process.c 36 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455
  1. /*
  2. * Derived from "arch/i386/kernel/process.c"
  3. * Copyright (C) 1995 Linus Torvalds
  4. *
  5. * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
  6. * Paul Mackerras (paulus@cs.anu.edu.au)
  7. *
  8. * PowerPC version
  9. * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  10. *
  11. * This program is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU General Public License
  13. * as published by the Free Software Foundation; either version
  14. * 2 of the License, or (at your option) any later version.
  15. */
  16. #include <linux/errno.h>
  17. #include <linux/sched.h>
  18. #include <linux/kernel.h>
  19. #include <linux/mm.h>
  20. #include <linux/smp.h>
  21. #include <linux/stddef.h>
  22. #include <linux/unistd.h>
  23. #include <linux/ptrace.h>
  24. #include <linux/slab.h>
  25. #include <linux/user.h>
  26. #include <linux/elf.h>
  27. #include <linux/init.h>
  28. #include <linux/prctl.h>
  29. #include <linux/init_task.h>
  30. #include <linux/export.h>
  31. #include <linux/kallsyms.h>
  32. #include <linux/mqueue.h>
  33. #include <linux/hardirq.h>
  34. #include <linux/utsname.h>
  35. #include <linux/ftrace.h>
  36. #include <linux/kernel_stat.h>
  37. #include <linux/personality.h>
  38. #include <linux/random.h>
  39. #include <linux/hw_breakpoint.h>
  40. #include <asm/pgtable.h>
  41. #include <asm/uaccess.h>
  42. #include <asm/io.h>
  43. #include <asm/processor.h>
  44. #include <asm/mmu.h>
  45. #include <asm/prom.h>
  46. #include <asm/machdep.h>
  47. #include <asm/time.h>
  48. #include <asm/runlatch.h>
  49. #include <asm/syscalls.h>
  50. #include <asm/switch_to.h>
  51. #include <asm/tm.h>
  52. #include <asm/debug.h>
  53. #ifdef CONFIG_PPC64
  54. #include <asm/firmware.h>
  55. #endif
  56. #include <linux/kprobes.h>
  57. #include <linux/kdebug.h>
  58. /* Transactional Memory debug */
  59. #ifdef TM_DEBUG_SW
  60. #define TM_DEBUG(x...) printk(KERN_INFO x)
  61. #else
  62. #define TM_DEBUG(x...) do { } while(0)
  63. #endif
  64. extern unsigned long _get_SP(void);
  65. #ifndef CONFIG_SMP
  66. struct task_struct *last_task_used_math = NULL;
  67. struct task_struct *last_task_used_altivec = NULL;
  68. struct task_struct *last_task_used_vsx = NULL;
  69. struct task_struct *last_task_used_spe = NULL;
  70. #endif
  71. /*
  72. * Make sure the floating-point register state in the
  73. * the thread_struct is up to date for task tsk.
  74. */
  75. void flush_fp_to_thread(struct task_struct *tsk)
  76. {
  77. if (tsk->thread.regs) {
  78. /*
  79. * We need to disable preemption here because if we didn't,
  80. * another process could get scheduled after the regs->msr
  81. * test but before we have finished saving the FP registers
  82. * to the thread_struct. That process could take over the
  83. * FPU, and then when we get scheduled again we would store
  84. * bogus values for the remaining FP registers.
  85. */
  86. preempt_disable();
  87. if (tsk->thread.regs->msr & MSR_FP) {
  88. #ifdef CONFIG_SMP
  89. /*
  90. * This should only ever be called for current or
  91. * for a stopped child process. Since we save away
  92. * the FP register state on context switch on SMP,
  93. * there is something wrong if a stopped child appears
  94. * to still have its FP state in the CPU registers.
  95. */
  96. BUG_ON(tsk != current);
  97. #endif
  98. giveup_fpu(tsk);
  99. }
  100. preempt_enable();
  101. }
  102. }
  103. EXPORT_SYMBOL_GPL(flush_fp_to_thread);
  104. void enable_kernel_fp(void)
  105. {
  106. WARN_ON(preemptible());
  107. #ifdef CONFIG_SMP
  108. if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
  109. giveup_fpu(current);
  110. else
  111. giveup_fpu(NULL); /* just enables FP for kernel */
  112. #else
  113. giveup_fpu(last_task_used_math);
  114. #endif /* CONFIG_SMP */
  115. }
  116. EXPORT_SYMBOL(enable_kernel_fp);
  117. #ifdef CONFIG_ALTIVEC
  118. void enable_kernel_altivec(void)
  119. {
  120. WARN_ON(preemptible());
  121. #ifdef CONFIG_SMP
  122. if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
  123. giveup_altivec(current);
  124. else
  125. giveup_altivec_notask();
  126. #else
  127. giveup_altivec(last_task_used_altivec);
  128. #endif /* CONFIG_SMP */
  129. }
  130. EXPORT_SYMBOL(enable_kernel_altivec);
  131. /*
  132. * Make sure the VMX/Altivec register state in the
  133. * the thread_struct is up to date for task tsk.
  134. */
  135. void flush_altivec_to_thread(struct task_struct *tsk)
  136. {
  137. if (tsk->thread.regs) {
  138. preempt_disable();
  139. if (tsk->thread.regs->msr & MSR_VEC) {
  140. #ifdef CONFIG_SMP
  141. BUG_ON(tsk != current);
  142. #endif
  143. giveup_altivec(tsk);
  144. }
  145. preempt_enable();
  146. }
  147. }
  148. EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
  149. #endif /* CONFIG_ALTIVEC */
  150. #ifdef CONFIG_VSX
  151. #if 0
  152. /* not currently used, but some crazy RAID module might want to later */
  153. void enable_kernel_vsx(void)
  154. {
  155. WARN_ON(preemptible());
  156. #ifdef CONFIG_SMP
  157. if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
  158. giveup_vsx(current);
  159. else
  160. giveup_vsx(NULL); /* just enable vsx for kernel - force */
  161. #else
  162. giveup_vsx(last_task_used_vsx);
  163. #endif /* CONFIG_SMP */
  164. }
  165. EXPORT_SYMBOL(enable_kernel_vsx);
  166. #endif
  167. void giveup_vsx(struct task_struct *tsk)
  168. {
  169. giveup_fpu(tsk);
  170. giveup_altivec(tsk);
  171. __giveup_vsx(tsk);
  172. }
  173. void flush_vsx_to_thread(struct task_struct *tsk)
  174. {
  175. if (tsk->thread.regs) {
  176. preempt_disable();
  177. if (tsk->thread.regs->msr & MSR_VSX) {
  178. #ifdef CONFIG_SMP
  179. BUG_ON(tsk != current);
  180. #endif
  181. giveup_vsx(tsk);
  182. }
  183. preempt_enable();
  184. }
  185. }
  186. EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
  187. #endif /* CONFIG_VSX */
  188. #ifdef CONFIG_SPE
  189. void enable_kernel_spe(void)
  190. {
  191. WARN_ON(preemptible());
  192. #ifdef CONFIG_SMP
  193. if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
  194. giveup_spe(current);
  195. else
  196. giveup_spe(NULL); /* just enable SPE for kernel - force */
  197. #else
  198. giveup_spe(last_task_used_spe);
  199. #endif /* __SMP __ */
  200. }
  201. EXPORT_SYMBOL(enable_kernel_spe);
  202. void flush_spe_to_thread(struct task_struct *tsk)
  203. {
  204. if (tsk->thread.regs) {
  205. preempt_disable();
  206. if (tsk->thread.regs->msr & MSR_SPE) {
  207. #ifdef CONFIG_SMP
  208. BUG_ON(tsk != current);
  209. #endif
  210. tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
  211. giveup_spe(tsk);
  212. }
  213. preempt_enable();
  214. }
  215. }
  216. #endif /* CONFIG_SPE */
  217. #ifndef CONFIG_SMP
  218. /*
  219. * If we are doing lazy switching of CPU state (FP, altivec or SPE),
  220. * and the current task has some state, discard it.
  221. */
  222. void discard_lazy_cpu_state(void)
  223. {
  224. preempt_disable();
  225. if (last_task_used_math == current)
  226. last_task_used_math = NULL;
  227. #ifdef CONFIG_ALTIVEC
  228. if (last_task_used_altivec == current)
  229. last_task_used_altivec = NULL;
  230. #endif /* CONFIG_ALTIVEC */
  231. #ifdef CONFIG_VSX
  232. if (last_task_used_vsx == current)
  233. last_task_used_vsx = NULL;
  234. #endif /* CONFIG_VSX */
  235. #ifdef CONFIG_SPE
  236. if (last_task_used_spe == current)
  237. last_task_used_spe = NULL;
  238. #endif
  239. preempt_enable();
  240. }
  241. #endif /* CONFIG_SMP */
  242. #ifdef CONFIG_PPC_ADV_DEBUG_REGS
  243. void do_send_trap(struct pt_regs *regs, unsigned long address,
  244. unsigned long error_code, int signal_code, int breakpt)
  245. {
  246. siginfo_t info;
  247. current->thread.trap_nr = signal_code;
  248. if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
  249. 11, SIGSEGV) == NOTIFY_STOP)
  250. return;
  251. /* Deliver the signal to userspace */
  252. info.si_signo = SIGTRAP;
  253. info.si_errno = breakpt; /* breakpoint or watchpoint id */
  254. info.si_code = signal_code;
  255. info.si_addr = (void __user *)address;
  256. force_sig_info(SIGTRAP, &info, current);
  257. }
  258. #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
  259. void do_break (struct pt_regs *regs, unsigned long address,
  260. unsigned long error_code)
  261. {
  262. siginfo_t info;
  263. current->thread.trap_nr = TRAP_HWBKPT;
  264. if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
  265. 11, SIGSEGV) == NOTIFY_STOP)
  266. return;
  267. if (debugger_break_match(regs))
  268. return;
  269. /* Clear the breakpoint */
  270. hw_breakpoint_disable();
  271. /* Deliver the signal to userspace */
  272. info.si_signo = SIGTRAP;
  273. info.si_errno = 0;
  274. info.si_code = TRAP_HWBKPT;
  275. info.si_addr = (void __user *)address;
  276. force_sig_info(SIGTRAP, &info, current);
  277. }
  278. #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
  279. static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
  280. #ifdef CONFIG_PPC_ADV_DEBUG_REGS
  281. /*
  282. * Set the debug registers back to their default "safe" values.
  283. */
  284. static void set_debug_reg_defaults(struct thread_struct *thread)
  285. {
  286. thread->iac1 = thread->iac2 = 0;
  287. #if CONFIG_PPC_ADV_DEBUG_IACS > 2
  288. thread->iac3 = thread->iac4 = 0;
  289. #endif
  290. thread->dac1 = thread->dac2 = 0;
  291. #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
  292. thread->dvc1 = thread->dvc2 = 0;
  293. #endif
  294. thread->dbcr0 = 0;
  295. #ifdef CONFIG_BOOKE
  296. /*
  297. * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
  298. */
  299. thread->dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US | \
  300. DBCR1_IAC3US | DBCR1_IAC4US;
  301. /*
  302. * Force Data Address Compare User/Supervisor bits to be User-only
  303. * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
  304. */
  305. thread->dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
  306. #else
  307. thread->dbcr1 = 0;
  308. #endif
  309. }
  310. static void prime_debug_regs(struct thread_struct *thread)
  311. {
  312. /*
  313. * We could have inherited MSR_DE from userspace, since
  314. * it doesn't get cleared on exception entry. Make sure
  315. * MSR_DE is clear before we enable any debug events.
  316. */
  317. mtmsr(mfmsr() & ~MSR_DE);
  318. mtspr(SPRN_IAC1, thread->iac1);
  319. mtspr(SPRN_IAC2, thread->iac2);
  320. #if CONFIG_PPC_ADV_DEBUG_IACS > 2
  321. mtspr(SPRN_IAC3, thread->iac3);
  322. mtspr(SPRN_IAC4, thread->iac4);
  323. #endif
  324. mtspr(SPRN_DAC1, thread->dac1);
  325. mtspr(SPRN_DAC2, thread->dac2);
  326. #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
  327. mtspr(SPRN_DVC1, thread->dvc1);
  328. mtspr(SPRN_DVC2, thread->dvc2);
  329. #endif
  330. mtspr(SPRN_DBCR0, thread->dbcr0);
  331. mtspr(SPRN_DBCR1, thread->dbcr1);
  332. #ifdef CONFIG_BOOKE
  333. mtspr(SPRN_DBCR2, thread->dbcr2);
  334. #endif
  335. }
  336. /*
  337. * Unless neither the old or new thread are making use of the
  338. * debug registers, set the debug registers from the values
  339. * stored in the new thread.
  340. */
  341. static void switch_booke_debug_regs(struct thread_struct *new_thread)
  342. {
  343. if ((current->thread.dbcr0 & DBCR0_IDM)
  344. || (new_thread->dbcr0 & DBCR0_IDM))
  345. prime_debug_regs(new_thread);
  346. }
  347. #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
  348. #ifndef CONFIG_HAVE_HW_BREAKPOINT
  349. static void set_debug_reg_defaults(struct thread_struct *thread)
  350. {
  351. thread->hw_brk.address = 0;
  352. thread->hw_brk.type = 0;
  353. set_breakpoint(&thread->hw_brk);
  354. }
  355. #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
  356. #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
  357. #ifdef CONFIG_PPC_ADV_DEBUG_REGS
  358. static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
  359. {
  360. mtspr(SPRN_DAC1, dabr);
  361. #ifdef CONFIG_PPC_47x
  362. isync();
  363. #endif
  364. return 0;
  365. }
  366. #elif defined(CONFIG_PPC_BOOK3S)
  367. static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
  368. {
  369. mtspr(SPRN_DABR, dabr);
  370. if (cpu_has_feature(CPU_FTR_DABRX))
  371. mtspr(SPRN_DABRX, dabrx);
  372. return 0;
  373. }
  374. #else
  375. static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
  376. {
  377. return -EINVAL;
  378. }
  379. #endif
  380. static inline int set_dabr(struct arch_hw_breakpoint *brk)
  381. {
  382. unsigned long dabr, dabrx;
  383. dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
  384. dabrx = ((brk->type >> 3) & 0x7);
  385. if (ppc_md.set_dabr)
  386. return ppc_md.set_dabr(dabr, dabrx);
  387. return __set_dabr(dabr, dabrx);
  388. }
  389. static inline int set_dawr(struct arch_hw_breakpoint *brk)
  390. {
  391. unsigned long dawr, dawrx, mrd;
  392. dawr = brk->address;
  393. dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
  394. << (63 - 58); //* read/write bits */
  395. dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
  396. << (63 - 59); //* translate */
  397. dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
  398. >> 3; //* PRIM bits */
  399. /* dawr length is stored in field MDR bits 48:53. Matches range in
  400. doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
  401. 0b111111=64DW.
  402. brk->len is in bytes.
  403. This aligns up to double word size, shifts and does the bias.
  404. */
  405. mrd = ((brk->len + 7) >> 3) - 1;
  406. dawrx |= (mrd & 0x3f) << (63 - 53);
  407. if (ppc_md.set_dawr)
  408. return ppc_md.set_dawr(dawr, dawrx);
  409. mtspr(SPRN_DAWR, dawr);
  410. mtspr(SPRN_DAWRX, dawrx);
  411. return 0;
  412. }
  413. int set_breakpoint(struct arch_hw_breakpoint *brk)
  414. {
  415. __get_cpu_var(current_brk) = *brk;
  416. if (cpu_has_feature(CPU_FTR_DAWR))
  417. return set_dawr(brk);
  418. return set_dabr(brk);
  419. }
  420. #ifdef CONFIG_PPC64
  421. DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
  422. #endif
  423. static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
  424. struct arch_hw_breakpoint *b)
  425. {
  426. if (a->address != b->address)
  427. return false;
  428. if (a->type != b->type)
  429. return false;
  430. if (a->len != b->len)
  431. return false;
  432. return true;
  433. }
  434. #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
  435. static inline void tm_reclaim_task(struct task_struct *tsk)
  436. {
  437. /* We have to work out if we're switching from/to a task that's in the
  438. * middle of a transaction.
  439. *
  440. * In switching we need to maintain a 2nd register state as
  441. * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
  442. * checkpointed (tbegin) state in ckpt_regs and saves the transactional
  443. * (current) FPRs into oldtask->thread.transact_fpr[].
  444. *
  445. * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
  446. */
  447. struct thread_struct *thr = &tsk->thread;
  448. if (!thr->regs)
  449. return;
  450. if (!MSR_TM_ACTIVE(thr->regs->msr))
  451. goto out_and_saveregs;
  452. /* Stash the original thread MSR, as giveup_fpu et al will
  453. * modify it. We hold onto it to see whether the task used
  454. * FP & vector regs.
  455. */
  456. thr->tm_orig_msr = thr->regs->msr;
  457. TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
  458. "ccr=%lx, msr=%lx, trap=%lx)\n",
  459. tsk->pid, thr->regs->nip,
  460. thr->regs->ccr, thr->regs->msr,
  461. thr->regs->trap);
  462. tm_reclaim(thr, thr->regs->msr, TM_CAUSE_RESCHED);
  463. TM_DEBUG("--- tm_reclaim on pid %d complete\n",
  464. tsk->pid);
  465. out_and_saveregs:
  466. /* Always save the regs here, even if a transaction's not active.
  467. * This context-switches a thread's TM info SPRs. We do it here to
  468. * be consistent with the restore path (in recheckpoint) which
  469. * cannot happen later in _switch().
  470. */
  471. tm_save_sprs(thr);
  472. }
  473. static inline void tm_recheckpoint_new_task(struct task_struct *new)
  474. {
  475. unsigned long msr;
  476. if (!cpu_has_feature(CPU_FTR_TM))
  477. return;
  478. /* Recheckpoint the registers of the thread we're about to switch to.
  479. *
  480. * If the task was using FP, we non-lazily reload both the original and
  481. * the speculative FP register states. This is because the kernel
  482. * doesn't see if/when a TM rollback occurs, so if we take an FP
  483. * unavoidable later, we are unable to determine which set of FP regs
  484. * need to be restored.
  485. */
  486. if (!new->thread.regs)
  487. return;
  488. /* The TM SPRs are restored here, so that TEXASR.FS can be set
  489. * before the trecheckpoint and no explosion occurs.
  490. */
  491. tm_restore_sprs(&new->thread);
  492. if (!MSR_TM_ACTIVE(new->thread.regs->msr))
  493. return;
  494. msr = new->thread.tm_orig_msr;
  495. /* Recheckpoint to restore original checkpointed register state. */
  496. TM_DEBUG("*** tm_recheckpoint of pid %d "
  497. "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
  498. new->pid, new->thread.regs->msr, msr);
  499. /* This loads the checkpointed FP/VEC state, if used */
  500. tm_recheckpoint(&new->thread, msr);
  501. /* This loads the speculative FP/VEC state, if used */
  502. if (msr & MSR_FP) {
  503. do_load_up_transact_fpu(&new->thread);
  504. new->thread.regs->msr |=
  505. (MSR_FP | new->thread.fpexc_mode);
  506. }
  507. #ifdef CONFIG_ALTIVEC
  508. if (msr & MSR_VEC) {
  509. do_load_up_transact_altivec(&new->thread);
  510. new->thread.regs->msr |= MSR_VEC;
  511. }
  512. #endif
  513. /* We may as well turn on VSX too since all the state is restored now */
  514. if (msr & MSR_VSX)
  515. new->thread.regs->msr |= MSR_VSX;
  516. TM_DEBUG("*** tm_recheckpoint of pid %d complete "
  517. "(kernel msr 0x%lx)\n",
  518. new->pid, mfmsr());
  519. }
  520. static inline void __switch_to_tm(struct task_struct *prev)
  521. {
  522. if (cpu_has_feature(CPU_FTR_TM)) {
  523. tm_enable();
  524. tm_reclaim_task(prev);
  525. }
  526. }
  527. #else
  528. #define tm_recheckpoint_new_task(new)
  529. #define __switch_to_tm(prev)
  530. #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
  531. struct task_struct *__switch_to(struct task_struct *prev,
  532. struct task_struct *new)
  533. {
  534. struct thread_struct *new_thread, *old_thread;
  535. unsigned long flags;
  536. struct task_struct *last;
  537. #ifdef CONFIG_PPC_BOOK3S_64
  538. struct ppc64_tlb_batch *batch;
  539. #endif
  540. __switch_to_tm(prev);
  541. #ifdef CONFIG_SMP
  542. /* avoid complexity of lazy save/restore of fpu
  543. * by just saving it every time we switch out if
  544. * this task used the fpu during the last quantum.
  545. *
  546. * If it tries to use the fpu again, it'll trap and
  547. * reload its fp regs. So we don't have to do a restore
  548. * every switch, just a save.
  549. * -- Cort
  550. */
  551. if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
  552. giveup_fpu(prev);
  553. #ifdef CONFIG_ALTIVEC
  554. /*
  555. * If the previous thread used altivec in the last quantum
  556. * (thus changing altivec regs) then save them.
  557. * We used to check the VRSAVE register but not all apps
  558. * set it, so we don't rely on it now (and in fact we need
  559. * to save & restore VSCR even if VRSAVE == 0). -- paulus
  560. *
  561. * On SMP we always save/restore altivec regs just to avoid the
  562. * complexity of changing processors.
  563. * -- Cort
  564. */
  565. if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
  566. giveup_altivec(prev);
  567. #endif /* CONFIG_ALTIVEC */
  568. #ifdef CONFIG_VSX
  569. if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
  570. /* VMX and FPU registers are already save here */
  571. __giveup_vsx(prev);
  572. #endif /* CONFIG_VSX */
  573. #ifdef CONFIG_SPE
  574. /*
  575. * If the previous thread used spe in the last quantum
  576. * (thus changing spe regs) then save them.
  577. *
  578. * On SMP we always save/restore spe regs just to avoid the
  579. * complexity of changing processors.
  580. */
  581. if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
  582. giveup_spe(prev);
  583. #endif /* CONFIG_SPE */
  584. #else /* CONFIG_SMP */
  585. #ifdef CONFIG_ALTIVEC
  586. /* Avoid the trap. On smp this this never happens since
  587. * we don't set last_task_used_altivec -- Cort
  588. */
  589. if (new->thread.regs && last_task_used_altivec == new)
  590. new->thread.regs->msr |= MSR_VEC;
  591. #endif /* CONFIG_ALTIVEC */
  592. #ifdef CONFIG_VSX
  593. if (new->thread.regs && last_task_used_vsx == new)
  594. new->thread.regs->msr |= MSR_VSX;
  595. #endif /* CONFIG_VSX */
  596. #ifdef CONFIG_SPE
  597. /* Avoid the trap. On smp this this never happens since
  598. * we don't set last_task_used_spe
  599. */
  600. if (new->thread.regs && last_task_used_spe == new)
  601. new->thread.regs->msr |= MSR_SPE;
  602. #endif /* CONFIG_SPE */
  603. #endif /* CONFIG_SMP */
  604. #ifdef CONFIG_PPC_ADV_DEBUG_REGS
  605. switch_booke_debug_regs(&new->thread);
  606. #else
  607. /*
  608. * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
  609. * schedule DABR
  610. */
  611. #ifndef CONFIG_HAVE_HW_BREAKPOINT
  612. if (unlikely(hw_brk_match(&__get_cpu_var(current_brk), &new->thread.hw_brk)))
  613. set_breakpoint(&new->thread.hw_brk);
  614. #endif /* CONFIG_HAVE_HW_BREAKPOINT */
  615. #endif
  616. new_thread = &new->thread;
  617. old_thread = &current->thread;
  618. #ifdef CONFIG_PPC64
  619. /*
  620. * Collect processor utilization data per process
  621. */
  622. if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
  623. struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
  624. long unsigned start_tb, current_tb;
  625. start_tb = old_thread->start_tb;
  626. cu->current_tb = current_tb = mfspr(SPRN_PURR);
  627. old_thread->accum_tb += (current_tb - start_tb);
  628. new_thread->start_tb = current_tb;
  629. }
  630. #endif /* CONFIG_PPC64 */
  631. #ifdef CONFIG_PPC_BOOK3S_64
  632. batch = &__get_cpu_var(ppc64_tlb_batch);
  633. if (batch->active) {
  634. current_thread_info()->local_flags |= _TLF_LAZY_MMU;
  635. if (batch->index)
  636. __flush_tlb_pending(batch);
  637. batch->active = 0;
  638. }
  639. #endif /* CONFIG_PPC_BOOK3S_64 */
  640. local_irq_save(flags);
  641. /*
  642. * We can't take a PMU exception inside _switch() since there is a
  643. * window where the kernel stack SLB and the kernel stack are out
  644. * of sync. Hard disable here.
  645. */
  646. hard_irq_disable();
  647. tm_recheckpoint_new_task(new);
  648. last = _switch(old_thread, new_thread);
  649. #ifdef CONFIG_PPC_BOOK3S_64
  650. if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
  651. current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
  652. batch = &__get_cpu_var(ppc64_tlb_batch);
  653. batch->active = 1;
  654. }
  655. #endif /* CONFIG_PPC_BOOK3S_64 */
  656. local_irq_restore(flags);
  657. return last;
  658. }
  659. static int instructions_to_print = 16;
  660. static void show_instructions(struct pt_regs *regs)
  661. {
  662. int i;
  663. unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
  664. sizeof(int));
  665. printk("Instruction dump:");
  666. for (i = 0; i < instructions_to_print; i++) {
  667. int instr;
  668. if (!(i % 8))
  669. printk("\n");
  670. #if !defined(CONFIG_BOOKE)
  671. /* If executing with the IMMU off, adjust pc rather
  672. * than print XXXXXXXX.
  673. */
  674. if (!(regs->msr & MSR_IR))
  675. pc = (unsigned long)phys_to_virt(pc);
  676. #endif
  677. /* We use __get_user here *only* to avoid an OOPS on a
  678. * bad address because the pc *should* only be a
  679. * kernel address.
  680. */
  681. if (!__kernel_text_address(pc) ||
  682. __get_user(instr, (unsigned int __user *)pc)) {
  683. printk(KERN_CONT "XXXXXXXX ");
  684. } else {
  685. if (regs->nip == pc)
  686. printk(KERN_CONT "<%08x> ", instr);
  687. else
  688. printk(KERN_CONT "%08x ", instr);
  689. }
  690. pc += sizeof(int);
  691. }
  692. printk("\n");
  693. }
  694. static struct regbit {
  695. unsigned long bit;
  696. const char *name;
  697. } msr_bits[] = {
  698. #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
  699. {MSR_SF, "SF"},
  700. {MSR_HV, "HV"},
  701. #endif
  702. {MSR_VEC, "VEC"},
  703. {MSR_VSX, "VSX"},
  704. #ifdef CONFIG_BOOKE
  705. {MSR_CE, "CE"},
  706. #endif
  707. {MSR_EE, "EE"},
  708. {MSR_PR, "PR"},
  709. {MSR_FP, "FP"},
  710. {MSR_ME, "ME"},
  711. #ifdef CONFIG_BOOKE
  712. {MSR_DE, "DE"},
  713. #else
  714. {MSR_SE, "SE"},
  715. {MSR_BE, "BE"},
  716. #endif
  717. {MSR_IR, "IR"},
  718. {MSR_DR, "DR"},
  719. {MSR_PMM, "PMM"},
  720. #ifndef CONFIG_BOOKE
  721. {MSR_RI, "RI"},
  722. {MSR_LE, "LE"},
  723. #endif
  724. {0, NULL}
  725. };
  726. static void printbits(unsigned long val, struct regbit *bits)
  727. {
  728. const char *sep = "";
  729. printk("<");
  730. for (; bits->bit; ++bits)
  731. if (val & bits->bit) {
  732. printk("%s%s", sep, bits->name);
  733. sep = ",";
  734. }
  735. printk(">");
  736. }
  737. #ifdef CONFIG_PPC64
  738. #define REG "%016lx"
  739. #define REGS_PER_LINE 4
  740. #define LAST_VOLATILE 13
  741. #else
  742. #define REG "%08lx"
  743. #define REGS_PER_LINE 8
  744. #define LAST_VOLATILE 12
  745. #endif
  746. void show_regs(struct pt_regs * regs)
  747. {
  748. int i, trap;
  749. show_regs_print_info(KERN_DEFAULT);
  750. printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
  751. regs->nip, regs->link, regs->ctr);
  752. printk("REGS: %p TRAP: %04lx %s (%s)\n",
  753. regs, regs->trap, print_tainted(), init_utsname()->release);
  754. printk("MSR: "REG" ", regs->msr);
  755. printbits(regs->msr, msr_bits);
  756. printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
  757. #ifdef CONFIG_PPC64
  758. printk("SOFTE: %ld\n", regs->softe);
  759. #endif
  760. trap = TRAP(regs);
  761. if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
  762. printk("CFAR: "REG"\n", regs->orig_gpr3);
  763. if (trap == 0x300 || trap == 0x600)
  764. #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
  765. printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr);
  766. #else
  767. printk("DAR: "REG", DSISR: %08lx\n", regs->dar, regs->dsisr);
  768. #endif
  769. for (i = 0; i < 32; i++) {
  770. if ((i % REGS_PER_LINE) == 0)
  771. printk("\nGPR%02d: ", i);
  772. printk(REG " ", regs->gpr[i]);
  773. if (i == LAST_VOLATILE && !FULL_REGS(regs))
  774. break;
  775. }
  776. printk("\n");
  777. #ifdef CONFIG_KALLSYMS
  778. /*
  779. * Lookup NIP late so we have the best change of getting the
  780. * above info out without failing
  781. */
  782. printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
  783. printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
  784. #endif
  785. #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
  786. printk("PACATMSCRATCH [%llx]\n", get_paca()->tm_scratch);
  787. #endif
  788. show_stack(current, (unsigned long *) regs->gpr[1]);
  789. if (!user_mode(regs))
  790. show_instructions(regs);
  791. }
  792. void exit_thread(void)
  793. {
  794. discard_lazy_cpu_state();
  795. }
  796. void flush_thread(void)
  797. {
  798. discard_lazy_cpu_state();
  799. #ifdef CONFIG_HAVE_HW_BREAKPOINT
  800. flush_ptrace_hw_breakpoint(current);
  801. #else /* CONFIG_HAVE_HW_BREAKPOINT */
  802. set_debug_reg_defaults(&current->thread);
  803. #endif /* CONFIG_HAVE_HW_BREAKPOINT */
  804. }
  805. void
  806. release_thread(struct task_struct *t)
  807. {
  808. }
  809. /*
  810. * this gets called so that we can store coprocessor state into memory and
  811. * copy the current task into the new thread.
  812. */
  813. int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
  814. {
  815. flush_fp_to_thread(src);
  816. flush_altivec_to_thread(src);
  817. flush_vsx_to_thread(src);
  818. flush_spe_to_thread(src);
  819. *dst = *src;
  820. clear_task_ebb(dst);
  821. return 0;
  822. }
  823. /*
  824. * Copy a thread..
  825. */
  826. extern unsigned long dscr_default; /* defined in arch/powerpc/kernel/sysfs.c */
  827. int copy_thread(unsigned long clone_flags, unsigned long usp,
  828. unsigned long arg, struct task_struct *p)
  829. {
  830. struct pt_regs *childregs, *kregs;
  831. extern void ret_from_fork(void);
  832. extern void ret_from_kernel_thread(void);
  833. void (*f)(void);
  834. unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
  835. /* Copy registers */
  836. sp -= sizeof(struct pt_regs);
  837. childregs = (struct pt_regs *) sp;
  838. if (unlikely(p->flags & PF_KTHREAD)) {
  839. struct thread_info *ti = (void *)task_stack_page(p);
  840. memset(childregs, 0, sizeof(struct pt_regs));
  841. childregs->gpr[1] = sp + sizeof(struct pt_regs);
  842. childregs->gpr[14] = usp; /* function */
  843. #ifdef CONFIG_PPC64
  844. clear_tsk_thread_flag(p, TIF_32BIT);
  845. childregs->softe = 1;
  846. #endif
  847. childregs->gpr[15] = arg;
  848. p->thread.regs = NULL; /* no user register state */
  849. ti->flags |= _TIF_RESTOREALL;
  850. f = ret_from_kernel_thread;
  851. } else {
  852. struct pt_regs *regs = current_pt_regs();
  853. CHECK_FULL_REGS(regs);
  854. *childregs = *regs;
  855. if (usp)
  856. childregs->gpr[1] = usp;
  857. p->thread.regs = childregs;
  858. childregs->gpr[3] = 0; /* Result from fork() */
  859. if (clone_flags & CLONE_SETTLS) {
  860. #ifdef CONFIG_PPC64
  861. if (!is_32bit_task())
  862. childregs->gpr[13] = childregs->gpr[6];
  863. else
  864. #endif
  865. childregs->gpr[2] = childregs->gpr[6];
  866. }
  867. f = ret_from_fork;
  868. }
  869. sp -= STACK_FRAME_OVERHEAD;
  870. /*
  871. * The way this works is that at some point in the future
  872. * some task will call _switch to switch to the new task.
  873. * That will pop off the stack frame created below and start
  874. * the new task running at ret_from_fork. The new task will
  875. * do some house keeping and then return from the fork or clone
  876. * system call, using the stack frame created above.
  877. */
  878. ((unsigned long *)sp)[0] = 0;
  879. sp -= sizeof(struct pt_regs);
  880. kregs = (struct pt_regs *) sp;
  881. sp -= STACK_FRAME_OVERHEAD;
  882. p->thread.ksp = sp;
  883. p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
  884. _ALIGN_UP(sizeof(struct thread_info), 16);
  885. #ifdef CONFIG_HAVE_HW_BREAKPOINT
  886. p->thread.ptrace_bps[0] = NULL;
  887. #endif
  888. #ifdef CONFIG_PPC_STD_MMU_64
  889. if (mmu_has_feature(MMU_FTR_SLB)) {
  890. unsigned long sp_vsid;
  891. unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
  892. if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
  893. sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
  894. << SLB_VSID_SHIFT_1T;
  895. else
  896. sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
  897. << SLB_VSID_SHIFT;
  898. sp_vsid |= SLB_VSID_KERNEL | llp;
  899. p->thread.ksp_vsid = sp_vsid;
  900. }
  901. #endif /* CONFIG_PPC_STD_MMU_64 */
  902. #ifdef CONFIG_PPC64
  903. if (cpu_has_feature(CPU_FTR_DSCR)) {
  904. p->thread.dscr_inherit = current->thread.dscr_inherit;
  905. p->thread.dscr = current->thread.dscr;
  906. }
  907. if (cpu_has_feature(CPU_FTR_HAS_PPR))
  908. p->thread.ppr = INIT_PPR;
  909. #endif
  910. /*
  911. * The PPC64 ABI makes use of a TOC to contain function
  912. * pointers. The function (ret_from_except) is actually a pointer
  913. * to the TOC entry. The first entry is a pointer to the actual
  914. * function.
  915. */
  916. #ifdef CONFIG_PPC64
  917. kregs->nip = *((unsigned long *)f);
  918. #else
  919. kregs->nip = (unsigned long)f;
  920. #endif
  921. return 0;
  922. }
  923. /*
  924. * Set up a thread for executing a new program
  925. */
  926. void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
  927. {
  928. #ifdef CONFIG_PPC64
  929. unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
  930. #endif
  931. /*
  932. * If we exec out of a kernel thread then thread.regs will not be
  933. * set. Do it now.
  934. */
  935. if (!current->thread.regs) {
  936. struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
  937. current->thread.regs = regs - 1;
  938. }
  939. memset(regs->gpr, 0, sizeof(regs->gpr));
  940. regs->ctr = 0;
  941. regs->link = 0;
  942. regs->xer = 0;
  943. regs->ccr = 0;
  944. regs->gpr[1] = sp;
  945. /*
  946. * We have just cleared all the nonvolatile GPRs, so make
  947. * FULL_REGS(regs) return true. This is necessary to allow
  948. * ptrace to examine the thread immediately after exec.
  949. */
  950. regs->trap &= ~1UL;
  951. #ifdef CONFIG_PPC32
  952. regs->mq = 0;
  953. regs->nip = start;
  954. regs->msr = MSR_USER;
  955. #else
  956. if (!is_32bit_task()) {
  957. unsigned long entry, toc;
  958. /* start is a relocated pointer to the function descriptor for
  959. * the elf _start routine. The first entry in the function
  960. * descriptor is the entry address of _start and the second
  961. * entry is the TOC value we need to use.
  962. */
  963. __get_user(entry, (unsigned long __user *)start);
  964. __get_user(toc, (unsigned long __user *)start+1);
  965. /* Check whether the e_entry function descriptor entries
  966. * need to be relocated before we can use them.
  967. */
  968. if (load_addr != 0) {
  969. entry += load_addr;
  970. toc += load_addr;
  971. }
  972. regs->nip = entry;
  973. regs->gpr[2] = toc;
  974. regs->msr = MSR_USER64;
  975. } else {
  976. regs->nip = start;
  977. regs->gpr[2] = 0;
  978. regs->msr = MSR_USER32;
  979. }
  980. #endif
  981. discard_lazy_cpu_state();
  982. #ifdef CONFIG_VSX
  983. current->thread.used_vsr = 0;
  984. #endif
  985. memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
  986. current->thread.fpscr.val = 0;
  987. #ifdef CONFIG_ALTIVEC
  988. memset(current->thread.vr, 0, sizeof(current->thread.vr));
  989. memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
  990. current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
  991. current->thread.vrsave = 0;
  992. current->thread.used_vr = 0;
  993. #endif /* CONFIG_ALTIVEC */
  994. #ifdef CONFIG_SPE
  995. memset(current->thread.evr, 0, sizeof(current->thread.evr));
  996. current->thread.acc = 0;
  997. current->thread.spefscr = 0;
  998. current->thread.used_spe = 0;
  999. #endif /* CONFIG_SPE */
  1000. #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
  1001. if (cpu_has_feature(CPU_FTR_TM))
  1002. regs->msr |= MSR_TM;
  1003. current->thread.tm_tfhar = 0;
  1004. current->thread.tm_texasr = 0;
  1005. current->thread.tm_tfiar = 0;
  1006. #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
  1007. }
  1008. #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
  1009. | PR_FP_EXC_RES | PR_FP_EXC_INV)
  1010. int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
  1011. {
  1012. struct pt_regs *regs = tsk->thread.regs;
  1013. /* This is a bit hairy. If we are an SPE enabled processor
  1014. * (have embedded fp) we store the IEEE exception enable flags in
  1015. * fpexc_mode. fpexc_mode is also used for setting FP exception
  1016. * mode (asyn, precise, disabled) for 'Classic' FP. */
  1017. if (val & PR_FP_EXC_SW_ENABLE) {
  1018. #ifdef CONFIG_SPE
  1019. if (cpu_has_feature(CPU_FTR_SPE)) {
  1020. tsk->thread.fpexc_mode = val &
  1021. (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
  1022. return 0;
  1023. } else {
  1024. return -EINVAL;
  1025. }
  1026. #else
  1027. return -EINVAL;
  1028. #endif
  1029. }
  1030. /* on a CONFIG_SPE this does not hurt us. The bits that
  1031. * __pack_fe01 use do not overlap with bits used for
  1032. * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
  1033. * on CONFIG_SPE implementations are reserved so writing to
  1034. * them does not change anything */
  1035. if (val > PR_FP_EXC_PRECISE)
  1036. return -EINVAL;
  1037. tsk->thread.fpexc_mode = __pack_fe01(val);
  1038. if (regs != NULL && (regs->msr & MSR_FP) != 0)
  1039. regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
  1040. | tsk->thread.fpexc_mode;
  1041. return 0;
  1042. }
  1043. int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
  1044. {
  1045. unsigned int val;
  1046. if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
  1047. #ifdef CONFIG_SPE
  1048. if (cpu_has_feature(CPU_FTR_SPE))
  1049. val = tsk->thread.fpexc_mode;
  1050. else
  1051. return -EINVAL;
  1052. #else
  1053. return -EINVAL;
  1054. #endif
  1055. else
  1056. val = __unpack_fe01(tsk->thread.fpexc_mode);
  1057. return put_user(val, (unsigned int __user *) adr);
  1058. }
  1059. int set_endian(struct task_struct *tsk, unsigned int val)
  1060. {
  1061. struct pt_regs *regs = tsk->thread.regs;
  1062. if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
  1063. (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
  1064. return -EINVAL;
  1065. if (regs == NULL)
  1066. return -EINVAL;
  1067. if (val == PR_ENDIAN_BIG)
  1068. regs->msr &= ~MSR_LE;
  1069. else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
  1070. regs->msr |= MSR_LE;
  1071. else
  1072. return -EINVAL;
  1073. return 0;
  1074. }
  1075. int get_endian(struct task_struct *tsk, unsigned long adr)
  1076. {
  1077. struct pt_regs *regs = tsk->thread.regs;
  1078. unsigned int val;
  1079. if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
  1080. !cpu_has_feature(CPU_FTR_REAL_LE))
  1081. return -EINVAL;
  1082. if (regs == NULL)
  1083. return -EINVAL;
  1084. if (regs->msr & MSR_LE) {
  1085. if (cpu_has_feature(CPU_FTR_REAL_LE))
  1086. val = PR_ENDIAN_LITTLE;
  1087. else
  1088. val = PR_ENDIAN_PPC_LITTLE;
  1089. } else
  1090. val = PR_ENDIAN_BIG;
  1091. return put_user(val, (unsigned int __user *)adr);
  1092. }
  1093. int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
  1094. {
  1095. tsk->thread.align_ctl = val;
  1096. return 0;
  1097. }
  1098. int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
  1099. {
  1100. return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
  1101. }
  1102. static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
  1103. unsigned long nbytes)
  1104. {
  1105. unsigned long stack_page;
  1106. unsigned long cpu = task_cpu(p);
  1107. /*
  1108. * Avoid crashing if the stack has overflowed and corrupted
  1109. * task_cpu(p), which is in the thread_info struct.
  1110. */
  1111. if (cpu < NR_CPUS && cpu_possible(cpu)) {
  1112. stack_page = (unsigned long) hardirq_ctx[cpu];
  1113. if (sp >= stack_page + sizeof(struct thread_struct)
  1114. && sp <= stack_page + THREAD_SIZE - nbytes)
  1115. return 1;
  1116. stack_page = (unsigned long) softirq_ctx[cpu];
  1117. if (sp >= stack_page + sizeof(struct thread_struct)
  1118. && sp <= stack_page + THREAD_SIZE - nbytes)
  1119. return 1;
  1120. }
  1121. return 0;
  1122. }
  1123. int validate_sp(unsigned long sp, struct task_struct *p,
  1124. unsigned long nbytes)
  1125. {
  1126. unsigned long stack_page = (unsigned long)task_stack_page(p);
  1127. if (sp >= stack_page + sizeof(struct thread_struct)
  1128. && sp <= stack_page + THREAD_SIZE - nbytes)
  1129. return 1;
  1130. return valid_irq_stack(sp, p, nbytes);
  1131. }
  1132. EXPORT_SYMBOL(validate_sp);
  1133. unsigned long get_wchan(struct task_struct *p)
  1134. {
  1135. unsigned long ip, sp;
  1136. int count = 0;
  1137. if (!p || p == current || p->state == TASK_RUNNING)
  1138. return 0;
  1139. sp = p->thread.ksp;
  1140. if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
  1141. return 0;
  1142. do {
  1143. sp = *(unsigned long *)sp;
  1144. if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
  1145. return 0;
  1146. if (count > 0) {
  1147. ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
  1148. if (!in_sched_functions(ip))
  1149. return ip;
  1150. }
  1151. } while (count++ < 16);
  1152. return 0;
  1153. }
  1154. static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
  1155. void show_stack(struct task_struct *tsk, unsigned long *stack)
  1156. {
  1157. unsigned long sp, ip, lr, newsp;
  1158. int count = 0;
  1159. int firstframe = 1;
  1160. #ifdef CONFIG_FUNCTION_GRAPH_TRACER
  1161. int curr_frame = current->curr_ret_stack;
  1162. extern void return_to_handler(void);
  1163. unsigned long rth = (unsigned long)return_to_handler;
  1164. unsigned long mrth = -1;
  1165. #ifdef CONFIG_PPC64
  1166. extern void mod_return_to_handler(void);
  1167. rth = *(unsigned long *)rth;
  1168. mrth = (unsigned long)mod_return_to_handler;
  1169. mrth = *(unsigned long *)mrth;
  1170. #endif
  1171. #endif
  1172. sp = (unsigned long) stack;
  1173. if (tsk == NULL)
  1174. tsk = current;
  1175. if (sp == 0) {
  1176. if (tsk == current)
  1177. asm("mr %0,1" : "=r" (sp));
  1178. else
  1179. sp = tsk->thread.ksp;
  1180. }
  1181. lr = 0;
  1182. printk("Call Trace:\n");
  1183. do {
  1184. if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
  1185. return;
  1186. stack = (unsigned long *) sp;
  1187. newsp = stack[0];
  1188. ip = stack[STACK_FRAME_LR_SAVE];
  1189. if (!firstframe || ip != lr) {
  1190. printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
  1191. #ifdef CONFIG_FUNCTION_GRAPH_TRACER
  1192. if ((ip == rth || ip == mrth) && curr_frame >= 0) {
  1193. printk(" (%pS)",
  1194. (void *)current->ret_stack[curr_frame].ret);
  1195. curr_frame--;
  1196. }
  1197. #endif
  1198. if (firstframe)
  1199. printk(" (unreliable)");
  1200. printk("\n");
  1201. }
  1202. firstframe = 0;
  1203. /*
  1204. * See if this is an exception frame.
  1205. * We look for the "regshere" marker in the current frame.
  1206. */
  1207. if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
  1208. && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
  1209. struct pt_regs *regs = (struct pt_regs *)
  1210. (sp + STACK_FRAME_OVERHEAD);
  1211. lr = regs->link;
  1212. printk("--- Exception: %lx at %pS\n LR = %pS\n",
  1213. regs->trap, (void *)regs->nip, (void *)lr);
  1214. firstframe = 1;
  1215. }
  1216. sp = newsp;
  1217. } while (count++ < kstack_depth_to_print);
  1218. }
  1219. #ifdef CONFIG_PPC64
  1220. /* Called with hard IRQs off */
  1221. void notrace __ppc64_runlatch_on(void)
  1222. {
  1223. struct thread_info *ti = current_thread_info();
  1224. unsigned long ctrl;
  1225. ctrl = mfspr(SPRN_CTRLF);
  1226. ctrl |= CTRL_RUNLATCH;
  1227. mtspr(SPRN_CTRLT, ctrl);
  1228. ti->local_flags |= _TLF_RUNLATCH;
  1229. }
  1230. /* Called with hard IRQs off */
  1231. void notrace __ppc64_runlatch_off(void)
  1232. {
  1233. struct thread_info *ti = current_thread_info();
  1234. unsigned long ctrl;
  1235. ti->local_flags &= ~_TLF_RUNLATCH;
  1236. ctrl = mfspr(SPRN_CTRLF);
  1237. ctrl &= ~CTRL_RUNLATCH;
  1238. mtspr(SPRN_CTRLT, ctrl);
  1239. }
  1240. #endif /* CONFIG_PPC64 */
  1241. unsigned long arch_align_stack(unsigned long sp)
  1242. {
  1243. if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
  1244. sp -= get_random_int() & ~PAGE_MASK;
  1245. return sp & ~0xf;
  1246. }
  1247. static inline unsigned long brk_rnd(void)
  1248. {
  1249. unsigned long rnd = 0;
  1250. /* 8MB for 32bit, 1GB for 64bit */
  1251. if (is_32bit_task())
  1252. rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
  1253. else
  1254. rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
  1255. return rnd << PAGE_SHIFT;
  1256. }
  1257. unsigned long arch_randomize_brk(struct mm_struct *mm)
  1258. {
  1259. unsigned long base = mm->brk;
  1260. unsigned long ret;
  1261. #ifdef CONFIG_PPC_STD_MMU_64
  1262. /*
  1263. * If we are using 1TB segments and we are allowed to randomise
  1264. * the heap, we can put it above 1TB so it is backed by a 1TB
  1265. * segment. Otherwise the heap will be in the bottom 1TB
  1266. * which always uses 256MB segments and this may result in a
  1267. * performance penalty.
  1268. */
  1269. if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
  1270. base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
  1271. #endif
  1272. ret = PAGE_ALIGN(base + brk_rnd());
  1273. if (ret < mm->brk)
  1274. return mm->brk;
  1275. return ret;
  1276. }
  1277. unsigned long randomize_et_dyn(unsigned long base)
  1278. {
  1279. unsigned long ret = PAGE_ALIGN(base + brk_rnd());
  1280. if (ret < base)
  1281. return base;
  1282. return ret;
  1283. }