crash_dump.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486
  1. /*
  2. * S390 kdump implementation
  3. *
  4. * Copyright IBM Corp. 2011
  5. * Author(s): Michael Holzheu <holzheu@linux.vnet.ibm.com>
  6. */
  7. #include <linux/crash_dump.h>
  8. #include <asm/lowcore.h>
  9. #include <linux/kernel.h>
  10. #include <linux/module.h>
  11. #include <linux/gfp.h>
  12. #include <linux/slab.h>
  13. #include <linux/bootmem.h>
  14. #include <linux/elf.h>
  15. #include <asm/os_info.h>
  16. #include <asm/elf.h>
  17. #include <asm/ipl.h>
  18. #define PTR_ADD(x, y) (((char *) (x)) + ((unsigned long) (y)))
  19. #define PTR_SUB(x, y) (((char *) (x)) - ((unsigned long) (y)))
  20. #define PTR_DIFF(x, y) ((unsigned long)(((char *) (x)) - ((unsigned long) (y))))
  21. /*
  22. * Return physical address for virtual address
  23. */
  24. static inline void *load_real_addr(void *addr)
  25. {
  26. unsigned long real_addr;
  27. asm volatile(
  28. " lra %0,0(%1)\n"
  29. " jz 0f\n"
  30. " la %0,0\n"
  31. "0:"
  32. : "=a" (real_addr) : "a" (addr) : "cc");
  33. return (void *)real_addr;
  34. }
  35. /*
  36. * Copy up to one page to vmalloc or real memory
  37. */
  38. static ssize_t copy_page_real(void *buf, void *src, size_t csize)
  39. {
  40. size_t size;
  41. if (is_vmalloc_addr(buf)) {
  42. BUG_ON(csize >= PAGE_SIZE);
  43. /* If buf is not page aligned, copy first part */
  44. size = min(roundup(__pa(buf), PAGE_SIZE) - __pa(buf), csize);
  45. if (size) {
  46. if (memcpy_real(load_real_addr(buf), src, size))
  47. return -EFAULT;
  48. buf += size;
  49. src += size;
  50. }
  51. /* Copy second part */
  52. size = csize - size;
  53. return (size) ? memcpy_real(load_real_addr(buf), src, size) : 0;
  54. } else {
  55. return memcpy_real(buf, src, csize);
  56. }
  57. }
  58. /*
  59. * Copy one page from "oldmem"
  60. *
  61. * For the kdump reserved memory this functions performs a swap operation:
  62. * - [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE] is mapped to [0 - OLDMEM_SIZE].
  63. * - [0 - OLDMEM_SIZE] is mapped to [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE]
  64. */
  65. ssize_t copy_oldmem_page(unsigned long pfn, char *buf,
  66. size_t csize, unsigned long offset, int userbuf)
  67. {
  68. unsigned long src;
  69. int rc;
  70. if (!csize)
  71. return 0;
  72. src = (pfn << PAGE_SHIFT) + offset;
  73. if (src < OLDMEM_SIZE)
  74. src += OLDMEM_BASE;
  75. else if (src > OLDMEM_BASE &&
  76. src < OLDMEM_BASE + OLDMEM_SIZE)
  77. src -= OLDMEM_BASE;
  78. if (userbuf)
  79. rc = copy_to_user_real((void __force __user *) buf,
  80. (void *) src, csize);
  81. else
  82. rc = copy_page_real(buf, (void *) src, csize);
  83. return (rc == 0) ? csize : rc;
  84. }
  85. /*
  86. * Copy memory from old kernel
  87. */
  88. int copy_from_oldmem(void *dest, void *src, size_t count)
  89. {
  90. unsigned long copied = 0;
  91. int rc;
  92. if ((unsigned long) src < OLDMEM_SIZE) {
  93. copied = min(count, OLDMEM_SIZE - (unsigned long) src);
  94. rc = memcpy_real(dest, src + OLDMEM_BASE, copied);
  95. if (rc)
  96. return rc;
  97. }
  98. return memcpy_real(dest + copied, src + copied, count - copied);
  99. }
  100. /*
  101. * Alloc memory and panic in case of ENOMEM
  102. */
  103. static void *kzalloc_panic(int len)
  104. {
  105. void *rc;
  106. rc = kzalloc(len, GFP_KERNEL);
  107. if (!rc)
  108. panic("s390 kdump kzalloc (%d) failed", len);
  109. return rc;
  110. }
  111. /*
  112. * Get memory layout and create hole for oldmem
  113. */
  114. static struct mem_chunk *get_memory_layout(void)
  115. {
  116. struct mem_chunk *chunk_array;
  117. chunk_array = kzalloc_panic(MEMORY_CHUNKS * sizeof(struct mem_chunk));
  118. detect_memory_layout(chunk_array, 0);
  119. create_mem_hole(chunk_array, OLDMEM_BASE, OLDMEM_SIZE);
  120. return chunk_array;
  121. }
  122. /*
  123. * Initialize ELF note
  124. */
  125. static void *nt_init(void *buf, Elf64_Word type, void *desc, int d_len,
  126. const char *name)
  127. {
  128. Elf64_Nhdr *note;
  129. u64 len;
  130. note = (Elf64_Nhdr *)buf;
  131. note->n_namesz = strlen(name) + 1;
  132. note->n_descsz = d_len;
  133. note->n_type = type;
  134. len = sizeof(Elf64_Nhdr);
  135. memcpy(buf + len, name, note->n_namesz);
  136. len = roundup(len + note->n_namesz, 4);
  137. memcpy(buf + len, desc, note->n_descsz);
  138. len = roundup(len + note->n_descsz, 4);
  139. return PTR_ADD(buf, len);
  140. }
  141. /*
  142. * Initialize prstatus note
  143. */
  144. static void *nt_prstatus(void *ptr, struct save_area *sa)
  145. {
  146. struct elf_prstatus nt_prstatus;
  147. static int cpu_nr = 1;
  148. memset(&nt_prstatus, 0, sizeof(nt_prstatus));
  149. memcpy(&nt_prstatus.pr_reg.gprs, sa->gp_regs, sizeof(sa->gp_regs));
  150. memcpy(&nt_prstatus.pr_reg.psw, sa->psw, sizeof(sa->psw));
  151. memcpy(&nt_prstatus.pr_reg.acrs, sa->acc_regs, sizeof(sa->acc_regs));
  152. nt_prstatus.pr_pid = cpu_nr;
  153. cpu_nr++;
  154. return nt_init(ptr, NT_PRSTATUS, &nt_prstatus, sizeof(nt_prstatus),
  155. "CORE");
  156. }
  157. /*
  158. * Initialize fpregset (floating point) note
  159. */
  160. static void *nt_fpregset(void *ptr, struct save_area *sa)
  161. {
  162. elf_fpregset_t nt_fpregset;
  163. memset(&nt_fpregset, 0, sizeof(nt_fpregset));
  164. memcpy(&nt_fpregset.fpc, &sa->fp_ctrl_reg, sizeof(sa->fp_ctrl_reg));
  165. memcpy(&nt_fpregset.fprs, &sa->fp_regs, sizeof(sa->fp_regs));
  166. return nt_init(ptr, NT_PRFPREG, &nt_fpregset, sizeof(nt_fpregset),
  167. "CORE");
  168. }
  169. /*
  170. * Initialize timer note
  171. */
  172. static void *nt_s390_timer(void *ptr, struct save_area *sa)
  173. {
  174. return nt_init(ptr, NT_S390_TIMER, &sa->timer, sizeof(sa->timer),
  175. KEXEC_CORE_NOTE_NAME);
  176. }
  177. /*
  178. * Initialize TOD clock comparator note
  179. */
  180. static void *nt_s390_tod_cmp(void *ptr, struct save_area *sa)
  181. {
  182. return nt_init(ptr, NT_S390_TODCMP, &sa->clk_cmp,
  183. sizeof(sa->clk_cmp), KEXEC_CORE_NOTE_NAME);
  184. }
  185. /*
  186. * Initialize TOD programmable register note
  187. */
  188. static void *nt_s390_tod_preg(void *ptr, struct save_area *sa)
  189. {
  190. return nt_init(ptr, NT_S390_TODPREG, &sa->tod_reg,
  191. sizeof(sa->tod_reg), KEXEC_CORE_NOTE_NAME);
  192. }
  193. /*
  194. * Initialize control register note
  195. */
  196. static void *nt_s390_ctrs(void *ptr, struct save_area *sa)
  197. {
  198. return nt_init(ptr, NT_S390_CTRS, &sa->ctrl_regs,
  199. sizeof(sa->ctrl_regs), KEXEC_CORE_NOTE_NAME);
  200. }
  201. /*
  202. * Initialize prefix register note
  203. */
  204. static void *nt_s390_prefix(void *ptr, struct save_area *sa)
  205. {
  206. return nt_init(ptr, NT_S390_PREFIX, &sa->pref_reg,
  207. sizeof(sa->pref_reg), KEXEC_CORE_NOTE_NAME);
  208. }
  209. /*
  210. * Fill ELF notes for one CPU with save area registers
  211. */
  212. void *fill_cpu_elf_notes(void *ptr, struct save_area *sa)
  213. {
  214. ptr = nt_prstatus(ptr, sa);
  215. ptr = nt_fpregset(ptr, sa);
  216. ptr = nt_s390_timer(ptr, sa);
  217. ptr = nt_s390_tod_cmp(ptr, sa);
  218. ptr = nt_s390_tod_preg(ptr, sa);
  219. ptr = nt_s390_ctrs(ptr, sa);
  220. ptr = nt_s390_prefix(ptr, sa);
  221. return ptr;
  222. }
  223. /*
  224. * Initialize prpsinfo note (new kernel)
  225. */
  226. static void *nt_prpsinfo(void *ptr)
  227. {
  228. struct elf_prpsinfo prpsinfo;
  229. memset(&prpsinfo, 0, sizeof(prpsinfo));
  230. prpsinfo.pr_sname = 'R';
  231. strcpy(prpsinfo.pr_fname, "vmlinux");
  232. return nt_init(ptr, NT_PRPSINFO, &prpsinfo, sizeof(prpsinfo),
  233. KEXEC_CORE_NOTE_NAME);
  234. }
  235. /*
  236. * Get vmcoreinfo using lowcore->vmcore_info (new kernel)
  237. */
  238. static void *get_vmcoreinfo_old(unsigned long *size)
  239. {
  240. char nt_name[11], *vmcoreinfo;
  241. Elf64_Nhdr note;
  242. void *addr;
  243. if (copy_from_oldmem(&addr, &S390_lowcore.vmcore_info, sizeof(addr)))
  244. return NULL;
  245. memset(nt_name, 0, sizeof(nt_name));
  246. if (copy_from_oldmem(&note, addr, sizeof(note)))
  247. return NULL;
  248. if (copy_from_oldmem(nt_name, addr + sizeof(note), sizeof(nt_name) - 1))
  249. return NULL;
  250. if (strcmp(nt_name, "VMCOREINFO") != 0)
  251. return NULL;
  252. vmcoreinfo = kzalloc_panic(note.n_descsz);
  253. if (copy_from_oldmem(vmcoreinfo, addr + 24, note.n_descsz))
  254. return NULL;
  255. *size = note.n_descsz;
  256. return vmcoreinfo;
  257. }
  258. /*
  259. * Initialize vmcoreinfo note (new kernel)
  260. */
  261. static void *nt_vmcoreinfo(void *ptr)
  262. {
  263. unsigned long size;
  264. void *vmcoreinfo;
  265. vmcoreinfo = os_info_old_entry(OS_INFO_VMCOREINFO, &size);
  266. if (!vmcoreinfo)
  267. vmcoreinfo = get_vmcoreinfo_old(&size);
  268. if (!vmcoreinfo)
  269. return ptr;
  270. return nt_init(ptr, 0, vmcoreinfo, size, "VMCOREINFO");
  271. }
  272. /*
  273. * Initialize ELF header (new kernel)
  274. */
  275. static void *ehdr_init(Elf64_Ehdr *ehdr, int mem_chunk_cnt)
  276. {
  277. memset(ehdr, 0, sizeof(*ehdr));
  278. memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
  279. ehdr->e_ident[EI_CLASS] = ELFCLASS64;
  280. ehdr->e_ident[EI_DATA] = ELFDATA2MSB;
  281. ehdr->e_ident[EI_VERSION] = EV_CURRENT;
  282. memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
  283. ehdr->e_type = ET_CORE;
  284. ehdr->e_machine = EM_S390;
  285. ehdr->e_version = EV_CURRENT;
  286. ehdr->e_phoff = sizeof(Elf64_Ehdr);
  287. ehdr->e_ehsize = sizeof(Elf64_Ehdr);
  288. ehdr->e_phentsize = sizeof(Elf64_Phdr);
  289. ehdr->e_phnum = mem_chunk_cnt + 1;
  290. return ehdr + 1;
  291. }
  292. /*
  293. * Return CPU count for ELF header (new kernel)
  294. */
  295. static int get_cpu_cnt(void)
  296. {
  297. int i, cpus = 0;
  298. for (i = 0; zfcpdump_save_areas[i]; i++) {
  299. if (zfcpdump_save_areas[i]->pref_reg == 0)
  300. continue;
  301. cpus++;
  302. }
  303. return cpus;
  304. }
  305. /*
  306. * Return memory chunk count for ELF header (new kernel)
  307. */
  308. static int get_mem_chunk_cnt(void)
  309. {
  310. struct mem_chunk *chunk_array, *mem_chunk;
  311. int i, cnt = 0;
  312. chunk_array = get_memory_layout();
  313. for (i = 0; i < MEMORY_CHUNKS; i++) {
  314. mem_chunk = &chunk_array[i];
  315. if (chunk_array[i].type != CHUNK_READ_WRITE &&
  316. chunk_array[i].type != CHUNK_READ_ONLY)
  317. continue;
  318. if (mem_chunk->size == 0)
  319. continue;
  320. cnt++;
  321. }
  322. kfree(chunk_array);
  323. return cnt;
  324. }
  325. /*
  326. * Relocate pointer in order to allow vmcore code access the data
  327. */
  328. static inline unsigned long relocate(unsigned long addr)
  329. {
  330. return OLDMEM_BASE + addr;
  331. }
  332. /*
  333. * Initialize ELF loads (new kernel)
  334. */
  335. static int loads_init(Elf64_Phdr *phdr, u64 loads_offset)
  336. {
  337. struct mem_chunk *chunk_array, *mem_chunk;
  338. int i;
  339. chunk_array = get_memory_layout();
  340. for (i = 0; i < MEMORY_CHUNKS; i++) {
  341. mem_chunk = &chunk_array[i];
  342. if (mem_chunk->size == 0)
  343. continue;
  344. if (chunk_array[i].type != CHUNK_READ_WRITE &&
  345. chunk_array[i].type != CHUNK_READ_ONLY)
  346. continue;
  347. else
  348. phdr->p_filesz = mem_chunk->size;
  349. phdr->p_type = PT_LOAD;
  350. phdr->p_offset = mem_chunk->addr;
  351. phdr->p_vaddr = mem_chunk->addr;
  352. phdr->p_paddr = mem_chunk->addr;
  353. phdr->p_memsz = mem_chunk->size;
  354. phdr->p_flags = PF_R | PF_W | PF_X;
  355. phdr->p_align = PAGE_SIZE;
  356. phdr++;
  357. }
  358. kfree(chunk_array);
  359. return i;
  360. }
  361. /*
  362. * Initialize notes (new kernel)
  363. */
  364. static void *notes_init(Elf64_Phdr *phdr, void *ptr, u64 notes_offset)
  365. {
  366. struct save_area *sa;
  367. void *ptr_start = ptr;
  368. int i;
  369. ptr = nt_prpsinfo(ptr);
  370. for (i = 0; zfcpdump_save_areas[i]; i++) {
  371. sa = zfcpdump_save_areas[i];
  372. if (sa->pref_reg == 0)
  373. continue;
  374. ptr = fill_cpu_elf_notes(ptr, sa);
  375. }
  376. ptr = nt_vmcoreinfo(ptr);
  377. memset(phdr, 0, sizeof(*phdr));
  378. phdr->p_type = PT_NOTE;
  379. phdr->p_offset = relocate(notes_offset);
  380. phdr->p_filesz = (unsigned long) PTR_SUB(ptr, ptr_start);
  381. phdr->p_memsz = phdr->p_filesz;
  382. return ptr;
  383. }
  384. /*
  385. * Create ELF core header (new kernel)
  386. */
  387. static void s390_elf_corehdr_create(char **elfcorebuf, size_t *elfcorebuf_sz)
  388. {
  389. Elf64_Phdr *phdr_notes, *phdr_loads;
  390. int mem_chunk_cnt;
  391. void *ptr, *hdr;
  392. u32 alloc_size;
  393. u64 hdr_off;
  394. mem_chunk_cnt = get_mem_chunk_cnt();
  395. alloc_size = 0x1000 + get_cpu_cnt() * 0x300 +
  396. mem_chunk_cnt * sizeof(Elf64_Phdr);
  397. hdr = kzalloc_panic(alloc_size);
  398. /* Init elf header */
  399. ptr = ehdr_init(hdr, mem_chunk_cnt);
  400. /* Init program headers */
  401. phdr_notes = ptr;
  402. ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr));
  403. phdr_loads = ptr;
  404. ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr) * mem_chunk_cnt);
  405. /* Init notes */
  406. hdr_off = PTR_DIFF(ptr, hdr);
  407. ptr = notes_init(phdr_notes, ptr, ((unsigned long) hdr) + hdr_off);
  408. /* Init loads */
  409. hdr_off = PTR_DIFF(ptr, hdr);
  410. loads_init(phdr_loads, ((unsigned long) hdr) + hdr_off);
  411. *elfcorebuf_sz = hdr_off;
  412. *elfcorebuf = (void *) relocate((unsigned long) hdr);
  413. BUG_ON(*elfcorebuf_sz > alloc_size);
  414. }
  415. /*
  416. * Create kdump ELF core header in new kernel, if it has not been passed via
  417. * the "elfcorehdr" kernel parameter
  418. */
  419. static int setup_kdump_elfcorehdr(void)
  420. {
  421. size_t elfcorebuf_sz;
  422. char *elfcorebuf;
  423. if (!OLDMEM_BASE || is_kdump_kernel())
  424. return -EINVAL;
  425. s390_elf_corehdr_create(&elfcorebuf, &elfcorebuf_sz);
  426. elfcorehdr_addr = (unsigned long long) elfcorebuf;
  427. elfcorehdr_size = elfcorebuf_sz;
  428. return 0;
  429. }
  430. subsys_initcall(setup_kdump_elfcorehdr);