kvm_mips.c 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * KVM/MIPS: MIPS specific KVM APIs
  7. *
  8. * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
  9. * Authors: Sanjay Lal <sanjayl@kymasys.com>
  10. */
  11. #include <linux/errno.h>
  12. #include <linux/err.h>
  13. #include <linux/module.h>
  14. #include <linux/vmalloc.h>
  15. #include <linux/fs.h>
  16. #include <linux/bootmem.h>
  17. #include <asm/page.h>
  18. #include <asm/cacheflush.h>
  19. #include <asm/mmu_context.h>
  20. #include <linux/kvm_host.h>
  21. #include "kvm_mips_int.h"
  22. #include "kvm_mips_comm.h"
  23. #define CREATE_TRACE_POINTS
  24. #include "trace.h"
  25. #ifndef VECTORSPACING
  26. #define VECTORSPACING 0x100 /* for EI/VI mode */
  27. #endif
  28. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  29. struct kvm_stats_debugfs_item debugfs_entries[] = {
  30. { "wait", VCPU_STAT(wait_exits) },
  31. { "cache", VCPU_STAT(cache_exits) },
  32. { "signal", VCPU_STAT(signal_exits) },
  33. { "interrupt", VCPU_STAT(int_exits) },
  34. { "cop_unsuable", VCPU_STAT(cop_unusable_exits) },
  35. { "tlbmod", VCPU_STAT(tlbmod_exits) },
  36. { "tlbmiss_ld", VCPU_STAT(tlbmiss_ld_exits) },
  37. { "tlbmiss_st", VCPU_STAT(tlbmiss_st_exits) },
  38. { "addrerr_st", VCPU_STAT(addrerr_st_exits) },
  39. { "addrerr_ld", VCPU_STAT(addrerr_ld_exits) },
  40. { "syscall", VCPU_STAT(syscall_exits) },
  41. { "resvd_inst", VCPU_STAT(resvd_inst_exits) },
  42. { "break_inst", VCPU_STAT(break_inst_exits) },
  43. { "flush_dcache", VCPU_STAT(flush_dcache_exits) },
  44. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  45. {NULL}
  46. };
  47. static int kvm_mips_reset_vcpu(struct kvm_vcpu *vcpu)
  48. {
  49. int i;
  50. for_each_possible_cpu(i) {
  51. vcpu->arch.guest_kernel_asid[i] = 0;
  52. vcpu->arch.guest_user_asid[i] = 0;
  53. }
  54. return 0;
  55. }
  56. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  57. {
  58. return gfn;
  59. }
  60. /* XXXKYMA: We are simulatoring a processor that has the WII bit set in Config7, so we
  61. * are "runnable" if interrupts are pending
  62. */
  63. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  64. {
  65. return !!(vcpu->arch.pending_exceptions);
  66. }
  67. int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
  68. {
  69. return 1;
  70. }
  71. int kvm_arch_hardware_enable(void *garbage)
  72. {
  73. return 0;
  74. }
  75. void kvm_arch_hardware_disable(void *garbage)
  76. {
  77. }
  78. int kvm_arch_hardware_setup(void)
  79. {
  80. return 0;
  81. }
  82. void kvm_arch_hardware_unsetup(void)
  83. {
  84. }
  85. void kvm_arch_check_processor_compat(void *rtn)
  86. {
  87. int *r = (int *)rtn;
  88. *r = 0;
  89. return;
  90. }
  91. static void kvm_mips_init_tlbs(struct kvm *kvm)
  92. {
  93. unsigned long wired;
  94. /* Add a wired entry to the TLB, it is used to map the commpage to the Guest kernel */
  95. wired = read_c0_wired();
  96. write_c0_wired(wired + 1);
  97. mtc0_tlbw_hazard();
  98. kvm->arch.commpage_tlb = wired;
  99. kvm_debug("[%d] commpage TLB: %d\n", smp_processor_id(),
  100. kvm->arch.commpage_tlb);
  101. }
  102. static void kvm_mips_init_vm_percpu(void *arg)
  103. {
  104. struct kvm *kvm = (struct kvm *)arg;
  105. kvm_mips_init_tlbs(kvm);
  106. kvm_mips_callbacks->vm_init(kvm);
  107. }
  108. int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
  109. {
  110. if (atomic_inc_return(&kvm_mips_instance) == 1) {
  111. kvm_info("%s: 1st KVM instance, setup host TLB parameters\n",
  112. __func__);
  113. on_each_cpu(kvm_mips_init_vm_percpu, kvm, 1);
  114. }
  115. return 0;
  116. }
  117. void kvm_mips_free_vcpus(struct kvm *kvm)
  118. {
  119. unsigned int i;
  120. struct kvm_vcpu *vcpu;
  121. /* Put the pages we reserved for the guest pmap */
  122. for (i = 0; i < kvm->arch.guest_pmap_npages; i++) {
  123. if (kvm->arch.guest_pmap[i] != KVM_INVALID_PAGE)
  124. kvm_mips_release_pfn_clean(kvm->arch.guest_pmap[i]);
  125. }
  126. if (kvm->arch.guest_pmap)
  127. kfree(kvm->arch.guest_pmap);
  128. kvm_for_each_vcpu(i, vcpu, kvm) {
  129. kvm_arch_vcpu_free(vcpu);
  130. }
  131. mutex_lock(&kvm->lock);
  132. for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
  133. kvm->vcpus[i] = NULL;
  134. atomic_set(&kvm->online_vcpus, 0);
  135. mutex_unlock(&kvm->lock);
  136. }
  137. void kvm_arch_sync_events(struct kvm *kvm)
  138. {
  139. }
  140. static void kvm_mips_uninit_tlbs(void *arg)
  141. {
  142. /* Restore wired count */
  143. write_c0_wired(0);
  144. mtc0_tlbw_hazard();
  145. /* Clear out all the TLBs */
  146. kvm_local_flush_tlb_all();
  147. }
  148. void kvm_arch_destroy_vm(struct kvm *kvm)
  149. {
  150. kvm_mips_free_vcpus(kvm);
  151. /* If this is the last instance, restore wired count */
  152. if (atomic_dec_return(&kvm_mips_instance) == 0) {
  153. kvm_info("%s: last KVM instance, restoring TLB parameters\n",
  154. __func__);
  155. on_each_cpu(kvm_mips_uninit_tlbs, NULL, 1);
  156. }
  157. }
  158. long
  159. kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
  160. {
  161. return -ENOIOCTLCMD;
  162. }
  163. void kvm_arch_free_memslot(struct kvm_memory_slot *free,
  164. struct kvm_memory_slot *dont)
  165. {
  166. }
  167. int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages)
  168. {
  169. return 0;
  170. }
  171. int kvm_arch_prepare_memory_region(struct kvm *kvm,
  172. struct kvm_memory_slot *memslot,
  173. struct kvm_userspace_memory_region *mem,
  174. enum kvm_mr_change change)
  175. {
  176. return 0;
  177. }
  178. void kvm_arch_commit_memory_region(struct kvm *kvm,
  179. struct kvm_userspace_memory_region *mem,
  180. const struct kvm_memory_slot *old,
  181. enum kvm_mr_change change)
  182. {
  183. unsigned long npages = 0;
  184. int i, err = 0;
  185. kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
  186. __func__, kvm, mem->slot, mem->guest_phys_addr,
  187. mem->memory_size, mem->userspace_addr);
  188. /* Setup Guest PMAP table */
  189. if (!kvm->arch.guest_pmap) {
  190. if (mem->slot == 0)
  191. npages = mem->memory_size >> PAGE_SHIFT;
  192. if (npages) {
  193. kvm->arch.guest_pmap_npages = npages;
  194. kvm->arch.guest_pmap =
  195. kzalloc(npages * sizeof(unsigned long), GFP_KERNEL);
  196. if (!kvm->arch.guest_pmap) {
  197. kvm_err("Failed to allocate guest PMAP");
  198. err = -ENOMEM;
  199. goto out;
  200. }
  201. kvm_info
  202. ("Allocated space for Guest PMAP Table (%ld pages) @ %p\n",
  203. npages, kvm->arch.guest_pmap);
  204. /* Now setup the page table */
  205. for (i = 0; i < npages; i++) {
  206. kvm->arch.guest_pmap[i] = KVM_INVALID_PAGE;
  207. }
  208. }
  209. }
  210. out:
  211. return;
  212. }
  213. void kvm_arch_flush_shadow_all(struct kvm *kvm)
  214. {
  215. }
  216. void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
  217. struct kvm_memory_slot *slot)
  218. {
  219. }
  220. void kvm_arch_flush_shadow(struct kvm *kvm)
  221. {
  222. }
  223. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
  224. {
  225. extern char mips32_exception[], mips32_exceptionEnd[];
  226. extern char mips32_GuestException[], mips32_GuestExceptionEnd[];
  227. int err, size, offset;
  228. void *gebase;
  229. int i;
  230. struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
  231. if (!vcpu) {
  232. err = -ENOMEM;
  233. goto out;
  234. }
  235. err = kvm_vcpu_init(vcpu, kvm, id);
  236. if (err)
  237. goto out_free_cpu;
  238. kvm_info("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
  239. /* Allocate space for host mode exception handlers that handle
  240. * guest mode exits
  241. */
  242. if (cpu_has_veic || cpu_has_vint) {
  243. size = 0x200 + VECTORSPACING * 64;
  244. } else {
  245. size = 0x200;
  246. }
  247. /* Save Linux EBASE */
  248. vcpu->arch.host_ebase = (void *)read_c0_ebase();
  249. gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
  250. if (!gebase) {
  251. err = -ENOMEM;
  252. goto out_free_cpu;
  253. }
  254. kvm_info("Allocated %d bytes for KVM Exception Handlers @ %p\n",
  255. ALIGN(size, PAGE_SIZE), gebase);
  256. /* Save new ebase */
  257. vcpu->arch.guest_ebase = gebase;
  258. /* Copy L1 Guest Exception handler to correct offset */
  259. /* TLB Refill, EXL = 0 */
  260. memcpy(gebase, mips32_exception,
  261. mips32_exceptionEnd - mips32_exception);
  262. /* General Exception Entry point */
  263. memcpy(gebase + 0x180, mips32_exception,
  264. mips32_exceptionEnd - mips32_exception);
  265. /* For vectored interrupts poke the exception code @ all offsets 0-7 */
  266. for (i = 0; i < 8; i++) {
  267. kvm_debug("L1 Vectored handler @ %p\n",
  268. gebase + 0x200 + (i * VECTORSPACING));
  269. memcpy(gebase + 0x200 + (i * VECTORSPACING), mips32_exception,
  270. mips32_exceptionEnd - mips32_exception);
  271. }
  272. /* General handler, relocate to unmapped space for sanity's sake */
  273. offset = 0x2000;
  274. kvm_info("Installing KVM Exception handlers @ %p, %#x bytes\n",
  275. gebase + offset,
  276. mips32_GuestExceptionEnd - mips32_GuestException);
  277. memcpy(gebase + offset, mips32_GuestException,
  278. mips32_GuestExceptionEnd - mips32_GuestException);
  279. /* Invalidate the icache for these ranges */
  280. mips32_SyncICache((unsigned long) gebase, ALIGN(size, PAGE_SIZE));
  281. /* Allocate comm page for guest kernel, a TLB will be reserved for mapping GVA @ 0xFFFF8000 to this page */
  282. vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
  283. if (!vcpu->arch.kseg0_commpage) {
  284. err = -ENOMEM;
  285. goto out_free_gebase;
  286. }
  287. kvm_info("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
  288. kvm_mips_commpage_init(vcpu);
  289. /* Init */
  290. vcpu->arch.last_sched_cpu = -1;
  291. /* Start off the timer */
  292. kvm_mips_emulate_count(vcpu);
  293. return vcpu;
  294. out_free_gebase:
  295. kfree(gebase);
  296. out_free_cpu:
  297. kfree(vcpu);
  298. out:
  299. return ERR_PTR(err);
  300. }
  301. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  302. {
  303. hrtimer_cancel(&vcpu->arch.comparecount_timer);
  304. kvm_vcpu_uninit(vcpu);
  305. kvm_mips_dump_stats(vcpu);
  306. if (vcpu->arch.guest_ebase)
  307. kfree(vcpu->arch.guest_ebase);
  308. if (vcpu->arch.kseg0_commpage)
  309. kfree(vcpu->arch.kseg0_commpage);
  310. }
  311. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  312. {
  313. kvm_arch_vcpu_free(vcpu);
  314. }
  315. int
  316. kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  317. struct kvm_guest_debug *dbg)
  318. {
  319. return -ENOIOCTLCMD;
  320. }
  321. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
  322. {
  323. int r = 0;
  324. sigset_t sigsaved;
  325. if (vcpu->sigset_active)
  326. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  327. if (vcpu->mmio_needed) {
  328. if (!vcpu->mmio_is_write)
  329. kvm_mips_complete_mmio_load(vcpu, run);
  330. vcpu->mmio_needed = 0;
  331. }
  332. /* Check if we have any exceptions/interrupts pending */
  333. kvm_mips_deliver_interrupts(vcpu,
  334. kvm_read_c0_guest_cause(vcpu->arch.cop0));
  335. local_irq_disable();
  336. kvm_guest_enter();
  337. r = __kvm_mips_vcpu_run(run, vcpu);
  338. kvm_guest_exit();
  339. local_irq_enable();
  340. if (vcpu->sigset_active)
  341. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  342. return r;
  343. }
  344. int
  345. kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_mips_interrupt *irq)
  346. {
  347. int intr = (int)irq->irq;
  348. struct kvm_vcpu *dvcpu = NULL;
  349. if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
  350. kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
  351. (int)intr);
  352. if (irq->cpu == -1)
  353. dvcpu = vcpu;
  354. else
  355. dvcpu = vcpu->kvm->vcpus[irq->cpu];
  356. if (intr == 2 || intr == 3 || intr == 4) {
  357. kvm_mips_callbacks->queue_io_int(dvcpu, irq);
  358. } else if (intr == -2 || intr == -3 || intr == -4) {
  359. kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
  360. } else {
  361. kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
  362. irq->cpu, irq->irq);
  363. return -EINVAL;
  364. }
  365. dvcpu->arch.wait = 0;
  366. if (waitqueue_active(&dvcpu->wq)) {
  367. wake_up_interruptible(&dvcpu->wq);
  368. }
  369. return 0;
  370. }
  371. int
  372. kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  373. struct kvm_mp_state *mp_state)
  374. {
  375. return -ENOIOCTLCMD;
  376. }
  377. int
  378. kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  379. struct kvm_mp_state *mp_state)
  380. {
  381. return -ENOIOCTLCMD;
  382. }
  383. #define MIPS_CP0_32(_R, _S) \
  384. (KVM_REG_MIPS | KVM_REG_SIZE_U32 | 0x10000 | (8 * (_R) + (_S)))
  385. #define MIPS_CP0_64(_R, _S) \
  386. (KVM_REG_MIPS | KVM_REG_SIZE_U64 | 0x10000 | (8 * (_R) + (_S)))
  387. #define KVM_REG_MIPS_CP0_INDEX MIPS_CP0_32(0, 0)
  388. #define KVM_REG_MIPS_CP0_ENTRYLO0 MIPS_CP0_64(2, 0)
  389. #define KVM_REG_MIPS_CP0_ENTRYLO1 MIPS_CP0_64(3, 0)
  390. #define KVM_REG_MIPS_CP0_CONTEXT MIPS_CP0_64(4, 0)
  391. #define KVM_REG_MIPS_CP0_USERLOCAL MIPS_CP0_64(4, 2)
  392. #define KVM_REG_MIPS_CP0_PAGEMASK MIPS_CP0_32(5, 0)
  393. #define KVM_REG_MIPS_CP0_PAGEGRAIN MIPS_CP0_32(5, 1)
  394. #define KVM_REG_MIPS_CP0_WIRED MIPS_CP0_32(6, 0)
  395. #define KVM_REG_MIPS_CP0_HWRENA MIPS_CP0_32(7, 0)
  396. #define KVM_REG_MIPS_CP0_BADVADDR MIPS_CP0_64(8, 0)
  397. #define KVM_REG_MIPS_CP0_COUNT MIPS_CP0_32(9, 0)
  398. #define KVM_REG_MIPS_CP0_ENTRYHI MIPS_CP0_64(10, 0)
  399. #define KVM_REG_MIPS_CP0_COMPARE MIPS_CP0_32(11, 0)
  400. #define KVM_REG_MIPS_CP0_STATUS MIPS_CP0_32(12, 0)
  401. #define KVM_REG_MIPS_CP0_CAUSE MIPS_CP0_32(13, 0)
  402. #define KVM_REG_MIPS_CP0_EBASE MIPS_CP0_64(15, 1)
  403. #define KVM_REG_MIPS_CP0_CONFIG MIPS_CP0_32(16, 0)
  404. #define KVM_REG_MIPS_CP0_CONFIG1 MIPS_CP0_32(16, 1)
  405. #define KVM_REG_MIPS_CP0_CONFIG2 MIPS_CP0_32(16, 2)
  406. #define KVM_REG_MIPS_CP0_CONFIG3 MIPS_CP0_32(16, 3)
  407. #define KVM_REG_MIPS_CP0_CONFIG7 MIPS_CP0_32(16, 7)
  408. #define KVM_REG_MIPS_CP0_XCONTEXT MIPS_CP0_64(20, 0)
  409. #define KVM_REG_MIPS_CP0_ERROREPC MIPS_CP0_64(30, 0)
  410. static u64 kvm_mips_get_one_regs[] = {
  411. KVM_REG_MIPS_R0,
  412. KVM_REG_MIPS_R1,
  413. KVM_REG_MIPS_R2,
  414. KVM_REG_MIPS_R3,
  415. KVM_REG_MIPS_R4,
  416. KVM_REG_MIPS_R5,
  417. KVM_REG_MIPS_R6,
  418. KVM_REG_MIPS_R7,
  419. KVM_REG_MIPS_R8,
  420. KVM_REG_MIPS_R9,
  421. KVM_REG_MIPS_R10,
  422. KVM_REG_MIPS_R11,
  423. KVM_REG_MIPS_R12,
  424. KVM_REG_MIPS_R13,
  425. KVM_REG_MIPS_R14,
  426. KVM_REG_MIPS_R15,
  427. KVM_REG_MIPS_R16,
  428. KVM_REG_MIPS_R17,
  429. KVM_REG_MIPS_R18,
  430. KVM_REG_MIPS_R19,
  431. KVM_REG_MIPS_R20,
  432. KVM_REG_MIPS_R21,
  433. KVM_REG_MIPS_R22,
  434. KVM_REG_MIPS_R23,
  435. KVM_REG_MIPS_R24,
  436. KVM_REG_MIPS_R25,
  437. KVM_REG_MIPS_R26,
  438. KVM_REG_MIPS_R27,
  439. KVM_REG_MIPS_R28,
  440. KVM_REG_MIPS_R29,
  441. KVM_REG_MIPS_R30,
  442. KVM_REG_MIPS_R31,
  443. KVM_REG_MIPS_HI,
  444. KVM_REG_MIPS_LO,
  445. KVM_REG_MIPS_PC,
  446. KVM_REG_MIPS_CP0_INDEX,
  447. KVM_REG_MIPS_CP0_CONTEXT,
  448. KVM_REG_MIPS_CP0_PAGEMASK,
  449. KVM_REG_MIPS_CP0_WIRED,
  450. KVM_REG_MIPS_CP0_BADVADDR,
  451. KVM_REG_MIPS_CP0_ENTRYHI,
  452. KVM_REG_MIPS_CP0_STATUS,
  453. KVM_REG_MIPS_CP0_CAUSE,
  454. /* EPC set via kvm_regs, et al. */
  455. KVM_REG_MIPS_CP0_CONFIG,
  456. KVM_REG_MIPS_CP0_CONFIG1,
  457. KVM_REG_MIPS_CP0_CONFIG2,
  458. KVM_REG_MIPS_CP0_CONFIG3,
  459. KVM_REG_MIPS_CP0_CONFIG7,
  460. KVM_REG_MIPS_CP0_ERROREPC
  461. };
  462. static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
  463. const struct kvm_one_reg *reg)
  464. {
  465. struct mips_coproc *cop0 = vcpu->arch.cop0;
  466. s64 v;
  467. switch (reg->id) {
  468. case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
  469. v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
  470. break;
  471. case KVM_REG_MIPS_HI:
  472. v = (long)vcpu->arch.hi;
  473. break;
  474. case KVM_REG_MIPS_LO:
  475. v = (long)vcpu->arch.lo;
  476. break;
  477. case KVM_REG_MIPS_PC:
  478. v = (long)vcpu->arch.pc;
  479. break;
  480. case KVM_REG_MIPS_CP0_INDEX:
  481. v = (long)kvm_read_c0_guest_index(cop0);
  482. break;
  483. case KVM_REG_MIPS_CP0_CONTEXT:
  484. v = (long)kvm_read_c0_guest_context(cop0);
  485. break;
  486. case KVM_REG_MIPS_CP0_PAGEMASK:
  487. v = (long)kvm_read_c0_guest_pagemask(cop0);
  488. break;
  489. case KVM_REG_MIPS_CP0_WIRED:
  490. v = (long)kvm_read_c0_guest_wired(cop0);
  491. break;
  492. case KVM_REG_MIPS_CP0_BADVADDR:
  493. v = (long)kvm_read_c0_guest_badvaddr(cop0);
  494. break;
  495. case KVM_REG_MIPS_CP0_ENTRYHI:
  496. v = (long)kvm_read_c0_guest_entryhi(cop0);
  497. break;
  498. case KVM_REG_MIPS_CP0_STATUS:
  499. v = (long)kvm_read_c0_guest_status(cop0);
  500. break;
  501. case KVM_REG_MIPS_CP0_CAUSE:
  502. v = (long)kvm_read_c0_guest_cause(cop0);
  503. break;
  504. case KVM_REG_MIPS_CP0_ERROREPC:
  505. v = (long)kvm_read_c0_guest_errorepc(cop0);
  506. break;
  507. case KVM_REG_MIPS_CP0_CONFIG:
  508. v = (long)kvm_read_c0_guest_config(cop0);
  509. break;
  510. case KVM_REG_MIPS_CP0_CONFIG1:
  511. v = (long)kvm_read_c0_guest_config1(cop0);
  512. break;
  513. case KVM_REG_MIPS_CP0_CONFIG2:
  514. v = (long)kvm_read_c0_guest_config2(cop0);
  515. break;
  516. case KVM_REG_MIPS_CP0_CONFIG3:
  517. v = (long)kvm_read_c0_guest_config3(cop0);
  518. break;
  519. case KVM_REG_MIPS_CP0_CONFIG7:
  520. v = (long)kvm_read_c0_guest_config7(cop0);
  521. break;
  522. default:
  523. return -EINVAL;
  524. }
  525. if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
  526. u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
  527. return put_user(v, uaddr64);
  528. } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
  529. u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
  530. u32 v32 = (u32)v;
  531. return put_user(v32, uaddr32);
  532. } else {
  533. return -EINVAL;
  534. }
  535. }
  536. static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
  537. const struct kvm_one_reg *reg)
  538. {
  539. struct mips_coproc *cop0 = vcpu->arch.cop0;
  540. u64 v;
  541. if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
  542. u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
  543. if (get_user(v, uaddr64) != 0)
  544. return -EFAULT;
  545. } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
  546. u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
  547. s32 v32;
  548. if (get_user(v32, uaddr32) != 0)
  549. return -EFAULT;
  550. v = (s64)v32;
  551. } else {
  552. return -EINVAL;
  553. }
  554. switch (reg->id) {
  555. case KVM_REG_MIPS_R0:
  556. /* Silently ignore requests to set $0 */
  557. break;
  558. case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
  559. vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
  560. break;
  561. case KVM_REG_MIPS_HI:
  562. vcpu->arch.hi = v;
  563. break;
  564. case KVM_REG_MIPS_LO:
  565. vcpu->arch.lo = v;
  566. break;
  567. case KVM_REG_MIPS_PC:
  568. vcpu->arch.pc = v;
  569. break;
  570. case KVM_REG_MIPS_CP0_INDEX:
  571. kvm_write_c0_guest_index(cop0, v);
  572. break;
  573. case KVM_REG_MIPS_CP0_CONTEXT:
  574. kvm_write_c0_guest_context(cop0, v);
  575. break;
  576. case KVM_REG_MIPS_CP0_PAGEMASK:
  577. kvm_write_c0_guest_pagemask(cop0, v);
  578. break;
  579. case KVM_REG_MIPS_CP0_WIRED:
  580. kvm_write_c0_guest_wired(cop0, v);
  581. break;
  582. case KVM_REG_MIPS_CP0_BADVADDR:
  583. kvm_write_c0_guest_badvaddr(cop0, v);
  584. break;
  585. case KVM_REG_MIPS_CP0_ENTRYHI:
  586. kvm_write_c0_guest_entryhi(cop0, v);
  587. break;
  588. case KVM_REG_MIPS_CP0_STATUS:
  589. kvm_write_c0_guest_status(cop0, v);
  590. break;
  591. case KVM_REG_MIPS_CP0_CAUSE:
  592. kvm_write_c0_guest_cause(cop0, v);
  593. break;
  594. case KVM_REG_MIPS_CP0_ERROREPC:
  595. kvm_write_c0_guest_errorepc(cop0, v);
  596. break;
  597. default:
  598. return -EINVAL;
  599. }
  600. return 0;
  601. }
  602. long
  603. kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
  604. {
  605. struct kvm_vcpu *vcpu = filp->private_data;
  606. void __user *argp = (void __user *)arg;
  607. long r;
  608. switch (ioctl) {
  609. case KVM_SET_ONE_REG:
  610. case KVM_GET_ONE_REG: {
  611. struct kvm_one_reg reg;
  612. if (copy_from_user(&reg, argp, sizeof(reg)))
  613. return -EFAULT;
  614. if (ioctl == KVM_SET_ONE_REG)
  615. return kvm_mips_set_reg(vcpu, &reg);
  616. else
  617. return kvm_mips_get_reg(vcpu, &reg);
  618. }
  619. case KVM_GET_REG_LIST: {
  620. struct kvm_reg_list __user *user_list = argp;
  621. u64 __user *reg_dest;
  622. struct kvm_reg_list reg_list;
  623. unsigned n;
  624. if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
  625. return -EFAULT;
  626. n = reg_list.n;
  627. reg_list.n = ARRAY_SIZE(kvm_mips_get_one_regs);
  628. if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
  629. return -EFAULT;
  630. if (n < reg_list.n)
  631. return -E2BIG;
  632. reg_dest = user_list->reg;
  633. if (copy_to_user(reg_dest, kvm_mips_get_one_regs,
  634. sizeof(kvm_mips_get_one_regs)))
  635. return -EFAULT;
  636. return 0;
  637. }
  638. case KVM_NMI:
  639. /* Treat the NMI as a CPU reset */
  640. r = kvm_mips_reset_vcpu(vcpu);
  641. break;
  642. case KVM_INTERRUPT:
  643. {
  644. struct kvm_mips_interrupt irq;
  645. r = -EFAULT;
  646. if (copy_from_user(&irq, argp, sizeof(irq)))
  647. goto out;
  648. kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
  649. irq.irq);
  650. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  651. break;
  652. }
  653. default:
  654. r = -ENOIOCTLCMD;
  655. }
  656. out:
  657. return r;
  658. }
  659. /*
  660. * Get (and clear) the dirty memory log for a memory slot.
  661. */
  662. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
  663. {
  664. struct kvm_memory_slot *memslot;
  665. unsigned long ga, ga_end;
  666. int is_dirty = 0;
  667. int r;
  668. unsigned long n;
  669. mutex_lock(&kvm->slots_lock);
  670. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  671. if (r)
  672. goto out;
  673. /* If nothing is dirty, don't bother messing with page tables. */
  674. if (is_dirty) {
  675. memslot = &kvm->memslots->memslots[log->slot];
  676. ga = memslot->base_gfn << PAGE_SHIFT;
  677. ga_end = ga + (memslot->npages << PAGE_SHIFT);
  678. printk("%s: dirty, ga: %#lx, ga_end %#lx\n", __func__, ga,
  679. ga_end);
  680. n = kvm_dirty_bitmap_bytes(memslot);
  681. memset(memslot->dirty_bitmap, 0, n);
  682. }
  683. r = 0;
  684. out:
  685. mutex_unlock(&kvm->slots_lock);
  686. return r;
  687. }
  688. long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
  689. {
  690. long r;
  691. switch (ioctl) {
  692. default:
  693. r = -ENOIOCTLCMD;
  694. }
  695. return r;
  696. }
  697. int kvm_arch_init(void *opaque)
  698. {
  699. int ret;
  700. if (kvm_mips_callbacks) {
  701. kvm_err("kvm: module already exists\n");
  702. return -EEXIST;
  703. }
  704. ret = kvm_mips_emulation_init(&kvm_mips_callbacks);
  705. return ret;
  706. }
  707. void kvm_arch_exit(void)
  708. {
  709. kvm_mips_callbacks = NULL;
  710. }
  711. int
  712. kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
  713. {
  714. return -ENOIOCTLCMD;
  715. }
  716. int
  717. kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
  718. {
  719. return -ENOIOCTLCMD;
  720. }
  721. int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
  722. {
  723. return 0;
  724. }
  725. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  726. {
  727. return -ENOIOCTLCMD;
  728. }
  729. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  730. {
  731. return -ENOIOCTLCMD;
  732. }
  733. int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
  734. {
  735. return VM_FAULT_SIGBUS;
  736. }
  737. int kvm_dev_ioctl_check_extension(long ext)
  738. {
  739. int r;
  740. switch (ext) {
  741. case KVM_CAP_ONE_REG:
  742. r = 1;
  743. break;
  744. case KVM_CAP_COALESCED_MMIO:
  745. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  746. break;
  747. default:
  748. r = 0;
  749. break;
  750. }
  751. return r;
  752. }
  753. int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
  754. {
  755. return kvm_mips_pending_timer(vcpu);
  756. }
  757. int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
  758. {
  759. int i;
  760. struct mips_coproc *cop0;
  761. if (!vcpu)
  762. return -1;
  763. printk("VCPU Register Dump:\n");
  764. printk("\tpc = 0x%08lx\n", vcpu->arch.pc);;
  765. printk("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
  766. for (i = 0; i < 32; i += 4) {
  767. printk("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
  768. vcpu->arch.gprs[i],
  769. vcpu->arch.gprs[i + 1],
  770. vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
  771. }
  772. printk("\thi: 0x%08lx\n", vcpu->arch.hi);
  773. printk("\tlo: 0x%08lx\n", vcpu->arch.lo);
  774. cop0 = vcpu->arch.cop0;
  775. printk("\tStatus: 0x%08lx, Cause: 0x%08lx\n",
  776. kvm_read_c0_guest_status(cop0), kvm_read_c0_guest_cause(cop0));
  777. printk("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
  778. return 0;
  779. }
  780. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  781. {
  782. int i;
  783. for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
  784. vcpu->arch.gprs[i] = regs->gpr[i];
  785. vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
  786. vcpu->arch.hi = regs->hi;
  787. vcpu->arch.lo = regs->lo;
  788. vcpu->arch.pc = regs->pc;
  789. return 0;
  790. }
  791. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  792. {
  793. int i;
  794. for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
  795. regs->gpr[i] = vcpu->arch.gprs[i];
  796. regs->hi = vcpu->arch.hi;
  797. regs->lo = vcpu->arch.lo;
  798. regs->pc = vcpu->arch.pc;
  799. return 0;
  800. }
  801. void kvm_mips_comparecount_func(unsigned long data)
  802. {
  803. struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
  804. kvm_mips_callbacks->queue_timer_int(vcpu);
  805. vcpu->arch.wait = 0;
  806. if (waitqueue_active(&vcpu->wq)) {
  807. wake_up_interruptible(&vcpu->wq);
  808. }
  809. }
  810. /*
  811. * low level hrtimer wake routine.
  812. */
  813. enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
  814. {
  815. struct kvm_vcpu *vcpu;
  816. vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
  817. kvm_mips_comparecount_func((unsigned long) vcpu);
  818. hrtimer_forward_now(&vcpu->arch.comparecount_timer,
  819. ktime_set(0, MS_TO_NS(10)));
  820. return HRTIMER_RESTART;
  821. }
  822. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  823. {
  824. kvm_mips_callbacks->vcpu_init(vcpu);
  825. hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
  826. HRTIMER_MODE_REL);
  827. vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
  828. kvm_mips_init_shadow_tlb(vcpu);
  829. return 0;
  830. }
  831. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  832. {
  833. return;
  834. }
  835. int
  836. kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, struct kvm_translation *tr)
  837. {
  838. return 0;
  839. }
  840. /* Initial guest state */
  841. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  842. {
  843. return kvm_mips_callbacks->vcpu_setup(vcpu);
  844. }
  845. static
  846. void kvm_mips_set_c0_status(void)
  847. {
  848. uint32_t status = read_c0_status();
  849. if (cpu_has_fpu)
  850. status |= (ST0_CU1);
  851. if (cpu_has_dsp)
  852. status |= (ST0_MX);
  853. write_c0_status(status);
  854. ehb();
  855. }
  856. /*
  857. * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
  858. */
  859. int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
  860. {
  861. uint32_t cause = vcpu->arch.host_cp0_cause;
  862. uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
  863. uint32_t __user *opc = (uint32_t __user *) vcpu->arch.pc;
  864. unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
  865. enum emulation_result er = EMULATE_DONE;
  866. int ret = RESUME_GUEST;
  867. /* Set a default exit reason */
  868. run->exit_reason = KVM_EXIT_UNKNOWN;
  869. run->ready_for_interrupt_injection = 1;
  870. /* Set the appropriate status bits based on host CPU features, before we hit the scheduler */
  871. kvm_mips_set_c0_status();
  872. local_irq_enable();
  873. kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
  874. cause, opc, run, vcpu);
  875. /* Do a privilege check, if in UM most of these exit conditions end up
  876. * causing an exception to be delivered to the Guest Kernel
  877. */
  878. er = kvm_mips_check_privilege(cause, opc, run, vcpu);
  879. if (er == EMULATE_PRIV_FAIL) {
  880. goto skip_emul;
  881. } else if (er == EMULATE_FAIL) {
  882. run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  883. ret = RESUME_HOST;
  884. goto skip_emul;
  885. }
  886. switch (exccode) {
  887. case T_INT:
  888. kvm_debug("[%d]T_INT @ %p\n", vcpu->vcpu_id, opc);
  889. ++vcpu->stat.int_exits;
  890. trace_kvm_exit(vcpu, INT_EXITS);
  891. if (need_resched()) {
  892. cond_resched();
  893. }
  894. ret = RESUME_GUEST;
  895. break;
  896. case T_COP_UNUSABLE:
  897. kvm_debug("T_COP_UNUSABLE: @ PC: %p\n", opc);
  898. ++vcpu->stat.cop_unusable_exits;
  899. trace_kvm_exit(vcpu, COP_UNUSABLE_EXITS);
  900. ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
  901. /* XXXKYMA: Might need to return to user space */
  902. if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN) {
  903. ret = RESUME_HOST;
  904. }
  905. break;
  906. case T_TLB_MOD:
  907. ++vcpu->stat.tlbmod_exits;
  908. trace_kvm_exit(vcpu, TLBMOD_EXITS);
  909. ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
  910. break;
  911. case T_TLB_ST_MISS:
  912. kvm_debug
  913. ("TLB ST fault: cause %#x, status %#lx, PC: %p, BadVaddr: %#lx\n",
  914. cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
  915. badvaddr);
  916. ++vcpu->stat.tlbmiss_st_exits;
  917. trace_kvm_exit(vcpu, TLBMISS_ST_EXITS);
  918. ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
  919. break;
  920. case T_TLB_LD_MISS:
  921. kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
  922. cause, opc, badvaddr);
  923. ++vcpu->stat.tlbmiss_ld_exits;
  924. trace_kvm_exit(vcpu, TLBMISS_LD_EXITS);
  925. ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
  926. break;
  927. case T_ADDR_ERR_ST:
  928. ++vcpu->stat.addrerr_st_exits;
  929. trace_kvm_exit(vcpu, ADDRERR_ST_EXITS);
  930. ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
  931. break;
  932. case T_ADDR_ERR_LD:
  933. ++vcpu->stat.addrerr_ld_exits;
  934. trace_kvm_exit(vcpu, ADDRERR_LD_EXITS);
  935. ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
  936. break;
  937. case T_SYSCALL:
  938. ++vcpu->stat.syscall_exits;
  939. trace_kvm_exit(vcpu, SYSCALL_EXITS);
  940. ret = kvm_mips_callbacks->handle_syscall(vcpu);
  941. break;
  942. case T_RES_INST:
  943. ++vcpu->stat.resvd_inst_exits;
  944. trace_kvm_exit(vcpu, RESVD_INST_EXITS);
  945. ret = kvm_mips_callbacks->handle_res_inst(vcpu);
  946. break;
  947. case T_BREAK:
  948. ++vcpu->stat.break_inst_exits;
  949. trace_kvm_exit(vcpu, BREAK_INST_EXITS);
  950. ret = kvm_mips_callbacks->handle_break(vcpu);
  951. break;
  952. default:
  953. kvm_err
  954. ("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#lx\n",
  955. exccode, opc, kvm_get_inst(opc, vcpu), badvaddr,
  956. kvm_read_c0_guest_status(vcpu->arch.cop0));
  957. kvm_arch_vcpu_dump_regs(vcpu);
  958. run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  959. ret = RESUME_HOST;
  960. break;
  961. }
  962. skip_emul:
  963. local_irq_disable();
  964. if (er == EMULATE_DONE && !(ret & RESUME_HOST))
  965. kvm_mips_deliver_interrupts(vcpu, cause);
  966. if (!(ret & RESUME_HOST)) {
  967. /* Only check for signals if not already exiting to userspace */
  968. if (signal_pending(current)) {
  969. run->exit_reason = KVM_EXIT_INTR;
  970. ret = (-EINTR << 2) | RESUME_HOST;
  971. ++vcpu->stat.signal_exits;
  972. trace_kvm_exit(vcpu, SIGNAL_EXITS);
  973. }
  974. }
  975. return ret;
  976. }
  977. int __init kvm_mips_init(void)
  978. {
  979. int ret;
  980. ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
  981. if (ret)
  982. return ret;
  983. /* On MIPS, kernel modules are executed from "mapped space", which requires TLBs.
  984. * The TLB handling code is statically linked with the rest of the kernel (kvm_tlb.c)
  985. * to avoid the possibility of double faulting. The issue is that the TLB code
  986. * references routines that are part of the the KVM module,
  987. * which are only available once the module is loaded.
  988. */
  989. kvm_mips_gfn_to_pfn = gfn_to_pfn;
  990. kvm_mips_release_pfn_clean = kvm_release_pfn_clean;
  991. kvm_mips_is_error_pfn = is_error_pfn;
  992. pr_info("KVM/MIPS Initialized\n");
  993. return 0;
  994. }
  995. void __exit kvm_mips_exit(void)
  996. {
  997. kvm_exit();
  998. kvm_mips_gfn_to_pfn = NULL;
  999. kvm_mips_release_pfn_clean = NULL;
  1000. kvm_mips_is_error_pfn = NULL;
  1001. pr_info("KVM/MIPS unloaded\n");
  1002. }
  1003. module_init(kvm_mips_init);
  1004. module_exit(kvm_mips_exit);
  1005. EXPORT_TRACEPOINT_SYMBOL(kvm_exit);