gpmc-onenand.c 9.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394
  1. /*
  2. * linux/arch/arm/mach-omap2/gpmc-onenand.c
  3. *
  4. * Copyright (C) 2006 - 2009 Nokia Corporation
  5. * Contacts: Juha Yrjola
  6. * Tony Lindgren
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. */
  12. #include <linux/string.h>
  13. #include <linux/kernel.h>
  14. #include <linux/platform_device.h>
  15. #include <linux/mtd/onenand_regs.h>
  16. #include <linux/io.h>
  17. #include <linux/platform_data/mtd-onenand-omap2.h>
  18. #include <linux/err.h>
  19. #include <asm/mach/flash.h>
  20. #include "gpmc.h"
  21. #include "soc.h"
  22. #include "gpmc-onenand.h"
  23. #define ONENAND_IO_SIZE SZ_128K
  24. #define ONENAND_FLAG_SYNCREAD (1 << 0)
  25. #define ONENAND_FLAG_SYNCWRITE (1 << 1)
  26. #define ONENAND_FLAG_HF (1 << 2)
  27. #define ONENAND_FLAG_VHF (1 << 3)
  28. static unsigned onenand_flags;
  29. static unsigned latency;
  30. static struct omap_onenand_platform_data *gpmc_onenand_data;
  31. static struct resource gpmc_onenand_resource = {
  32. .flags = IORESOURCE_MEM,
  33. };
  34. static struct platform_device gpmc_onenand_device = {
  35. .name = "omap2-onenand",
  36. .id = -1,
  37. .num_resources = 1,
  38. .resource = &gpmc_onenand_resource,
  39. };
  40. static struct gpmc_settings onenand_async = {
  41. .device_width = GPMC_DEVWIDTH_16BIT,
  42. .mux_add_data = GPMC_MUX_AD,
  43. };
  44. static struct gpmc_settings onenand_sync = {
  45. .burst_read = true,
  46. .burst_wrap = true,
  47. .burst_len = GPMC_BURST_16,
  48. .device_width = GPMC_DEVWIDTH_16BIT,
  49. .mux_add_data = GPMC_MUX_AD,
  50. .wait_pin = 0,
  51. };
  52. static void omap2_onenand_calc_async_timings(struct gpmc_timings *t)
  53. {
  54. struct gpmc_device_timings dev_t;
  55. const int t_cer = 15;
  56. const int t_avdp = 12;
  57. const int t_aavdh = 7;
  58. const int t_ce = 76;
  59. const int t_aa = 76;
  60. const int t_oe = 20;
  61. const int t_cez = 20; /* max of t_cez, t_oez */
  62. const int t_wpl = 40;
  63. const int t_wph = 30;
  64. memset(&dev_t, 0, sizeof(dev_t));
  65. dev_t.t_avdp_r = max_t(int, t_avdp, t_cer) * 1000;
  66. dev_t.t_avdp_w = dev_t.t_avdp_r;
  67. dev_t.t_aavdh = t_aavdh * 1000;
  68. dev_t.t_aa = t_aa * 1000;
  69. dev_t.t_ce = t_ce * 1000;
  70. dev_t.t_oe = t_oe * 1000;
  71. dev_t.t_cez_r = t_cez * 1000;
  72. dev_t.t_cez_w = dev_t.t_cez_r;
  73. dev_t.t_wpl = t_wpl * 1000;
  74. dev_t.t_wph = t_wph * 1000;
  75. gpmc_calc_timings(t, &onenand_async, &dev_t);
  76. }
  77. static void omap2_onenand_set_async_mode(void __iomem *onenand_base)
  78. {
  79. u32 reg;
  80. /* Ensure sync read and sync write are disabled */
  81. reg = readw(onenand_base + ONENAND_REG_SYS_CFG1);
  82. reg &= ~ONENAND_SYS_CFG1_SYNC_READ & ~ONENAND_SYS_CFG1_SYNC_WRITE;
  83. writew(reg, onenand_base + ONENAND_REG_SYS_CFG1);
  84. }
  85. static void set_onenand_cfg(void __iomem *onenand_base)
  86. {
  87. u32 reg;
  88. reg = readw(onenand_base + ONENAND_REG_SYS_CFG1);
  89. reg &= ~((0x7 << ONENAND_SYS_CFG1_BRL_SHIFT) | (0x7 << 9));
  90. reg |= (latency << ONENAND_SYS_CFG1_BRL_SHIFT) |
  91. ONENAND_SYS_CFG1_BL_16;
  92. if (onenand_flags & ONENAND_FLAG_SYNCREAD)
  93. reg |= ONENAND_SYS_CFG1_SYNC_READ;
  94. else
  95. reg &= ~ONENAND_SYS_CFG1_SYNC_READ;
  96. if (onenand_flags & ONENAND_FLAG_SYNCWRITE)
  97. reg |= ONENAND_SYS_CFG1_SYNC_WRITE;
  98. else
  99. reg &= ~ONENAND_SYS_CFG1_SYNC_WRITE;
  100. if (onenand_flags & ONENAND_FLAG_HF)
  101. reg |= ONENAND_SYS_CFG1_HF;
  102. else
  103. reg &= ~ONENAND_SYS_CFG1_HF;
  104. if (onenand_flags & ONENAND_FLAG_VHF)
  105. reg |= ONENAND_SYS_CFG1_VHF;
  106. else
  107. reg &= ~ONENAND_SYS_CFG1_VHF;
  108. writew(reg, onenand_base + ONENAND_REG_SYS_CFG1);
  109. }
  110. static int omap2_onenand_get_freq(struct omap_onenand_platform_data *cfg,
  111. void __iomem *onenand_base)
  112. {
  113. u16 ver = readw(onenand_base + ONENAND_REG_VERSION_ID);
  114. int freq;
  115. switch ((ver >> 4) & 0xf) {
  116. case 0:
  117. freq = 40;
  118. break;
  119. case 1:
  120. freq = 54;
  121. break;
  122. case 2:
  123. freq = 66;
  124. break;
  125. case 3:
  126. freq = 83;
  127. break;
  128. case 4:
  129. freq = 104;
  130. break;
  131. default:
  132. freq = 54;
  133. break;
  134. }
  135. return freq;
  136. }
  137. static void omap2_onenand_calc_sync_timings(struct gpmc_timings *t,
  138. unsigned int flags,
  139. int freq)
  140. {
  141. struct gpmc_device_timings dev_t;
  142. const int t_cer = 15;
  143. const int t_avdp = 12;
  144. const int t_cez = 20; /* max of t_cez, t_oez */
  145. const int t_wpl = 40;
  146. const int t_wph = 30;
  147. int min_gpmc_clk_period, t_ces, t_avds, t_avdh, t_ach, t_aavdh, t_rdyo;
  148. int div, gpmc_clk_ns;
  149. if (flags & ONENAND_SYNC_READ)
  150. onenand_flags = ONENAND_FLAG_SYNCREAD;
  151. else if (flags & ONENAND_SYNC_READWRITE)
  152. onenand_flags = ONENAND_FLAG_SYNCREAD | ONENAND_FLAG_SYNCWRITE;
  153. switch (freq) {
  154. case 104:
  155. min_gpmc_clk_period = 9600; /* 104 MHz */
  156. t_ces = 3;
  157. t_avds = 4;
  158. t_avdh = 2;
  159. t_ach = 3;
  160. t_aavdh = 6;
  161. t_rdyo = 6;
  162. break;
  163. case 83:
  164. min_gpmc_clk_period = 12000; /* 83 MHz */
  165. t_ces = 5;
  166. t_avds = 4;
  167. t_avdh = 2;
  168. t_ach = 6;
  169. t_aavdh = 6;
  170. t_rdyo = 9;
  171. break;
  172. case 66:
  173. min_gpmc_clk_period = 15000; /* 66 MHz */
  174. t_ces = 6;
  175. t_avds = 5;
  176. t_avdh = 2;
  177. t_ach = 6;
  178. t_aavdh = 6;
  179. t_rdyo = 11;
  180. break;
  181. default:
  182. min_gpmc_clk_period = 18500; /* 54 MHz */
  183. t_ces = 7;
  184. t_avds = 7;
  185. t_avdh = 7;
  186. t_ach = 9;
  187. t_aavdh = 7;
  188. t_rdyo = 15;
  189. onenand_flags &= ~ONENAND_FLAG_SYNCWRITE;
  190. break;
  191. }
  192. div = gpmc_calc_divider(min_gpmc_clk_period);
  193. gpmc_clk_ns = gpmc_ticks_to_ns(div);
  194. if (gpmc_clk_ns < 15) /* >66Mhz */
  195. onenand_flags |= ONENAND_FLAG_HF;
  196. else
  197. onenand_flags &= ~ONENAND_FLAG_HF;
  198. if (gpmc_clk_ns < 12) /* >83Mhz */
  199. onenand_flags |= ONENAND_FLAG_VHF;
  200. else
  201. onenand_flags &= ~ONENAND_FLAG_VHF;
  202. if (onenand_flags & ONENAND_FLAG_VHF)
  203. latency = 8;
  204. else if (onenand_flags & ONENAND_FLAG_HF)
  205. latency = 6;
  206. else if (gpmc_clk_ns >= 25) /* 40 MHz*/
  207. latency = 3;
  208. else
  209. latency = 4;
  210. /* Set synchronous read timings */
  211. memset(&dev_t, 0, sizeof(dev_t));
  212. if (onenand_flags & ONENAND_FLAG_SYNCREAD)
  213. onenand_sync.sync_read = true;
  214. if (onenand_flags & ONENAND_FLAG_SYNCWRITE) {
  215. onenand_sync.sync_write = true;
  216. onenand_sync.burst_write = true;
  217. } else {
  218. dev_t.t_avdp_w = max(t_avdp, t_cer) * 1000;
  219. dev_t.t_wpl = t_wpl * 1000;
  220. dev_t.t_wph = t_wph * 1000;
  221. dev_t.t_aavdh = t_aavdh * 1000;
  222. }
  223. dev_t.ce_xdelay = true;
  224. dev_t.avd_xdelay = true;
  225. dev_t.oe_xdelay = true;
  226. dev_t.we_xdelay = true;
  227. dev_t.clk = min_gpmc_clk_period;
  228. dev_t.t_bacc = dev_t.clk;
  229. dev_t.t_ces = t_ces * 1000;
  230. dev_t.t_avds = t_avds * 1000;
  231. dev_t.t_avdh = t_avdh * 1000;
  232. dev_t.t_ach = t_ach * 1000;
  233. dev_t.cyc_iaa = (latency + 1);
  234. dev_t.t_cez_r = t_cez * 1000;
  235. dev_t.t_cez_w = dev_t.t_cez_r;
  236. dev_t.cyc_aavdh_oe = 1;
  237. dev_t.t_rdyo = t_rdyo * 1000 + min_gpmc_clk_period;
  238. gpmc_calc_timings(t, &onenand_sync, &dev_t);
  239. }
  240. static int omap2_onenand_setup_async(void __iomem *onenand_base)
  241. {
  242. struct gpmc_timings t;
  243. int ret;
  244. if (gpmc_onenand_data->of_node)
  245. gpmc_read_settings_dt(gpmc_onenand_data->of_node,
  246. &onenand_async);
  247. omap2_onenand_set_async_mode(onenand_base);
  248. omap2_onenand_calc_async_timings(&t);
  249. ret = gpmc_cs_program_settings(gpmc_onenand_data->cs, &onenand_async);
  250. if (ret < 0)
  251. return ret;
  252. ret = gpmc_cs_set_timings(gpmc_onenand_data->cs, &t);
  253. if (ret < 0)
  254. return ret;
  255. omap2_onenand_set_async_mode(onenand_base);
  256. return 0;
  257. }
  258. static int omap2_onenand_setup_sync(void __iomem *onenand_base, int *freq_ptr)
  259. {
  260. int ret, freq = *freq_ptr;
  261. struct gpmc_timings t;
  262. if (!freq) {
  263. /* Very first call freq is not known */
  264. freq = omap2_onenand_get_freq(gpmc_onenand_data, onenand_base);
  265. set_onenand_cfg(onenand_base);
  266. }
  267. if (gpmc_onenand_data->of_node) {
  268. gpmc_read_settings_dt(gpmc_onenand_data->of_node,
  269. &onenand_sync);
  270. } else {
  271. /*
  272. * FIXME: Appears to be legacy code from initial ONENAND commit.
  273. * Unclear what boards this is for and if this can be removed.
  274. */
  275. if (!cpu_is_omap34xx())
  276. onenand_sync.wait_on_read = true;
  277. }
  278. omap2_onenand_calc_sync_timings(&t, gpmc_onenand_data->flags, freq);
  279. ret = gpmc_cs_program_settings(gpmc_onenand_data->cs, &onenand_sync);
  280. if (ret < 0)
  281. return ret;
  282. ret = gpmc_cs_set_timings(gpmc_onenand_data->cs, &t);
  283. if (ret < 0)
  284. return ret;
  285. set_onenand_cfg(onenand_base);
  286. *freq_ptr = freq;
  287. return 0;
  288. }
  289. static int gpmc_onenand_setup(void __iomem *onenand_base, int *freq_ptr)
  290. {
  291. struct device *dev = &gpmc_onenand_device.dev;
  292. unsigned l = ONENAND_SYNC_READ | ONENAND_SYNC_READWRITE;
  293. int ret;
  294. ret = omap2_onenand_setup_async(onenand_base);
  295. if (ret) {
  296. dev_err(dev, "unable to set to async mode\n");
  297. return ret;
  298. }
  299. if (!(gpmc_onenand_data->flags & l))
  300. return 0;
  301. ret = omap2_onenand_setup_sync(onenand_base, freq_ptr);
  302. if (ret)
  303. dev_err(dev, "unable to set to sync mode\n");
  304. return ret;
  305. }
  306. void gpmc_onenand_init(struct omap_onenand_platform_data *_onenand_data)
  307. {
  308. int err;
  309. struct device *dev = &gpmc_onenand_device.dev;
  310. gpmc_onenand_data = _onenand_data;
  311. gpmc_onenand_data->onenand_setup = gpmc_onenand_setup;
  312. gpmc_onenand_device.dev.platform_data = gpmc_onenand_data;
  313. if (cpu_is_omap24xx() &&
  314. (gpmc_onenand_data->flags & ONENAND_SYNC_READWRITE)) {
  315. dev_warn(dev, "OneNAND using only SYNC_READ on 24xx\n");
  316. gpmc_onenand_data->flags &= ~ONENAND_SYNC_READWRITE;
  317. gpmc_onenand_data->flags |= ONENAND_SYNC_READ;
  318. }
  319. if (cpu_is_omap34xx())
  320. gpmc_onenand_data->flags |= ONENAND_IN_OMAP34XX;
  321. else
  322. gpmc_onenand_data->flags &= ~ONENAND_IN_OMAP34XX;
  323. err = gpmc_cs_request(gpmc_onenand_data->cs, ONENAND_IO_SIZE,
  324. (unsigned long *)&gpmc_onenand_resource.start);
  325. if (err < 0) {
  326. dev_err(dev, "Cannot request GPMC CS %d, error %d\n",
  327. gpmc_onenand_data->cs, err);
  328. return;
  329. }
  330. gpmc_onenand_resource.end = gpmc_onenand_resource.start +
  331. ONENAND_IO_SIZE - 1;
  332. if (platform_device_register(&gpmc_onenand_device) < 0) {
  333. dev_err(dev, "Unable to register OneNAND device\n");
  334. gpmc_cs_free(gpmc_onenand_data->cs);
  335. return;
  336. }
  337. }