_p64, NULL);
  144. }
  145. unsigned long sparc64_valid_addr_bitmap[VALID_ADDR_BITMAP_BYTES /
  146. sizeof(unsigned long)];
  147. EXPORT_SYMBOL(sparc64_valid_addr_bitmap);
  148. /* Kernel physical address base and size in bytes. */
  149. unsigned long kern_base __read_mostly;
  150. unsigned long kern_size __read_mostly;
  151. /* Initial ramdisk setup */
  152. extern unsigned long sparc_ramdisk_image64;
  153. extern unsigned int sparc_ramdisk_image;
  154. extern unsigned int sparc_ramdisk_size;
  155. struct page *mem_map_zero __read_mostly;
  156. EXPORT_SYMBOL(mem_map_zero);
  157. unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
  158. unsigned long sparc64_kern_pri_context __read_mostly;
  159. unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
  160. unsigned long sparc64_kern_sec_context __read_mostly;
  161. int num_kernel_image_mappings;
  162. #ifdef CONFIG_DEBUG_DCFLUSH
  163. atomic_t dcpage_flushes = ATOMIC_INIT(0);
  164. #ifdef CONFIG_SMP
  165. atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
  166. #endif
  167. #endif
  168. inline void flush_dcache_page_impl(struct page *page)
  169. {
  170. BUG_ON(tlb_type == hypervisor);
  171. #ifdef CONFIG_DEBUG_DCFLUSH
  172. atomic_inc(&dcpage_flushes);
  173. #endif
  174. #ifdef DCACHE_ALIASING_POSSIBLE
  175. __flush_dcache_page(page_address(page),
  176. ((tlb_type == spitfire) &&
  177. page_mapping(page) != NULL));
  178. #else
  179. if (page_mapping(page) != NULL &&
  180. tlb_type == spitfire)
  181. __flush_icache_page(__pa(page_address(page)));
  182. #endif
  183. }
  184. #define PG_dcache_dirty PG_arch_1
  185. #define PG_dcache_cpu_shift 32UL
  186. #define PG_dcache_cpu_mask \
  187. ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
  188. #define dcache_dirty_cpu(page) \
  189. (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
  190. static inline void set_dcache_dirty(struct page *page, int this_cpu)
  191. {
  192. unsigned long mask = this_cpu;
  193. unsigned long non_cpu_bits;
  194. non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
  195. mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
  196. __asm__ __volatile__("1:\n\t"
  197. "ldx [%2], %%g7\n\t"
  198. "and %%g7, %1, %%g1\n\t"
  199. "or %%g1, %0, %%g1\n\t"
  200. "casx [%2], %%g7, %%g1\n\t"
  201. "cmp %%g7, %%g1\n\t"
  202. "bne,pn %%xcc, 1b\n\t"
  203. " nop"
  204. : /* no outputs */
  205. : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
  206. : "g1", "g7");
  207. }
  208. static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
  209. {
  210. unsigned long mask = (1UL << PG_dcache_dirty);
  211. __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
  212. "1:\n\t"
  213. "ldx [%2], %%g7\n\t"
  214. "srlx %%g7, %4, %%g1\n\t"
  215. "and %%g1, %3, %%g1\n\t"
  216. "cmp %%g1, %0\n\t"
  217. "bne,pn %%icc, 2f\n\t"
  218. " andn %%g7, %1, %%g1\n\t"
  219. "casx [%2], %%g7, %%g1\n\t"
  220. "cmp %%g7, %%g1\n\t"
  221. "bne,pn %%xcc, 1b\n\t"
  222. " nop\n"
  223. "2:"
  224. : /* no outputs */
  225. : "r" (cpu), "r" (mask), "r" (&page->flags),
  226. "i" (PG_dcache_cpu_mask),
  227. "i" (PG_dcache_cpu_shift)
  228. : "g1", "g7");
  229. }
  230. static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
  231. {
  232. unsigned long tsb_addr = (unsigned long) ent;
  233. if (tlb_type == cheetah_plus || tlb_type == hypervisor)
  234. tsb_addr = __pa(tsb_addr);
  235. __tsb_insert(tsb_addr, tag, pte);
  236. }
  237. unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
  238. static void flush_dcache(unsigned long pfn)
  239. {
  240. struct page *page;
  241. page = pfn_to_page(pfn);
  242. if (page) {
  243. unsigned long pg_flags;
  244. pg_flags = page->flags;
  245. if (pg_flags & (1UL << PG_dcache_dirty)) {
  246. int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
  247. PG_dcache_cpu_mask);
  248. int this_cpu = get_cpu();
  249. /* This is just to optimize away some function calls
  250. * in the SMP case.
  251. */
  252. if (cpu == this_cpu)
  253. flush_dcache_page_impl(page);
  254. else
  255. smp_flush_dcache_page_impl(page, cpu);
  256. clear_dcache_dirty_cpu(page, cpu);
  257. put_cpu();
  258. }
  259. }
  260. }
  261. /* mm->context.lock must be held */
  262. static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
  263. unsigned long tsb_hash_shift, unsigned long address,
  264. unsigned long tte)
  265. {
  266. struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
  267. unsigned long tag;
  268. if (unlikely(!tsb))
  269. return;
  270. tsb += ((address >> tsb_hash_shift) &
  271. (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
  272. tag = (address >> 22UL);
  273. tsb_insert(tsb, tag, tte);
  274. }
  275. #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
  276. static inline bool is_hugetlb_pte(pte_t pte)
  277. {
  278. if ((tlb_type == hypervisor &&
  279. (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
  280. (tlb_type != hypervisor &&
  281. (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U))
  282. return true;
  283. return false;
  284. }
  285. #endif
  286. void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
  287. {
  288. struct mm_struct *mm;
  289. unsigned long flags;
  290. pte_t pte = *ptep;
  291. if (tlb_type != hypervisor) {
  292. unsigned long pfn = pte_pfn(pte);
  293. if (pfn_valid(pfn))
  294. flush_dcache(pfn);
  295. }
  296. mm = vma->vm_mm;
  297. spin_lock_irqsave(&mm->context.lock, flags);
  298. #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
  299. if (mm->context.huge_pte_count && is_hugetlb_pte(pte))
  300. __update_mmu_tsb_insert(mm, MM_TSB_HUGE, HPAGE_SHIFT,
  301. address, pte_val(pte));
  302. else
  303. #endif
  304. __update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
  305. address, pte_val(pte));
  306. spin_unlock_irqrestore(&mm->context.lock, flags);
  307. }
  308. void flush_dcache_page(struct page *page)
  309. {
  310. struct address_space *mapping;
  311. int this_cpu;
  312. if (tlb_type == hypervisor)
  313. return;
  314. /* Do not bother with the expensive D-cache flush if it
  315. * is merely the zero page. The 'bigcore' testcase in GDB
  316. * causes this case to run millions of times.
  317. */
  318. if (page == ZERO_PAGE(0))
  319. return;
  320. this_cpu = get_cpu();
  321. mapping = page_mapping(page);
  322. if (mapping && !mapping_mapped(mapping)) {
  323. int dirty = test_bit(PG_dcache_dirty, &page->flags);
  324. if (dirty) {
  325. int dirty_cpu = dcache_dirty_cpu(page);
  326. if (dirty_cpu == this_cpu)
  327. goto out;
  328. smp_flush_dcache_page_impl(page, dirty_cpu);
  329. }
  330. set_dcache_dirty(page, this_cpu);
  331. } else {
  332. /* We could delay the flush for the !page_mapping
  333. * case too. But that case is for exec env/arg
  334. * pages and those are %99 certainly going to get
  335. * faulted into the tlb (and thus flushed) anyways.
  336. */
  337. flush_dcache_page_impl(page);
  338. }
  339. out:
  340. put_cpu();
  341. }
  342. EXPORT_SYMBOL(flush_dcache_page);
  343. void __kprobes flush_icache_range(unsigned long start, unsigned long end)
  344. {
  345. /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
  346. if (tlb_type == spitfire) {
  347. unsigned long kaddr;
  348. /* This code only runs on Spitfire cpus so this is
  349. * why we can assume _PAGE_PADDR_4U.
  350. */
  351. for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
  352. unsigned long paddr, mask = _PAGE_PADDR_4U;
  353. if (kaddr >= PAGE_OFFSET)
  354. paddr = kaddr & mask;
  355. else {
  356. pgd_t *pgdp = pgd_offset_k(kaddr);
  357. pud_t *pudp = pud_offset(pgdp, kaddr);
  358. pmd_t *pmdp = pmd_offset(pudp, kaddr);
  359. pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
  360. paddr = pte_val(*ptep) & mask;
  361. }
  362. __flush_icache_page(paddr);
  363. }
  364. }
  365. }
  366. EXPORT_SYMBOL(flush_icache_range);
  367. void mmu_info(struct seq_file *m)
  368. {
  369. static const char *pgsz_strings[] = {
  370. "8K", "64K", "512K", "4MB", "32MB",
  371. "256MB", "2GB", "16GB",
  372. };
  373. int i, printed;
  374. if (tlb_type == cheetah)
  375. seq_printf(m, "MMU Type\t: Cheetah\n");
  376. else if (tlb_type == cheetah_plus)
  377. seq_printf(m, "MMU Type\t: Cheetah+\n");
  378. else if (tlb_type == spitfire)
  379. seq_printf(m, "MMU Type\t: Spitfire\n");
  380. else if (tlb_type == hypervisor)
  381. seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
  382. else
  383. seq_printf(m, "MMU Type\t: ???\n");
  384. seq_printf(m, "MMU PGSZs\t: ");
  385. printed = 0;
  386. for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
  387. if (cpu_pgsz_mask & (1UL << i)) {
  388. seq_printf(m, "%s%s",
  389. printed ? "," : "", pgsz_strings[i]);
  390. printed++;
  391. }
  392. }
  393. seq_putc(m, '\n');
  394. #ifdef CONFIG_DEBUG_DCFLUSH
  395. seq_printf(m, "DCPageFlushes\t: %d\n",
  396. atomic_read(&dcpage_flushes));
  397. #ifdef CONFIG_SMP
  398. seq_printf(m, "DCPageFlushesXC\t: %d\n",
  399. atomic_read(&dcpage_flushes_xcall));
  400. #endif /* CONFIG_SMP */
  401. #endif /* CONFIG_DEBUG_DCFLUSH */
  402. }
  403. struct linux_prom_translation prom_trans[512] __read_mostly;
  404. unsigned int prom_trans_ents __read_mostly;
  405. unsigned long kern_locked_tte_data;
  406. /* The obp translations are saved based on 8k pagesize, since obp can
  407. * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
  408. * HI_OBP_ADDRESS range are handled in ktlb.S.
  409. */
  410. static inline int in_obp_range(unsigned long vaddr)
  411. {
  412. return (vaddr >= LOW_OBP_ADDRESS &&
  413. vaddr < HI_OBP_ADDRESS);
  414. }
  415. static int cmp_ptrans(const void *a, const void *b)
  416. {
  417. const struct linux_prom_translation *x = a, *y = b;
  418. if (x->virt > y->virt)
  419. return 1;
  420. if (x->virt < y->virt)
  421. return -1;
  422. return 0;
  423. }
  424. /* Read OBP translations property into 'prom_trans[]'. */
  425. static void __init read_obp_translations(void)
  426. {
  427. int n, node, ents, first, last, i;
  428. node = prom_finddevice("/virtual-memory");
  429. n = prom_getproplen(node, "translations");
  430. if (unlikely(n == 0 || n == -1)) {
  431. prom_printf("prom_mappings: Couldn't get size.\n");
  432. prom_halt();
  433. }
  434. if (unlikely(n > sizeof(prom_trans))) {
  435. prom_printf("prom_mappings: Size %d is too big.\n", n);
  436. prom_halt();
  437. }
  438. if ((n = prom_getproperty(node, "translations",
  439. (char *)&prom_trans[0],
  440. sizeof(prom_trans))) == -1) {
  441. prom_printf("prom_mappings: Couldn't get property.\n");
  442. prom_halt();
  443. }
  444. n = n / sizeof(struct linux_prom_translation);
  445. ents = n;
  446. sort(prom_trans, ents, sizeof(struct linux_prom_translation),
  447. cmp_ptrans, NULL);
  448. /* Now kick out all the non-OBP entries. */
  449. for (i = 0; i < ents; i++) {
  450. if (in_obp_range(prom_trans[i].virt))
  451. break;
  452. }
  453. first = i;
  454. for (; i < ents; i++) {
  455. if (!in_obp_range(prom_trans[i].virt))
  456. break;
  457. }
  458. last = i;
  459. for (i = 0; i < (last - first); i++) {
  460. struct linux_prom_translation *src = &prom_trans[i + first];
  461. struct linux_prom_translation *dest = &prom_trans[i];
  462. *dest = *src;
  463. }
  464. for (; i < ents; i++) {
  465. struct linux_prom_translation *dest = &prom_trans[i];
  466. dest->virt = dest->size = dest->data = 0x0UL;
  467. }
  468. prom_trans_ents = last - first;
  469. if (tlb_type == spitfire) {
  470. /* Clear diag TTE bits. */
  471. for (i = 0; i < prom_trans_ents; i++)
  472. prom_trans[i].data &= ~0x0003fe0000000000UL;
  473. }
  474. /* Force execute bit on. */
  475. for (i = 0; i < prom_trans_ents; i++)
  476. prom_trans[i].data |= (tlb_type == hypervisor ?
  477. _PAGE_EXEC_4V : _PAGE_EXEC_4U);
  478. }
  479. static void __init hypervisor_tlb_lock(unsigned long vaddr,
  480. unsigned long pte,
  481. unsigned long mmu)
  482. {
  483. unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
  484. if (ret != 0) {
  485. prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
  486. "errors with %lx\n", vaddr, 0, pte, mmu, ret);
  487. prom_halt();
  488. }
  489. }
  490. static unsigned long kern_large_tte(unsigned long paddr);
  491. static void __init remap_kernel(void)
  492. {
  493. unsigned long phys_page, tte_vaddr, tte_data;
  494. int i, tlb_ent = sparc64_highest_locked_tlbent();
  495. tte_vaddr = (unsigned long) KERNBASE;
  496. phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
  497. tte_data = kern_large_tte(phys_page);
  498. kern_locked_tte_data = tte_data;
  499. /* Now lock us into the TLBs via Hypervisor or OBP. */
  500. if (tlb_type == hypervisor) {
  501. for (i = 0; i < num_kernel_image_mappings; i++) {
  502. hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
  503. hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
  504. tte_vaddr += 0x400000;
  505. tte_data += 0x400000;
  506. }
  507. } else {
  508. for (i = 0; i < num_kernel_image_mappings; i++) {
  509. prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
  510. prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
  511. tte_vaddr += 0x400000;
  512. tte_data += 0x400000;
  513. }
  514. sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
  515. }
  516. if (tlb_type == cheetah_plus) {
  517. sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
  518. CTX_CHEETAH_PLUS_NUC);
  519. sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
  520. sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
  521. }
  522. }
  523. static void __init inherit_prom_mappings(void)
  524. {
  525. /* Now fixup OBP's idea about where we really are mapped. */
  526. printk("Remapping the kernel... ");
  527. remap_kernel();
  528. printk("done.\n");
  529. }
  530. void prom_world(int enter)
  531. {
  532. if (!enter)
  533. set_fs(get_fs());
  534. __asm__ __volatile__("flushw");
  535. }
  536. void __flush_dcache_range(unsigned long start, unsigned long end)
  537. {
  538. unsigned long va;
  539. if (tlb_type == spitfire) {
  540. int n = 0;
  541. for (va = start; va < end; va += 32) {
  542. spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
  543. if (++n >= 512)
  544. break;
  545. }
  546. } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
  547. start = __pa(start);
  548. end = __pa(end);
  549. for (va = start; va < end; va += 32)
  550. __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
  551. "membar #Sync"
  552. : /* no outputs */
  553. : "r" (va),
  554. "i" (ASI_DCACHE_INVALIDATE));
  555. }
  556. }
  557. EXPORT_SYMBOL(__flush_dcache_range);
  558. /* get_new_mmu_context() uses "cache + 1". */
  559. DEFINE_SPINLOCK(ctx_alloc_lock);
  560. unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
  561. #define MAX_CTX_NR (1UL << CTX_NR_BITS)
  562. #define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR)
  563. DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
  564. /* Caller does TLB context flushing on local CPU if necessary.
  565. * The caller also ensures that CTX_VALID(mm->context) is false.
  566. *
  567. * We must be careful about boundary cases so that we never
  568. * let the user have CTX 0 (nucleus) or we ever use a CTX
  569. * version of zero (and thus NO_CONTEXT would not be caught
  570. * by version mis-match tests in mmu_context.h).
  571. *
  572. * Always invoked with interrupts disabled.
  573. */
  574. void get_new_mmu_context(struct mm_struct *mm)
  575. {
  576. unsigned long ctx, new_ctx;
  577. unsigned long orig_pgsz_bits;
  578. int new_version;
  579. spin_lock(&ctx_alloc_lock);
  580. orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
  581. ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
  582. new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
  583. new_version = 0;
  584. if (new_ctx >= (1 << CTX_NR_BITS)) {
  585. new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
  586. if (new_ctx >= ctx) {
  587. int i;
  588. new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
  589. CTX_FIRST_VERSION;
  590. if (new_ctx == 1)
  591. new_ctx = CTX_FIRST_VERSION;
  592. /* Don't call memset, for 16 entries that's just
  593. * plain silly...
  594. */
  595. mmu_context_bmap[0] = 3;
  596. mmu_context_bmap[1] = 0;
  597. mmu_context_bmap[2] = 0;
  598. mmu_context_bmap[3] = 0;
  599. for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
  600. mmu_context_bmap[i + 0] = 0;
  601. mmu_context_bmap[i + 1] = 0;
  602. mmu_context_bmap[i + 2] = 0;
  603. mmu_context_bmap[i + 3] = 0;
  604. }
  605. new_version = 1;
  606. goto out;
  607. }
  608. }
  609. mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
  610. new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
  611. out:
  612. tlb_context_cache = new_ctx;
  613. mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
  614. spin_unlock(&ctx_alloc_lock);
  615. if (unlikely(new_version))
  616. smp_new_mmu_context_version();
  617. }
  618. static int numa_enabled = 1;
  619. static int numa_debug;
  620. static int __init early_numa(char *p)
  621. {
  622. if (!p)
  623. return 0;
  624. if (strstr(p, "off"))
  625. numa_enabled = 0;
  626. if (strstr(p, "debug"))
  627. numa_debug = 1;
  628. return 0;
  629. }
  630. early_param("numa", early_numa);
  631. #define numadbg(f, a...) \
  632. do { if (numa_debug) \
  633. printk(KERN_INFO f, ## a); \
  634. } while (0)
  635. static void __init find_ramdisk(unsigned long phys_base)
  636. {
  637. #ifdef CONFIG_BLK_DEV_INITRD
  638. if (sparc_ramdisk_image || sparc_ramdisk_image64) {
  639. unsigned long ramdisk_image;
  640. /* Older versions of the bootloader only supported a
  641. * 32-bit physical address for the ramdisk image
  642. * location, stored at sparc_ramdisk_image. Newer
  643. * SILO versions set sparc_ramdisk_image to zero and
  644. * provide a full 64-bit physical address at
  645. * sparc_ramdisk_image64.
  646. */
  647. ramdisk_image = sparc_ramdisk_image;
  648. if (!ramdisk_image)
  649. ramdisk_image = sparc_ramdisk_image64;
  650. /* Another bootloader quirk. The bootloader normalizes
  651. * the physical address to KERNBASE, so we have to
  652. * factor that back out and add in the lowest valid
  653. * physical page address to get the true physical address.
  654. */
  655. ramdisk_image -= KERNBASE;
  656. ramdisk_image += phys_base;
  657. numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
  658. ramdisk_image, sparc_ramdisk_size);
  659. initrd_start = ramdisk_image;
  660. initrd_end = ramdisk_image + sparc_ramdisk_size;
  661. memblock_reserve(initrd_start, sparc_ramdisk_size);
  662. initrd_start += PAGE_OFFSET;
  663. initrd_end += PAGE_OFFSET;
  664. }
  665. #endif
  666. }
  667. struct node_mem_mask {
  668. unsigned long mask;
  669. unsigned long val;
  670. };
  671. static struct node_mem_mask node_masks[MAX_NUMNODES];
  672. static int num_node_masks;
  673. int numa_cpu_lookup_table[NR_CPUS];
  674. cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
  675. #ifdef CONFIG_NEED_MULTIPLE_NODES
  676. struct mdesc_mblock {
  677. u64 base;
  678. u64 size;
  679. u64 offset; /* RA-to-PA */
  680. };
  681. static struct mdesc_mblock *mblocks;
  682. static int num_mblocks;
  683. static unsigned long ra_to_pa(unsigned long addr)
  684. {
  685. int i;
  686. for (i = 0; i < num_mblocks; i++) {
  687. struct mdesc_mblock *m = &mblocks[i];
  688. if (addr >= m->base &&
  689. addr < (m->base + m->size)) {
  690. addr += m->offset;
  691. break;
  692. }
  693. }
  694. return addr;
  695. }
  696. static int find_node(unsigned long addr)
  697. {
  698. int i;
  699. addr = ra_to_pa(addr);
  700. for (i = 0; i < num_node_masks; i++) {
  701. struct node_mem_mask *p = &node_masks[i];
  702. if ((addr & p->mask) == p->val)
  703. return i;
  704. }
  705. return -1;
  706. }
  707. static u64 memblock_nid_range(u64 start, u64 end, int *nid)
  708. {
  709. *nid = find_node(start);
  710. start += PAGE_SIZE;
  711. while (start < end) {
  712. int n = find_node(start);
  713. if (n != *nid)
  714. break;
  715. start += PAGE_SIZE;
  716. }
  717. if (start > end)
  718. start = end;
  719. return start;
  720. }
  721. #endif
  722. /* This must be invoked after performing all of the necessary
  723. * memblock_set_node() calls for 'nid'. We need to be able to get
  724. * correct data from get_pfn_range_for_nid().
  725. */
  726. static void __init allocate_node_data(int nid)
  727. {
  728. struct pglist_data *p;
  729. unsigned long start_pfn, end_pfn;
  730. #ifdef CONFIG_NEED_MULTIPLE_NODES
  731. unsigned long paddr;
  732. paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
  733. if (!paddr) {
  734. prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
  735. prom_halt();
  736. }
  737. NODE_DATA(nid) = __va(paddr);
  738. memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
  739. NODE_DATA(nid)->node_id = nid;
  740. #endif
  741. p = NODE_DATA(nid);
  742. get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
  743. p->node_start_pfn = start_pfn;
  744. p->node_spanned_pages = end_pfn - start_pfn;
  745. }
  746. static void init_node_masks_nonnuma(void)
  747. {
  748. int i;
  749. numadbg("Initializing tables for non-numa.\n");
  750. node_masks[0].mask = node_masks[0].val = 0;
  751. num_node_masks = 1;
  752. for (i = 0; i < NR_CPUS; i++)
  753. numa_cpu_lookup_table[i] = 0;
  754. cpumask_setall(&numa_cpumask_lookup_table[0]);
  755. }
  756. #ifdef CONFIG_NEED_MULTIPLE_NODES
  757. struct pglist_data *node_data[MAX_NUMNODES];
  758. EXPORT_SYMBOL(numa_cpu_lookup_table);
  759. EXPORT_SYMBOL(numa_cpumask_lookup_table);
  760. EXPORT_SYMBOL(node_data);
  761. struct mdesc_mlgroup {
  762. u64 node;
  763. u64 latency;
  764. u64 match;
  765. u64 mask;
  766. };
  767. static struct mdesc_mlgroup *mlgroups;
  768. static int num_mlgroups;
  769. static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
  770. u32 cfg_handle)
  771. {
  772. u64 arc;
  773. mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
  774. u64 target = mdesc_arc_target(md, arc);
  775. const u64 *val;
  776. val = mdesc_get_property(md, target,
  777. "cfg-handle", NULL);
  778. if (val && *val == cfg_handle)
  779. return 0;
  780. }
  781. return -ENODEV;
  782. }
  783. static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
  784. u32 cfg_handle)
  785. {
  786. u64 arc, candidate, best_latency = ~(u64)0;
  787. candidate = MDESC_NODE_NULL;
  788. mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
  789. u64 target = mdesc_arc_target(md, arc);
  790. const char *name = mdesc_node_name(md, target);
  791. const u64 *val;
  792. if (strcmp(name, "pio-latency-group"))
  793. continue;
  794. val = mdesc_get_property(md, target, "latency", NULL);
  795. if (!val)
  796. continue;
  797. if (*val < best_latency) {
  798. candidate = target;
  799. best_latency = *val;
  800. }
  801. }
  802. if (candidate == MDESC_NODE_NULL)
  803. return -ENODEV;
  804. return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
  805. }
  806. int of_node_to_nid(struct device_node *dp)
  807. {
  808. const struct linux_prom64_registers *regs;
  809. struct mdesc_handle *md;
  810. u32 cfg_handle;
  811. int count, nid;
  812. u64 grp;
  813. /* This is the right thing to do on currently supported
  814. * SUN4U NUMA platforms as well, as the PCI controller does
  815. * not sit behind any particular memory controller.
  816. */
  817. if (!mlgroups)
  818. return -1;
  819. regs = of_get_property(dp, "reg", NULL);
  820. if (!regs)
  821. return -1;
  822. cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
  823. md = mdesc_grab();
  824. count = 0;
  825. nid = -1;
  826. mdesc_for_each_node_by_name(md, grp, "group") {
  827. if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
  828. nid = count;
  829. break;
  830. }
  831. count++;
  832. }
  833. mdesc_release(md);
  834. return nid;
  835. }
  836. static void __init add_node_ranges(void)
  837. {
  838. struct memblock_region *reg;
  839. for_each_memblock(memory, reg) {
  840. unsigned long size = reg->size;
  841. unsigned long start, end;
  842. start = reg->base;
  843. end = start + size;
  844. while (start < end) {
  845. unsigned long this_end;
  846. int nid;
  847. this_end = memblock_nid_range(start, end, &nid);
  848. numadbg("Setting memblock NUMA node nid[%d] "
  849. "start[%lx] end[%lx]\n",
  850. nid, start, this_end);
  851. memblock_set_node(start, this_end - start, nid);
  852. start = this_end;
  853. }
  854. }
  855. }
  856. static int __init grab_mlgroups(struct mdesc_handle *md)
  857. {
  858. unsigned long paddr;
  859. int count = 0;
  860. u64 node;
  861. mdesc_for_each_node_by_name(md, node, "memory-latency-group")
  862. count++;
  863. if (!count)
  864. return -ENOENT;
  865. paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
  866. SMP_CACHE_BYTES);
  867. if (!paddr)
  868. return -ENOMEM;
  869. mlgroups = __va(paddr);
  870. num_mlgroups = count;
  871. count = 0;
  872. mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
  873. struct mdesc_mlgroup *m = &mlgroups[count++];
  874. const u64 *val;
  875. m->node = node;
  876. val = mdesc_get_property(md, node, "latency", NULL);
  877. m->latency = *val;
  878. val = mdesc_get_property(md, node, "address-match", NULL);
  879. m->match = *val;
  880. val = mdesc_get_property(md, node, "address-mask", NULL);
  881. m->mask = *val;
  882. numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
  883. "match[%llx] mask[%llx]\n",
  884. count - 1, m->node, m->latency, m->match, m->mask);
  885. }
  886. return 0;
  887. }
  888. static int __init grab_mblocks(struct mdesc_handle *md)
  889. {
  890. unsigned long paddr;
  891. int count = 0;
  892. u64 node;
  893. mdesc_for_each_node_by_name(md, node, "mblock")
  894. count++;
  895. if (!count)
  896. return -ENOENT;
  897. paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
  898. SMP_CACHE_BYTES);
  899. if (!paddr)
  900. return -ENOMEM;
  901. mblocks = __va(paddr);
  902. num_mblocks = count;
  903. count = 0;
  904. mdesc_for_each_node_by_name(md, node, "mblock") {
  905. struct mdesc_mblock *m = &mblocks[count++];
  906. const u64 *val;
  907. val = mdesc_get_property(md, node, "base", NULL);
  908. m->base = *val;
  909. val = mdesc_get_property(md, node, "size", NULL);
  910. m->size = *val;
  911. val = mdesc_get_property(md, node,
  912. "address-congruence-offset", NULL);
  913. /* The address-congruence-offset property is optional.
  914. * Explicity zero it be identifty this.
  915. */
  916. if (val)
  917. m->offset = *val;
  918. else
  919. m->offset = 0UL;
  920. numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
  921. count - 1, m->base, m->size, m->offset);
  922. }
  923. return 0;
  924. }
  925. static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
  926. u64 grp, cpumask_t *mask)
  927. {
  928. u64 arc;
  929. cpumask_clear(mask);
  930. mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
  931. u64 target = mdesc_arc_target(md, arc);
  932. const char *name = mdesc_node_name(md, target);
  933. const u64 *id;
  934. if (strcmp(name, "cpu"))
  935. continue;
  936. id = mdesc_get_property(md, target, "id", NULL);
  937. if (*id < nr_cpu_ids)
  938. cpumask_set_cpu(*id, mask);
  939. }
  940. }
  941. static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
  942. {
  943. int i;
  944. for (i = 0; i < num_mlgroups; i++) {
  945. struct mdesc_mlgroup *m = &mlgroups[i];
  946. if (m->node == node)
  947. return m;
  948. }
  949. return NULL;
  950. }
  951. static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
  952. int index)
  953. {
  954. struct mdesc_mlgroup *candidate = NULL;
  955. u64 arc, best_latency = ~(u64)0;
  956. struct node_mem_mask *n;
  957. mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
  958. u64 target = mdesc_arc_target(md, arc);
  959. struct mdesc_mlgroup *m = find_mlgroup(target);
  960. if (!m)
  961. continue;
  962. if (m->latency < best_latency) {
  963. candidate = m;
  964. best_latency = m->latency;
  965. }
  966. }
  967. if (!candidate)
  968. return -ENOENT;
  969. if (num_node_masks != index) {
  970. printk(KERN_ERR "Inconsistent NUMA state, "
  971. "index[%d] != num_node_masks[%d]\n",
  972. index, num_node_masks);
  973. return -EINVAL;
  974. }
  975. n = &node_masks[num_node_masks++];
  976. n->mask = candidate->mask;
  977. n->val = candidate->match;
  978. numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n",
  979. index, n->mask, n->val, candidate->latency);
  980. return 0;
  981. }
  982. static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
  983. int index)
  984. {
  985. cpumask_t mask;
  986. int cpu;
  987. numa_parse_mdesc_group_cpus(md, grp, &mask);
  988. for_each_cpu(cpu, &mask)
  989. numa_cpu_lookup_table[cpu] = index;
  990. cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
  991. if (numa_debug) {
  992. printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
  993. for_each_cpu(cpu, &mask)
  994. printk("%d ", cpu);
  995. printk("]\n");
  996. }
  997. return numa_attach_mlgroup(md, grp, index);
  998. }
  999. static int __init numa_parse_mdesc(void)
  1000. {
  1001. struct mdesc_handle *md = mdesc_grab();
  1002. int i, err, count;
  1003. u64 node;
  1004. node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
  1005. if (node == MDESC_NODE_NULL) {
  1006. mdesc_release(md);
  1007. return -ENOENT;
  1008. }
  1009. err = grab_mblocks(md);
  1010. if (err < 0)
  1011. goto out;
  1012. err = grab_mlgroups(md);
  1013. if (err < 0)
  1014. goto out;
  1015. count = 0;
  1016. mdesc_for_each_node_by_name(md, node, "group") {
  1017. err = numa_parse_mdesc_group(md, node, count);
  1018. if (err < 0)
  1019. break;
  1020. count++;
  1021. }
  1022. add_node_ranges();
  1023. for (i = 0; i < num_node_masks; i++) {
  1024. allocate_node_data(i);
  1025. node_set_online(i);
  1026. }
  1027. err = 0;
  1028. out:
  1029. mdesc_release(md);
  1030. return err;
  1031. }
  1032. static int __init numa_parse_jbus(void)
  1033. {
  1034. unsigned long cpu, index;
  1035. /* NUMA node id is encoded in bits 36 and higher, and there is
  1036. * a 1-to-1 mapping from CPU ID to NUMA node ID.
  1037. */
  1038. index = 0;
  1039. for_each_present_cpu(cpu) {
  1040. numa_cpu_lookup_table[cpu] = index;
  1041. cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
  1042. node_masks[index].mask = ~((1UL << 36UL) - 1UL);
  1043. node_masks[index].val = cpu << 36UL;
  1044. index++;
  1045. }
  1046. num_node_masks = index;
  1047. add_node_ranges();
  1048. for (index = 0; index < num_node_masks; index++) {
  1049. allocate_node_data(index);
  1050. node_set_online(index);
  1051. }
  1052. return 0;
  1053. }
  1054. static int __init numa_parse_sun4u(void)
  1055. {
  1056. if (tlb_type == cheetah || tlb_type == cheetah_plus) {
  1057. unsigned long ver;
  1058. __asm__ ("rdpr %%ver, %0" : "=r" (ver));
  1059. if ((ver >> 32UL) == __JALAPENO_ID ||
  1060. (ver >> 32UL) == __SERRANO_ID)
  1061. return numa_parse_jbus();
  1062. }
  1063. return -1;
  1064. }
  1065. static int __init bootmem_init_numa(void)
  1066. {
  1067. int err = -1;
  1068. numadbg("bootmem_init_numa()\n");
  1069. if (numa_enabled) {
  1070. if (tlb_type == hypervisor)
  1071. err = numa_parse_mdesc();
  1072. else
  1073. err = numa_parse_sun4u();
  1074. }
  1075. return err;
  1076. }
  1077. #else
  1078. static int bootmem_init_numa(void)
  1079. {
  1080. return -1;
  1081. }
  1082. #endif
  1083. static void __init bootmem_init_nonnuma(void)
  1084. {
  1085. unsigned long top_of_ram = memblock_end_of_DRAM();
  1086. unsigned long total_ram = memblock_phys_mem_size();
  1087. numadbg("bootmem_init_nonnuma()\n");
  1088. printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
  1089. top_of_ram, total_ram);
  1090. printk(KERN_INFO "Memory hole size: %ldMB\n",
  1091. (top_of_ram - total_ram) >> 20);
  1092. init_node_masks_nonnuma();
  1093. memblock_set_node(0, (phys_addr_t)ULLONG_MAX, 0);
  1094. allocate_node_data(0);
  1095. node_set_online(0);
  1096. }
  1097. static unsigned long __init bootmem_init(unsigned long phys_base)
  1098. {
  1099. unsigned long end_pfn;
  1100. end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
  1101. max_pfn = max_low_pfn = end_pfn;
  1102. min_low_pfn = (phys_base >> PAGE_SHIFT);
  1103. if (bootmem_init_numa() < 0)
  1104. bootmem_init_nonnuma();
  1105. /* Dump memblock with node info. */
  1106. memblock_dump_all();
  1107. /* XXX cpu notifier XXX */
  1108. sparse_memory_present_with_active_regions(MAX_NUMNODES);
  1109. sparse_init();
  1110. return end_pfn;
  1111. }
  1112. static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
  1113. static int pall_ents __initdata;
  1114. #ifdef CONFIG_DEBUG_PAGEALLOC
  1115. static unsigned long __ref kernel_map_range(unsigned long pstart,
  1116. unsigned long pend, pgprot_t prot)
  1117. {
  1118. unsigned long vstart = PAGE_OFFSET + pstart;
  1119. unsigned long vend = PAGE_OFFSET + pend;
  1120. unsigned long alloc_bytes = 0UL;
  1121. if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
  1122. prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
  1123. vstart, vend);
  1124. prom_halt();
  1125. }
  1126. while (vstart < vend) {
  1127. unsigned long this_end, paddr = __pa(vstart);
  1128. pgd_t *pgd = pgd_offset_k(vstart);
  1129. pud_t *pud;
  1130. pmd_t *pmd;
  1131. pte_t *pte;
  1132. pud = pud_offset(pgd, vstart);
  1133. if (pud_none(*pud)) {
  1134. pmd_t *new;
  1135. new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
  1136. alloc_bytes += PAGE_SIZE;
  1137. pud_populate(&init_mm, pud, new);
  1138. }
  1139. pmd = pmd_offset(pud, vstart);
  1140. if (!pmd_present(*pmd)) {
  1141. pte_t *new;
  1142. new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
  1143. alloc_bytes += PAGE_SIZE;
  1144. pmd_populate_kernel(&init_mm, pmd, new);
  1145. }
  1146. pte = pte_offset_kernel(pmd, vstart);
  1147. this_end = (vstart + PMD_SIZE) & PMD_MASK;
  1148. if (this_end > vend)
  1149. this_end = vend;
  1150. while (vstart < this_end) {
  1151. pte_val(*pte) = (paddr | pgprot_val(prot));
  1152. vstart += PAGE_SIZE;
  1153. paddr += PAGE_SIZE;
  1154. pte++;
  1155. }
  1156. }
  1157. return alloc_bytes;
  1158. }
  1159. extern unsigned int kvmap_linear_patch[1];
  1160. #endif /* CONFIG_DEBUG_PAGEALLOC */
  1161. static void __init kpte_set_val(unsigned long index, unsigned long val)
  1162. {
  1163. unsigned long *ptr = kpte_linear_bitmap;
  1164. val <<= ((index % (BITS_PER_LONG / 2)) * 2);
  1165. ptr += (index / (BITS_PER_LONG / 2));
  1166. *ptr |= val;
  1167. }
  1168. static const unsigned long kpte_shift_min = 28; /* 256MB */
  1169. static const unsigned long kpte_shift_max = 34; /* 16GB */
  1170. static const unsigned long kpte_shift_incr = 3;
  1171. static unsigned long kpte_mark_using_shift(unsigned long start, unsigned long end,
  1172. unsigned long shift)
  1173. {
  1174. unsigned long size = (1UL << shift);
  1175. unsigned long mask = (size - 1UL);
  1176. unsigned long remains = end - start;
  1177. unsigned long val;
  1178. if (remains < size || (start & mask))
  1179. return start;
  1180. /* VAL maps:
  1181. *
  1182. * shift 28 --> kern_linear_pte_xor index 1
  1183. * shift 31 --> kern_linear_pte_xor index 2
  1184. * shift 34 --> kern_linear_pte_xor index 3
  1185. */
  1186. val = ((shift - kpte_shift_min) / kpte_shift_incr) + 1;
  1187. remains &= ~mask;
  1188. if (shift != kpte_shift_max)
  1189. remains = size;
  1190. while (remains) {
  1191. unsigned long index = start >> kpte_shift_min;
  1192. kpte_set_val(index, val);
  1193. start += 1UL << kpte_shift_min;
  1194. remains -= 1UL << kpte_shift_min;
  1195. }
  1196. return start;
  1197. }
  1198. static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
  1199. {
  1200. unsigned long smallest_size, smallest_mask;
  1201. unsigned long s;
  1202. smallest_size = (1UL << kpte_shift_min);
  1203. smallest_mask = (smallest_size - 1UL);
  1204. while (start < end) {
  1205. unsigned long orig_start = start;
  1206. for (s = kpte_shift_max; s >= kpte_shift_min; s -= kpte_shift_incr) {
  1207. start = kpte_mark_using_shift(start, end, s);
  1208. if (start != orig_start)
  1209. break;
  1210. }
  1211. if (start == orig_start)
  1212. start = (start + smallest_size) & ~smallest_mask;
  1213. }
  1214. }
  1215. static void __init init_kpte_bitmap(void)
  1216. {
  1217. unsigned long i;
  1218. for (i = 0; i < pall_ents; i++) {
  1219. unsigned long phys_start, phys_end;
  1220. phys_start = pall[i].phys_addr;
  1221. phys_end = phys_start + pall[i].reg_size;
  1222. mark_kpte_bitmap(phys_start, phys_end);
  1223. }
  1224. }
  1225. static void __init kernel_physical_mapping_init(void)
  1226. {
  1227. #ifdef CONFIG_DEBUG_PAGEALLOC
  1228. unsigned long i, mem_alloced = 0UL;
  1229. for (i = 0; i < pall_ents; i++) {
  1230. unsigned long phys_start, phys_end;
  1231. phys_start = pall[i].phys_addr;
  1232. phys_end = phys_start + pall[i].reg_size;
  1233. mem_alloced += kernel_map_range(phys_start, phys_end,
  1234. PAGE_KERNEL);
  1235. }
  1236. printk("Allocated %ld bytes for kernel page tables.\n",
  1237. mem_alloced);
  1238. kvmap_linear_patch[0] = 0x01000000; /* nop */
  1239. flushi(&kvmap_linear_patch[0]);
  1240. __flush_tlb_all();
  1241. #endif
  1242. }
  1243. #ifdef CONFIG_DEBUG_PAGEALLOC
  1244. void kernel_map_pages(struct page *page, int numpages, int enable)
  1245. {
  1246. unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
  1247. unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
  1248. kernel_map_range(phys_start, phys_end,
  1249. (enable ? PAGE_KERNEL : __pgprot(0)));
  1250. flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
  1251. PAGE_OFFSET + phys_end);
  1252. /* we should perform an IPI and flush all tlbs,
  1253. * but that can deadlock->flush only current cpu.
  1254. */
  1255. __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
  1256. PAGE_OFFSET + phys_end);
  1257. }
  1258. #endif
  1259. unsigned long __init find_ecache_flush_span(unsigned long size)
  1260. {
  1261. int i;
  1262. for (i = 0; i < pavail_ents; i++) {
  1263. if (pavail[i].reg_size >= size)
  1264. return pavail[i].phys_addr;
  1265. }
  1266. return ~0UL;
  1267. }
  1268. static void __init tsb_phys_patch(void)
  1269. {
  1270. struct tsb_ldquad_phys_patch_entry *pquad;
  1271. struct tsb_phys_patch_entry *p;
  1272. pquad = &__tsb_ldquad_phys_patch;
  1273. while (pquad < &__tsb_ldquad_phys_patch_end) {
  1274. unsigned long addr = pquad->addr;
  1275. if (tlb_type == hypervisor)
  1276. *(unsigned int *) addr = pquad->sun4v_insn;
  1277. else
  1278. *(unsigned int *) addr = pquad->sun4u_insn;
  1279. wmb();
  1280. __asm__ __volatile__("flush %0"
  1281. : /* no outputs */
  1282. : "r" (addr));
  1283. pquad++;
  1284. }
  1285. p = &__tsb_phys_patch;
  1286. while (p < &__tsb_phys_patch_end) {
  1287. unsigned long addr = p->addr;
  1288. *(unsigned int *) addr = p->insn;
  1289. wmb();
  1290. __asm__ __volatile__("flush %0"
  1291. : /* no outputs */
  1292. : "r" (addr));
  1293. p++;
  1294. }
  1295. }
  1296. /* Don't mark as init, we give this to the Hypervisor. */
  1297. #ifndef CONFIG_DEBUG_PAGEALLOC
  1298. #define NUM_KTSB_DESCR 2
  1299. #else
  1300. #define NUM_KTSB_DESCR 1
  1301. #endif
  1302. static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
  1303. extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
  1304. static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
  1305. {
  1306. pa >>= KTSB_PHYS_SHIFT;
  1307. while (start < end) {
  1308. unsigned int *ia = (unsigned int *)(unsigned long)*start;
  1309. ia[0] = (ia[0] & ~0x3fffff) | (pa >> 10);
  1310. __asm__ __volatile__("flush %0" : : "r" (ia));
  1311. ia[1] = (ia[1] & ~0x3ff) | (pa & 0x3ff);
  1312. __asm__ __volatile__("flush %0" : : "r" (ia + 1));
  1313. start++;
  1314. }
  1315. }
  1316. static void ktsb_phys_patch(void)
  1317. {
  1318. extern unsigned int __swapper_tsb_phys_patch;
  1319. extern unsigned int __swapper_tsb_phys_patch_end;
  1320. unsigned long ktsb_pa;
  1321. ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
  1322. patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
  1323. &__swapper_tsb_phys_patch_end, ktsb_pa);
  1324. #ifndef CONFIG_DEBUG_PAGEALLOC
  1325. {
  1326. extern unsigned int __swapper_4m_tsb_phys_patch;
  1327. extern unsigned int __swapper_4m_tsb_phys_patch_end;
  1328. ktsb_pa = (kern_base +
  1329. ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
  1330. patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
  1331. &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
  1332. }
  1333. #endif
  1334. }
  1335. static void __init sun4v_ktsb_init(void)
  1336. {
  1337. unsigned long ktsb_pa;
  1338. /* First KTSB for PAGE_SIZE mappings. */
  1339. ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
  1340. switch (PAGE_SIZE) {
  1341. case 8 * 1024:
  1342. default:
  1343. ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
  1344. ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
  1345. break;
  1346. case 64 * 1024:
  1347. ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
  1348. ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
  1349. break;
  1350. case 512 * 1024:
  1351. ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
  1352. ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
  1353. break;
  1354. case 4 * 1024 * 1024:
  1355. ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
  1356. ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
  1357. break;
  1358. }
  1359. ktsb_descr[0].assoc = 1;
  1360. ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
  1361. ktsb_descr[0].ctx_idx = 0;
  1362. ktsb_descr[0].tsb_base = ktsb_pa;
  1363. ktsb_descr[0].resv = 0;
  1364. #ifndef CONFIG_DEBUG_PAGEALLOC
  1365. /* Second KTSB for 4MB/256MB/2GB/16GB mappings. */
  1366. ktsb_pa = (kern_base +
  1367. ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
  1368. ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
  1369. ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
  1370. HV_PGSZ_MASK_256MB |
  1371. HV_PGSZ_MASK_2GB |
  1372. HV_PGSZ_MASK_16GB) &
  1373. cpu_pgsz_mask);
  1374. ktsb_descr[1].assoc = 1;
  1375. ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
  1376. ktsb_descr[1].ctx_idx = 0;
  1377. ktsb_descr[1].tsb_base = ktsb_pa;
  1378. ktsb_descr[1].resv = 0;
  1379. #endif
  1380. }
  1381. void sun4v_ktsb_register(void)
  1382. {
  1383. unsigned long pa, ret;
  1384. pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
  1385. ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
  1386. if (ret != 0) {
  1387. prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
  1388. "errors with %lx\n", pa, ret);
  1389. prom_halt();
  1390. }
  1391. }
  1392. static void __init sun4u_linear_pte_xor_finalize(void)
  1393. {
  1394. #ifndef CONFIG_DEBUG_PAGEALLOC
  1395. /* This is where we would add Panther support for
  1396. * 32MB and 256MB pages.
  1397. */
  1398. #endif
  1399. }
  1400. static void __init sun4v_linear_pte_xor_finalize(void)
  1401. {
  1402. #ifndef CONFIG_DEBUG_PAGEALLOC
  1403. if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
  1404. kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
  1405. 0xfffff80000000000UL;
  1406. kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
  1407. _PAGE_P_4V | _PAGE_W_4V);
  1408. } else {
  1409. kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
  1410. }
  1411. if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
  1412. kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
  1413. 0xfffff80000000000UL;
  1414. kern_linear_pte_xor[2] |= (_PAGE_CP_4V | _PAGE_CV_4V |
  1415. _PAGE_P_4V | _PAGE_W_4V);
  1416. } else {
  1417. kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
  1418. }
  1419. if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
  1420. kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
  1421. 0xfffff80000000000UL;
  1422. kern_linear_pte_xor[3] |= (_PAGE_CP_4V | _PAGE_CV_4V |
  1423. _PAGE_P_4V | _PAGE_W_4V);
  1424. } else {
  1425. kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
  1426. }
  1427. #endif
  1428. }
  1429. /* paging_init() sets up the page tables */
  1430. static unsigned long last_valid_pfn;
  1431. pgd_t swapper_pg_dir[2048];
  1432. static void sun4u_pgprot_init(void);
  1433. static void sun4v_pgprot_init(void);
  1434. void __init paging_init(void)
  1435. {
  1436. unsigned long end_pfn, shift, phys_base;
  1437. unsigned long real_end, i;
  1438. int node;
  1439. /* These build time checkes make sure that the dcache_dirty_cpu()
  1440. * page->flags usage will work.
  1441. *
  1442. * When a page gets marked as dcache-dirty, we store the
  1443. * cpu number starting at bit 32 in the page->flags. Also,
  1444. * functions like clear_dcache_dirty_cpu use the cpu mask
  1445. * in 13-bit signed-immediate instruction fields.
  1446. */
  1447. /*
  1448. * Page flags must not reach into upper 32 bits that are used
  1449. * for the cpu number
  1450. */
  1451. BUILD_BUG_ON(NR_PAGEFLAGS > 32);
  1452. /*
  1453. * The bit fields placed in the high range must not reach below
  1454. * the 32 bit boundary. Otherwise we cannot place the cpu field
  1455. * at the 32 bit boundary.
  1456. */
  1457. BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
  1458. ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
  1459. BUILD_BUG_ON(NR_CPUS > 4096);
  1460. kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
  1461. kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
  1462. /* Invalidate both kernel TSBs. */
  1463. memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
  1464. #ifndef CONFIG_DEBUG_PAGEALLOC
  1465. memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
  1466. #endif
  1467. if (tlb_type == hypervisor)
  1468. sun4v_pgprot_init();
  1469. else
  1470. sun4u_pgprot_init();
  1471. if (tlb_type == cheetah_plus ||
  1472. tlb_type == hypervisor) {
  1473. tsb_phys_patch();
  1474. ktsb_phys_patch();
  1475. }
  1476. if (tlb_type == hypervisor)
  1477. sun4v_patch_tlb_handlers();
  1478. /* Find available physical memory...
  1479. *
  1480. * Read it twice in order to work around a bug in openfirmware.
  1481. * The call to grab this table itself can cause openfirmware to
  1482. * allocate memory, which in turn can take away some space from
  1483. * the list of available memory. Reading it twice makes sure
  1484. * we really do get the final value.
  1485. */
  1486. read_obp_translations();
  1487. read_obp_memory("reg", &pall[0], &pall_ents);
  1488. read_obp_memory("available", &pavail[0], &pavail_ents);
  1489. read_obp_memory("available", &pavail[0], &pavail_ents);
  1490. phys_base = 0xffffffffffffffffUL;
  1491. for (i = 0; i < pavail_ents; i++) {
  1492. phys_base = min(phys_base, pavail[i].phys_addr);
  1493. memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
  1494. }
  1495. memblock_reserve(kern_base, kern_size);
  1496. find_ramdisk(phys_base);
  1497. memblock_enforce_memory_limit(cmdline_memory_size);
  1498. memblock_allow_resize();
  1499. memblock_dump_all();
  1500. set_bit(0, mmu_context_bmap);
  1501. shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
  1502. real_end = (unsigned long)_end;
  1503. num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << 22);
  1504. printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
  1505. num_kernel_image_mappings);
  1506. /* Set kernel pgd to upper alias so physical page computations
  1507. * work.
  1508. */
  1509. init_mm.pgd += ((shift) / (sizeof(pgd_t)));
  1510. memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
  1511. /* Now can init the kernel/bad page tables. */
  1512. pud_set(pud_offset(&swapper_pg_dir[0], 0),
  1513. swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
  1514. inherit_prom_mappings();
  1515. init_kpte_bitmap();
  1516. /* Ok, we can use our TLB miss and window trap handlers safely. */
  1517. setup_tba();
  1518. __flush_tlb_all();
  1519. prom_build_devicetree();
  1520. of_populate_present_mask();
  1521. #ifndef CONFIG_SMP
  1522. of_fill_in_cpu_data();
  1523. #endif
  1524. if (tlb_type == hypervisor) {
  1525. sun4v_mdesc_init();
  1526. mdesc_populate_present_mask(cpu_all_mask);
  1527. #ifndef CONFIG_SMP
  1528. mdesc_fill_in_cpu_data(cpu_all_mask);
  1529. #endif
  1530. mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
  1531. sun4v_linear_pte_xor_finalize();
  1532. sun4v_ktsb_init();
  1533. sun4v_ktsb_register();
  1534. } else {
  1535. unsigned long impl, ver;
  1536. cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
  1537. HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
  1538. __asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
  1539. impl = ((ver >> 32) & 0xffff);
  1540. if (impl == PANTHER_IMPL)
  1541. cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
  1542. HV_PGSZ_MASK_256MB);
  1543. sun4u_linear_pte_xor_finalize();
  1544. }
  1545. /* Flush the TLBs and the 4M TSB so that the updated linear
  1546. * pte XOR settings are realized for all mappings.
  1547. */
  1548. __flush_tlb_all();
  1549. #ifndef CONFIG_DEBUG_PAGEALLOC
  1550. memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
  1551. #endif
  1552. __flush_tlb_all();
  1553. /* Setup bootmem... */
  1554. last_valid_pfn = end_pfn = bootmem_init(phys_base);
  1555. /* Once the OF device tree and MDESC have been setup, we know
  1556. * the list of possible cpus. Therefore we can allocate the
  1557. * IRQ stacks.
  1558. */
  1559. for_each_possible_cpu(i) {
  1560. node = cpu_to_node(i);
  1561. softirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
  1562. THREAD_SIZE,
  1563. THREAD_SIZE, 0);
  1564. hardirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
  1565. THREAD_SIZE,
  1566. THREAD_SIZE, 0);
  1567. }
  1568. kernel_physical_mapping_init();
  1569. {
  1570. unsigned long max_zone_pfns[MAX_NR_ZONES];
  1571. memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
  1572. max_zone_pfns[ZONE_NORMAL] = end_pfn;
  1573. free_area_init_nodes(max_zone_pfns);
  1574. }
  1575. printk("Booting Linux...\n");
  1576. }
  1577. int page_in_phys_avail(unsigned long paddr)
  1578. {
  1579. int i;
  1580. paddr &= PAGE_MASK;
  1581. for (i = 0; i < pavail_ents; i++) {
  1582. unsigned long start, end;
  1583. start = pavail[i].phys_addr;
  1584. end = start + pavail[i].reg_size;
  1585. if (paddr >= start && paddr < end)
  1586. return 1;
  1587. }
  1588. if (paddr >= kern_base && paddr < (kern_base + kern_size))
  1589. return 1;
  1590. #ifdef CONFIG_BLK_DEV_INITRD
  1591. if (paddr >= __pa(initrd_start) &&
  1592. paddr < __pa(PAGE_ALIGN(initrd_end)))
  1593. return 1;
  1594. #endif
  1595. return 0;
  1596. }
  1597. static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
  1598. static int pavail_rescan_ents __initdata;
  1599. /* Certain OBP calls, such as fetching "available" properties, can
  1600. * claim physical memory. So, along with initializing the valid
  1601. * address bitmap, what we do here is refetch the physical available
  1602. * memory list again, and make sure it provides at least as much
  1603. * memory as 'pavail' does.
  1604. */
  1605. static void __init setup_valid_addr_bitmap_from_pavail(unsigned long *bitmap)
  1606. {
  1607. int i;
  1608. read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
  1609. for (i = 0; i < pavail_ents; i++) {
  1610. unsigned long old_start, old_end;
  1611. old_start = pavail[i].phys_addr;
  1612. old_end = old_start + pavail[i].reg_size;
  1613. while (old_start < old_end) {
  1614. int n;
  1615. for (n = 0; n < pavail_rescan_ents; n++) {
  1616. unsigned long new_start, new_end;
  1617. new_start = pavail_rescan[n].phys_addr;
  1618. new_end = new_start +
  1619. pavail_rescan[n].reg_size;
  1620. if (new_start <= old_start &&
  1621. new_end >= (old_start + PAGE_SIZE)) {
  1622. set_bit(old_start >> 22, bitmap);
  1623. goto do_next_page;
  1624. }
  1625. }
  1626. prom_printf("mem_init: Lost memory in pavail\n");
  1627. prom_printf("mem_init: OLD start[%lx] size[%lx]\n",
  1628. pavail[i].phys_addr,
  1629. pavail[i].reg_size);
  1630. prom_printf("mem_init: NEW start[%lx] size[%lx]\n",
  1631. pavail_rescan[i].phys_addr,
  1632. pavail_rescan[i].reg_size);
  1633. prom_printf("mem_init: Cannot continue, aborting.\n");
  1634. prom_halt();
  1635. do_next_page:
  1636. old_start += PAGE_SIZE;
  1637. }
  1638. }
  1639. }
  1640. static void __init patch_tlb_miss_handler_bitmap(void)
  1641. {
  1642. extern unsigned int valid_addr_bitmap_insn[];
  1643. extern unsigned int valid_addr_bitmap_patch[];
  1644. valid_addr_bitmap_insn[1] = valid_addr_bitmap_patch[1];
  1645. mb();
  1646. valid_addr_bitmap_insn[0] = valid_addr_bitmap_patch[0];
  1647. flushi(&valid_addr_bitmap_insn[0]);
  1648. }
  1649. static void __init register_page_bootmem_info(void)
  1650. {
  1651. #ifdef CONFIG_NEED_MULTIPLE_NODES
  1652. int i;
  1653. for_each_online_node(i)
  1654. if (NODE_DATA(i)->node_spanned_pages)
  1655. register_page_bootmem_info_node(NODE_DATA(i));
  1656. #endif
  1657. }
  1658. void __init mem_init(void)
  1659. {
  1660. unsigned long addr, last;
  1661. addr = PAGE_OFFSET + kern_base;
  1662. last = PAGE_ALIGN(kern_size) + addr;
  1663. while (addr < last) {
  1664. set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
  1665. addr += PAGE_SIZE;
  1666. }
  1667. setup_valid_addr_bitmap_from_pavail(sparc64_valid_addr_bitmap);
  1668. patch_tlb_miss_handler_bitmap();
  1669. high_memory = __va(last_valid_pfn << PAGE_SHIFT);
  1670. register_page_bootmem_info();
  1671. free_all_bootmem();
  1672. /*
  1673. * Set up the zero page, mark it reserved, so that page count
  1674. * is not manipulated when freeing the page from user ptes.
  1675. */
  1676. mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
  1677. if (mem_map_zero == NULL) {
  1678. prom_printf("paging_init: Cannot alloc zero page.\n");
  1679. prom_halt();
  1680. }
  1681. mark_page_reserved(mem_map_zero);
  1682. mem_init_print_info(NULL);
  1683. if (tlb_type == cheetah || tlb_type == cheetah_plus)
  1684. cheetah_ecache_flush_init();
  1685. }
  1686. void free_initmem(void)
  1687. {
  1688. unsigned long addr, initend;
  1689. int do_free = 1;
  1690. /* If the physical memory maps were trimmed by kernel command
  1691. * line options, don't even try freeing this initmem stuff up.
  1692. * The kernel image could have been in the trimmed out region
  1693. * and if so the freeing below will free invalid page structs.
  1694. */
  1695. if (cmdline_memory_size)
  1696. do_free = 0;
  1697. /*
  1698. * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
  1699. */
  1700. addr = PAGE_ALIGN((unsigned long)(__init_begin));
  1701. initend = (unsigned long)(__init_end) & PAGE_MASK;
  1702. for (; addr < initend; addr += PAGE_SIZE) {
  1703. unsigned long page;
  1704. page = (addr +
  1705. ((unsigned long) __va(kern_base)) -
  1706. ((unsigned long) KERNBASE));
  1707. memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
  1708. if (do_free)
  1709. free_reserved_page(virt_to_page(page));
  1710. }
  1711. }
  1712. #ifdef CONFIG_BLK_DEV_INITRD
  1713. void free_initrd_mem(unsigned long start, unsigned long end)
  1714. {
  1715. free_reserved_area((void *)start, (void *)end, POISON_FREE_INITMEM,
  1716. "initrd");
  1717. }
  1718. #endif
  1719. #define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
  1720. #define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
  1721. #define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
  1722. #define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
  1723. #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
  1724. #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
  1725. pgprot_t PAGE_KERNEL __read_mostly;
  1726. EXPORT_SYMBOL(PAGE_KERNEL);
  1727. pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
  1728. pgprot_t PAGE_COPY __read_mostly;
  1729. pgprot_t PAGE_SHARED __read_mostly;
  1730. EXPORT_SYMBOL(PAGE_SHARED);
  1731. unsigned long pg_iobits __read_mostly;
  1732. unsigned long _PAGE_IE __read_mostly;
  1733. EXPORT_SYMBOL(_PAGE_IE);
  1734. unsigned long _PAGE_E __read_mostly;
  1735. EXPORT_SYMBOL(_PAGE_E);
  1736. unsigned long _PAGE_CACHE __read_mostly;
  1737. EXPORT_SYMBOL(_PAGE_CACHE);
  1738. #ifdef CONFIG_SPARSEMEM_VMEMMAP
  1739. unsigned long vmemmap_table[VMEMMAP_SIZE];
  1740. static long __meminitdata addr_start, addr_end;
  1741. static int __meminitdata node_start;
  1742. int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend,
  1743. int node)
  1744. {
  1745. unsigned long phys_start = (vstart - VMEMMAP_BASE);
  1746. unsigned long phys_end = (vend - VMEMMAP_BASE);
  1747. unsigned long addr = phys_start & VMEMMAP_CHUNK_MASK;
  1748. unsigned long end = VMEMMAP_ALIGN(phys_end);
  1749. unsigned long pte_base;
  1750. pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
  1751. _PAGE_CP_4U | _PAGE_CV_4U |
  1752. _PAGE_P_4U | _PAGE_W_4U);
  1753. if (tlb_type == hypervisor)
  1754. pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
  1755. _PAGE_CP_4V | _PAGE_CV_4V |
  1756. _PAGE_P_4V | _PAGE_W_4V);
  1757. for (; addr < end; addr += VMEMMAP_CHUNK) {
  1758. unsigned long *vmem_pp =
  1759. vmemmap_table + (addr >> VMEMMAP_CHUNK_SHIFT);
  1760. void *block;
  1761. if (!(*vmem_pp & _PAGE_VALID)) {
  1762. block = vmemmap_alloc_block(1UL << 22, node);
  1763. if (!block)
  1764. return -ENOMEM;
  1765. *vmem_pp = pte_base | __pa(block);
  1766. /* check to see if we have contiguous blocks */
  1767. if (addr_end != addr || node_start != node) {
  1768. if (addr_start)
  1769. printk(KERN_DEBUG " [%lx-%lx] on node %d\n",
  1770. addr_start, addr_end-1, node_start);
  1771. addr_start = addr;
  1772. node_start = node;
  1773. }
  1774. addr_end = addr + VMEMMAP_CHUNK;
  1775. }
  1776. }
  1777. return 0;
  1778. }
  1779. void __meminit vmemmap_populate_print_last(void)
  1780. {
  1781. if (addr_start) {
  1782. printk(KERN_DEBUG " [%lx-%lx] on node %d\n",
  1783. addr_start, addr_end-1, node_start);
  1784. addr_start = 0;
  1785. addr_end = 0;
  1786. node_start = 0;
  1787. }
  1788. }
  1789. void vmemmap_free(unsigned long start, unsigned long end)
  1790. {
  1791. }
  1792. #endif /* CONFIG_SPARSEMEM_VMEMMAP */
  1793. static void prot_init_common(unsigned long page_none,
  1794. unsigned long page_shared,
  1795. unsigned long page_copy,
  1796. unsigned long page_readonly,
  1797. unsigned long page_exec_bit)
  1798. {
  1799. PAGE_COPY = __pgprot(page_copy);
  1800. PAGE_SHARED = __pgprot(page_shared);
  1801. protection_map[0x0] = __pgprot(page_none);
  1802. protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
  1803. protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
  1804. protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
  1805. protection_map[0x4] = __pgprot(page_readonly);
  1806. protection_map[0x5] = __pgprot(page_readonly);
  1807. protection_map[0x6] = __pgprot(page_copy);
  1808. protection_map[0x7] = __pgprot(page_copy);
  1809. protection_map[0x8] = __pgprot(page_none);
  1810. protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
  1811. protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
  1812. protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
  1813. protection_map[0xc] = __pgprot(page_readonly);
  1814. protection_map[0xd] = __pgprot(page_readonly);
  1815. protection_map[0xe] = __pgprot(page_shared);
  1816. protection_map[0xf] = __pgprot(page_shared);
  1817. }
  1818. static void __init sun4u_pgprot_init(void)
  1819. {
  1820. unsigned long page_none, page_shared, page_copy, page_readonly;
  1821. unsigned long page_exec_bit;
  1822. int i;
  1823. PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
  1824. _PAGE_CACHE_4U | _PAGE_P_4U |
  1825. __ACCESS_BITS_4U | __DIRTY_BITS_4U |
  1826. _PAGE_EXEC_4U);
  1827. PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
  1828. _PAGE_CACHE_4U | _PAGE_P_4U |
  1829. __ACCESS_BITS_4U | __DIRTY_BITS_4U |
  1830. _PAGE_EXEC_4U | _PAGE_L_4U);
  1831. _PAGE_IE = _PAGE_IE_4U;
  1832. _PAGE_E = _PAGE_E_4U;
  1833. _PAGE_CACHE = _PAGE_CACHE_4U;
  1834. pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
  1835. __ACCESS_BITS_4U | _PAGE_E_4U);
  1836. #ifdef CONFIG_DEBUG_PAGEALLOC
  1837. kern_linear_pte_xor[0] = _PAGE_VALID ^ 0xfffff80000000000UL;
  1838. #else
  1839. kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
  1840. 0xfffff80000000000UL;
  1841. #endif
  1842. kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
  1843. _PAGE_P_4U | _PAGE_W_4U);
  1844. for (i = 1; i < 4; i++)
  1845. kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
  1846. _PAGE_ALL_SZ_BITS = (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
  1847. _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
  1848. _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
  1849. page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
  1850. page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
  1851. __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
  1852. page_copy = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
  1853. __ACCESS_BITS_4U | _PAGE_EXEC_4U);
  1854. page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
  1855. __ACCESS_BITS_4U | _PAGE_EXEC_4U);
  1856. page_exec_bit = _PAGE_EXEC_4U;
  1857. prot_init_common(page_none, page_shared, page_copy, page_readonly,
  1858. page_exec_bit);
  1859. }
  1860. static void __init sun4v_pgprot_init(void)
  1861. {
  1862. unsigned long page_none, page_shared, page_copy, page_readonly;
  1863. unsigned long page_exec_bit;
  1864. int i;
  1865. PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
  1866. _PAGE_CACHE_4V | _PAGE_P_4V |
  1867. __ACCESS_BITS_4V | __DIRTY_BITS_4V |
  1868. _PAGE_EXEC_4V);
  1869. PAGE_KERNEL_LOCKED = PAGE_KERNEL;
  1870. _PAGE_IE = _PAGE_IE_4V;
  1871. _PAGE_E = _PAGE_E_4V;
  1872. _PAGE_CACHE = _PAGE_CACHE_4V;
  1873. #ifdef CONFIG_DEBUG_PAGEALLOC
  1874. kern_linear_pte_xor[0] = _PAGE_VALID ^ 0xfffff80000000000UL;
  1875. #else
  1876. kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
  1877. 0xfffff80000000000UL;
  1878. #endif
  1879. kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
  1880. _PAGE_P_4V | _PAGE_W_4V);
  1881. for (i = 1; i < 4; i++)
  1882. kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
  1883. pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
  1884. __ACCESS_BITS_4V | _PAGE_E_4V);
  1885. _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
  1886. _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
  1887. _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
  1888. _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
  1889. page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
  1890. page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
  1891. __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
  1892. page_copy = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
  1893. __ACCESS_BITS_4V | _PAGE_EXEC_4V);
  1894. page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
  1895. __ACCESS_BITS_4V | _PAGE_EXEC_4V);
  1896. page_exec_bit = _PAGE_EXEC_4V;
  1897. prot_init_common(page_none, page_shared, page_copy, page_readonly,
  1898. page_exec_bit);
  1899. }
  1900. unsigned long pte_sz_bits(unsigned long sz)
  1901. {
  1902. if (tlb_type == hypervisor) {
  1903. switch (sz) {
  1904. case 8 * 1024:
  1905. default:
  1906. return _PAGE_SZ8K_4V;
  1907. case 64 * 1024:
  1908. return _PAGE_SZ64K_4V;
  1909. case 512 * 1024:
  1910. return _PAGE_SZ512K_4V;
  1911. case 4 * 1024 * 1024:
  1912. return _PAGE_SZ4MB_4V;
  1913. }
  1914. } else {
  1915. switch (sz) {
  1916. case 8 * 1024:
  1917. default:
  1918. return _PAGE_SZ8K_4U;
  1919. case 64 * 1024:
  1920. return _PAGE_SZ64K_4U;
  1921. case 512 * 1024:
  1922. return _PAGE_SZ512K_4U;
  1923. case 4 * 1024 * 1024:
  1924. return _PAGE_SZ4MB_4U;
  1925. }
  1926. }
  1927. }
  1928. pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
  1929. {
  1930. pte_t pte;
  1931. pte_val(pte) = page | pgprot_val(pgprot_noncached(prot));
  1932. pte_val(pte) |= (((unsigned long)space) << 32);
  1933. pte_val(pte) |= pte_sz_bits(page_size);
  1934. return pte;
  1935. }
  1936. static unsigned long kern_large_tte(unsigned long paddr)
  1937. {
  1938. unsigned long val;
  1939. val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
  1940. _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
  1941. _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
  1942. if (tlb_type == hypervisor)
  1943. val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
  1944. _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
  1945. _PAGE_EXEC_4V | _PAGE_W_4V);
  1946. return val | paddr;
  1947. }
  1948. /* If not locked, zap it. */
  1949. void __flush_tlb_all(void)
  1950. {
  1951. unsigned long pstate;
  1952. int i;
  1953. __asm__ __volatile__("flushw\n\t"
  1954. "rdpr %%pstate, %0\n\t"
  1955. "wrpr %0, %1, %%pstate"
  1956. : "=r" (pstate)
  1957. : "i" (PSTATE_IE));
  1958. if (tlb_type == hypervisor) {
  1959. sun4v_mmu_demap_all();
  1960. } else if (tlb_type == spitfire) {
  1961. for (i = 0; i < 64; i++) {
  1962. /* Spitfire Errata #32 workaround */
  1963. /* NOTE: Always runs on spitfire, so no
  1964. * cheetah+ page size encodings.
  1965. */
  1966. __asm__ __volatile__("stxa %0, [%1] %2\n\t"
  1967. "flush %%g6"
  1968. : /* No outputs */
  1969. : "r" (0),
  1970. "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
  1971. if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
  1972. __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
  1973. "membar #Sync"
  1974. : /* no outputs */
  1975. : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
  1976. spitfire_put_dtlb_data(i, 0x0UL);
  1977. }
  1978. /* Spitfire Errata #32 workaround */
  1979. /* NOTE: Always runs on spitfire, so no
  1980. * cheetah+ page size encodings.
  1981. */
  1982. __asm__ __volatile__("stxa %0, [%1] %2\n\t"
  1983. "flush %%g6"
  1984. : /* No outputs */
  1985. : "r" (0),
  1986. "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
  1987. if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
  1988. __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
  1989. "membar #Sync"
  1990. : /* no outputs */
  1991. : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
  1992. spitfire_put_itlb_data(i, 0x0UL);
  1993. }
  1994. }
  1995. } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
  1996. cheetah_flush_dtlb_all();
  1997. cheetah_flush_itlb_all();
  1998. }
  1999. __asm__ __volatile__("wrpr %0, 0, %%pstate"
  2000. : : "r" (pstate));
  2001. }
  2002. static pte_t *get_from_cache(struct mm_struct *mm)
  2003. {
  2004. struct page *page;
  2005. pte_t *ret;
  2006. spin_lock(&mm->page_table_lock);
  2007. page = mm->context.pgtable_page;
  2008. ret = NULL;
  2009. if (page) {
  2010. void *p = page_address(page);
  2011. mm->context.pgtable_page = NULL;
  2012. ret = (pte_t *) (p + (PAGE_SIZE / 2));
  2013. }
  2014. spin_unlock(&mm->page_table_lock);
  2015. return ret;
  2016. }
  2017. static struct page *__alloc_for_cache(struct mm_struct *mm)
  2018. {
  2019. struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK |
  2020. __GFP_REPEAT | __GFP_ZERO);
  2021. if (page) {
  2022. spin_lock(&mm->page_table_lock);
  2023. if (!mm->context.pgtable_page) {
  2024. atomic_set(&page->_count, 2);
  2025. mm->context.pgtable_page = page;
  2026. }
  2027. spin_unlock(&mm->page_table_lock);
  2028. }
  2029. return page;
  2030. }
  2031. pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
  2032. unsigned long address)
  2033. {
  2034. struct page *page;
  2035. pte_t *pte;
  2036. pte = get_from_cache(mm);
  2037. if (pte)
  2038. return pte;
  2039. page = __alloc_for_cache(mm);
  2040. if (page)
  2041. pte = (pte_t *) page_address(page);
  2042. return pte;
  2043. }
  2044. pgtable_t pte_alloc_one(struct mm_struct *mm,
  2045. unsigned long address)
  2046. {
  2047. struct page *page;
  2048. pte_t *pte;
  2049. pte = get_from_cache(mm);
  2050. if (pte)
  2051. return pte;
  2052. page = __alloc_for_cache(mm);
  2053. if (page) {
  2054. pgtable_page_ctor(page);
  2055. pte = (pte_t *) page_address(page);
  2056. }
  2057. return pte;
  2058. }
  2059. void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
  2060. {
  2061. struct page *page = virt_to_page(pte);
  2062. if (put_page_testzero(page))
  2063. free_hot_cold_page(page, 0);
  2064. }
  2065. static void __pte_free(pgtable_t pte)
  2066. {
  2067. struct page *page = virt_to_page(pte);
  2068. if (put_page_testzero(page)) {
  2069. pgtable_page_dtor(page);
  2070. free_hot_cold_page(page, 0);
  2071. }
  2072. }
  2073. void pte_free(struct mm_struct *mm, pgtable_t pte)
  2074. {
  2075. __pte_free(pte);
  2076. }
  2077. void pgtable_free(void *table, bool is_page)
  2078. {
  2079. if (is_page)
  2080. __pte_free(table);
  2081. else
  2082. kmem_cache_free(pgtable_cache, table);
  2083. }
  2084. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  2085. static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot, bool for_modify)
  2086. {
  2087. if (pgprot_val(pgprot) & _PAGE_VALID)
  2088. pmd_val(pmd) |= PMD_HUGE_PRESENT;
  2089. if (tlb_type == hypervisor) {
  2090. if (pgprot_val(pgprot) & _PAGE_WRITE_4V)
  2091. pmd_val(pmd) |= PMD_HUGE_WRITE;
  2092. if (pgprot_val(pgprot) & _PAGE_EXEC_4V)
  2093. pmd_val(pmd) |= PMD_HUGE_EXEC;
  2094. if (!for_modify) {
  2095. if (pgprot_val(pgprot) & _PAGE_ACCESSED_4V)
  2096. pmd_val(pmd) |= PMD_HUGE_ACCESSED;
  2097. if (pgprot_val(pgprot) & _PAGE_MODIFIED_4V)
  2098. pmd_val(pmd) |= PMD_HUGE_DIRTY;
  2099. }
  2100. } else {
  2101. if (pgprot_val(pgprot) & _PAGE_WRITE_4U)
  2102. pmd_val(pmd) |= PMD_HUGE_WRITE;
  2103. if (pgprot_val(pgprot) & _PAGE_EXEC_4U)
  2104. pmd_val(pmd) |= PMD_HUGE_EXEC;
  2105. if (!for_modify) {
  2106. if (pgprot_val(pgprot) & _PAGE_ACCESSED_4U)
  2107. pmd_val(pmd) |= PMD_HUGE_ACCESSED;
  2108. if (pgprot_val(pgprot) & _PAGE_MODIFIED_4U)
  2109. pmd_val(pmd) |= PMD_HUGE_DIRTY;
  2110. }
  2111. }
  2112. return pmd;
  2113. }
  2114. pmd_t pfn_pmd(unsigned long page_nr, pgprot_t pgprot)
  2115. {
  2116. pmd_t pmd;
  2117. pmd_val(pmd) = (page_nr << ((PAGE_SHIFT - PMD_PADDR_SHIFT)));
  2118. pmd_val(pmd) |= PMD_ISHUGE;
  2119. pmd = pmd_set_protbits(pmd, pgprot, false);
  2120. return pmd;
  2121. }
  2122. pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
  2123. {
  2124. pmd_val(pmd) &= ~(PMD_HUGE_PRESENT |
  2125. PMD_HUGE_WRITE |
  2126. PMD_HUGE_EXEC);
  2127. pmd = pmd_set_protbits(pmd, newprot, true);
  2128. return pmd;
  2129. }
  2130. pgprot_t pmd_pgprot(pmd_t entry)
  2131. {
  2132. unsigned long pte = 0;
  2133. if (pmd_val(entry) & PMD_HUGE_PRESENT)
  2134. pte |= _PAGE_VALID;
  2135. if (tlb_type == hypervisor) {
  2136. if (pmd_val(entry) & PMD_HUGE_PRESENT)
  2137. pte |= _PAGE_PRESENT_4V;
  2138. if (pmd_val(entry) & PMD_HUGE_EXEC)
  2139. pte |= _PAGE_EXEC_4V;
  2140. if (pmd_val(entry) & PMD_HUGE_WRITE)
  2141. pte |= _PAGE_W_4V;
  2142. if (pmd_val(entry) & PMD_HUGE_ACCESSED)
  2143. pte |= _PAGE_ACCESSED_4V;
  2144. if (pmd_val(entry) & PMD_HUGE_DIRTY)
  2145. pte |= _PAGE_MODIFIED_4V;
  2146. pte |= _PAGE_CP_4V|_PAGE_CV_4V;
  2147. } else {
  2148. if (pmd_val(entry) & PMD_HUGE_PRESENT)
  2149. pte |= _PAGE_PRESENT_4U;
  2150. if (pmd_val(entry) & PMD_HUGE_EXEC)
  2151. pte |= _PAGE_EXEC_4U;
  2152. if (pmd_val(entry) & PMD_HUGE_WRITE)
  2153. pte |= _PAGE_W_4U;
  2154. if (pmd_val(entry) & PMD_HUGE_ACCESSED)
  2155. pte |= _PAGE_ACCESSED_4U;
  2156. if (pmd_val(entry) & PMD_HUGE_DIRTY)
  2157. pte |= _PAGE_MODIFIED_4U;
  2158. pte |= _PAGE_CP_4U|_PAGE_CV_4U;
  2159. }
  2160. return __pgprot(pte);
  2161. }
  2162. void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
  2163. pmd_t *pmd)
  2164. {
  2165. unsigned long pte, flags;
  2166. struct mm_struct *mm;
  2167. pmd_t entry = *pmd;
  2168. pgprot_t prot;
  2169. if (!pmd_large(entry) || !pmd_young(entry))
  2170. return;
  2171. pte = (pmd_val(entry) & ~PMD_HUGE_PROTBITS);
  2172. pte <<= PMD_PADDR_SHIFT;
  2173. pte |= _PAGE_VALID;
  2174. prot = pmd_pgprot(entry);
  2175. if (tlb_type == hypervisor)
  2176. pgprot_val(prot) |= _PAGE_SZHUGE_4V;
  2177. else
  2178. pgprot_val(prot) |= _PAGE_SZHUGE_4U;
  2179. pte |= pgprot_val(prot);
  2180. mm = vma->vm_mm;
  2181. spin_lock_irqsave(&mm->context.lock, flags);
  2182. if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
  2183. __update_mmu_tsb_insert(mm, MM_TSB_HUGE, HPAGE_SHIFT,
  2184. addr, pte);
  2185. spin_unlock_irqrestore(&mm->context.lock, flags);
  2186. }
  2187. #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
  2188. #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
  2189. static void context_reload(void *__data)
  2190. {
  2191. struct mm_struct *mm = __data;
  2192. if (mm == current->mm)
  2193. load_secondary_context(mm);
  2194. }
  2195. void hugetlb_setup(struct pt_regs *regs)
  2196. {
  2197. struct mm_struct *mm = current->mm;
  2198. struct tsb_config *tp;
  2199. if (in_atomic() || !mm) {
  2200. const struct exception_table_entry *entry;
  2201. entry = search_exception_tables(regs->tpc);
  2202. if (entry) {
  2203. regs->tpc = entry->fixup;
  2204. regs->tnpc = regs->tpc + 4;
  2205. return;
  2206. }
  2207. pr_alert("Unexpected HugeTLB setup in atomic context.\n");
  2208. die_if_kernel("HugeTSB in atomic", regs);
  2209. }
  2210. tp = &mm->context.tsb_block[MM_TSB_HUGE];
  2211. if (likely(tp->tsb == NULL))
  2212. tsb_grow(mm, MM_TSB_HUGE, 0);
  2213. tsb_context_switch(mm);
  2214. smp_tsb_sync(mm);
  2215. /* On UltraSPARC-III+ and later, configure the second half of
  2216. * the Data-TLB for huge pages.
  2217. */
  2218. if (tlb_type == cheetah_plus) {
  2219. unsigned long ctx;
  2220. spin_lock(&ctx_alloc_lock);
  2221. ctx = mm->context.sparc64_ctx_val;
  2222. ctx &= ~CTX_PGSZ_MASK;
  2223. ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
  2224. ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
  2225. if (ctx != mm->context.sparc64_ctx_val) {
  2226. /* When changing the page size fields, we
  2227. * must perform a context flush so that no
  2228. * stale entries match. This flush must
  2229. * occur with the original context register
  2230. * settings.
  2231. */
  2232. do_flush_tlb_mm(mm);
  2233. /* Reload the context register of all processors
  2234. * also executing in this address space.
  2235. */
  2236. mm->context.sparc64_ctx_val = ctx;
  2237. on_each_cpu(context_reload, mm, 0);
  2238. }
  2239. spin_unlock(&ctx_alloc_lock);
  2240. }
  2241. }
  2242. #endif