smp.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745
  1. /*
  2. * linux/arch/arm/kernel/smp.c
  3. *
  4. * Copyright (C) 2002 ARM Limited, All Rights Reserved.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/module.h>
  11. #include <linux/delay.h>
  12. #include <linux/init.h>
  13. #include <linux/spinlock.h>
  14. #include <linux/sched.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/cache.h>
  17. #include <linux/profile.h>
  18. #include <linux/errno.h>
  19. #include <linux/mm.h>
  20. #include <linux/err.h>
  21. #include <linux/cpu.h>
  22. #include <linux/seq_file.h>
  23. #include <linux/irq.h>
  24. #include <linux/percpu.h>
  25. #include <linux/clockchips.h>
  26. #include <linux/completion.h>
  27. #include <linux/cpufreq.h>
  28. #include <linux/atomic.h>
  29. #include <asm/smp.h>
  30. #include <asm/cacheflush.h>
  31. #include <asm/cpu.h>
  32. #include <asm/cputype.h>
  33. #include <asm/exception.h>
  34. #include <asm/idmap.h>
  35. #include <asm/topology.h>
  36. #include <asm/mmu_context.h>
  37. #include <asm/pgtable.h>
  38. #include <asm/pgalloc.h>
  39. #include <asm/processor.h>
  40. #include <asm/sections.h>
  41. #include <asm/tlbflush.h>
  42. #include <asm/ptrace.h>
  43. #include <asm/localtimer.h>
  44. #include <asm/smp_plat.h>
  45. #include <asm/virt.h>
  46. #include <asm/mach/arch.h>
  47. #include <asm/mpu.h>
  48. /*
  49. * as from 2.5, kernels no longer have an init_tasks structure
  50. * so we need some other way of telling a new secondary core
  51. * where to place its SVC stack
  52. */
  53. struct secondary_data secondary_data;
  54. /*
  55. * control for which core is the next to come out of the secondary
  56. * boot "holding pen"
  57. */
  58. volatile int pen_release = -1;
  59. enum ipi_msg_type {
  60. IPI_WAKEUP,
  61. IPI_TIMER,
  62. IPI_RESCHEDULE,
  63. IPI_CALL_FUNC,
  64. IPI_CALL_FUNC_SINGLE,
  65. IPI_CPU_STOP,
  66. };
  67. static DECLARE_COMPLETION(cpu_running);
  68. static struct smp_operations smp_ops;
  69. void __init smp_set_ops(struct smp_operations *ops)
  70. {
  71. if (ops)
  72. smp_ops = *ops;
  73. };
  74. static unsigned long get_arch_pgd(pgd_t *pgd)
  75. {
  76. phys_addr_t pgdir = virt_to_phys(pgd);
  77. BUG_ON(pgdir & ARCH_PGD_MASK);
  78. return pgdir >> ARCH_PGD_SHIFT;
  79. }
  80. int __cpu_up(unsigned int cpu, struct task_struct *idle)
  81. {
  82. int ret;
  83. /*
  84. * We need to tell the secondary core where to find
  85. * its stack and the page tables.
  86. */
  87. secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
  88. #ifdef CONFIG_ARM_MPU
  89. secondary_data.mpu_rgn_szr = mpu_rgn_info.rgns[MPU_RAM_REGION].drsr;
  90. #endif
  91. #ifdef CONFIG_MMU
  92. secondary_data.pgdir = get_arch_pgd(idmap_pgd);
  93. secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
  94. #endif
  95. __cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data));
  96. outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1));
  97. /*
  98. * Now bring the CPU into our world.
  99. */
  100. ret = boot_secondary(cpu, idle);
  101. if (ret == 0) {
  102. /*
  103. * CPU was successfully started, wait for it
  104. * to come online or time out.
  105. */
  106. wait_for_completion_timeout(&cpu_running,
  107. msecs_to_jiffies(1000));
  108. if (!cpu_online(cpu)) {
  109. pr_crit("CPU%u: failed to come online\n", cpu);
  110. ret = -EIO;
  111. }
  112. } else {
  113. pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
  114. }
  115. memset(&secondary_data, 0, sizeof(secondary_data));
  116. return ret;
  117. }
  118. /* platform specific SMP operations */
  119. void __init smp_init_cpus(void)
  120. {
  121. if (smp_ops.smp_init_cpus)
  122. smp_ops.smp_init_cpus();
  123. }
  124. int boot_secondary(unsigned int cpu, struct task_struct *idle)
  125. {
  126. if (smp_ops.smp_boot_secondary)
  127. return smp_ops.smp_boot_secondary(cpu, idle);
  128. return -ENOSYS;
  129. }
  130. #ifdef CONFIG_HOTPLUG_CPU
  131. static void percpu_timer_stop(void);
  132. static int platform_cpu_kill(unsigned int cpu)
  133. {
  134. if (smp_ops.cpu_kill)
  135. return smp_ops.cpu_kill(cpu);
  136. return 1;
  137. }
  138. static int platform_cpu_disable(unsigned int cpu)
  139. {
  140. if (smp_ops.cpu_disable)
  141. return smp_ops.cpu_disable(cpu);
  142. /*
  143. * By default, allow disabling all CPUs except the first one,
  144. * since this is special on a lot of platforms, e.g. because
  145. * of clock tick interrupts.
  146. */
  147. return cpu == 0 ? -EPERM : 0;
  148. }
  149. /*
  150. * __cpu_disable runs on the processor to be shutdown.
  151. */
  152. int __cpu_disable(void)
  153. {
  154. unsigned int cpu = smp_processor_id();
  155. int ret;
  156. ret = platform_cpu_disable(cpu);
  157. if (ret)
  158. return ret;
  159. /*
  160. * Take this CPU offline. Once we clear this, we can't return,
  161. * and we must not schedule until we're ready to give up the cpu.
  162. */
  163. set_cpu_online(cpu, false);
  164. /*
  165. * OK - migrate IRQs away from this CPU
  166. */
  167. migrate_irqs();
  168. /*
  169. * Stop the local timer for this CPU.
  170. */
  171. percpu_timer_stop();
  172. /*
  173. * Flush user cache and TLB mappings, and then remove this CPU
  174. * from the vm mask set of all processes.
  175. *
  176. * Caches are flushed to the Level of Unification Inner Shareable
  177. * to write-back dirty lines to unified caches shared by all CPUs.
  178. */
  179. flush_cache_louis();
  180. local_flush_tlb_all();
  181. clear_tasks_mm_cpumask(cpu);
  182. return 0;
  183. }
  184. static DECLARE_COMPLETION(cpu_died);
  185. /*
  186. * called on the thread which is asking for a CPU to be shutdown -
  187. * waits until shutdown has completed, or it is timed out.
  188. */
  189. void __cpu_die(unsigned int cpu)
  190. {
  191. if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
  192. pr_err("CPU%u: cpu didn't die\n", cpu);
  193. return;
  194. }
  195. printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
  196. /*
  197. * platform_cpu_kill() is generally expected to do the powering off
  198. * and/or cutting of clocks to the dying CPU. Optionally, this may
  199. * be done by the CPU which is dying in preference to supporting
  200. * this call, but that means there is _no_ synchronisation between
  201. * the requesting CPU and the dying CPU actually losing power.
  202. */
  203. if (!platform_cpu_kill(cpu))
  204. printk("CPU%u: unable to kill\n", cpu);
  205. }
  206. /*
  207. * Called from the idle thread for the CPU which has been shutdown.
  208. *
  209. * Note that we disable IRQs here, but do not re-enable them
  210. * before returning to the caller. This is also the behaviour
  211. * of the other hotplug-cpu capable cores, so presumably coming
  212. * out of idle fixes this.
  213. */
  214. void __ref cpu_die(void)
  215. {
  216. unsigned int cpu = smp_processor_id();
  217. idle_task_exit();
  218. local_irq_disable();
  219. /*
  220. * Flush the data out of the L1 cache for this CPU. This must be
  221. * before the completion to ensure that data is safely written out
  222. * before platform_cpu_kill() gets called - which may disable
  223. * *this* CPU and power down its cache.
  224. */
  225. flush_cache_louis();
  226. /*
  227. * Tell __cpu_die() that this CPU is now safe to dispose of. Once
  228. * this returns, power and/or clocks can be removed at any point
  229. * from this CPU and its cache by platform_cpu_kill().
  230. */
  231. complete(&cpu_died);
  232. /*
  233. * Ensure that the cache lines associated with that completion are
  234. * written out. This covers the case where _this_ CPU is doing the
  235. * powering down, to ensure that the completion is visible to the
  236. * CPU waiting for this one.
  237. */
  238. flush_cache_louis();
  239. /*
  240. * The actual CPU shutdown procedure is at least platform (if not
  241. * CPU) specific. This may remove power, or it may simply spin.
  242. *
  243. * Platforms are generally expected *NOT* to return from this call,
  244. * although there are some which do because they have no way to
  245. * power down the CPU. These platforms are the _only_ reason we
  246. * have a return path which uses the fragment of assembly below.
  247. *
  248. * The return path should not be used for platforms which can
  249. * power off the CPU.
  250. */
  251. if (smp_ops.cpu_die)
  252. smp_ops.cpu_die(cpu);
  253. /*
  254. * Do not return to the idle loop - jump back to the secondary
  255. * cpu initialisation. There's some initialisation which needs
  256. * to be repeated to undo the effects of taking the CPU offline.
  257. */
  258. __asm__("mov sp, %0\n"
  259. " mov fp, #0\n"
  260. " b secondary_start_kernel"
  261. :
  262. : "r" (task_stack_page(current) + THREAD_SIZE - 8));
  263. }
  264. #endif /* CONFIG_HOTPLUG_CPU */
  265. /*
  266. * Called by both boot and secondaries to move global data into
  267. * per-processor storage.
  268. */
  269. static void smp_store_cpu_info(unsigned int cpuid)
  270. {
  271. struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
  272. cpu_info->loops_per_jiffy = loops_per_jiffy;
  273. cpu_info->cpuid = read_cpuid_id();
  274. store_cpu_topology(cpuid);
  275. }
  276. static void percpu_timer_setup(void);
  277. /*
  278. * This is the secondary CPU boot entry. We're using this CPUs
  279. * idle thread stack, but a set of temporary page tables.
  280. */
  281. asmlinkage void secondary_start_kernel(void)
  282. {
  283. struct mm_struct *mm = &init_mm;
  284. unsigned int cpu;
  285. /*
  286. * The identity mapping is uncached (strongly ordered), so
  287. * switch away from it before attempting any exclusive accesses.
  288. */
  289. cpu_switch_mm(mm->pgd, mm);
  290. local_flush_bp_all();
  291. enter_lazy_tlb(mm, current);
  292. local_flush_tlb_all();
  293. /*
  294. * All kernel threads share the same mm context; grab a
  295. * reference and switch to it.
  296. */
  297. cpu = smp_processor_id();
  298. atomic_inc(&mm->mm_count);
  299. current->active_mm = mm;
  300. cpumask_set_cpu(cpu, mm_cpumask(mm));
  301. cpu_init();
  302. printk("CPU%u: Booted secondary processor\n", cpu);
  303. preempt_disable();
  304. trace_hardirqs_off();
  305. /*
  306. * Give the platform a chance to do its own initialisation.
  307. */
  308. if (smp_ops.smp_secondary_init)
  309. smp_ops.smp_secondary_init(cpu);
  310. notify_cpu_starting(cpu);
  311. calibrate_delay();
  312. smp_store_cpu_info(cpu);
  313. /*
  314. * OK, now it's safe to let the boot CPU continue. Wait for
  315. * the CPU migration code to notice that the CPU is online
  316. * before we continue - which happens after __cpu_up returns.
  317. */
  318. set_cpu_online(cpu, true);
  319. complete(&cpu_running);
  320. /*
  321. * Setup the percpu timer for this CPU.
  322. */
  323. percpu_timer_setup();
  324. local_irq_enable();
  325. local_fiq_enable();
  326. /*
  327. * OK, it's off to the idle thread for us
  328. */
  329. cpu_startup_entry(CPUHP_ONLINE);
  330. }
  331. void __init smp_cpus_done(unsigned int max_cpus)
  332. {
  333. int cpu;
  334. unsigned long bogosum = 0;
  335. for_each_online_cpu(cpu)
  336. bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
  337. printk(KERN_INFO "SMP: Total of %d processors activated "
  338. "(%lu.%02lu BogoMIPS).\n",
  339. num_online_cpus(),
  340. bogosum / (500000/HZ),
  341. (bogosum / (5000/HZ)) % 100);
  342. hyp_mode_check();
  343. }
  344. void __init smp_prepare_boot_cpu(void)
  345. {
  346. set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
  347. }
  348. void __init smp_prepare_cpus(unsigned int max_cpus)
  349. {
  350. unsigned int ncores = num_possible_cpus();
  351. init_cpu_topology();
  352. smp_store_cpu_info(smp_processor_id());
  353. /*
  354. * are we trying to boot more cores than exist?
  355. */
  356. if (max_cpus > ncores)
  357. max_cpus = ncores;
  358. if (ncores > 1 && max_cpus) {
  359. /*
  360. * Enable the local timer or broadcast device for the
  361. * boot CPU, but only if we have more than one CPU.
  362. */
  363. percpu_timer_setup();
  364. /*
  365. * Initialise the present map, which describes the set of CPUs
  366. * actually populated at the present time. A platform should
  367. * re-initialize the map in the platforms smp_prepare_cpus()
  368. * if present != possible (e.g. physical hotplug).
  369. */
  370. init_cpu_present(cpu_possible_mask);
  371. /*
  372. * Initialise the SCU if there are more than one CPU
  373. * and let them know where to start.
  374. */
  375. if (smp_ops.smp_prepare_cpus)
  376. smp_ops.smp_prepare_cpus(max_cpus);
  377. }
  378. }
  379. static void (*smp_cross_call)(const struct cpumask *, unsigned int);
  380. void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
  381. {
  382. if (!smp_cross_call)
  383. smp_cross_call = fn;
  384. }
  385. void arch_send_call_function_ipi_mask(const struct cpumask *mask)
  386. {
  387. smp_cross_call(mask, IPI_CALL_FUNC);
  388. }
  389. void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
  390. {
  391. smp_cross_call(mask, IPI_WAKEUP);
  392. }
  393. void arch_send_call_function_single_ipi(int cpu)
  394. {
  395. smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
  396. }
  397. static const char *ipi_types[NR_IPI] = {
  398. #define S(x,s) [x] = s
  399. S(IPI_WAKEUP, "CPU wakeup interrupts"),
  400. S(IPI_TIMER, "Timer broadcast interrupts"),
  401. S(IPI_RESCHEDULE, "Rescheduling interrupts"),
  402. S(IPI_CALL_FUNC, "Function call interrupts"),
  403. S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
  404. S(IPI_CPU_STOP, "CPU stop interrupts"),
  405. };
  406. void show_ipi_list(struct seq_file *p, int prec)
  407. {
  408. unsigned int cpu, i;
  409. for (i = 0; i < NR_IPI; i++) {
  410. seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
  411. for_each_online_cpu(cpu)
  412. seq_printf(p, "%10u ",
  413. __get_irq_stat(cpu, ipi_irqs[i]));
  414. seq_printf(p, " %s\n", ipi_types[i]);
  415. }
  416. }
  417. u64 smp_irq_stat_cpu(unsigned int cpu)
  418. {
  419. u64 sum = 0;
  420. int i;
  421. for (i = 0; i < NR_IPI; i++)
  422. sum += __get_irq_stat(cpu, ipi_irqs[i]);
  423. return sum;
  424. }
  425. /*
  426. * Timer (local or broadcast) support
  427. */
  428. static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent);
  429. #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
  430. void tick_broadcast(const struct cpumask *mask)
  431. {
  432. smp_cross_call(mask, IPI_TIMER);
  433. }
  434. #endif
  435. static void broadcast_timer_set_mode(enum clock_event_mode mode,
  436. struct clock_event_device *evt)
  437. {
  438. }
  439. static void broadcast_timer_setup(struct clock_event_device *evt)
  440. {
  441. evt->name = "dummy_timer";
  442. evt->features = CLOCK_EVT_FEAT_ONESHOT |
  443. CLOCK_EVT_FEAT_PERIODIC |
  444. CLOCK_EVT_FEAT_DUMMY;
  445. evt->rating = 100;
  446. evt->mult = 1;
  447. evt->set_mode = broadcast_timer_set_mode;
  448. clockevents_register_device(evt);
  449. }
  450. static struct local_timer_ops *lt_ops;
  451. #ifdef CONFIG_LOCAL_TIMERS
  452. int local_timer_register(struct local_timer_ops *ops)
  453. {
  454. if (!is_smp() || !setup_max_cpus)
  455. return -ENXIO;
  456. if (lt_ops)
  457. return -EBUSY;
  458. lt_ops = ops;
  459. return 0;
  460. }
  461. #endif
  462. static void percpu_timer_setup(void)
  463. {
  464. unsigned int cpu = smp_processor_id();
  465. struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
  466. evt->cpumask = cpumask_of(cpu);
  467. if (!lt_ops || lt_ops->setup(evt))
  468. broadcast_timer_setup(evt);
  469. }
  470. #ifdef CONFIG_HOTPLUG_CPU
  471. /*
  472. * The generic clock events code purposely does not stop the local timer
  473. * on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it
  474. * manually here.
  475. */
  476. static void percpu_timer_stop(void)
  477. {
  478. unsigned int cpu = smp_processor_id();
  479. struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
  480. if (lt_ops)
  481. lt_ops->stop(evt);
  482. }
  483. #endif
  484. static DEFINE_RAW_SPINLOCK(stop_lock);
  485. /*
  486. * ipi_cpu_stop - handle IPI from smp_send_stop()
  487. */
  488. static void ipi_cpu_stop(unsigned int cpu)
  489. {
  490. if (system_state == SYSTEM_BOOTING ||
  491. system_state == SYSTEM_RUNNING) {
  492. raw_spin_lock(&stop_lock);
  493. printk(KERN_CRIT "CPU%u: stopping\n", cpu);
  494. dump_stack();
  495. raw_spin_unlock(&stop_lock);
  496. }
  497. set_cpu_online(cpu, false);
  498. local_fiq_disable();
  499. local_irq_disable();
  500. while (1)
  501. cpu_relax();
  502. }
  503. /*
  504. * Main handler for inter-processor interrupts
  505. */
  506. asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
  507. {
  508. handle_IPI(ipinr, regs);
  509. }
  510. void handle_IPI(int ipinr, struct pt_regs *regs)
  511. {
  512. unsigned int cpu = smp_processor_id();
  513. struct pt_regs *old_regs = set_irq_regs(regs);
  514. if (ipinr < NR_IPI)
  515. __inc_irq_stat(cpu, ipi_irqs[ipinr]);
  516. switch (ipinr) {
  517. case IPI_WAKEUP:
  518. break;
  519. #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
  520. case IPI_TIMER:
  521. irq_enter();
  522. tick_receive_broadcast();
  523. irq_exit();
  524. break;
  525. #endif
  526. case IPI_RESCHEDULE:
  527. scheduler_ipi();
  528. break;
  529. case IPI_CALL_FUNC:
  530. irq_enter();
  531. generic_smp_call_function_interrupt();
  532. irq_exit();
  533. break;
  534. case IPI_CALL_FUNC_SINGLE:
  535. irq_enter();
  536. generic_smp_call_function_single_interrupt();
  537. irq_exit();
  538. break;
  539. case IPI_CPU_STOP:
  540. irq_enter();
  541. ipi_cpu_stop(cpu);
  542. irq_exit();
  543. break;
  544. default:
  545. printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
  546. cpu, ipinr);
  547. break;
  548. }
  549. set_irq_regs(old_regs);
  550. }
  551. void smp_send_reschedule(int cpu)
  552. {
  553. smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
  554. }
  555. void smp_send_stop(void)
  556. {
  557. unsigned long timeout;
  558. struct cpumask mask;
  559. cpumask_copy(&mask, cpu_online_mask);
  560. cpumask_clear_cpu(smp_processor_id(), &mask);
  561. if (!cpumask_empty(&mask))
  562. smp_cross_call(&mask, IPI_CPU_STOP);
  563. /* Wait up to one second for other CPUs to stop */
  564. timeout = USEC_PER_SEC;
  565. while (num_online_cpus() > 1 && timeout--)
  566. udelay(1);
  567. if (num_online_cpus() > 1)
  568. pr_warning("SMP: failed to stop secondary CPUs\n");
  569. }
  570. /*
  571. * not supported here
  572. */
  573. int setup_profiling_timer(unsigned int multiplier)
  574. {
  575. return -EINVAL;
  576. }
  577. #ifdef CONFIG_CPU_FREQ
  578. static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
  579. static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
  580. static unsigned long global_l_p_j_ref;
  581. static unsigned long global_l_p_j_ref_freq;
  582. static int cpufreq_callback(struct notifier_block *nb,
  583. unsigned long val, void *data)
  584. {
  585. struct cpufreq_freqs *freq = data;
  586. int cpu = freq->cpu;
  587. if (freq->flags & CPUFREQ_CONST_LOOPS)
  588. return NOTIFY_OK;
  589. if (!per_cpu(l_p_j_ref, cpu)) {
  590. per_cpu(l_p_j_ref, cpu) =
  591. per_cpu(cpu_data, cpu).loops_per_jiffy;
  592. per_cpu(l_p_j_ref_freq, cpu) = freq->old;
  593. if (!global_l_p_j_ref) {
  594. global_l_p_j_ref = loops_per_jiffy;
  595. global_l_p_j_ref_freq = freq->old;
  596. }
  597. }
  598. if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
  599. (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
  600. (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
  601. loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
  602. global_l_p_j_ref_freq,
  603. freq->new);
  604. per_cpu(cpu_data, cpu).loops_per_jiffy =
  605. cpufreq_scale(per_cpu(l_p_j_ref, cpu),
  606. per_cpu(l_p_j_ref_freq, cpu),
  607. freq->new);
  608. }
  609. return NOTIFY_OK;
  610. }
  611. static struct notifier_block cpufreq_notifier = {
  612. .notifier_call = cpufreq_callback,
  613. };
  614. static int __init register_cpufreq_notifier(void)
  615. {
  616. return cpufreq_register_notifier(&cpufreq_notifier,
  617. CPUFREQ_TRANSITION_NOTIFIER);
  618. }
  619. core_initcall(register_cpufreq_notifier);
  620. #endif