uasm-mips.c 7.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * A small micro-assembler. It is intentionally kept simple, does only
  7. * support a subset of instructions, and does not try to hide pipeline
  8. * effects like branch delay slots.
  9. *
  10. * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer
  11. * Copyright (C) 2005, 2007 Maciej W. Rozycki
  12. * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
  13. * Copyright (C) 2012, 2013 MIPS Technologies, Inc. All rights reserved.
  14. */
  15. #include <linux/kernel.h>
  16. #include <linux/types.h>
  17. #include <linux/init.h>
  18. #include <asm/inst.h>
  19. #include <asm/elf.h>
  20. #include <asm/bugs.h>
  21. #define UASM_ISA _UASM_ISA_CLASSIC
  22. #include <asm/uasm.h>
  23. #define RS_MASK 0x1f
  24. #define RS_SH 21
  25. #define RT_MASK 0x1f
  26. #define RT_SH 16
  27. #define SCIMM_MASK 0xfffff
  28. #define SCIMM_SH 6
  29. /* This macro sets the non-variable bits of an instruction. */
  30. #define M(a, b, c, d, e, f) \
  31. ((a) << OP_SH \
  32. | (b) << RS_SH \
  33. | (c) << RT_SH \
  34. | (d) << RD_SH \
  35. | (e) << RE_SH \
  36. | (f) << FUNC_SH)
  37. /* Define these when we are not the ISA the kernel is being compiled with. */
  38. #ifdef CONFIG_CPU_MICROMIPS
  39. #define CL_uasm_i_b(buf, off) ISAOPC(_beq)(buf, 0, 0, off)
  40. #define CL_uasm_i_beqz(buf, rs, off) ISAOPC(_beq)(buf, rs, 0, off)
  41. #define CL_uasm_i_beqzl(buf, rs, off) ISAOPC(_beql)(buf, rs, 0, off)
  42. #define CL_uasm_i_bnez(buf, rs, off) ISAOPC(_bne)(buf, rs, 0, off)
  43. #endif
  44. #include "uasm.c"
  45. static struct insn insn_table[] = {
  46. { insn_addiu, M(addiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
  47. { insn_addu, M(spec_op, 0, 0, 0, 0, addu_op), RS | RT | RD },
  48. { insn_andi, M(andi_op, 0, 0, 0, 0, 0), RS | RT | UIMM },
  49. { insn_and, M(spec_op, 0, 0, 0, 0, and_op), RS | RT | RD },
  50. { insn_bbit0, M(lwc2_op, 0, 0, 0, 0, 0), RS | RT | BIMM },
  51. { insn_bbit1, M(swc2_op, 0, 0, 0, 0, 0), RS | RT | BIMM },
  52. { insn_beql, M(beql_op, 0, 0, 0, 0, 0), RS | RT | BIMM },
  53. { insn_beq, M(beq_op, 0, 0, 0, 0, 0), RS | RT | BIMM },
  54. { insn_bgezl, M(bcond_op, 0, bgezl_op, 0, 0, 0), RS | BIMM },
  55. { insn_bgez, M(bcond_op, 0, bgez_op, 0, 0, 0), RS | BIMM },
  56. { insn_bltzl, M(bcond_op, 0, bltzl_op, 0, 0, 0), RS | BIMM },
  57. { insn_bltz, M(bcond_op, 0, bltz_op, 0, 0, 0), RS | BIMM },
  58. { insn_bne, M(bne_op, 0, 0, 0, 0, 0), RS | RT | BIMM },
  59. { insn_cache, M(cache_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
  60. { insn_daddiu, M(daddiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
  61. { insn_daddu, M(spec_op, 0, 0, 0, 0, daddu_op), RS | RT | RD },
  62. { insn_dinsm, M(spec3_op, 0, 0, 0, 0, dinsm_op), RS | RT | RD | RE },
  63. { insn_dins, M(spec3_op, 0, 0, 0, 0, dins_op), RS | RT | RD | RE },
  64. { insn_dmfc0, M(cop0_op, dmfc_op, 0, 0, 0, 0), RT | RD | SET},
  65. { insn_dmtc0, M(cop0_op, dmtc_op, 0, 0, 0, 0), RT | RD | SET},
  66. { insn_drotr32, M(spec_op, 1, 0, 0, 0, dsrl32_op), RT | RD | RE },
  67. { insn_drotr, M(spec_op, 1, 0, 0, 0, dsrl_op), RT | RD | RE },
  68. { insn_dsll32, M(spec_op, 0, 0, 0, 0, dsll32_op), RT | RD | RE },
  69. { insn_dsll, M(spec_op, 0, 0, 0, 0, dsll_op), RT | RD | RE },
  70. { insn_dsra, M(spec_op, 0, 0, 0, 0, dsra_op), RT | RD | RE },
  71. { insn_dsrl32, M(spec_op, 0, 0, 0, 0, dsrl32_op), RT | RD | RE },
  72. { insn_dsrl, M(spec_op, 0, 0, 0, 0, dsrl_op), RT | RD | RE },
  73. { insn_dsubu, M(spec_op, 0, 0, 0, 0, dsubu_op), RS | RT | RD },
  74. { insn_eret, M(cop0_op, cop_op, 0, 0, 0, eret_op), 0 },
  75. { insn_ext, M(spec3_op, 0, 0, 0, 0, ext_op), RS | RT | RD | RE },
  76. { insn_ins, M(spec3_op, 0, 0, 0, 0, ins_op), RS | RT | RD | RE },
  77. { insn_j, M(j_op, 0, 0, 0, 0, 0), JIMM },
  78. { insn_jal, M(jal_op, 0, 0, 0, 0, 0), JIMM },
  79. { insn_j, M(j_op, 0, 0, 0, 0, 0), JIMM },
  80. { insn_jr, M(spec_op, 0, 0, 0, 0, jr_op), RS },
  81. { insn_ld, M(ld_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
  82. { insn_ldx, M(spec3_op, 0, 0, 0, ldx_op, lx_op), RS | RT | RD },
  83. { insn_lld, M(lld_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
  84. { insn_ll, M(ll_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
  85. { insn_lui, M(lui_op, 0, 0, 0, 0, 0), RT | SIMM },
  86. { insn_lw, M(lw_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
  87. { insn_lwx, M(spec3_op, 0, 0, 0, lwx_op, lx_op), RS | RT | RD },
  88. { insn_mfc0, M(cop0_op, mfc_op, 0, 0, 0, 0), RT | RD | SET},
  89. { insn_mtc0, M(cop0_op, mtc_op, 0, 0, 0, 0), RT | RD | SET},
  90. { insn_ori, M(ori_op, 0, 0, 0, 0, 0), RS | RT | UIMM },
  91. { insn_or, M(spec_op, 0, 0, 0, 0, or_op), RS | RT | RD },
  92. { insn_pref, M(pref_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
  93. { insn_rfe, M(cop0_op, cop_op, 0, 0, 0, rfe_op), 0 },
  94. { insn_rotr, M(spec_op, 1, 0, 0, 0, srl_op), RT | RD | RE },
  95. { insn_scd, M(scd_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
  96. { insn_sc, M(sc_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
  97. { insn_sd, M(sd_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
  98. { insn_sll, M(spec_op, 0, 0, 0, 0, sll_op), RT | RD | RE },
  99. { insn_sra, M(spec_op, 0, 0, 0, 0, sra_op), RT | RD | RE },
  100. { insn_srl, M(spec_op, 0, 0, 0, 0, srl_op), RT | RD | RE },
  101. { insn_subu, M(spec_op, 0, 0, 0, 0, subu_op), RS | RT | RD },
  102. { insn_sw, M(sw_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
  103. { insn_syscall, M(spec_op, 0, 0, 0, 0, syscall_op), SCIMM},
  104. { insn_tlbp, M(cop0_op, cop_op, 0, 0, 0, tlbp_op), 0 },
  105. { insn_tlbr, M(cop0_op, cop_op, 0, 0, 0, tlbr_op), 0 },
  106. { insn_tlbwi, M(cop0_op, cop_op, 0, 0, 0, tlbwi_op), 0 },
  107. { insn_tlbwr, M(cop0_op, cop_op, 0, 0, 0, tlbwr_op), 0 },
  108. { insn_xori, M(xori_op, 0, 0, 0, 0, 0), RS | RT | UIMM },
  109. { insn_xor, M(spec_op, 0, 0, 0, 0, xor_op), RS | RT | RD },
  110. { insn_invalid, 0, 0 }
  111. };
  112. #undef M
  113. static inline u32 build_bimm(s32 arg)
  114. {
  115. WARN(arg > 0x1ffff || arg < -0x20000,
  116. KERN_WARNING "Micro-assembler field overflow\n");
  117. WARN(arg & 0x3, KERN_WARNING "Invalid micro-assembler branch target\n");
  118. return ((arg < 0) ? (1 << 15) : 0) | ((arg >> 2) & 0x7fff);
  119. }
  120. static inline u32 build_jimm(u32 arg)
  121. {
  122. WARN(arg & ~(JIMM_MASK << 2),
  123. KERN_WARNING "Micro-assembler field overflow\n");
  124. return (arg >> 2) & JIMM_MASK;
  125. }
  126. /*
  127. * The order of opcode arguments is implicitly left to right,
  128. * starting with RS and ending with FUNC or IMM.
  129. */
  130. static void build_insn(u32 **buf, enum opcode opc, ...)
  131. {
  132. struct insn *ip = NULL;
  133. unsigned int i;
  134. va_list ap;
  135. u32 op;
  136. for (i = 0; insn_table[i].opcode != insn_invalid; i++)
  137. if (insn_table[i].opcode == opc) {
  138. ip = &insn_table[i];
  139. break;
  140. }
  141. if (!ip || (opc == insn_daddiu && r4k_daddiu_bug()))
  142. panic("Unsupported Micro-assembler instruction %d", opc);
  143. op = ip->match;
  144. va_start(ap, opc);
  145. if (ip->fields & RS)
  146. op |= build_rs(va_arg(ap, u32));
  147. if (ip->fields & RT)
  148. op |= build_rt(va_arg(ap, u32));
  149. if (ip->fields & RD)
  150. op |= build_rd(va_arg(ap, u32));
  151. if (ip->fields & RE)
  152. op |= build_re(va_arg(ap, u32));
  153. if (ip->fields & SIMM)
  154. op |= build_simm(va_arg(ap, s32));
  155. if (ip->fields & UIMM)
  156. op |= build_uimm(va_arg(ap, u32));
  157. if (ip->fields & BIMM)
  158. op |= build_bimm(va_arg(ap, s32));
  159. if (ip->fields & JIMM)
  160. op |= build_jimm(va_arg(ap, u32));
  161. if (ip->fields & FUNC)
  162. op |= build_func(va_arg(ap, u32));
  163. if (ip->fields & SET)
  164. op |= build_set(va_arg(ap, u32));
  165. if (ip->fields & SCIMM)
  166. op |= build_scimm(va_arg(ap, u32));
  167. va_end(ap);
  168. **buf = op;
  169. (*buf)++;
  170. }
  171. static inline void
  172. __resolve_relocs(struct uasm_reloc *rel, struct uasm_label *lab)
  173. {
  174. long laddr = (long)lab->addr;
  175. long raddr = (long)rel->addr;
  176. switch (rel->type) {
  177. case R_MIPS_PC16:
  178. *rel->addr |= build_bimm(laddr - (raddr + 4));
  179. break;
  180. default:
  181. panic("Unsupported Micro-assembler relocation %d",
  182. rel->type);
  183. }
  184. }