time.c 7.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275
  1. /*
  2. * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License version 2 as
  6. * published by the Free Software Foundation.
  7. *
  8. * vineetg: Jan 1011
  9. * -sched_clock( ) no longer jiffies based. Uses the same clocksource
  10. * as gtod
  11. *
  12. * Rajeshwarr/Vineetg: Mar 2008
  13. * -Implemented CONFIG_GENERIC_TIME (rather deleted arch specific code)
  14. * for arch independent gettimeofday()
  15. * -Implemented CONFIG_GENERIC_CLOCKEVENTS as base for hrtimers
  16. *
  17. * Vineetg: Mar 2008: Forked off from time.c which now is time-jiff.c
  18. */
  19. /* ARC700 has two 32bit independent prog Timers: TIMER0 and TIMER1
  20. * Each can programmed to go from @count to @limit and optionally
  21. * interrupt when that happens.
  22. * A write to Control Register clears the Interrupt
  23. *
  24. * We've designated TIMER0 for events (clockevents)
  25. * while TIMER1 for free running (clocksource)
  26. *
  27. * Newer ARC700 cores have 64bit clk fetching RTSC insn, preferred over TIMER1
  28. */
  29. #include <linux/spinlock.h>
  30. #include <linux/interrupt.h>
  31. #include <linux/module.h>
  32. #include <linux/sched.h>
  33. #include <linux/kernel.h>
  34. #include <linux/time.h>
  35. #include <linux/init.h>
  36. #include <linux/timex.h>
  37. #include <linux/profile.h>
  38. #include <linux/clocksource.h>
  39. #include <linux/clockchips.h>
  40. #include <asm/irq.h>
  41. #include <asm/arcregs.h>
  42. #include <asm/clk.h>
  43. #include <asm/mach_desc.h>
  44. /* Timer related Aux registers */
  45. #define ARC_REG_TIMER0_LIMIT 0x23 /* timer 0 limit */
  46. #define ARC_REG_TIMER0_CTRL 0x22 /* timer 0 control */
  47. #define ARC_REG_TIMER0_CNT 0x21 /* timer 0 count */
  48. #define ARC_REG_TIMER1_LIMIT 0x102 /* timer 1 limit */
  49. #define ARC_REG_TIMER1_CTRL 0x101 /* timer 1 control */
  50. #define ARC_REG_TIMER1_CNT 0x100 /* timer 1 count */
  51. #define TIMER_CTRL_IE (1 << 0) /* Interupt when Count reachs limit */
  52. #define TIMER_CTRL_NH (1 << 1) /* Count only when CPU NOT halted */
  53. #define ARC_TIMER_MAX 0xFFFFFFFF
  54. /********** Clock Source Device *********/
  55. #ifdef CONFIG_ARC_HAS_RTSC
  56. int arc_counter_setup(void)
  57. {
  58. /* RTSC insn taps into cpu clk, needs no setup */
  59. /* For SMP, only allowed if cross-core-sync, hence usable as cs */
  60. return 1;
  61. }
  62. static cycle_t arc_counter_read(struct clocksource *cs)
  63. {
  64. unsigned long flags;
  65. union {
  66. #ifdef CONFIG_CPU_BIG_ENDIAN
  67. struct { u32 high, low; };
  68. #else
  69. struct { u32 low, high; };
  70. #endif
  71. cycle_t full;
  72. } stamp;
  73. flags = arch_local_irq_save();
  74. __asm__ __volatile(
  75. " .extCoreRegister tsch, 58, r, cannot_shortcut \n"
  76. " rtsc %0, 0 \n"
  77. " mov %1, 0 \n"
  78. : "=r" (stamp.low), "=r" (stamp.high));
  79. arch_local_irq_restore(flags);
  80. return stamp.full;
  81. }
  82. static struct clocksource arc_counter = {
  83. .name = "ARC RTSC",
  84. .rating = 300,
  85. .read = arc_counter_read,
  86. .mask = CLOCKSOURCE_MASK(32),
  87. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  88. };
  89. #else /* !CONFIG_ARC_HAS_RTSC */
  90. static bool is_usable_as_clocksource(void)
  91. {
  92. #ifdef CONFIG_SMP
  93. return 0;
  94. #else
  95. return 1;
  96. #endif
  97. }
  98. /*
  99. * set 32bit TIMER1 to keep counting monotonically and wraparound
  100. */
  101. int arc_counter_setup(void)
  102. {
  103. write_aux_reg(ARC_REG_TIMER1_LIMIT, ARC_TIMER_MAX);
  104. write_aux_reg(ARC_REG_TIMER1_CNT, 0);
  105. write_aux_reg(ARC_REG_TIMER1_CTRL, TIMER_CTRL_NH);
  106. return is_usable_as_clocksource();
  107. }
  108. static cycle_t arc_counter_read(struct clocksource *cs)
  109. {
  110. return (cycle_t) read_aux_reg(ARC_REG_TIMER1_CNT);
  111. }
  112. static struct clocksource arc_counter = {
  113. .name = "ARC Timer1",
  114. .rating = 300,
  115. .read = arc_counter_read,
  116. .mask = CLOCKSOURCE_MASK(32),
  117. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  118. };
  119. #endif
  120. /********** Clock Event Device *********/
  121. /*
  122. * Arm the timer to interrupt after @limit cycles
  123. * The distinction for oneshot/periodic is done in arc_event_timer_ack() below
  124. */
  125. static void arc_timer_event_setup(unsigned int limit)
  126. {
  127. write_aux_reg(ARC_REG_TIMER0_LIMIT, limit);
  128. write_aux_reg(ARC_REG_TIMER0_CNT, 0); /* start from 0 */
  129. write_aux_reg(ARC_REG_TIMER0_CTRL, TIMER_CTRL_IE | TIMER_CTRL_NH);
  130. }
  131. /*
  132. * Acknowledge the interrupt (oneshot) and optionally re-arm it (periodic)
  133. * -Any write to CTRL Reg will ack the intr (NH bit: Count when not halted)
  134. * -Rearming is done by setting the IE bit
  135. *
  136. * Small optimisation: Normal code would have been
  137. * if (irq_reenable)
  138. * CTRL_REG = (IE | NH);
  139. * else
  140. * CTRL_REG = NH;
  141. * However since IE is BIT0 we can fold the branch
  142. */
  143. static void arc_timer_event_ack(unsigned int irq_reenable)
  144. {
  145. write_aux_reg(ARC_REG_TIMER0_CTRL, irq_reenable | TIMER_CTRL_NH);
  146. }
  147. static int arc_clkevent_set_next_event(unsigned long delta,
  148. struct clock_event_device *dev)
  149. {
  150. arc_timer_event_setup(delta);
  151. return 0;
  152. }
  153. static void arc_clkevent_set_mode(enum clock_event_mode mode,
  154. struct clock_event_device *dev)
  155. {
  156. switch (mode) {
  157. case CLOCK_EVT_MODE_PERIODIC:
  158. arc_timer_event_setup(arc_get_core_freq() / HZ);
  159. break;
  160. case CLOCK_EVT_MODE_ONESHOT:
  161. break;
  162. default:
  163. break;
  164. }
  165. return;
  166. }
  167. static DEFINE_PER_CPU(struct clock_event_device, arc_clockevent_device) = {
  168. .name = "ARC Timer0",
  169. .features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERIODIC,
  170. .mode = CLOCK_EVT_MODE_UNUSED,
  171. .rating = 300,
  172. .irq = TIMER0_IRQ, /* hardwired, no need for resources */
  173. .set_next_event = arc_clkevent_set_next_event,
  174. .set_mode = arc_clkevent_set_mode,
  175. };
  176. static irqreturn_t timer_irq_handler(int irq, void *dev_id)
  177. {
  178. struct clock_event_device *clk = &__get_cpu_var(arc_clockevent_device);
  179. arc_timer_event_ack(clk->mode == CLOCK_EVT_MODE_PERIODIC);
  180. clk->event_handler(clk);
  181. return IRQ_HANDLED;
  182. }
  183. static struct irqaction arc_timer_irq = {
  184. .name = "Timer0 (clock-evt-dev)",
  185. .flags = IRQF_TIMER | IRQF_PERCPU,
  186. .handler = timer_irq_handler,
  187. };
  188. /*
  189. * Setup the local event timer for @cpu
  190. * N.B. weak so that some exotic ARC SoCs can completely override it
  191. */
  192. void __attribute__((weak)) arc_local_timer_setup(unsigned int cpu)
  193. {
  194. struct clock_event_device *clk = &per_cpu(arc_clockevent_device, cpu);
  195. clockevents_calc_mult_shift(clk, arc_get_core_freq(), 5);
  196. clk->max_delta_ns = clockevent_delta2ns(ARC_TIMER_MAX, clk);
  197. clk->cpumask = cpumask_of(cpu);
  198. clockevents_register_device(clk);
  199. /*
  200. * setup the per-cpu timer IRQ handler - for all cpus
  201. * For non boot CPU explicitly unmask at intc
  202. * setup_irq() -> .. -> irq_startup() already does this on boot-cpu
  203. */
  204. if (!cpu)
  205. setup_irq(TIMER0_IRQ, &arc_timer_irq);
  206. else
  207. arch_unmask_irq(TIMER0_IRQ);
  208. }
  209. /*
  210. * Called from start_kernel() - boot CPU only
  211. *
  212. * -Sets up h/w timers as applicable on boot cpu
  213. * -Also sets up any global state needed for timer subsystem:
  214. * - for "counting" timer, registers a clocksource, usable across CPUs
  215. * (provided that underlying counter h/w is synchronized across cores)
  216. * - for "event" timer, sets up TIMER0 IRQ (as that is platform agnostic)
  217. */
  218. void __init time_init(void)
  219. {
  220. /*
  221. * sets up the timekeeping free-flowing counter which also returns
  222. * whether the counter is usable as clocksource
  223. */
  224. if (arc_counter_setup())
  225. /*
  226. * CLK upto 4.29 GHz can be safely represented in 32 bits
  227. * because Max 32 bit number is 4,294,967,295
  228. */
  229. clocksource_register_hz(&arc_counter, arc_get_core_freq());
  230. /* sets up the periodic event timer */
  231. arc_local_timer_setup(smp_processor_id());
  232. if (machine_desc->init_time)
  233. machine_desc->init_time();
  234. }