dma-default.c 9.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * Copyright (C) 2000 Ani Joshi <ajoshi@unixbox.com>
  7. * Copyright (C) 2000, 2001, 06 Ralf Baechle <ralf@linux-mips.org>
  8. * swiped from i386, and cloned for MIPS by Geert, polished by Ralf.
  9. */
  10. #include <linux/types.h>
  11. #include <linux/dma-mapping.h>
  12. #include <linux/mm.h>
  13. #include <linux/module.h>
  14. #include <linux/scatterlist.h>
  15. #include <linux/string.h>
  16. #include <linux/gfp.h>
  17. #include <linux/highmem.h>
  18. #include <asm/cache.h>
  19. #include <asm/io.h>
  20. #include <dma-coherence.h>
  21. int coherentio = 0; /* User defined DMA coherency from command line. */
  22. EXPORT_SYMBOL_GPL(coherentio);
  23. int hw_coherentio = 0; /* Actual hardware supported DMA coherency setting. */
  24. static int __init setcoherentio(char *str)
  25. {
  26. coherentio = 1;
  27. pr_info("Hardware DMA cache coherency (command line)\n");
  28. return 0;
  29. }
  30. early_param("coherentio", setcoherentio);
  31. static int __init setnocoherentio(char *str)
  32. {
  33. coherentio = 0;
  34. pr_info("Software DMA cache coherency (command line)\n");
  35. return 0;
  36. }
  37. early_param("nocoherentio", setnocoherentio);
  38. static inline struct page *dma_addr_to_page(struct device *dev,
  39. dma_addr_t dma_addr)
  40. {
  41. return pfn_to_page(
  42. plat_dma_addr_to_phys(dev, dma_addr) >> PAGE_SHIFT);
  43. }
  44. /*
  45. * Warning on the terminology - Linux calls an uncached area coherent;
  46. * MIPS terminology calls memory areas with hardware maintained coherency
  47. * coherent.
  48. */
  49. static inline int cpu_is_noncoherent_r10000(struct device *dev)
  50. {
  51. return !plat_device_is_coherent(dev) &&
  52. (current_cpu_type() == CPU_R10000 ||
  53. current_cpu_type() == CPU_R12000);
  54. }
  55. static gfp_t massage_gfp_flags(const struct device *dev, gfp_t gfp)
  56. {
  57. gfp_t dma_flag;
  58. /* ignore region specifiers */
  59. gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
  60. #ifdef CONFIG_ISA
  61. if (dev == NULL)
  62. dma_flag = __GFP_DMA;
  63. else
  64. #endif
  65. #if defined(CONFIG_ZONE_DMA32) && defined(CONFIG_ZONE_DMA)
  66. if (dev->coherent_dma_mask < DMA_BIT_MASK(32))
  67. dma_flag = __GFP_DMA;
  68. else if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
  69. dma_flag = __GFP_DMA32;
  70. else
  71. #endif
  72. #if defined(CONFIG_ZONE_DMA32) && !defined(CONFIG_ZONE_DMA)
  73. if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
  74. dma_flag = __GFP_DMA32;
  75. else
  76. #endif
  77. #if defined(CONFIG_ZONE_DMA) && !defined(CONFIG_ZONE_DMA32)
  78. if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
  79. dma_flag = __GFP_DMA;
  80. else
  81. #endif
  82. dma_flag = 0;
  83. /* Don't invoke OOM killer */
  84. gfp |= __GFP_NORETRY;
  85. return gfp | dma_flag;
  86. }
  87. void *dma_alloc_noncoherent(struct device *dev, size_t size,
  88. dma_addr_t * dma_handle, gfp_t gfp)
  89. {
  90. void *ret;
  91. gfp = massage_gfp_flags(dev, gfp);
  92. ret = (void *) __get_free_pages(gfp, get_order(size));
  93. if (ret != NULL) {
  94. memset(ret, 0, size);
  95. *dma_handle = plat_map_dma_mem(dev, ret, size);
  96. }
  97. return ret;
  98. }
  99. EXPORT_SYMBOL(dma_alloc_noncoherent);
  100. static void *mips_dma_alloc_coherent(struct device *dev, size_t size,
  101. dma_addr_t * dma_handle, gfp_t gfp, struct dma_attrs *attrs)
  102. {
  103. void *ret;
  104. if (dma_alloc_from_coherent(dev, size, dma_handle, &ret))
  105. return ret;
  106. gfp = massage_gfp_flags(dev, gfp);
  107. ret = (void *) __get_free_pages(gfp, get_order(size));
  108. if (ret) {
  109. memset(ret, 0, size);
  110. *dma_handle = plat_map_dma_mem(dev, ret, size);
  111. if (!plat_device_is_coherent(dev)) {
  112. dma_cache_wback_inv((unsigned long) ret, size);
  113. if (!hw_coherentio)
  114. ret = UNCAC_ADDR(ret);
  115. }
  116. }
  117. return ret;
  118. }
  119. void dma_free_noncoherent(struct device *dev, size_t size, void *vaddr,
  120. dma_addr_t dma_handle)
  121. {
  122. plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
  123. free_pages((unsigned long) vaddr, get_order(size));
  124. }
  125. EXPORT_SYMBOL(dma_free_noncoherent);
  126. static void mips_dma_free_coherent(struct device *dev, size_t size, void *vaddr,
  127. dma_addr_t dma_handle, struct dma_attrs *attrs)
  128. {
  129. unsigned long addr = (unsigned long) vaddr;
  130. int order = get_order(size);
  131. if (dma_release_from_coherent(dev, order, vaddr))
  132. return;
  133. plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
  134. if (!plat_device_is_coherent(dev) && !hw_coherentio)
  135. addr = CAC_ADDR(addr);
  136. free_pages(addr, get_order(size));
  137. }
  138. static inline void __dma_sync_virtual(void *addr, size_t size,
  139. enum dma_data_direction direction)
  140. {
  141. switch (direction) {
  142. case DMA_TO_DEVICE:
  143. dma_cache_wback((unsigned long)addr, size);
  144. break;
  145. case DMA_FROM_DEVICE:
  146. dma_cache_inv((unsigned long)addr, size);
  147. break;
  148. case DMA_BIDIRECTIONAL:
  149. dma_cache_wback_inv((unsigned long)addr, size);
  150. break;
  151. default:
  152. BUG();
  153. }
  154. }
  155. /*
  156. * A single sg entry may refer to multiple physically contiguous
  157. * pages. But we still need to process highmem pages individually.
  158. * If highmem is not configured then the bulk of this loop gets
  159. * optimized out.
  160. */
  161. static inline void __dma_sync(struct page *page,
  162. unsigned long offset, size_t size, enum dma_data_direction direction)
  163. {
  164. size_t left = size;
  165. do {
  166. size_t len = left;
  167. if (PageHighMem(page)) {
  168. void *addr;
  169. if (offset + len > PAGE_SIZE) {
  170. if (offset >= PAGE_SIZE) {
  171. page += offset >> PAGE_SHIFT;
  172. offset &= ~PAGE_MASK;
  173. }
  174. len = PAGE_SIZE - offset;
  175. }
  176. addr = kmap_atomic(page);
  177. __dma_sync_virtual(addr + offset, len, direction);
  178. kunmap_atomic(addr);
  179. } else
  180. __dma_sync_virtual(page_address(page) + offset,
  181. size, direction);
  182. offset = 0;
  183. page++;
  184. left -= len;
  185. } while (left);
  186. }
  187. static void mips_dma_unmap_page(struct device *dev, dma_addr_t dma_addr,
  188. size_t size, enum dma_data_direction direction, struct dma_attrs *attrs)
  189. {
  190. if (cpu_is_noncoherent_r10000(dev))
  191. __dma_sync(dma_addr_to_page(dev, dma_addr),
  192. dma_addr & ~PAGE_MASK, size, direction);
  193. plat_unmap_dma_mem(dev, dma_addr, size, direction);
  194. }
  195. static int mips_dma_map_sg(struct device *dev, struct scatterlist *sg,
  196. int nents, enum dma_data_direction direction, struct dma_attrs *attrs)
  197. {
  198. int i;
  199. for (i = 0; i < nents; i++, sg++) {
  200. if (!plat_device_is_coherent(dev))
  201. __dma_sync(sg_page(sg), sg->offset, sg->length,
  202. direction);
  203. #ifdef CONFIG_NEED_SG_DMA_LENGTH
  204. sg->dma_length = sg->length;
  205. #endif
  206. sg->dma_address = plat_map_dma_mem_page(dev, sg_page(sg)) +
  207. sg->offset;
  208. }
  209. return nents;
  210. }
  211. static dma_addr_t mips_dma_map_page(struct device *dev, struct page *page,
  212. unsigned long offset, size_t size, enum dma_data_direction direction,
  213. struct dma_attrs *attrs)
  214. {
  215. if (!plat_device_is_coherent(dev))
  216. __dma_sync(page, offset, size, direction);
  217. return plat_map_dma_mem_page(dev, page) + offset;
  218. }
  219. static void mips_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
  220. int nhwentries, enum dma_data_direction direction,
  221. struct dma_attrs *attrs)
  222. {
  223. int i;
  224. for (i = 0; i < nhwentries; i++, sg++) {
  225. if (!plat_device_is_coherent(dev) &&
  226. direction != DMA_TO_DEVICE)
  227. __dma_sync(sg_page(sg), sg->offset, sg->length,
  228. direction);
  229. plat_unmap_dma_mem(dev, sg->dma_address, sg->length, direction);
  230. }
  231. }
  232. static void mips_dma_sync_single_for_cpu(struct device *dev,
  233. dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
  234. {
  235. if (cpu_is_noncoherent_r10000(dev))
  236. __dma_sync(dma_addr_to_page(dev, dma_handle),
  237. dma_handle & ~PAGE_MASK, size, direction);
  238. }
  239. static void mips_dma_sync_single_for_device(struct device *dev,
  240. dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
  241. {
  242. plat_extra_sync_for_device(dev);
  243. if (!plat_device_is_coherent(dev))
  244. __dma_sync(dma_addr_to_page(dev, dma_handle),
  245. dma_handle & ~PAGE_MASK, size, direction);
  246. }
  247. static void mips_dma_sync_sg_for_cpu(struct device *dev,
  248. struct scatterlist *sg, int nelems, enum dma_data_direction direction)
  249. {
  250. int i;
  251. /* Make sure that gcc doesn't leave the empty loop body. */
  252. for (i = 0; i < nelems; i++, sg++) {
  253. if (cpu_is_noncoherent_r10000(dev))
  254. __dma_sync(sg_page(sg), sg->offset, sg->length,
  255. direction);
  256. }
  257. }
  258. static void mips_dma_sync_sg_for_device(struct device *dev,
  259. struct scatterlist *sg, int nelems, enum dma_data_direction direction)
  260. {
  261. int i;
  262. /* Make sure that gcc doesn't leave the empty loop body. */
  263. for (i = 0; i < nelems; i++, sg++) {
  264. if (!plat_device_is_coherent(dev))
  265. __dma_sync(sg_page(sg), sg->offset, sg->length,
  266. direction);
  267. }
  268. }
  269. int mips_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
  270. {
  271. return plat_dma_mapping_error(dev, dma_addr);
  272. }
  273. int mips_dma_supported(struct device *dev, u64 mask)
  274. {
  275. return plat_dma_supported(dev, mask);
  276. }
  277. void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
  278. enum dma_data_direction direction)
  279. {
  280. BUG_ON(direction == DMA_NONE);
  281. plat_extra_sync_for_device(dev);
  282. if (!plat_device_is_coherent(dev))
  283. __dma_sync_virtual(vaddr, size, direction);
  284. }
  285. EXPORT_SYMBOL(dma_cache_sync);
  286. static struct dma_map_ops mips_default_dma_map_ops = {
  287. .alloc = mips_dma_alloc_coherent,
  288. .free = mips_dma_free_coherent,
  289. .map_page = mips_dma_map_page,
  290. .unmap_page = mips_dma_unmap_page,
  291. .map_sg = mips_dma_map_sg,
  292. .unmap_sg = mips_dma_unmap_sg,
  293. .sync_single_for_cpu = mips_dma_sync_single_for_cpu,
  294. .sync_single_for_device = mips_dma_sync_single_for_device,
  295. .sync_sg_for_cpu = mips_dma_sync_sg_for_cpu,
  296. .sync_sg_for_device = mips_dma_sync_sg_for_device,
  297. .mapping_error = mips_dma_mapping_error,
  298. .dma_supported = mips_dma_supported
  299. };
  300. struct dma_map_ops *mips_dma_map_ops = &mips_default_dma_map_ops;
  301. EXPORT_SYMBOL(mips_dma_map_ops);
  302. #define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16)
  303. static int __init mips_dma_init(void)
  304. {
  305. dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
  306. return 0;
  307. }
  308. fs_initcall(mips_dma_init);