setup.c 25 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064
  1. /*
  2. * linux/arch/arm/kernel/setup.c
  3. *
  4. * Copyright (C) 1995-2001 Russell King
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/export.h>
  11. #include <linux/kernel.h>
  12. #include <linux/stddef.h>
  13. #include <linux/ioport.h>
  14. #include <linux/delay.h>
  15. #include <linux/utsname.h>
  16. #include <linux/initrd.h>
  17. #include <linux/console.h>
  18. #include <linux/bootmem.h>
  19. #include <linux/seq_file.h>
  20. #include <linux/screen_info.h>
  21. #include <linux/of_platform.h>
  22. #include <linux/init.h>
  23. #include <linux/kexec.h>
  24. #include <linux/of_fdt.h>
  25. #include <linux/cpu.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/smp.h>
  28. #include <linux/proc_fs.h>
  29. #include <linux/memblock.h>
  30. #include <linux/bug.h>
  31. #include <linux/compiler.h>
  32. #include <linux/sort.h>
  33. #include <asm/unified.h>
  34. #include <asm/cp15.h>
  35. #include <asm/cpu.h>
  36. #include <asm/cputype.h>
  37. #include <asm/elf.h>
  38. #include <asm/procinfo.h>
  39. #include <asm/psci.h>
  40. #include <asm/sections.h>
  41. #include <asm/setup.h>
  42. #include <asm/smp_plat.h>
  43. #include <asm/mach-types.h>
  44. #include <asm/cacheflush.h>
  45. #include <asm/cachetype.h>
  46. #include <asm/tlbflush.h>
  47. #include <asm/prom.h>
  48. #include <asm/mach/arch.h>
  49. #include <asm/mach/irq.h>
  50. #include <asm/mach/time.h>
  51. #include <asm/system_info.h>
  52. #include <asm/system_misc.h>
  53. #include <asm/traps.h>
  54. #include <asm/unwind.h>
  55. #include <asm/memblock.h>
  56. #include <asm/virt.h>
  57. #include "atags.h"
  58. #if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
  59. char fpe_type[8];
  60. static int __init fpe_setup(char *line)
  61. {
  62. memcpy(fpe_type, line, 8);
  63. return 1;
  64. }
  65. __setup("fpe=", fpe_setup);
  66. #endif
  67. extern void paging_init(struct machine_desc *desc);
  68. extern void sanity_check_meminfo(void);
  69. extern enum reboot_mode reboot_mode;
  70. extern void setup_dma_zone(struct machine_desc *desc);
  71. unsigned int processor_id;
  72. EXPORT_SYMBOL(processor_id);
  73. unsigned int __machine_arch_type __read_mostly;
  74. EXPORT_SYMBOL(__machine_arch_type);
  75. unsigned int cacheid __read_mostly;
  76. EXPORT_SYMBOL(cacheid);
  77. unsigned int __atags_pointer __initdata;
  78. unsigned int system_rev;
  79. EXPORT_SYMBOL(system_rev);
  80. unsigned int system_serial_low;
  81. EXPORT_SYMBOL(system_serial_low);
  82. unsigned int system_serial_high;
  83. EXPORT_SYMBOL(system_serial_high);
  84. unsigned int elf_hwcap __read_mostly;
  85. EXPORT_SYMBOL(elf_hwcap);
  86. #ifdef MULTI_CPU
  87. struct processor processor __read_mostly;
  88. #endif
  89. #ifdef MULTI_TLB
  90. struct cpu_tlb_fns cpu_tlb __read_mostly;
  91. #endif
  92. #ifdef MULTI_USER
  93. struct cpu_user_fns cpu_user __read_mostly;
  94. #endif
  95. #ifdef MULTI_CACHE
  96. struct cpu_cache_fns cpu_cache __read_mostly;
  97. #endif
  98. #ifdef CONFIG_OUTER_CACHE
  99. struct outer_cache_fns outer_cache __read_mostly;
  100. EXPORT_SYMBOL(outer_cache);
  101. #endif
  102. /*
  103. * Cached cpu_architecture() result for use by assembler code.
  104. * C code should use the cpu_architecture() function instead of accessing this
  105. * variable directly.
  106. */
  107. int __cpu_architecture __read_mostly = CPU_ARCH_UNKNOWN;
  108. struct stack {
  109. u32 irq[3];
  110. u32 abt[3];
  111. u32 und[3];
  112. } ____cacheline_aligned;
  113. #ifndef CONFIG_CPU_V7M
  114. static struct stack stacks[NR_CPUS];
  115. #endif
  116. char elf_platform[ELF_PLATFORM_SIZE];
  117. EXPORT_SYMBOL(elf_platform);
  118. static const char *cpu_name;
  119. static const char *machine_name;
  120. static char __initdata cmd_line[COMMAND_LINE_SIZE];
  121. struct machine_desc *machine_desc __initdata;
  122. static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
  123. #define ENDIANNESS ((char)endian_test.l)
  124. DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
  125. /*
  126. * Standard memory resources
  127. */
  128. static struct resource mem_res[] = {
  129. {
  130. .name = "Video RAM",
  131. .start = 0,
  132. .end = 0,
  133. .flags = IORESOURCE_MEM
  134. },
  135. {
  136. .name = "Kernel code",
  137. .start = 0,
  138. .end = 0,
  139. .flags = IORESOURCE_MEM
  140. },
  141. {
  142. .name = "Kernel data",
  143. .start = 0,
  144. .end = 0,
  145. .flags = IORESOURCE_MEM
  146. }
  147. };
  148. #define video_ram mem_res[0]
  149. #define kernel_code mem_res[1]
  150. #define kernel_data mem_res[2]
  151. static struct resource io_res[] = {
  152. {
  153. .name = "reserved",
  154. .start = 0x3bc,
  155. .end = 0x3be,
  156. .flags = IORESOURCE_IO | IORESOURCE_BUSY
  157. },
  158. {
  159. .name = "reserved",
  160. .start = 0x378,
  161. .end = 0x37f,
  162. .flags = IORESOURCE_IO | IORESOURCE_BUSY
  163. },
  164. {
  165. .name = "reserved",
  166. .start = 0x278,
  167. .end = 0x27f,
  168. .flags = IORESOURCE_IO | IORESOURCE_BUSY
  169. }
  170. };
  171. #define lp0 io_res[0]
  172. #define lp1 io_res[1]
  173. #define lp2 io_res[2]
  174. static const char *proc_arch[] = {
  175. "undefined/unknown",
  176. "3",
  177. "4",
  178. "4T",
  179. "5",
  180. "5T",
  181. "5TE",
  182. "5TEJ",
  183. "6TEJ",
  184. "7",
  185. "7M",
  186. "?(12)",
  187. "?(13)",
  188. "?(14)",
  189. "?(15)",
  190. "?(16)",
  191. "?(17)",
  192. };
  193. #ifdef CONFIG_CPU_V7M
  194. static int __get_cpu_architecture(void)
  195. {
  196. return CPU_ARCH_ARMv7M;
  197. }
  198. #else
  199. static int __get_cpu_architecture(void)
  200. {
  201. int cpu_arch;
  202. if ((read_cpuid_id() & 0x0008f000) == 0) {
  203. cpu_arch = CPU_ARCH_UNKNOWN;
  204. } else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
  205. cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
  206. } else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
  207. cpu_arch = (read_cpuid_id() >> 16) & 7;
  208. if (cpu_arch)
  209. cpu_arch += CPU_ARCH_ARMv3;
  210. } else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
  211. unsigned int mmfr0;
  212. /* Revised CPUID format. Read the Memory Model Feature
  213. * Register 0 and check for VMSAv7 or PMSAv7 */
  214. asm("mrc p15, 0, %0, c0, c1, 4"
  215. : "=r" (mmfr0));
  216. if ((mmfr0 & 0x0000000f) >= 0x00000003 ||
  217. (mmfr0 & 0x000000f0) >= 0x00000030)
  218. cpu_arch = CPU_ARCH_ARMv7;
  219. else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
  220. (mmfr0 & 0x000000f0) == 0x00000020)
  221. cpu_arch = CPU_ARCH_ARMv6;
  222. else
  223. cpu_arch = CPU_ARCH_UNKNOWN;
  224. } else
  225. cpu_arch = CPU_ARCH_UNKNOWN;
  226. return cpu_arch;
  227. }
  228. #endif
  229. int __pure cpu_architecture(void)
  230. {
  231. BUG_ON(__cpu_architecture == CPU_ARCH_UNKNOWN);
  232. return __cpu_architecture;
  233. }
  234. static int cpu_has_aliasing_icache(unsigned int arch)
  235. {
  236. int aliasing_icache;
  237. unsigned int id_reg, num_sets, line_size;
  238. /* PIPT caches never alias. */
  239. if (icache_is_pipt())
  240. return 0;
  241. /* arch specifies the register format */
  242. switch (arch) {
  243. case CPU_ARCH_ARMv7:
  244. asm("mcr p15, 2, %0, c0, c0, 0 @ set CSSELR"
  245. : /* No output operands */
  246. : "r" (1));
  247. isb();
  248. asm("mrc p15, 1, %0, c0, c0, 0 @ read CCSIDR"
  249. : "=r" (id_reg));
  250. line_size = 4 << ((id_reg & 0x7) + 2);
  251. num_sets = ((id_reg >> 13) & 0x7fff) + 1;
  252. aliasing_icache = (line_size * num_sets) > PAGE_SIZE;
  253. break;
  254. case CPU_ARCH_ARMv6:
  255. aliasing_icache = read_cpuid_cachetype() & (1 << 11);
  256. break;
  257. default:
  258. /* I-cache aliases will be handled by D-cache aliasing code */
  259. aliasing_icache = 0;
  260. }
  261. return aliasing_icache;
  262. }
  263. static void __init cacheid_init(void)
  264. {
  265. unsigned int arch = cpu_architecture();
  266. if (arch == CPU_ARCH_ARMv7M) {
  267. cacheid = 0;
  268. } else if (arch >= CPU_ARCH_ARMv6) {
  269. unsigned int cachetype = read_cpuid_cachetype();
  270. if ((cachetype & (7 << 29)) == 4 << 29) {
  271. /* ARMv7 register format */
  272. arch = CPU_ARCH_ARMv7;
  273. cacheid = CACHEID_VIPT_NONALIASING;
  274. switch (cachetype & (3 << 14)) {
  275. case (1 << 14):
  276. cacheid |= CACHEID_ASID_TAGGED;
  277. break;
  278. case (3 << 14):
  279. cacheid |= CACHEID_PIPT;
  280. break;
  281. }
  282. } else {
  283. arch = CPU_ARCH_ARMv6;
  284. if (cachetype & (1 << 23))
  285. cacheid = CACHEID_VIPT_ALIASING;
  286. else
  287. cacheid = CACHEID_VIPT_NONALIASING;
  288. }
  289. if (cpu_has_aliasing_icache(arch))
  290. cacheid |= CACHEID_VIPT_I_ALIASING;
  291. } else {
  292. cacheid = CACHEID_VIVT;
  293. }
  294. printk("CPU: %s data cache, %s instruction cache\n",
  295. cache_is_vivt() ? "VIVT" :
  296. cache_is_vipt_aliasing() ? "VIPT aliasing" :
  297. cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing" : "unknown",
  298. cache_is_vivt() ? "VIVT" :
  299. icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
  300. icache_is_vipt_aliasing() ? "VIPT aliasing" :
  301. icache_is_pipt() ? "PIPT" :
  302. cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
  303. }
  304. /*
  305. * These functions re-use the assembly code in head.S, which
  306. * already provide the required functionality.
  307. */
  308. extern struct proc_info_list *lookup_processor_type(unsigned int);
  309. void __init early_print(const char *str, ...)
  310. {
  311. extern void printascii(const char *);
  312. char buf[256];
  313. va_list ap;
  314. va_start(ap, str);
  315. vsnprintf(buf, sizeof(buf), str, ap);
  316. va_end(ap);
  317. #ifdef CONFIG_DEBUG_LL
  318. printascii(buf);
  319. #endif
  320. printk("%s", buf);
  321. }
  322. static void __init cpuid_init_hwcaps(void)
  323. {
  324. unsigned int divide_instrs, vmsa;
  325. if (cpu_architecture() < CPU_ARCH_ARMv7)
  326. return;
  327. divide_instrs = (read_cpuid_ext(CPUID_EXT_ISAR0) & 0x0f000000) >> 24;
  328. switch (divide_instrs) {
  329. case 2:
  330. elf_hwcap |= HWCAP_IDIVA;
  331. case 1:
  332. elf_hwcap |= HWCAP_IDIVT;
  333. }
  334. /* LPAE implies atomic ldrd/strd instructions */
  335. vmsa = (read_cpuid_ext(CPUID_EXT_MMFR0) & 0xf) >> 0;
  336. if (vmsa >= 5)
  337. elf_hwcap |= HWCAP_LPAE;
  338. }
  339. static void __init feat_v6_fixup(void)
  340. {
  341. int id = read_cpuid_id();
  342. if ((id & 0xff0f0000) != 0x41070000)
  343. return;
  344. /*
  345. * HWCAP_TLS is available only on 1136 r1p0 and later,
  346. * see also kuser_get_tls_init.
  347. */
  348. if ((((id >> 4) & 0xfff) == 0xb36) && (((id >> 20) & 3) == 0))
  349. elf_hwcap &= ~HWCAP_TLS;
  350. }
  351. /*
  352. * cpu_init - initialise one CPU.
  353. *
  354. * cpu_init sets up the per-CPU stacks.
  355. */
  356. void notrace cpu_init(void)
  357. {
  358. #ifndef CONFIG_CPU_V7M
  359. unsigned int cpu = smp_processor_id();
  360. struct stack *stk = &stacks[cpu];
  361. if (cpu >= NR_CPUS) {
  362. printk(KERN_CRIT "CPU%u: bad primary CPU number\n", cpu);
  363. BUG();
  364. }
  365. /*
  366. * This only works on resume and secondary cores. For booting on the
  367. * boot cpu, smp_prepare_boot_cpu is called after percpu area setup.
  368. */
  369. set_my_cpu_offset(per_cpu_offset(cpu));
  370. cpu_proc_init();
  371. /*
  372. * Define the placement constraint for the inline asm directive below.
  373. * In Thumb-2, msr with an immediate value is not allowed.
  374. */
  375. #ifdef CONFIG_THUMB2_KERNEL
  376. #define PLC "r"
  377. #else
  378. #define PLC "I"
  379. #endif
  380. /*
  381. * setup stacks for re-entrant exception handlers
  382. */
  383. __asm__ (
  384. "msr cpsr_c, %1\n\t"
  385. "add r14, %0, %2\n\t"
  386. "mov sp, r14\n\t"
  387. "msr cpsr_c, %3\n\t"
  388. "add r14, %0, %4\n\t"
  389. "mov sp, r14\n\t"
  390. "msr cpsr_c, %5\n\t"
  391. "add r14, %0, %6\n\t"
  392. "mov sp, r14\n\t"
  393. "msr cpsr_c, %7"
  394. :
  395. : "r" (stk),
  396. PLC (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
  397. "I" (offsetof(struct stack, irq[0])),
  398. PLC (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
  399. "I" (offsetof(struct stack, abt[0])),
  400. PLC (PSR_F_BIT | PSR_I_BIT | UND_MODE),
  401. "I" (offsetof(struct stack, und[0])),
  402. PLC (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
  403. : "r14");
  404. #endif
  405. }
  406. u32 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = MPIDR_INVALID };
  407. void __init smp_setup_processor_id(void)
  408. {
  409. int i;
  410. u32 mpidr = is_smp() ? read_cpuid_mpidr() & MPIDR_HWID_BITMASK : 0;
  411. u32 cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
  412. cpu_logical_map(0) = cpu;
  413. for (i = 1; i < nr_cpu_ids; ++i)
  414. cpu_logical_map(i) = i == cpu ? 0 : i;
  415. /*
  416. * clear __my_cpu_offset on boot CPU to avoid hang caused by
  417. * using percpu variable early, for example, lockdep will
  418. * access percpu variable inside lock_release
  419. */
  420. set_my_cpu_offset(0);
  421. printk(KERN_INFO "Booting Linux on physical CPU 0x%x\n", mpidr);
  422. }
  423. struct mpidr_hash mpidr_hash;
  424. #ifdef CONFIG_SMP
  425. /**
  426. * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
  427. * level in order to build a linear index from an
  428. * MPIDR value. Resulting algorithm is a collision
  429. * free hash carried out through shifting and ORing
  430. */
  431. static void __init smp_build_mpidr_hash(void)
  432. {
  433. u32 i, affinity;
  434. u32 fs[3], bits[3], ls, mask = 0;
  435. /*
  436. * Pre-scan the list of MPIDRS and filter out bits that do
  437. * not contribute to affinity levels, ie they never toggle.
  438. */
  439. for_each_possible_cpu(i)
  440. mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
  441. pr_debug("mask of set bits 0x%x\n", mask);
  442. /*
  443. * Find and stash the last and first bit set at all affinity levels to
  444. * check how many bits are required to represent them.
  445. */
  446. for (i = 0; i < 3; i++) {
  447. affinity = MPIDR_AFFINITY_LEVEL(mask, i);
  448. /*
  449. * Find the MSB bit and LSB bits position
  450. * to determine how many bits are required
  451. * to express the affinity level.
  452. */
  453. ls = fls(affinity);
  454. fs[i] = affinity ? ffs(affinity) - 1 : 0;
  455. bits[i] = ls - fs[i];
  456. }
  457. /*
  458. * An index can be created from the MPIDR by isolating the
  459. * significant bits at each affinity level and by shifting
  460. * them in order to compress the 24 bits values space to a
  461. * compressed set of values. This is equivalent to hashing
  462. * the MPIDR through shifting and ORing. It is a collision free
  463. * hash though not minimal since some levels might contain a number
  464. * of CPUs that is not an exact power of 2 and their bit
  465. * representation might contain holes, eg MPIDR[7:0] = {0x2, 0x80}.
  466. */
  467. mpidr_hash.shift_aff[0] = fs[0];
  468. mpidr_hash.shift_aff[1] = MPIDR_LEVEL_BITS + fs[1] - bits[0];
  469. mpidr_hash.shift_aff[2] = 2*MPIDR_LEVEL_BITS + fs[2] -
  470. (bits[1] + bits[0]);
  471. mpidr_hash.mask = mask;
  472. mpidr_hash.bits = bits[2] + bits[1] + bits[0];
  473. pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] mask[0x%x] bits[%u]\n",
  474. mpidr_hash.shift_aff[0],
  475. mpidr_hash.shift_aff[1],
  476. mpidr_hash.shift_aff[2],
  477. mpidr_hash.mask,
  478. mpidr_hash.bits);
  479. /*
  480. * 4x is an arbitrary value used to warn on a hash table much bigger
  481. * than expected on most systems.
  482. */
  483. if (mpidr_hash_size() > 4 * num_possible_cpus())
  484. pr_warn("Large number of MPIDR hash buckets detected\n");
  485. sync_cache_w(&mpidr_hash);
  486. }
  487. #endif
  488. static void __init setup_processor(void)
  489. {
  490. struct proc_info_list *list;
  491. /*
  492. * locate processor in the list of supported processor
  493. * types. The linker builds this table for us from the
  494. * entries in arch/arm/mm/proc-*.S
  495. */
  496. list = lookup_processor_type(read_cpuid_id());
  497. if (!list) {
  498. printk("CPU configuration botched (ID %08x), unable "
  499. "to continue.\n", read_cpuid_id());
  500. while (1);
  501. }
  502. cpu_name = list->cpu_name;
  503. __cpu_architecture = __get_cpu_architecture();
  504. #ifdef MULTI_CPU
  505. processor = *list->proc;
  506. #endif
  507. #ifdef MULTI_TLB
  508. cpu_tlb = *list->tlb;
  509. #endif
  510. #ifdef MULTI_USER
  511. cpu_user = *list->user;
  512. #endif
  513. #ifdef MULTI_CACHE
  514. cpu_cache = *list->cache;
  515. #endif
  516. printk("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
  517. cpu_name, read_cpuid_id(), read_cpuid_id() & 15,
  518. proc_arch[cpu_architecture()], cr_alignment);
  519. snprintf(init_utsname()->machine, __NEW_UTS_LEN + 1, "%s%c",
  520. list->arch_name, ENDIANNESS);
  521. snprintf(elf_platform, ELF_PLATFORM_SIZE, "%s%c",
  522. list->elf_name, ENDIANNESS);
  523. elf_hwcap = list->elf_hwcap;
  524. cpuid_init_hwcaps();
  525. #ifndef CONFIG_ARM_THUMB
  526. elf_hwcap &= ~(HWCAP_THUMB | HWCAP_IDIVT);
  527. #endif
  528. feat_v6_fixup();
  529. cacheid_init();
  530. cpu_init();
  531. }
  532. void __init dump_machine_table(void)
  533. {
  534. struct machine_desc *p;
  535. early_print("Available machine support:\n\nID (hex)\tNAME\n");
  536. for_each_machine_desc(p)
  537. early_print("%08x\t%s\n", p->nr, p->name);
  538. early_print("\nPlease check your kernel config and/or bootloader.\n");
  539. while (true)
  540. /* can't use cpu_relax() here as it may require MMU setup */;
  541. }
  542. int __init arm_add_memory(phys_addr_t start, phys_addr_t size)
  543. {
  544. struct membank *bank = &meminfo.bank[meminfo.nr_banks];
  545. if (meminfo.nr_banks >= NR_BANKS) {
  546. printk(KERN_CRIT "NR_BANKS too low, "
  547. "ignoring memory at 0x%08llx\n", (long long)start);
  548. return -EINVAL;
  549. }
  550. /*
  551. * Ensure that start/size are aligned to a page boundary.
  552. * Size is appropriately rounded down, start is rounded up.
  553. */
  554. size -= start & ~PAGE_MASK;
  555. bank->start = PAGE_ALIGN(start);
  556. #ifndef CONFIG_ARM_LPAE
  557. if (bank->start + size < bank->start) {
  558. printk(KERN_CRIT "Truncating memory at 0x%08llx to fit in "
  559. "32-bit physical address space\n", (long long)start);
  560. /*
  561. * To ensure bank->start + bank->size is representable in
  562. * 32 bits, we use ULONG_MAX as the upper limit rather than 4GB.
  563. * This means we lose a page after masking.
  564. */
  565. size = ULONG_MAX - bank->start;
  566. }
  567. #endif
  568. bank->size = size & ~(phys_addr_t)(PAGE_SIZE - 1);
  569. /*
  570. * Check whether this memory region has non-zero size or
  571. * invalid node number.
  572. */
  573. if (bank->size == 0)
  574. return -EINVAL;
  575. meminfo.nr_banks++;
  576. return 0;
  577. }
  578. /*
  579. * Pick out the memory size. We look for mem=size@start,
  580. * where start and size are "size[KkMm]"
  581. */
  582. static int __init early_mem(char *p)
  583. {
  584. static int usermem __initdata = 0;
  585. phys_addr_t size;
  586. phys_addr_t start;
  587. char *endp;
  588. /*
  589. * If the user specifies memory size, we
  590. * blow away any automatically generated
  591. * size.
  592. */
  593. if (usermem == 0) {
  594. usermem = 1;
  595. meminfo.nr_banks = 0;
  596. }
  597. start = PHYS_OFFSET;
  598. size = memparse(p, &endp);
  599. if (*endp == '@')
  600. start = memparse(endp + 1, NULL);
  601. arm_add_memory(start, size);
  602. return 0;
  603. }
  604. early_param("mem", early_mem);
  605. static void __init request_standard_resources(struct machine_desc *mdesc)
  606. {
  607. struct memblock_region *region;
  608. struct resource *res;
  609. kernel_code.start = virt_to_phys(_text);
  610. kernel_code.end = virt_to_phys(_etext - 1);
  611. kernel_data.start = virt_to_phys(_sdata);
  612. kernel_data.end = virt_to_phys(_end - 1);
  613. for_each_memblock(memory, region) {
  614. res = alloc_bootmem_low(sizeof(*res));
  615. res->name = "System RAM";
  616. res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
  617. res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
  618. res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
  619. request_resource(&iomem_resource, res);
  620. if (kernel_code.start >= res->start &&
  621. kernel_code.end <= res->end)
  622. request_resource(res, &kernel_code);
  623. if (kernel_data.start >= res->start &&
  624. kernel_data.end <= res->end)
  625. request_resource(res, &kernel_data);
  626. }
  627. if (mdesc->video_start) {
  628. video_ram.start = mdesc->video_start;
  629. video_ram.end = mdesc->video_end;
  630. request_resource(&iomem_resource, &video_ram);
  631. }
  632. /*
  633. * Some machines don't have the possibility of ever
  634. * possessing lp0, lp1 or lp2
  635. */
  636. if (mdesc->reserve_lp0)
  637. request_resource(&ioport_resource, &lp0);
  638. if (mdesc->reserve_lp1)
  639. request_resource(&ioport_resource, &lp1);
  640. if (mdesc->reserve_lp2)
  641. request_resource(&ioport_resource, &lp2);
  642. }
  643. #if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE)
  644. struct screen_info screen_info = {
  645. .orig_video_lines = 30,
  646. .orig_video_cols = 80,
  647. .orig_video_mode = 0,
  648. .orig_video_ega_bx = 0,
  649. .orig_video_isVGA = 1,
  650. .orig_video_points = 8
  651. };
  652. #endif
  653. static int __init customize_machine(void)
  654. {
  655. /*
  656. * customizes platform devices, or adds new ones
  657. * On DT based machines, we fall back to populating the
  658. * machine from the device tree, if no callback is provided,
  659. * otherwise we would always need an init_machine callback.
  660. */
  661. if (machine_desc->init_machine)
  662. machine_desc->init_machine();
  663. #ifdef CONFIG_OF
  664. else
  665. of_platform_populate(NULL, of_default_bus_match_table,
  666. NULL, NULL);
  667. #endif
  668. return 0;
  669. }
  670. arch_initcall(customize_machine);
  671. static int __init init_machine_late(void)
  672. {
  673. if (machine_desc->init_late)
  674. machine_desc->init_late();
  675. return 0;
  676. }
  677. late_initcall(init_machine_late);
  678. #ifdef CONFIG_KEXEC
  679. static inline unsigned long long get_total_mem(void)
  680. {
  681. unsigned long total;
  682. total = max_low_pfn - min_low_pfn;
  683. return total << PAGE_SHIFT;
  684. }
  685. /**
  686. * reserve_crashkernel() - reserves memory are for crash kernel
  687. *
  688. * This function reserves memory area given in "crashkernel=" kernel command
  689. * line parameter. The memory reserved is used by a dump capture kernel when
  690. * primary kernel is crashing.
  691. */
  692. static void __init reserve_crashkernel(void)
  693. {
  694. unsigned long long crash_size, crash_base;
  695. unsigned long long total_mem;
  696. int ret;
  697. total_mem = get_total_mem();
  698. ret = parse_crashkernel(boot_command_line, total_mem,
  699. &crash_size, &crash_base);
  700. if (ret)
  701. return;
  702. ret = reserve_bootmem(crash_base, crash_size, BOOTMEM_EXCLUSIVE);
  703. if (ret < 0) {
  704. printk(KERN_WARNING "crashkernel reservation failed - "
  705. "memory is in use (0x%lx)\n", (unsigned long)crash_base);
  706. return;
  707. }
  708. printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
  709. "for crashkernel (System RAM: %ldMB)\n",
  710. (unsigned long)(crash_size >> 20),
  711. (unsigned long)(crash_base >> 20),
  712. (unsigned long)(total_mem >> 20));
  713. crashk_res.start = crash_base;
  714. crashk_res.end = crash_base + crash_size - 1;
  715. insert_resource(&iomem_resource, &crashk_res);
  716. }
  717. #else
  718. static inline void reserve_crashkernel(void) {}
  719. #endif /* CONFIG_KEXEC */
  720. static int __init meminfo_cmp(const void *_a, const void *_b)
  721. {
  722. const struct membank *a = _a, *b = _b;
  723. long cmp = bank_pfn_start(a) - bank_pfn_start(b);
  724. return cmp < 0 ? -1 : cmp > 0 ? 1 : 0;
  725. }
  726. void __init hyp_mode_check(void)
  727. {
  728. #ifdef CONFIG_ARM_VIRT_EXT
  729. sync_boot_mode();
  730. if (is_hyp_mode_available()) {
  731. pr_info("CPU: All CPU(s) started in HYP mode.\n");
  732. pr_info("CPU: Virtualization extensions available.\n");
  733. } else if (is_hyp_mode_mismatched()) {
  734. pr_warn("CPU: WARNING: CPU(s) started in wrong/inconsistent modes (primary CPU mode 0x%x)\n",
  735. __boot_cpu_mode & MODE_MASK);
  736. pr_warn("CPU: This may indicate a broken bootloader or firmware.\n");
  737. } else
  738. pr_info("CPU: All CPU(s) started in SVC mode.\n");
  739. #endif
  740. }
  741. void __init setup_arch(char **cmdline_p)
  742. {
  743. struct machine_desc *mdesc;
  744. setup_processor();
  745. mdesc = setup_machine_fdt(__atags_pointer);
  746. if (!mdesc)
  747. mdesc = setup_machine_tags(__atags_pointer, __machine_arch_type);
  748. machine_desc = mdesc;
  749. machine_name = mdesc->name;
  750. setup_dma_zone(mdesc);
  751. if (mdesc->reboot_mode != REBOOT_HARD)
  752. reboot_mode = mdesc->reboot_mode;
  753. init_mm.start_code = (unsigned long) _text;
  754. init_mm.end_code = (unsigned long) _etext;
  755. init_mm.end_data = (unsigned long) _edata;
  756. init_mm.brk = (unsigned long) _end;
  757. /* populate cmd_line too for later use, preserving boot_command_line */
  758. strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
  759. *cmdline_p = cmd_line;
  760. parse_early_param();
  761. sort(&meminfo.bank, meminfo.nr_banks, sizeof(meminfo.bank[0]), meminfo_cmp, NULL);
  762. sanity_check_meminfo();
  763. arm_memblock_init(&meminfo, mdesc);
  764. paging_init(mdesc);
  765. request_standard_resources(mdesc);
  766. if (mdesc->restart)
  767. arm_pm_restart = mdesc->restart;
  768. unflatten_device_tree();
  769. arm_dt_init_cpu_maps();
  770. psci_init();
  771. #ifdef CONFIG_SMP
  772. if (is_smp()) {
  773. if (!mdesc->smp_init || !mdesc->smp_init()) {
  774. if (psci_smp_available())
  775. smp_set_ops(&psci_smp_ops);
  776. else if (mdesc->smp)
  777. smp_set_ops(mdesc->smp);
  778. }
  779. smp_init_cpus();
  780. smp_build_mpidr_hash();
  781. }
  782. #endif
  783. if (!is_smp())
  784. hyp_mode_check();
  785. reserve_crashkernel();
  786. #ifdef CONFIG_MULTI_IRQ_HANDLER
  787. handle_arch_irq = mdesc->handle_irq;
  788. #endif
  789. #ifdef CONFIG_VT
  790. #if defined(CONFIG_VGA_CONSOLE)
  791. conswitchp = &vga_con;
  792. #elif defined(CONFIG_DUMMY_CONSOLE)
  793. conswitchp = &dummy_con;
  794. #endif
  795. #endif
  796. if (mdesc->init_early)
  797. mdesc->init_early();
  798. }
  799. static int __init topology_init(void)
  800. {
  801. int cpu;
  802. for_each_possible_cpu(cpu) {
  803. struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
  804. cpuinfo->cpu.hotpluggable = 1;
  805. register_cpu(&cpuinfo->cpu, cpu);
  806. }
  807. return 0;
  808. }
  809. subsys_initcall(topology_init);
  810. #ifdef CONFIG_HAVE_PROC_CPU
  811. static int __init proc_cpu_init(void)
  812. {
  813. struct proc_dir_entry *res;
  814. res = proc_mkdir("cpu", NULL);
  815. if (!res)
  816. return -ENOMEM;
  817. return 0;
  818. }
  819. fs_initcall(proc_cpu_init);
  820. #endif
  821. static const char *hwcap_str[] = {
  822. "swp",
  823. "half",
  824. "thumb",
  825. "26bit",
  826. "fastmult",
  827. "fpa",
  828. "vfp",
  829. "edsp",
  830. "java",
  831. "iwmmxt",
  832. "crunch",
  833. "thumbee",
  834. "neon",
  835. "vfpv3",
  836. "vfpv3d16",
  837. "tls",
  838. "vfpv4",
  839. "idiva",
  840. "idivt",
  841. "vfpd32",
  842. "lpae",
  843. NULL
  844. };
  845. static int c_show(struct seq_file *m, void *v)
  846. {
  847. int i, j;
  848. u32 cpuid;
  849. for_each_online_cpu(i) {
  850. /*
  851. * glibc reads /proc/cpuinfo to determine the number of
  852. * online processors, looking for lines beginning with
  853. * "processor". Give glibc what it expects.
  854. */
  855. seq_printf(m, "processor\t: %d\n", i);
  856. cpuid = is_smp() ? per_cpu(cpu_data, i).cpuid : read_cpuid_id();
  857. seq_printf(m, "model name\t: %s rev %d (%s)\n",
  858. cpu_name, cpuid & 15, elf_platform);
  859. #if defined(CONFIG_SMP)
  860. seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
  861. per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ),
  862. (per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100);
  863. #else
  864. seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
  865. loops_per_jiffy / (500000/HZ),
  866. (loops_per_jiffy / (5000/HZ)) % 100);
  867. #endif
  868. /* dump out the processor features */
  869. seq_puts(m, "Features\t: ");
  870. for (j = 0; hwcap_str[j]; j++)
  871. if (elf_hwcap & (1 << j))
  872. seq_printf(m, "%s ", hwcap_str[j]);
  873. seq_printf(m, "\nCPU implementer\t: 0x%02x\n", cpuid >> 24);
  874. seq_printf(m, "CPU architecture: %s\n",
  875. proc_arch[cpu_architecture()]);
  876. if ((cpuid & 0x0008f000) == 0x00000000) {
  877. /* pre-ARM7 */
  878. seq_printf(m, "CPU part\t: %07x\n", cpuid >> 4);
  879. } else {
  880. if ((cpuid & 0x0008f000) == 0x00007000) {
  881. /* ARM7 */
  882. seq_printf(m, "CPU variant\t: 0x%02x\n",
  883. (cpuid >> 16) & 127);
  884. } else {
  885. /* post-ARM7 */
  886. seq_printf(m, "CPU variant\t: 0x%x\n",
  887. (cpuid >> 20) & 15);
  888. }
  889. seq_printf(m, "CPU part\t: 0x%03x\n",
  890. (cpuid >> 4) & 0xfff);
  891. }
  892. seq_printf(m, "CPU revision\t: %d\n\n", cpuid & 15);
  893. }
  894. seq_printf(m, "Hardware\t: %s\n", machine_name);
  895. seq_printf(m, "Revision\t: %04x\n", system_rev);
  896. seq_printf(m, "Serial\t\t: %08x%08x\n",
  897. system_serial_high, system_serial_low);
  898. return 0;
  899. }
  900. static void *c_start(struct seq_file *m, loff_t *pos)
  901. {
  902. return *pos < 1 ? (void *)1 : NULL;
  903. }
  904. static void *c_next(struct seq_file *m, void *v, loff_t *pos)
  905. {
  906. ++*pos;
  907. return NULL;
  908. }
  909. static void c_stop(struct seq_file *m, void *v)
  910. {
  911. }
  912. const struct seq_operations cpuinfo_op = {
  913. .start = c_start,
  914. .next = c_next,
  915. .stop = c_stop,
  916. .show = c_show
  917. };