inode.c 147 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103
  1. /*
  2. * linux/fs/ext4/inode.c
  3. *
  4. * Copyright (C) 1992, 1993, 1994, 1995
  5. * Remy Card (card@masi.ibp.fr)
  6. * Laboratoire MASI - Institut Blaise Pascal
  7. * Universite Pierre et Marie Curie (Paris VI)
  8. *
  9. * from
  10. *
  11. * linux/fs/minix/inode.c
  12. *
  13. * Copyright (C) 1991, 1992 Linus Torvalds
  14. *
  15. * 64-bit file support on 64-bit platforms by Jakub Jelinek
  16. * (jj@sunsite.ms.mff.cuni.cz)
  17. *
  18. * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
  19. */
  20. #include <linux/fs.h>
  21. #include <linux/time.h>
  22. #include <linux/jbd2.h>
  23. #include <linux/highuid.h>
  24. #include <linux/pagemap.h>
  25. #include <linux/quotaops.h>
  26. #include <linux/string.h>
  27. #include <linux/buffer_head.h>
  28. #include <linux/writeback.h>
  29. #include <linux/pagevec.h>
  30. #include <linux/mpage.h>
  31. #include <linux/namei.h>
  32. #include <linux/uio.h>
  33. #include <linux/bio.h>
  34. #include <linux/workqueue.h>
  35. #include <linux/kernel.h>
  36. #include <linux/printk.h>
  37. #include <linux/slab.h>
  38. #include <linux/ratelimit.h>
  39. #include "ext4_jbd2.h"
  40. #include "xattr.h"
  41. #include "acl.h"
  42. #include "truncate.h"
  43. #include <trace/events/ext4.h>
  44. #define MPAGE_DA_EXTENT_TAIL 0x01
  45. static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
  46. struct ext4_inode_info *ei)
  47. {
  48. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  49. __u16 csum_lo;
  50. __u16 csum_hi = 0;
  51. __u32 csum;
  52. csum_lo = raw->i_checksum_lo;
  53. raw->i_checksum_lo = 0;
  54. if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
  55. EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
  56. csum_hi = raw->i_checksum_hi;
  57. raw->i_checksum_hi = 0;
  58. }
  59. csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
  60. EXT4_INODE_SIZE(inode->i_sb));
  61. raw->i_checksum_lo = csum_lo;
  62. if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
  63. EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
  64. raw->i_checksum_hi = csum_hi;
  65. return csum;
  66. }
  67. static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
  68. struct ext4_inode_info *ei)
  69. {
  70. __u32 provided, calculated;
  71. if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
  72. cpu_to_le32(EXT4_OS_LINUX) ||
  73. !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
  74. EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
  75. return 1;
  76. provided = le16_to_cpu(raw->i_checksum_lo);
  77. calculated = ext4_inode_csum(inode, raw, ei);
  78. if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
  79. EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
  80. provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
  81. else
  82. calculated &= 0xFFFF;
  83. return provided == calculated;
  84. }
  85. static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
  86. struct ext4_inode_info *ei)
  87. {
  88. __u32 csum;
  89. if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
  90. cpu_to_le32(EXT4_OS_LINUX) ||
  91. !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
  92. EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
  93. return;
  94. csum = ext4_inode_csum(inode, raw, ei);
  95. raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
  96. if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
  97. EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
  98. raw->i_checksum_hi = cpu_to_le16(csum >> 16);
  99. }
  100. static inline int ext4_begin_ordered_truncate(struct inode *inode,
  101. loff_t new_size)
  102. {
  103. trace_ext4_begin_ordered_truncate(inode, new_size);
  104. /*
  105. * If jinode is zero, then we never opened the file for
  106. * writing, so there's no need to call
  107. * jbd2_journal_begin_ordered_truncate() since there's no
  108. * outstanding writes we need to flush.
  109. */
  110. if (!EXT4_I(inode)->jinode)
  111. return 0;
  112. return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
  113. EXT4_I(inode)->jinode,
  114. new_size);
  115. }
  116. static void ext4_invalidatepage(struct page *page, unsigned long offset);
  117. static int __ext4_journalled_writepage(struct page *page, unsigned int len);
  118. static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
  119. static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
  120. struct inode *inode, struct page *page, loff_t from,
  121. loff_t length, int flags);
  122. /*
  123. * Test whether an inode is a fast symlink.
  124. */
  125. static int ext4_inode_is_fast_symlink(struct inode *inode)
  126. {
  127. int ea_blocks = EXT4_I(inode)->i_file_acl ?
  128. (inode->i_sb->s_blocksize >> 9) : 0;
  129. return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
  130. }
  131. /*
  132. * Restart the transaction associated with *handle. This does a commit,
  133. * so before we call here everything must be consistently dirtied against
  134. * this transaction.
  135. */
  136. int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
  137. int nblocks)
  138. {
  139. int ret;
  140. /*
  141. * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
  142. * moment, get_block can be called only for blocks inside i_size since
  143. * page cache has been already dropped and writes are blocked by
  144. * i_mutex. So we can safely drop the i_data_sem here.
  145. */
  146. BUG_ON(EXT4_JOURNAL(inode) == NULL);
  147. jbd_debug(2, "restarting handle %p\n", handle);
  148. up_write(&EXT4_I(inode)->i_data_sem);
  149. ret = ext4_journal_restart(handle, nblocks);
  150. down_write(&EXT4_I(inode)->i_data_sem);
  151. ext4_discard_preallocations(inode);
  152. return ret;
  153. }
  154. /*
  155. * Called at the last iput() if i_nlink is zero.
  156. */
  157. void ext4_evict_inode(struct inode *inode)
  158. {
  159. handle_t *handle;
  160. int err;
  161. trace_ext4_evict_inode(inode);
  162. if (inode->i_nlink) {
  163. /*
  164. * When journalling data dirty buffers are tracked only in the
  165. * journal. So although mm thinks everything is clean and
  166. * ready for reaping the inode might still have some pages to
  167. * write in the running transaction or waiting to be
  168. * checkpointed. Thus calling jbd2_journal_invalidatepage()
  169. * (via truncate_inode_pages()) to discard these buffers can
  170. * cause data loss. Also even if we did not discard these
  171. * buffers, we would have no way to find them after the inode
  172. * is reaped and thus user could see stale data if he tries to
  173. * read them before the transaction is checkpointed. So be
  174. * careful and force everything to disk here... We use
  175. * ei->i_datasync_tid to store the newest transaction
  176. * containing inode's data.
  177. *
  178. * Note that directories do not have this problem because they
  179. * don't use page cache.
  180. */
  181. if (ext4_should_journal_data(inode) &&
  182. (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
  183. inode->i_ino != EXT4_JOURNAL_INO) {
  184. journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
  185. tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
  186. jbd2_log_start_commit(journal, commit_tid);
  187. jbd2_log_wait_commit(journal, commit_tid);
  188. filemap_write_and_wait(&inode->i_data);
  189. }
  190. truncate_inode_pages(&inode->i_data, 0);
  191. ext4_ioend_shutdown(inode);
  192. goto no_delete;
  193. }
  194. if (!is_bad_inode(inode))
  195. dquot_initialize(inode);
  196. if (ext4_should_order_data(inode))
  197. ext4_begin_ordered_truncate(inode, 0);
  198. truncate_inode_pages(&inode->i_data, 0);
  199. ext4_ioend_shutdown(inode);
  200. if (is_bad_inode(inode))
  201. goto no_delete;
  202. /*
  203. * Protect us against freezing - iput() caller didn't have to have any
  204. * protection against it
  205. */
  206. sb_start_intwrite(inode->i_sb);
  207. handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
  208. ext4_blocks_for_truncate(inode)+3);
  209. if (IS_ERR(handle)) {
  210. ext4_std_error(inode->i_sb, PTR_ERR(handle));
  211. /*
  212. * If we're going to skip the normal cleanup, we still need to
  213. * make sure that the in-core orphan linked list is properly
  214. * cleaned up.
  215. */
  216. ext4_orphan_del(NULL, inode);
  217. sb_end_intwrite(inode->i_sb);
  218. goto no_delete;
  219. }
  220. if (IS_SYNC(inode))
  221. ext4_handle_sync(handle);
  222. inode->i_size = 0;
  223. err = ext4_mark_inode_dirty(handle, inode);
  224. if (err) {
  225. ext4_warning(inode->i_sb,
  226. "couldn't mark inode dirty (err %d)", err);
  227. goto stop_handle;
  228. }
  229. if (inode->i_blocks)
  230. ext4_truncate(inode);
  231. /*
  232. * ext4_ext_truncate() doesn't reserve any slop when it
  233. * restarts journal transactions; therefore there may not be
  234. * enough credits left in the handle to remove the inode from
  235. * the orphan list and set the dtime field.
  236. */
  237. if (!ext4_handle_has_enough_credits(handle, 3)) {
  238. err = ext4_journal_extend(handle, 3);
  239. if (err > 0)
  240. err = ext4_journal_restart(handle, 3);
  241. if (err != 0) {
  242. ext4_warning(inode->i_sb,
  243. "couldn't extend journal (err %d)", err);
  244. stop_handle:
  245. ext4_journal_stop(handle);
  246. ext4_orphan_del(NULL, inode);
  247. sb_end_intwrite(inode->i_sb);
  248. goto no_delete;
  249. }
  250. }
  251. /*
  252. * Kill off the orphan record which ext4_truncate created.
  253. * AKPM: I think this can be inside the above `if'.
  254. * Note that ext4_orphan_del() has to be able to cope with the
  255. * deletion of a non-existent orphan - this is because we don't
  256. * know if ext4_truncate() actually created an orphan record.
  257. * (Well, we could do this if we need to, but heck - it works)
  258. */
  259. ext4_orphan_del(handle, inode);
  260. EXT4_I(inode)->i_dtime = get_seconds();
  261. /*
  262. * One subtle ordering requirement: if anything has gone wrong
  263. * (transaction abort, IO errors, whatever), then we can still
  264. * do these next steps (the fs will already have been marked as
  265. * having errors), but we can't free the inode if the mark_dirty
  266. * fails.
  267. */
  268. if (ext4_mark_inode_dirty(handle, inode))
  269. /* If that failed, just do the required in-core inode clear. */
  270. ext4_clear_inode(inode);
  271. else
  272. ext4_free_inode(handle, inode);
  273. ext4_journal_stop(handle);
  274. sb_end_intwrite(inode->i_sb);
  275. return;
  276. no_delete:
  277. ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
  278. }
  279. #ifdef CONFIG_QUOTA
  280. qsize_t *ext4_get_reserved_space(struct inode *inode)
  281. {
  282. return &EXT4_I(inode)->i_reserved_quota;
  283. }
  284. #endif
  285. /*
  286. * Calculate the number of metadata blocks need to reserve
  287. * to allocate a block located at @lblock
  288. */
  289. static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
  290. {
  291. if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
  292. return ext4_ext_calc_metadata_amount(inode, lblock);
  293. return ext4_ind_calc_metadata_amount(inode, lblock);
  294. }
  295. /*
  296. * Called with i_data_sem down, which is important since we can call
  297. * ext4_discard_preallocations() from here.
  298. */
  299. void ext4_da_update_reserve_space(struct inode *inode,
  300. int used, int quota_claim)
  301. {
  302. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  303. struct ext4_inode_info *ei = EXT4_I(inode);
  304. spin_lock(&ei->i_block_reservation_lock);
  305. trace_ext4_da_update_reserve_space(inode, used, quota_claim);
  306. if (unlikely(used > ei->i_reserved_data_blocks)) {
  307. ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
  308. "with only %d reserved data blocks",
  309. __func__, inode->i_ino, used,
  310. ei->i_reserved_data_blocks);
  311. WARN_ON(1);
  312. used = ei->i_reserved_data_blocks;
  313. }
  314. if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
  315. ext4_warning(inode->i_sb, "ino %lu, allocated %d "
  316. "with only %d reserved metadata blocks "
  317. "(releasing %d blocks with reserved %d data blocks)",
  318. inode->i_ino, ei->i_allocated_meta_blocks,
  319. ei->i_reserved_meta_blocks, used,
  320. ei->i_reserved_data_blocks);
  321. WARN_ON(1);
  322. ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
  323. }
  324. /* Update per-inode reservations */
  325. ei->i_reserved_data_blocks -= used;
  326. ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
  327. percpu_counter_sub(&sbi->s_dirtyclusters_counter,
  328. used + ei->i_allocated_meta_blocks);
  329. ei->i_allocated_meta_blocks = 0;
  330. if (ei->i_reserved_data_blocks == 0) {
  331. /*
  332. * We can release all of the reserved metadata blocks
  333. * only when we have written all of the delayed
  334. * allocation blocks.
  335. */
  336. percpu_counter_sub(&sbi->s_dirtyclusters_counter,
  337. ei->i_reserved_meta_blocks);
  338. ei->i_reserved_meta_blocks = 0;
  339. ei->i_da_metadata_calc_len = 0;
  340. }
  341. spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
  342. /* Update quota subsystem for data blocks */
  343. if (quota_claim)
  344. dquot_claim_block(inode, EXT4_C2B(sbi, used));
  345. else {
  346. /*
  347. * We did fallocate with an offset that is already delayed
  348. * allocated. So on delayed allocated writeback we should
  349. * not re-claim the quota for fallocated blocks.
  350. */
  351. dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
  352. }
  353. /*
  354. * If we have done all the pending block allocations and if
  355. * there aren't any writers on the inode, we can discard the
  356. * inode's preallocations.
  357. */
  358. if ((ei->i_reserved_data_blocks == 0) &&
  359. (atomic_read(&inode->i_writecount) == 0))
  360. ext4_discard_preallocations(inode);
  361. }
  362. static int __check_block_validity(struct inode *inode, const char *func,
  363. unsigned int line,
  364. struct ext4_map_blocks *map)
  365. {
  366. if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
  367. map->m_len)) {
  368. ext4_error_inode(inode, func, line, map->m_pblk,
  369. "lblock %lu mapped to illegal pblock "
  370. "(length %d)", (unsigned long) map->m_lblk,
  371. map->m_len);
  372. return -EIO;
  373. }
  374. return 0;
  375. }
  376. #define check_block_validity(inode, map) \
  377. __check_block_validity((inode), __func__, __LINE__, (map))
  378. /*
  379. * Return the number of contiguous dirty pages in a given inode
  380. * starting at page frame idx.
  381. */
  382. static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
  383. unsigned int max_pages)
  384. {
  385. struct address_space *mapping = inode->i_mapping;
  386. pgoff_t index;
  387. struct pagevec pvec;
  388. pgoff_t num = 0;
  389. int i, nr_pages, done = 0;
  390. if (max_pages == 0)
  391. return 0;
  392. pagevec_init(&pvec, 0);
  393. while (!done) {
  394. index = idx;
  395. nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
  396. PAGECACHE_TAG_DIRTY,
  397. (pgoff_t)PAGEVEC_SIZE);
  398. if (nr_pages == 0)
  399. break;
  400. for (i = 0; i < nr_pages; i++) {
  401. struct page *page = pvec.pages[i];
  402. struct buffer_head *bh, *head;
  403. lock_page(page);
  404. if (unlikely(page->mapping != mapping) ||
  405. !PageDirty(page) ||
  406. PageWriteback(page) ||
  407. page->index != idx) {
  408. done = 1;
  409. unlock_page(page);
  410. break;
  411. }
  412. if (page_has_buffers(page)) {
  413. bh = head = page_buffers(page);
  414. do {
  415. if (!buffer_delay(bh) &&
  416. !buffer_unwritten(bh))
  417. done = 1;
  418. bh = bh->b_this_page;
  419. } while (!done && (bh != head));
  420. }
  421. unlock_page(page);
  422. if (done)
  423. break;
  424. idx++;
  425. num++;
  426. if (num >= max_pages) {
  427. done = 1;
  428. break;
  429. }
  430. }
  431. pagevec_release(&pvec);
  432. }
  433. return num;
  434. }
  435. #ifdef ES_AGGRESSIVE_TEST
  436. static void ext4_map_blocks_es_recheck(handle_t *handle,
  437. struct inode *inode,
  438. struct ext4_map_blocks *es_map,
  439. struct ext4_map_blocks *map,
  440. int flags)
  441. {
  442. int retval;
  443. map->m_flags = 0;
  444. /*
  445. * There is a race window that the result is not the same.
  446. * e.g. xfstests #223 when dioread_nolock enables. The reason
  447. * is that we lookup a block mapping in extent status tree with
  448. * out taking i_data_sem. So at the time the unwritten extent
  449. * could be converted.
  450. */
  451. if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
  452. down_read((&EXT4_I(inode)->i_data_sem));
  453. if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
  454. retval = ext4_ext_map_blocks(handle, inode, map, flags &
  455. EXT4_GET_BLOCKS_KEEP_SIZE);
  456. } else {
  457. retval = ext4_ind_map_blocks(handle, inode, map, flags &
  458. EXT4_GET_BLOCKS_KEEP_SIZE);
  459. }
  460. if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
  461. up_read((&EXT4_I(inode)->i_data_sem));
  462. /*
  463. * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
  464. * because it shouldn't be marked in es_map->m_flags.
  465. */
  466. map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
  467. /*
  468. * We don't check m_len because extent will be collpased in status
  469. * tree. So the m_len might not equal.
  470. */
  471. if (es_map->m_lblk != map->m_lblk ||
  472. es_map->m_flags != map->m_flags ||
  473. es_map->m_pblk != map->m_pblk) {
  474. printk("ES cache assertation failed for inode: %lu "
  475. "es_cached ex [%d/%d/%llu/%x] != "
  476. "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
  477. inode->i_ino, es_map->m_lblk, es_map->m_len,
  478. es_map->m_pblk, es_map->m_flags, map->m_lblk,
  479. map->m_len, map->m_pblk, map->m_flags,
  480. retval, flags);
  481. }
  482. }
  483. #endif /* ES_AGGRESSIVE_TEST */
  484. /*
  485. * The ext4_map_blocks() function tries to look up the requested blocks,
  486. * and returns if the blocks are already mapped.
  487. *
  488. * Otherwise it takes the write lock of the i_data_sem and allocate blocks
  489. * and store the allocated blocks in the result buffer head and mark it
  490. * mapped.
  491. *
  492. * If file type is extents based, it will call ext4_ext_map_blocks(),
  493. * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
  494. * based files
  495. *
  496. * On success, it returns the number of blocks being mapped or allocate.
  497. * if create==0 and the blocks are pre-allocated and uninitialized block,
  498. * the result buffer head is unmapped. If the create ==1, it will make sure
  499. * the buffer head is mapped.
  500. *
  501. * It returns 0 if plain look up failed (blocks have not been allocated), in
  502. * that case, buffer head is unmapped
  503. *
  504. * It returns the error in case of allocation failure.
  505. */
  506. int ext4_map_blocks(handle_t *handle, struct inode *inode,
  507. struct ext4_map_blocks *map, int flags)
  508. {
  509. struct extent_status es;
  510. int retval;
  511. #ifdef ES_AGGRESSIVE_TEST
  512. struct ext4_map_blocks orig_map;
  513. memcpy(&orig_map, map, sizeof(*map));
  514. #endif
  515. map->m_flags = 0;
  516. ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
  517. "logical block %lu\n", inode->i_ino, flags, map->m_len,
  518. (unsigned long) map->m_lblk);
  519. /* Lookup extent status tree firstly */
  520. if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
  521. if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
  522. map->m_pblk = ext4_es_pblock(&es) +
  523. map->m_lblk - es.es_lblk;
  524. map->m_flags |= ext4_es_is_written(&es) ?
  525. EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
  526. retval = es.es_len - (map->m_lblk - es.es_lblk);
  527. if (retval > map->m_len)
  528. retval = map->m_len;
  529. map->m_len = retval;
  530. } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
  531. retval = 0;
  532. } else {
  533. BUG_ON(1);
  534. }
  535. #ifdef ES_AGGRESSIVE_TEST
  536. ext4_map_blocks_es_recheck(handle, inode, map,
  537. &orig_map, flags);
  538. #endif
  539. goto found;
  540. }
  541. /*
  542. * Try to see if we can get the block without requesting a new
  543. * file system block.
  544. */
  545. if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
  546. down_read((&EXT4_I(inode)->i_data_sem));
  547. if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
  548. retval = ext4_ext_map_blocks(handle, inode, map, flags &
  549. EXT4_GET_BLOCKS_KEEP_SIZE);
  550. } else {
  551. retval = ext4_ind_map_blocks(handle, inode, map, flags &
  552. EXT4_GET_BLOCKS_KEEP_SIZE);
  553. }
  554. if (retval > 0) {
  555. int ret;
  556. unsigned long long status;
  557. #ifdef ES_AGGRESSIVE_TEST
  558. if (retval != map->m_len) {
  559. printk("ES len assertation failed for inode: %lu "
  560. "retval %d != map->m_len %d "
  561. "in %s (lookup)\n", inode->i_ino, retval,
  562. map->m_len, __func__);
  563. }
  564. #endif
  565. status = map->m_flags & EXT4_MAP_UNWRITTEN ?
  566. EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
  567. if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
  568. ext4_find_delalloc_range(inode, map->m_lblk,
  569. map->m_lblk + map->m_len - 1))
  570. status |= EXTENT_STATUS_DELAYED;
  571. ret = ext4_es_insert_extent(inode, map->m_lblk,
  572. map->m_len, map->m_pblk, status);
  573. if (ret < 0)
  574. retval = ret;
  575. }
  576. if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
  577. up_read((&EXT4_I(inode)->i_data_sem));
  578. found:
  579. if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
  580. int ret = check_block_validity(inode, map);
  581. if (ret != 0)
  582. return ret;
  583. }
  584. /* If it is only a block(s) look up */
  585. if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
  586. return retval;
  587. /*
  588. * Returns if the blocks have already allocated
  589. *
  590. * Note that if blocks have been preallocated
  591. * ext4_ext_get_block() returns the create = 0
  592. * with buffer head unmapped.
  593. */
  594. if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
  595. return retval;
  596. /*
  597. * Here we clear m_flags because after allocating an new extent,
  598. * it will be set again.
  599. */
  600. map->m_flags &= ~EXT4_MAP_FLAGS;
  601. /*
  602. * New blocks allocate and/or writing to uninitialized extent
  603. * will possibly result in updating i_data, so we take
  604. * the write lock of i_data_sem, and call get_blocks()
  605. * with create == 1 flag.
  606. */
  607. down_write((&EXT4_I(inode)->i_data_sem));
  608. /*
  609. * if the caller is from delayed allocation writeout path
  610. * we have already reserved fs blocks for allocation
  611. * let the underlying get_block() function know to
  612. * avoid double accounting
  613. */
  614. if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
  615. ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
  616. /*
  617. * We need to check for EXT4 here because migrate
  618. * could have changed the inode type in between
  619. */
  620. if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
  621. retval = ext4_ext_map_blocks(handle, inode, map, flags);
  622. } else {
  623. retval = ext4_ind_map_blocks(handle, inode, map, flags);
  624. if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
  625. /*
  626. * We allocated new blocks which will result in
  627. * i_data's format changing. Force the migrate
  628. * to fail by clearing migrate flags
  629. */
  630. ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
  631. }
  632. /*
  633. * Update reserved blocks/metadata blocks after successful
  634. * block allocation which had been deferred till now. We don't
  635. * support fallocate for non extent files. So we can update
  636. * reserve space here.
  637. */
  638. if ((retval > 0) &&
  639. (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
  640. ext4_da_update_reserve_space(inode, retval, 1);
  641. }
  642. if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
  643. ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
  644. if (retval > 0) {
  645. int ret;
  646. unsigned long long status;
  647. #ifdef ES_AGGRESSIVE_TEST
  648. if (retval != map->m_len) {
  649. printk("ES len assertation failed for inode: %lu "
  650. "retval %d != map->m_len %d "
  651. "in %s (allocation)\n", inode->i_ino, retval,
  652. map->m_len, __func__);
  653. }
  654. #endif
  655. /*
  656. * If the extent has been zeroed out, we don't need to update
  657. * extent status tree.
  658. */
  659. if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
  660. ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
  661. if (ext4_es_is_written(&es))
  662. goto has_zeroout;
  663. }
  664. status = map->m_flags & EXT4_MAP_UNWRITTEN ?
  665. EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
  666. if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
  667. ext4_find_delalloc_range(inode, map->m_lblk,
  668. map->m_lblk + map->m_len - 1))
  669. status |= EXTENT_STATUS_DELAYED;
  670. ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
  671. map->m_pblk, status);
  672. if (ret < 0)
  673. retval = ret;
  674. }
  675. has_zeroout:
  676. up_write((&EXT4_I(inode)->i_data_sem));
  677. if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
  678. int ret = check_block_validity(inode, map);
  679. if (ret != 0)
  680. return ret;
  681. }
  682. return retval;
  683. }
  684. /* Maximum number of blocks we map for direct IO at once. */
  685. #define DIO_MAX_BLOCKS 4096
  686. static int _ext4_get_block(struct inode *inode, sector_t iblock,
  687. struct buffer_head *bh, int flags)
  688. {
  689. handle_t *handle = ext4_journal_current_handle();
  690. struct ext4_map_blocks map;
  691. int ret = 0, started = 0;
  692. int dio_credits;
  693. if (ext4_has_inline_data(inode))
  694. return -ERANGE;
  695. map.m_lblk = iblock;
  696. map.m_len = bh->b_size >> inode->i_blkbits;
  697. if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
  698. /* Direct IO write... */
  699. if (map.m_len > DIO_MAX_BLOCKS)
  700. map.m_len = DIO_MAX_BLOCKS;
  701. dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
  702. handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
  703. dio_credits);
  704. if (IS_ERR(handle)) {
  705. ret = PTR_ERR(handle);
  706. return ret;
  707. }
  708. started = 1;
  709. }
  710. ret = ext4_map_blocks(handle, inode, &map, flags);
  711. if (ret > 0) {
  712. map_bh(bh, inode->i_sb, map.m_pblk);
  713. bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
  714. bh->b_size = inode->i_sb->s_blocksize * map.m_len;
  715. ret = 0;
  716. }
  717. if (started)
  718. ext4_journal_stop(handle);
  719. return ret;
  720. }
  721. int ext4_get_block(struct inode *inode, sector_t iblock,
  722. struct buffer_head *bh, int create)
  723. {
  724. return _ext4_get_block(inode, iblock, bh,
  725. create ? EXT4_GET_BLOCKS_CREATE : 0);
  726. }
  727. /*
  728. * `handle' can be NULL if create is zero
  729. */
  730. struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
  731. ext4_lblk_t block, int create, int *errp)
  732. {
  733. struct ext4_map_blocks map;
  734. struct buffer_head *bh;
  735. int fatal = 0, err;
  736. J_ASSERT(handle != NULL || create == 0);
  737. map.m_lblk = block;
  738. map.m_len = 1;
  739. err = ext4_map_blocks(handle, inode, &map,
  740. create ? EXT4_GET_BLOCKS_CREATE : 0);
  741. /* ensure we send some value back into *errp */
  742. *errp = 0;
  743. if (create && err == 0)
  744. err = -ENOSPC; /* should never happen */
  745. if (err < 0)
  746. *errp = err;
  747. if (err <= 0)
  748. return NULL;
  749. bh = sb_getblk(inode->i_sb, map.m_pblk);
  750. if (unlikely(!bh)) {
  751. *errp = -ENOMEM;
  752. return NULL;
  753. }
  754. if (map.m_flags & EXT4_MAP_NEW) {
  755. J_ASSERT(create != 0);
  756. J_ASSERT(handle != NULL);
  757. /*
  758. * Now that we do not always journal data, we should
  759. * keep in mind whether this should always journal the
  760. * new buffer as metadata. For now, regular file
  761. * writes use ext4_get_block instead, so it's not a
  762. * problem.
  763. */
  764. lock_buffer(bh);
  765. BUFFER_TRACE(bh, "call get_create_access");
  766. fatal = ext4_journal_get_create_access(handle, bh);
  767. if (!fatal && !buffer_uptodate(bh)) {
  768. memset(bh->b_data, 0, inode->i_sb->s_blocksize);
  769. set_buffer_uptodate(bh);
  770. }
  771. unlock_buffer(bh);
  772. BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
  773. err = ext4_handle_dirty_metadata(handle, inode, bh);
  774. if (!fatal)
  775. fatal = err;
  776. } else {
  777. BUFFER_TRACE(bh, "not a new buffer");
  778. }
  779. if (fatal) {
  780. *errp = fatal;
  781. brelse(bh);
  782. bh = NULL;
  783. }
  784. return bh;
  785. }
  786. struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
  787. ext4_lblk_t block, int create, int *err)
  788. {
  789. struct buffer_head *bh;
  790. bh = ext4_getblk(handle, inode, block, create, err);
  791. if (!bh)
  792. return bh;
  793. if (buffer_uptodate(bh))
  794. return bh;
  795. ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
  796. wait_on_buffer(bh);
  797. if (buffer_uptodate(bh))
  798. return bh;
  799. put_bh(bh);
  800. *err = -EIO;
  801. return NULL;
  802. }
  803. int ext4_walk_page_buffers(handle_t *handle,
  804. struct buffer_head *head,
  805. unsigned from,
  806. unsigned to,
  807. int *partial,
  808. int (*fn)(handle_t *handle,
  809. struct buffer_head *bh))
  810. {
  811. struct buffer_head *bh;
  812. unsigned block_start, block_end;
  813. unsigned blocksize = head->b_size;
  814. int err, ret = 0;
  815. struct buffer_head *next;
  816. for (bh = head, block_start = 0;
  817. ret == 0 && (bh != head || !block_start);
  818. block_start = block_end, bh = next) {
  819. next = bh->b_this_page;
  820. block_end = block_start + blocksize;
  821. if (block_end <= from || block_start >= to) {
  822. if (partial && !buffer_uptodate(bh))
  823. *partial = 1;
  824. continue;
  825. }
  826. err = (*fn)(handle, bh);
  827. if (!ret)
  828. ret = err;
  829. }
  830. return ret;
  831. }
  832. /*
  833. * To preserve ordering, it is essential that the hole instantiation and
  834. * the data write be encapsulated in a single transaction. We cannot
  835. * close off a transaction and start a new one between the ext4_get_block()
  836. * and the commit_write(). So doing the jbd2_journal_start at the start of
  837. * prepare_write() is the right place.
  838. *
  839. * Also, this function can nest inside ext4_writepage(). In that case, we
  840. * *know* that ext4_writepage() has generated enough buffer credits to do the
  841. * whole page. So we won't block on the journal in that case, which is good,
  842. * because the caller may be PF_MEMALLOC.
  843. *
  844. * By accident, ext4 can be reentered when a transaction is open via
  845. * quota file writes. If we were to commit the transaction while thus
  846. * reentered, there can be a deadlock - we would be holding a quota
  847. * lock, and the commit would never complete if another thread had a
  848. * transaction open and was blocking on the quota lock - a ranking
  849. * violation.
  850. *
  851. * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
  852. * will _not_ run commit under these circumstances because handle->h_ref
  853. * is elevated. We'll still have enough credits for the tiny quotafile
  854. * write.
  855. */
  856. int do_journal_get_write_access(handle_t *handle,
  857. struct buffer_head *bh)
  858. {
  859. int dirty = buffer_dirty(bh);
  860. int ret;
  861. if (!buffer_mapped(bh) || buffer_freed(bh))
  862. return 0;
  863. /*
  864. * __block_write_begin() could have dirtied some buffers. Clean
  865. * the dirty bit as jbd2_journal_get_write_access() could complain
  866. * otherwise about fs integrity issues. Setting of the dirty bit
  867. * by __block_write_begin() isn't a real problem here as we clear
  868. * the bit before releasing a page lock and thus writeback cannot
  869. * ever write the buffer.
  870. */
  871. if (dirty)
  872. clear_buffer_dirty(bh);
  873. ret = ext4_journal_get_write_access(handle, bh);
  874. if (!ret && dirty)
  875. ret = ext4_handle_dirty_metadata(handle, NULL, bh);
  876. return ret;
  877. }
  878. static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
  879. struct buffer_head *bh_result, int create);
  880. static int ext4_write_begin(struct file *file, struct address_space *mapping,
  881. loff_t pos, unsigned len, unsigned flags,
  882. struct page **pagep, void **fsdata)
  883. {
  884. struct inode *inode = mapping->host;
  885. int ret, needed_blocks;
  886. handle_t *handle;
  887. int retries = 0;
  888. struct page *page;
  889. pgoff_t index;
  890. unsigned from, to;
  891. trace_ext4_write_begin(inode, pos, len, flags);
  892. /*
  893. * Reserve one block more for addition to orphan list in case
  894. * we allocate blocks but write fails for some reason
  895. */
  896. needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
  897. index = pos >> PAGE_CACHE_SHIFT;
  898. from = pos & (PAGE_CACHE_SIZE - 1);
  899. to = from + len;
  900. if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
  901. ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
  902. flags, pagep);
  903. if (ret < 0)
  904. return ret;
  905. if (ret == 1)
  906. return 0;
  907. }
  908. /*
  909. * grab_cache_page_write_begin() can take a long time if the
  910. * system is thrashing due to memory pressure, or if the page
  911. * is being written back. So grab it first before we start
  912. * the transaction handle. This also allows us to allocate
  913. * the page (if needed) without using GFP_NOFS.
  914. */
  915. retry_grab:
  916. page = grab_cache_page_write_begin(mapping, index, flags);
  917. if (!page)
  918. return -ENOMEM;
  919. unlock_page(page);
  920. retry_journal:
  921. handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
  922. if (IS_ERR(handle)) {
  923. page_cache_release(page);
  924. return PTR_ERR(handle);
  925. }
  926. lock_page(page);
  927. if (page->mapping != mapping) {
  928. /* The page got truncated from under us */
  929. unlock_page(page);
  930. page_cache_release(page);
  931. ext4_journal_stop(handle);
  932. goto retry_grab;
  933. }
  934. wait_on_page_writeback(page);
  935. if (ext4_should_dioread_nolock(inode))
  936. ret = __block_write_begin(page, pos, len, ext4_get_block_write);
  937. else
  938. ret = __block_write_begin(page, pos, len, ext4_get_block);
  939. if (!ret && ext4_should_journal_data(inode)) {
  940. ret = ext4_walk_page_buffers(handle, page_buffers(page),
  941. from, to, NULL,
  942. do_journal_get_write_access);
  943. }
  944. if (ret) {
  945. unlock_page(page);
  946. /*
  947. * __block_write_begin may have instantiated a few blocks
  948. * outside i_size. Trim these off again. Don't need
  949. * i_size_read because we hold i_mutex.
  950. *
  951. * Add inode to orphan list in case we crash before
  952. * truncate finishes
  953. */
  954. if (pos + len > inode->i_size && ext4_can_truncate(inode))
  955. ext4_orphan_add(handle, inode);
  956. ext4_journal_stop(handle);
  957. if (pos + len > inode->i_size) {
  958. ext4_truncate_failed_write(inode);
  959. /*
  960. * If truncate failed early the inode might
  961. * still be on the orphan list; we need to
  962. * make sure the inode is removed from the
  963. * orphan list in that case.
  964. */
  965. if (inode->i_nlink)
  966. ext4_orphan_del(NULL, inode);
  967. }
  968. if (ret == -ENOSPC &&
  969. ext4_should_retry_alloc(inode->i_sb, &retries))
  970. goto retry_journal;
  971. page_cache_release(page);
  972. return ret;
  973. }
  974. *pagep = page;
  975. return ret;
  976. }
  977. /* For write_end() in data=journal mode */
  978. static int write_end_fn(handle_t *handle, struct buffer_head *bh)
  979. {
  980. if (!buffer_mapped(bh) || buffer_freed(bh))
  981. return 0;
  982. set_buffer_uptodate(bh);
  983. return ext4_handle_dirty_metadata(handle, NULL, bh);
  984. }
  985. static int ext4_generic_write_end(struct file *file,
  986. struct address_space *mapping,
  987. loff_t pos, unsigned len, unsigned copied,
  988. struct page *page, void *fsdata)
  989. {
  990. int i_size_changed = 0;
  991. struct inode *inode = mapping->host;
  992. handle_t *handle = ext4_journal_current_handle();
  993. if (ext4_has_inline_data(inode))
  994. copied = ext4_write_inline_data_end(inode, pos, len,
  995. copied, page);
  996. else
  997. copied = block_write_end(file, mapping, pos,
  998. len, copied, page, fsdata);
  999. /*
  1000. * No need to use i_size_read() here, the i_size
  1001. * cannot change under us because we hold i_mutex.
  1002. *
  1003. * But it's important to update i_size while still holding page lock:
  1004. * page writeout could otherwise come in and zero beyond i_size.
  1005. */
  1006. if (pos + copied > inode->i_size) {
  1007. i_size_write(inode, pos + copied);
  1008. i_size_changed = 1;
  1009. }
  1010. if (pos + copied > EXT4_I(inode)->i_disksize) {
  1011. /* We need to mark inode dirty even if
  1012. * new_i_size is less that inode->i_size
  1013. * bu greater than i_disksize.(hint delalloc)
  1014. */
  1015. ext4_update_i_disksize(inode, (pos + copied));
  1016. i_size_changed = 1;
  1017. }
  1018. unlock_page(page);
  1019. page_cache_release(page);
  1020. /*
  1021. * Don't mark the inode dirty under page lock. First, it unnecessarily
  1022. * makes the holding time of page lock longer. Second, it forces lock
  1023. * ordering of page lock and transaction start for journaling
  1024. * filesystems.
  1025. */
  1026. if (i_size_changed)
  1027. ext4_mark_inode_dirty(handle, inode);
  1028. return copied;
  1029. }
  1030. /*
  1031. * We need to pick up the new inode size which generic_commit_write gave us
  1032. * `file' can be NULL - eg, when called from page_symlink().
  1033. *
  1034. * ext4 never places buffers on inode->i_mapping->private_list. metadata
  1035. * buffers are managed internally.
  1036. */
  1037. static int ext4_ordered_write_end(struct file *file,
  1038. struct address_space *mapping,
  1039. loff_t pos, unsigned len, unsigned copied,
  1040. struct page *page, void *fsdata)
  1041. {
  1042. handle_t *handle = ext4_journal_current_handle();
  1043. struct inode *inode = mapping->host;
  1044. int ret = 0, ret2;
  1045. trace_ext4_ordered_write_end(inode, pos, len, copied);
  1046. ret = ext4_jbd2_file_inode(handle, inode);
  1047. if (ret == 0) {
  1048. ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
  1049. page, fsdata);
  1050. copied = ret2;
  1051. if (pos + len > inode->i_size && ext4_can_truncate(inode))
  1052. /* if we have allocated more blocks and copied
  1053. * less. We will have blocks allocated outside
  1054. * inode->i_size. So truncate them
  1055. */
  1056. ext4_orphan_add(handle, inode);
  1057. if (ret2 < 0)
  1058. ret = ret2;
  1059. } else {
  1060. unlock_page(page);
  1061. page_cache_release(page);
  1062. }
  1063. ret2 = ext4_journal_stop(handle);
  1064. if (!ret)
  1065. ret = ret2;
  1066. if (pos + len > inode->i_size) {
  1067. ext4_truncate_failed_write(inode);
  1068. /*
  1069. * If truncate failed early the inode might still be
  1070. * on the orphan list; we need to make sure the inode
  1071. * is removed from the orphan list in that case.
  1072. */
  1073. if (inode->i_nlink)
  1074. ext4_orphan_del(NULL, inode);
  1075. }
  1076. return ret ? ret : copied;
  1077. }
  1078. static int ext4_writeback_write_end(struct file *file,
  1079. struct address_space *mapping,
  1080. loff_t pos, unsigned len, unsigned copied,
  1081. struct page *page, void *fsdata)
  1082. {
  1083. handle_t *handle = ext4_journal_current_handle();
  1084. struct inode *inode = mapping->host;
  1085. int ret = 0, ret2;
  1086. trace_ext4_writeback_write_end(inode, pos, len, copied);
  1087. ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
  1088. page, fsdata);
  1089. copied = ret2;
  1090. if (pos + len > inode->i_size && ext4_can_truncate(inode))
  1091. /* if we have allocated more blocks and copied
  1092. * less. We will have blocks allocated outside
  1093. * inode->i_size. So truncate them
  1094. */
  1095. ext4_orphan_add(handle, inode);
  1096. if (ret2 < 0)
  1097. ret = ret2;
  1098. ret2 = ext4_journal_stop(handle);
  1099. if (!ret)
  1100. ret = ret2;
  1101. if (pos + len > inode->i_size) {
  1102. ext4_truncate_failed_write(inode);
  1103. /*
  1104. * If truncate failed early the inode might still be
  1105. * on the orphan list; we need to make sure the inode
  1106. * is removed from the orphan list in that case.
  1107. */
  1108. if (inode->i_nlink)
  1109. ext4_orphan_del(NULL, inode);
  1110. }
  1111. return ret ? ret : copied;
  1112. }
  1113. static int ext4_journalled_write_end(struct file *file,
  1114. struct address_space *mapping,
  1115. loff_t pos, unsigned len, unsigned copied,
  1116. struct page *page, void *fsdata)
  1117. {
  1118. handle_t *handle = ext4_journal_current_handle();
  1119. struct inode *inode = mapping->host;
  1120. int ret = 0, ret2;
  1121. int partial = 0;
  1122. unsigned from, to;
  1123. loff_t new_i_size;
  1124. trace_ext4_journalled_write_end(inode, pos, len, copied);
  1125. from = pos & (PAGE_CACHE_SIZE - 1);
  1126. to = from + len;
  1127. BUG_ON(!ext4_handle_valid(handle));
  1128. if (ext4_has_inline_data(inode))
  1129. copied = ext4_write_inline_data_end(inode, pos, len,
  1130. copied, page);
  1131. else {
  1132. if (copied < len) {
  1133. if (!PageUptodate(page))
  1134. copied = 0;
  1135. page_zero_new_buffers(page, from+copied, to);
  1136. }
  1137. ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
  1138. to, &partial, write_end_fn);
  1139. if (!partial)
  1140. SetPageUptodate(page);
  1141. }
  1142. new_i_size = pos + copied;
  1143. if (new_i_size > inode->i_size)
  1144. i_size_write(inode, pos+copied);
  1145. ext4_set_inode_state(inode, EXT4_STATE_JDATA);
  1146. EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
  1147. if (new_i_size > EXT4_I(inode)->i_disksize) {
  1148. ext4_update_i_disksize(inode, new_i_size);
  1149. ret2 = ext4_mark_inode_dirty(handle, inode);
  1150. if (!ret)
  1151. ret = ret2;
  1152. }
  1153. unlock_page(page);
  1154. page_cache_release(page);
  1155. if (pos + len > inode->i_size && ext4_can_truncate(inode))
  1156. /* if we have allocated more blocks and copied
  1157. * less. We will have blocks allocated outside
  1158. * inode->i_size. So truncate them
  1159. */
  1160. ext4_orphan_add(handle, inode);
  1161. ret2 = ext4_journal_stop(handle);
  1162. if (!ret)
  1163. ret = ret2;
  1164. if (pos + len > inode->i_size) {
  1165. ext4_truncate_failed_write(inode);
  1166. /*
  1167. * If truncate failed early the inode might still be
  1168. * on the orphan list; we need to make sure the inode
  1169. * is removed from the orphan list in that case.
  1170. */
  1171. if (inode->i_nlink)
  1172. ext4_orphan_del(NULL, inode);
  1173. }
  1174. return ret ? ret : copied;
  1175. }
  1176. /*
  1177. * Reserve a metadata for a single block located at lblock
  1178. */
  1179. static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
  1180. {
  1181. int retries = 0;
  1182. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  1183. struct ext4_inode_info *ei = EXT4_I(inode);
  1184. unsigned int md_needed;
  1185. ext4_lblk_t save_last_lblock;
  1186. int save_len;
  1187. /*
  1188. * recalculate the amount of metadata blocks to reserve
  1189. * in order to allocate nrblocks
  1190. * worse case is one extent per block
  1191. */
  1192. repeat:
  1193. spin_lock(&ei->i_block_reservation_lock);
  1194. /*
  1195. * ext4_calc_metadata_amount() has side effects, which we have
  1196. * to be prepared undo if we fail to claim space.
  1197. */
  1198. save_len = ei->i_da_metadata_calc_len;
  1199. save_last_lblock = ei->i_da_metadata_calc_last_lblock;
  1200. md_needed = EXT4_NUM_B2C(sbi,
  1201. ext4_calc_metadata_amount(inode, lblock));
  1202. trace_ext4_da_reserve_space(inode, md_needed);
  1203. /*
  1204. * We do still charge estimated metadata to the sb though;
  1205. * we cannot afford to run out of free blocks.
  1206. */
  1207. if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
  1208. ei->i_da_metadata_calc_len = save_len;
  1209. ei->i_da_metadata_calc_last_lblock = save_last_lblock;
  1210. spin_unlock(&ei->i_block_reservation_lock);
  1211. if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
  1212. cond_resched();
  1213. goto repeat;
  1214. }
  1215. return -ENOSPC;
  1216. }
  1217. ei->i_reserved_meta_blocks += md_needed;
  1218. spin_unlock(&ei->i_block_reservation_lock);
  1219. return 0; /* success */
  1220. }
  1221. /*
  1222. * Reserve a single cluster located at lblock
  1223. */
  1224. static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
  1225. {
  1226. int retries = 0;
  1227. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  1228. struct ext4_inode_info *ei = EXT4_I(inode);
  1229. unsigned int md_needed;
  1230. int ret;
  1231. ext4_lblk_t save_last_lblock;
  1232. int save_len;
  1233. /*
  1234. * We will charge metadata quota at writeout time; this saves
  1235. * us from metadata over-estimation, though we may go over by
  1236. * a small amount in the end. Here we just reserve for data.
  1237. */
  1238. ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
  1239. if (ret)
  1240. return ret;
  1241. /*
  1242. * recalculate the amount of metadata blocks to reserve
  1243. * in order to allocate nrblocks
  1244. * worse case is one extent per block
  1245. */
  1246. repeat:
  1247. spin_lock(&ei->i_block_reservation_lock);
  1248. /*
  1249. * ext4_calc_metadata_amount() has side effects, which we have
  1250. * to be prepared undo if we fail to claim space.
  1251. */
  1252. save_len = ei->i_da_metadata_calc_len;
  1253. save_last_lblock = ei->i_da_metadata_calc_last_lblock;
  1254. md_needed = EXT4_NUM_B2C(sbi,
  1255. ext4_calc_metadata_amount(inode, lblock));
  1256. trace_ext4_da_reserve_space(inode, md_needed);
  1257. /*
  1258. * We do still charge estimated metadata to the sb though;
  1259. * we cannot afford to run out of free blocks.
  1260. */
  1261. if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
  1262. ei->i_da_metadata_calc_len = save_len;
  1263. ei->i_da_metadata_calc_last_lblock = save_last_lblock;
  1264. spin_unlock(&ei->i_block_reservation_lock);
  1265. if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
  1266. cond_resched();
  1267. goto repeat;
  1268. }
  1269. dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
  1270. return -ENOSPC;
  1271. }
  1272. ei->i_reserved_data_blocks++;
  1273. ei->i_reserved_meta_blocks += md_needed;
  1274. spin_unlock(&ei->i_block_reservation_lock);
  1275. return 0; /* success */
  1276. }
  1277. static void ext4_da_release_space(struct inode *inode, int to_free)
  1278. {
  1279. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  1280. struct ext4_inode_info *ei = EXT4_I(inode);
  1281. if (!to_free)
  1282. return; /* Nothing to release, exit */
  1283. spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
  1284. trace_ext4_da_release_space(inode, to_free);
  1285. if (unlikely(to_free > ei->i_reserved_data_blocks)) {
  1286. /*
  1287. * if there aren't enough reserved blocks, then the
  1288. * counter is messed up somewhere. Since this
  1289. * function is called from invalidate page, it's
  1290. * harmless to return without any action.
  1291. */
  1292. ext4_warning(inode->i_sb, "ext4_da_release_space: "
  1293. "ino %lu, to_free %d with only %d reserved "
  1294. "data blocks", inode->i_ino, to_free,
  1295. ei->i_reserved_data_blocks);
  1296. WARN_ON(1);
  1297. to_free = ei->i_reserved_data_blocks;
  1298. }
  1299. ei->i_reserved_data_blocks -= to_free;
  1300. if (ei->i_reserved_data_blocks == 0) {
  1301. /*
  1302. * We can release all of the reserved metadata blocks
  1303. * only when we have written all of the delayed
  1304. * allocation blocks.
  1305. * Note that in case of bigalloc, i_reserved_meta_blocks,
  1306. * i_reserved_data_blocks, etc. refer to number of clusters.
  1307. */
  1308. percpu_counter_sub(&sbi->s_dirtyclusters_counter,
  1309. ei->i_reserved_meta_blocks);
  1310. ei->i_reserved_meta_blocks = 0;
  1311. ei->i_da_metadata_calc_len = 0;
  1312. }
  1313. /* update fs dirty data blocks counter */
  1314. percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
  1315. spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
  1316. dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
  1317. }
  1318. static void ext4_da_page_release_reservation(struct page *page,
  1319. unsigned long offset)
  1320. {
  1321. int to_release = 0;
  1322. struct buffer_head *head, *bh;
  1323. unsigned int curr_off = 0;
  1324. struct inode *inode = page->mapping->host;
  1325. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  1326. int num_clusters;
  1327. ext4_fsblk_t lblk;
  1328. head = page_buffers(page);
  1329. bh = head;
  1330. do {
  1331. unsigned int next_off = curr_off + bh->b_size;
  1332. if ((offset <= curr_off) && (buffer_delay(bh))) {
  1333. to_release++;
  1334. clear_buffer_delay(bh);
  1335. }
  1336. curr_off = next_off;
  1337. } while ((bh = bh->b_this_page) != head);
  1338. if (to_release) {
  1339. lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
  1340. ext4_es_remove_extent(inode, lblk, to_release);
  1341. }
  1342. /* If we have released all the blocks belonging to a cluster, then we
  1343. * need to release the reserved space for that cluster. */
  1344. num_clusters = EXT4_NUM_B2C(sbi, to_release);
  1345. while (num_clusters > 0) {
  1346. lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
  1347. ((num_clusters - 1) << sbi->s_cluster_bits);
  1348. if (sbi->s_cluster_ratio == 1 ||
  1349. !ext4_find_delalloc_cluster(inode, lblk))
  1350. ext4_da_release_space(inode, 1);
  1351. num_clusters--;
  1352. }
  1353. }
  1354. /*
  1355. * Delayed allocation stuff
  1356. */
  1357. /*
  1358. * mpage_da_submit_io - walks through extent of pages and try to write
  1359. * them with writepage() call back
  1360. *
  1361. * @mpd->inode: inode
  1362. * @mpd->first_page: first page of the extent
  1363. * @mpd->next_page: page after the last page of the extent
  1364. *
  1365. * By the time mpage_da_submit_io() is called we expect all blocks
  1366. * to be allocated. this may be wrong if allocation failed.
  1367. *
  1368. * As pages are already locked by write_cache_pages(), we can't use it
  1369. */
  1370. static int mpage_da_submit_io(struct mpage_da_data *mpd,
  1371. struct ext4_map_blocks *map)
  1372. {
  1373. struct pagevec pvec;
  1374. unsigned long index, end;
  1375. int ret = 0, err, nr_pages, i;
  1376. struct inode *inode = mpd->inode;
  1377. struct address_space *mapping = inode->i_mapping;
  1378. loff_t size = i_size_read(inode);
  1379. unsigned int len, block_start;
  1380. struct buffer_head *bh, *page_bufs = NULL;
  1381. sector_t pblock = 0, cur_logical = 0;
  1382. struct ext4_io_submit io_submit;
  1383. BUG_ON(mpd->next_page <= mpd->first_page);
  1384. memset(&io_submit, 0, sizeof(io_submit));
  1385. /*
  1386. * We need to start from the first_page to the next_page - 1
  1387. * to make sure we also write the mapped dirty buffer_heads.
  1388. * If we look at mpd->b_blocknr we would only be looking
  1389. * at the currently mapped buffer_heads.
  1390. */
  1391. index = mpd->first_page;
  1392. end = mpd->next_page - 1;
  1393. pagevec_init(&pvec, 0);
  1394. while (index <= end) {
  1395. nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
  1396. if (nr_pages == 0)
  1397. break;
  1398. for (i = 0; i < nr_pages; i++) {
  1399. int skip_page = 0;
  1400. struct page *page = pvec.pages[i];
  1401. index = page->index;
  1402. if (index > end)
  1403. break;
  1404. if (index == size >> PAGE_CACHE_SHIFT)
  1405. len = size & ~PAGE_CACHE_MASK;
  1406. else
  1407. len = PAGE_CACHE_SIZE;
  1408. if (map) {
  1409. cur_logical = index << (PAGE_CACHE_SHIFT -
  1410. inode->i_blkbits);
  1411. pblock = map->m_pblk + (cur_logical -
  1412. map->m_lblk);
  1413. }
  1414. index++;
  1415. BUG_ON(!PageLocked(page));
  1416. BUG_ON(PageWriteback(page));
  1417. bh = page_bufs = page_buffers(page);
  1418. block_start = 0;
  1419. do {
  1420. if (map && (cur_logical >= map->m_lblk) &&
  1421. (cur_logical <= (map->m_lblk +
  1422. (map->m_len - 1)))) {
  1423. if (buffer_delay(bh)) {
  1424. clear_buffer_delay(bh);
  1425. bh->b_blocknr = pblock;
  1426. }
  1427. if (buffer_unwritten(bh) ||
  1428. buffer_mapped(bh))
  1429. BUG_ON(bh->b_blocknr != pblock);
  1430. if (map->m_flags & EXT4_MAP_UNINIT)
  1431. set_buffer_uninit(bh);
  1432. clear_buffer_unwritten(bh);
  1433. }
  1434. /*
  1435. * skip page if block allocation undone and
  1436. * block is dirty
  1437. */
  1438. if (ext4_bh_delay_or_unwritten(NULL, bh))
  1439. skip_page = 1;
  1440. bh = bh->b_this_page;
  1441. block_start += bh->b_size;
  1442. cur_logical++;
  1443. pblock++;
  1444. } while (bh != page_bufs);
  1445. if (skip_page) {
  1446. unlock_page(page);
  1447. continue;
  1448. }
  1449. clear_page_dirty_for_io(page);
  1450. err = ext4_bio_write_page(&io_submit, page, len,
  1451. mpd->wbc);
  1452. if (!err)
  1453. mpd->pages_written++;
  1454. /*
  1455. * In error case, we have to continue because
  1456. * remaining pages are still locked
  1457. */
  1458. if (ret == 0)
  1459. ret = err;
  1460. }
  1461. pagevec_release(&pvec);
  1462. }
  1463. ext4_io_submit(&io_submit);
  1464. return ret;
  1465. }
  1466. static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
  1467. {
  1468. int nr_pages, i;
  1469. pgoff_t index, end;
  1470. struct pagevec pvec;
  1471. struct inode *inode = mpd->inode;
  1472. struct address_space *mapping = inode->i_mapping;
  1473. ext4_lblk_t start, last;
  1474. index = mpd->first_page;
  1475. end = mpd->next_page - 1;
  1476. start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
  1477. last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
  1478. ext4_es_remove_extent(inode, start, last - start + 1);
  1479. pagevec_init(&pvec, 0);
  1480. while (index <= end) {
  1481. nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
  1482. if (nr_pages == 0)
  1483. break;
  1484. for (i = 0; i < nr_pages; i++) {
  1485. struct page *page = pvec.pages[i];
  1486. if (page->index > end)
  1487. break;
  1488. BUG_ON(!PageLocked(page));
  1489. BUG_ON(PageWriteback(page));
  1490. block_invalidatepage(page, 0);
  1491. ClearPageUptodate(page);
  1492. unlock_page(page);
  1493. }
  1494. index = pvec.pages[nr_pages - 1]->index + 1;
  1495. pagevec_release(&pvec);
  1496. }
  1497. return;
  1498. }
  1499. static void ext4_print_free_blocks(struct inode *inode)
  1500. {
  1501. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  1502. struct super_block *sb = inode->i_sb;
  1503. ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
  1504. EXT4_C2B(EXT4_SB(inode->i_sb),
  1505. ext4_count_free_clusters(inode->i_sb)));
  1506. ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
  1507. ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
  1508. (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
  1509. percpu_counter_sum(&sbi->s_freeclusters_counter)));
  1510. ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
  1511. (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
  1512. percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
  1513. ext4_msg(sb, KERN_CRIT, "Block reservation details");
  1514. ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
  1515. EXT4_I(inode)->i_reserved_data_blocks);
  1516. ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
  1517. EXT4_I(inode)->i_reserved_meta_blocks);
  1518. return;
  1519. }
  1520. /*
  1521. * mpage_da_map_and_submit - go through given space, map them
  1522. * if necessary, and then submit them for I/O
  1523. *
  1524. * @mpd - bh describing space
  1525. *
  1526. * The function skips space we know is already mapped to disk blocks.
  1527. *
  1528. */
  1529. static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
  1530. {
  1531. int err, blks, get_blocks_flags;
  1532. struct ext4_map_blocks map, *mapp = NULL;
  1533. sector_t next = mpd->b_blocknr;
  1534. unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
  1535. loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
  1536. handle_t *handle = NULL;
  1537. /*
  1538. * If the blocks are mapped already, or we couldn't accumulate
  1539. * any blocks, then proceed immediately to the submission stage.
  1540. */
  1541. if ((mpd->b_size == 0) ||
  1542. ((mpd->b_state & (1 << BH_Mapped)) &&
  1543. !(mpd->b_state & (1 << BH_Delay)) &&
  1544. !(mpd->b_state & (1 << BH_Unwritten))))
  1545. goto submit_io;
  1546. handle = ext4_journal_current_handle();
  1547. BUG_ON(!handle);
  1548. /*
  1549. * Call ext4_map_blocks() to allocate any delayed allocation
  1550. * blocks, or to convert an uninitialized extent to be
  1551. * initialized (in the case where we have written into
  1552. * one or more preallocated blocks).
  1553. *
  1554. * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
  1555. * indicate that we are on the delayed allocation path. This
  1556. * affects functions in many different parts of the allocation
  1557. * call path. This flag exists primarily because we don't
  1558. * want to change *many* call functions, so ext4_map_blocks()
  1559. * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
  1560. * inode's allocation semaphore is taken.
  1561. *
  1562. * If the blocks in questions were delalloc blocks, set
  1563. * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
  1564. * variables are updated after the blocks have been allocated.
  1565. */
  1566. map.m_lblk = next;
  1567. map.m_len = max_blocks;
  1568. get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
  1569. if (ext4_should_dioread_nolock(mpd->inode))
  1570. get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
  1571. if (mpd->b_state & (1 << BH_Delay))
  1572. get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
  1573. blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
  1574. if (blks < 0) {
  1575. struct super_block *sb = mpd->inode->i_sb;
  1576. err = blks;
  1577. /*
  1578. * If get block returns EAGAIN or ENOSPC and there
  1579. * appears to be free blocks we will just let
  1580. * mpage_da_submit_io() unlock all of the pages.
  1581. */
  1582. if (err == -EAGAIN)
  1583. goto submit_io;
  1584. if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
  1585. mpd->retval = err;
  1586. goto submit_io;
  1587. }
  1588. /*
  1589. * get block failure will cause us to loop in
  1590. * writepages, because a_ops->writepage won't be able
  1591. * to make progress. The page will be redirtied by
  1592. * writepage and writepages will again try to write
  1593. * the same.
  1594. */
  1595. if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
  1596. ext4_msg(sb, KERN_CRIT,
  1597. "delayed block allocation failed for inode %lu "
  1598. "at logical offset %llu with max blocks %zd "
  1599. "with error %d", mpd->inode->i_ino,
  1600. (unsigned long long) next,
  1601. mpd->b_size >> mpd->inode->i_blkbits, err);
  1602. ext4_msg(sb, KERN_CRIT,
  1603. "This should not happen!! Data will be lost");
  1604. if (err == -ENOSPC)
  1605. ext4_print_free_blocks(mpd->inode);
  1606. }
  1607. /* invalidate all the pages */
  1608. ext4_da_block_invalidatepages(mpd);
  1609. /* Mark this page range as having been completed */
  1610. mpd->io_done = 1;
  1611. return;
  1612. }
  1613. BUG_ON(blks == 0);
  1614. mapp = &map;
  1615. if (map.m_flags & EXT4_MAP_NEW) {
  1616. struct block_device *bdev = mpd->inode->i_sb->s_bdev;
  1617. int i;
  1618. for (i = 0; i < map.m_len; i++)
  1619. unmap_underlying_metadata(bdev, map.m_pblk + i);
  1620. }
  1621. /*
  1622. * Update on-disk size along with block allocation.
  1623. */
  1624. disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
  1625. if (disksize > i_size_read(mpd->inode))
  1626. disksize = i_size_read(mpd->inode);
  1627. if (disksize > EXT4_I(mpd->inode)->i_disksize) {
  1628. ext4_update_i_disksize(mpd->inode, disksize);
  1629. err = ext4_mark_inode_dirty(handle, mpd->inode);
  1630. if (err)
  1631. ext4_error(mpd->inode->i_sb,
  1632. "Failed to mark inode %lu dirty",
  1633. mpd->inode->i_ino);
  1634. }
  1635. submit_io:
  1636. mpage_da_submit_io(mpd, mapp);
  1637. mpd->io_done = 1;
  1638. }
  1639. #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
  1640. (1 << BH_Delay) | (1 << BH_Unwritten))
  1641. /*
  1642. * mpage_add_bh_to_extent - try to add one more block to extent of blocks
  1643. *
  1644. * @mpd->lbh - extent of blocks
  1645. * @logical - logical number of the block in the file
  1646. * @b_state - b_state of the buffer head added
  1647. *
  1648. * the function is used to collect contig. blocks in same state
  1649. */
  1650. static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical,
  1651. unsigned long b_state)
  1652. {
  1653. sector_t next;
  1654. int blkbits = mpd->inode->i_blkbits;
  1655. int nrblocks = mpd->b_size >> blkbits;
  1656. /*
  1657. * XXX Don't go larger than mballoc is willing to allocate
  1658. * This is a stopgap solution. We eventually need to fold
  1659. * mpage_da_submit_io() into this function and then call
  1660. * ext4_map_blocks() multiple times in a loop
  1661. */
  1662. if (nrblocks >= (8*1024*1024 >> blkbits))
  1663. goto flush_it;
  1664. /* check if the reserved journal credits might overflow */
  1665. if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) {
  1666. if (nrblocks >= EXT4_MAX_TRANS_DATA) {
  1667. /*
  1668. * With non-extent format we are limited by the journal
  1669. * credit available. Total credit needed to insert
  1670. * nrblocks contiguous blocks is dependent on the
  1671. * nrblocks. So limit nrblocks.
  1672. */
  1673. goto flush_it;
  1674. }
  1675. }
  1676. /*
  1677. * First block in the extent
  1678. */
  1679. if (mpd->b_size == 0) {
  1680. mpd->b_blocknr = logical;
  1681. mpd->b_size = 1 << blkbits;
  1682. mpd->b_state = b_state & BH_FLAGS;
  1683. return;
  1684. }
  1685. next = mpd->b_blocknr + nrblocks;
  1686. /*
  1687. * Can we merge the block to our big extent?
  1688. */
  1689. if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
  1690. mpd->b_size += 1 << blkbits;
  1691. return;
  1692. }
  1693. flush_it:
  1694. /*
  1695. * We couldn't merge the block to our extent, so we
  1696. * need to flush current extent and start new one
  1697. */
  1698. mpage_da_map_and_submit(mpd);
  1699. return;
  1700. }
  1701. static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
  1702. {
  1703. return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
  1704. }
  1705. /*
  1706. * This function is grabs code from the very beginning of
  1707. * ext4_map_blocks, but assumes that the caller is from delayed write
  1708. * time. This function looks up the requested blocks and sets the
  1709. * buffer delay bit under the protection of i_data_sem.
  1710. */
  1711. static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
  1712. struct ext4_map_blocks *map,
  1713. struct buffer_head *bh)
  1714. {
  1715. struct extent_status es;
  1716. int retval;
  1717. sector_t invalid_block = ~((sector_t) 0xffff);
  1718. #ifdef ES_AGGRESSIVE_TEST
  1719. struct ext4_map_blocks orig_map;
  1720. memcpy(&orig_map, map, sizeof(*map));
  1721. #endif
  1722. if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
  1723. invalid_block = ~0;
  1724. map->m_flags = 0;
  1725. ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
  1726. "logical block %lu\n", inode->i_ino, map->m_len,
  1727. (unsigned long) map->m_lblk);
  1728. /* Lookup extent status tree firstly */
  1729. if (ext4_es_lookup_extent(inode, iblock, &es)) {
  1730. if (ext4_es_is_hole(&es)) {
  1731. retval = 0;
  1732. down_read((&EXT4_I(inode)->i_data_sem));
  1733. goto add_delayed;
  1734. }
  1735. /*
  1736. * Delayed extent could be allocated by fallocate.
  1737. * So we need to check it.
  1738. */
  1739. if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
  1740. map_bh(bh, inode->i_sb, invalid_block);
  1741. set_buffer_new(bh);
  1742. set_buffer_delay(bh);
  1743. return 0;
  1744. }
  1745. map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
  1746. retval = es.es_len - (iblock - es.es_lblk);
  1747. if (retval > map->m_len)
  1748. retval = map->m_len;
  1749. map->m_len = retval;
  1750. if (ext4_es_is_written(&es))
  1751. map->m_flags |= EXT4_MAP_MAPPED;
  1752. else if (ext4_es_is_unwritten(&es))
  1753. map->m_flags |= EXT4_MAP_UNWRITTEN;
  1754. else
  1755. BUG_ON(1);
  1756. #ifdef ES_AGGRESSIVE_TEST
  1757. ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
  1758. #endif
  1759. return retval;
  1760. }
  1761. /*
  1762. * Try to see if we can get the block without requesting a new
  1763. * file system block.
  1764. */
  1765. down_read((&EXT4_I(inode)->i_data_sem));
  1766. if (ext4_has_inline_data(inode)) {
  1767. /*
  1768. * We will soon create blocks for this page, and let
  1769. * us pretend as if the blocks aren't allocated yet.
  1770. * In case of clusters, we have to handle the work
  1771. * of mapping from cluster so that the reserved space
  1772. * is calculated properly.
  1773. */
  1774. if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
  1775. ext4_find_delalloc_cluster(inode, map->m_lblk))
  1776. map->m_flags |= EXT4_MAP_FROM_CLUSTER;
  1777. retval = 0;
  1778. } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
  1779. retval = ext4_ext_map_blocks(NULL, inode, map,
  1780. EXT4_GET_BLOCKS_NO_PUT_HOLE);
  1781. else
  1782. retval = ext4_ind_map_blocks(NULL, inode, map,
  1783. EXT4_GET_BLOCKS_NO_PUT_HOLE);
  1784. add_delayed:
  1785. if (retval == 0) {
  1786. int ret;
  1787. /*
  1788. * XXX: __block_prepare_write() unmaps passed block,
  1789. * is it OK?
  1790. */
  1791. /*
  1792. * If the block was allocated from previously allocated cluster,
  1793. * then we don't need to reserve it again. However we still need
  1794. * to reserve metadata for every block we're going to write.
  1795. */
  1796. if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
  1797. ret = ext4_da_reserve_space(inode, iblock);
  1798. if (ret) {
  1799. /* not enough space to reserve */
  1800. retval = ret;
  1801. goto out_unlock;
  1802. }
  1803. } else {
  1804. ret = ext4_da_reserve_metadata(inode, iblock);
  1805. if (ret) {
  1806. /* not enough space to reserve */
  1807. retval = ret;
  1808. goto out_unlock;
  1809. }
  1810. }
  1811. ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
  1812. ~0, EXTENT_STATUS_DELAYED);
  1813. if (ret) {
  1814. retval = ret;
  1815. goto out_unlock;
  1816. }
  1817. /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
  1818. * and it should not appear on the bh->b_state.
  1819. */
  1820. map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
  1821. map_bh(bh, inode->i_sb, invalid_block);
  1822. set_buffer_new(bh);
  1823. set_buffer_delay(bh);
  1824. } else if (retval > 0) {
  1825. int ret;
  1826. unsigned long long status;
  1827. #ifdef ES_AGGRESSIVE_TEST
  1828. if (retval != map->m_len) {
  1829. printk("ES len assertation failed for inode: %lu "
  1830. "retval %d != map->m_len %d "
  1831. "in %s (lookup)\n", inode->i_ino, retval,
  1832. map->m_len, __func__);
  1833. }
  1834. #endif
  1835. status = map->m_flags & EXT4_MAP_UNWRITTEN ?
  1836. EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
  1837. ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
  1838. map->m_pblk, status);
  1839. if (ret != 0)
  1840. retval = ret;
  1841. }
  1842. out_unlock:
  1843. up_read((&EXT4_I(inode)->i_data_sem));
  1844. return retval;
  1845. }
  1846. /*
  1847. * This is a special get_blocks_t callback which is used by
  1848. * ext4_da_write_begin(). It will either return mapped block or
  1849. * reserve space for a single block.
  1850. *
  1851. * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
  1852. * We also have b_blocknr = -1 and b_bdev initialized properly
  1853. *
  1854. * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
  1855. * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
  1856. * initialized properly.
  1857. */
  1858. int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
  1859. struct buffer_head *bh, int create)
  1860. {
  1861. struct ext4_map_blocks map;
  1862. int ret = 0;
  1863. BUG_ON(create == 0);
  1864. BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
  1865. map.m_lblk = iblock;
  1866. map.m_len = 1;
  1867. /*
  1868. * first, we need to know whether the block is allocated already
  1869. * preallocated blocks are unmapped but should treated
  1870. * the same as allocated blocks.
  1871. */
  1872. ret = ext4_da_map_blocks(inode, iblock, &map, bh);
  1873. if (ret <= 0)
  1874. return ret;
  1875. map_bh(bh, inode->i_sb, map.m_pblk);
  1876. bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
  1877. if (buffer_unwritten(bh)) {
  1878. /* A delayed write to unwritten bh should be marked
  1879. * new and mapped. Mapped ensures that we don't do
  1880. * get_block multiple times when we write to the same
  1881. * offset and new ensures that we do proper zero out
  1882. * for partial write.
  1883. */
  1884. set_buffer_new(bh);
  1885. set_buffer_mapped(bh);
  1886. }
  1887. return 0;
  1888. }
  1889. static int bget_one(handle_t *handle, struct buffer_head *bh)
  1890. {
  1891. get_bh(bh);
  1892. return 0;
  1893. }
  1894. static int bput_one(handle_t *handle, struct buffer_head *bh)
  1895. {
  1896. put_bh(bh);
  1897. return 0;
  1898. }
  1899. static int __ext4_journalled_writepage(struct page *page,
  1900. unsigned int len)
  1901. {
  1902. struct address_space *mapping = page->mapping;
  1903. struct inode *inode = mapping->host;
  1904. struct buffer_head *page_bufs = NULL;
  1905. handle_t *handle = NULL;
  1906. int ret = 0, err = 0;
  1907. int inline_data = ext4_has_inline_data(inode);
  1908. struct buffer_head *inode_bh = NULL;
  1909. ClearPageChecked(page);
  1910. if (inline_data) {
  1911. BUG_ON(page->index != 0);
  1912. BUG_ON(len > ext4_get_max_inline_size(inode));
  1913. inode_bh = ext4_journalled_write_inline_data(inode, len, page);
  1914. if (inode_bh == NULL)
  1915. goto out;
  1916. } else {
  1917. page_bufs = page_buffers(page);
  1918. if (!page_bufs) {
  1919. BUG();
  1920. goto out;
  1921. }
  1922. ext4_walk_page_buffers(handle, page_bufs, 0, len,
  1923. NULL, bget_one);
  1924. }
  1925. /* As soon as we unlock the page, it can go away, but we have
  1926. * references to buffers so we are safe */
  1927. unlock_page(page);
  1928. handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
  1929. ext4_writepage_trans_blocks(inode));
  1930. if (IS_ERR(handle)) {
  1931. ret = PTR_ERR(handle);
  1932. goto out;
  1933. }
  1934. BUG_ON(!ext4_handle_valid(handle));
  1935. if (inline_data) {
  1936. ret = ext4_journal_get_write_access(handle, inode_bh);
  1937. err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
  1938. } else {
  1939. ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
  1940. do_journal_get_write_access);
  1941. err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
  1942. write_end_fn);
  1943. }
  1944. if (ret == 0)
  1945. ret = err;
  1946. EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
  1947. err = ext4_journal_stop(handle);
  1948. if (!ret)
  1949. ret = err;
  1950. if (!ext4_has_inline_data(inode))
  1951. ext4_walk_page_buffers(handle, page_bufs, 0, len,
  1952. NULL, bput_one);
  1953. ext4_set_inode_state(inode, EXT4_STATE_JDATA);
  1954. out:
  1955. brelse(inode_bh);
  1956. return ret;
  1957. }
  1958. /*
  1959. * Note that we don't need to start a transaction unless we're journaling data
  1960. * because we should have holes filled from ext4_page_mkwrite(). We even don't
  1961. * need to file the inode to the transaction's list in ordered mode because if
  1962. * we are writing back data added by write(), the inode is already there and if
  1963. * we are writing back data modified via mmap(), no one guarantees in which
  1964. * transaction the data will hit the disk. In case we are journaling data, we
  1965. * cannot start transaction directly because transaction start ranks above page
  1966. * lock so we have to do some magic.
  1967. *
  1968. * This function can get called via...
  1969. * - ext4_da_writepages after taking page lock (have journal handle)
  1970. * - journal_submit_inode_data_buffers (no journal handle)
  1971. * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
  1972. * - grab_page_cache when doing write_begin (have journal handle)
  1973. *
  1974. * We don't do any block allocation in this function. If we have page with
  1975. * multiple blocks we need to write those buffer_heads that are mapped. This
  1976. * is important for mmaped based write. So if we do with blocksize 1K
  1977. * truncate(f, 1024);
  1978. * a = mmap(f, 0, 4096);
  1979. * a[0] = 'a';
  1980. * truncate(f, 4096);
  1981. * we have in the page first buffer_head mapped via page_mkwrite call back
  1982. * but other buffer_heads would be unmapped but dirty (dirty done via the
  1983. * do_wp_page). So writepage should write the first block. If we modify
  1984. * the mmap area beyond 1024 we will again get a page_fault and the
  1985. * page_mkwrite callback will do the block allocation and mark the
  1986. * buffer_heads mapped.
  1987. *
  1988. * We redirty the page if we have any buffer_heads that is either delay or
  1989. * unwritten in the page.
  1990. *
  1991. * We can get recursively called as show below.
  1992. *
  1993. * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
  1994. * ext4_writepage()
  1995. *
  1996. * But since we don't do any block allocation we should not deadlock.
  1997. * Page also have the dirty flag cleared so we don't get recurive page_lock.
  1998. */
  1999. static int ext4_writepage(struct page *page,
  2000. struct writeback_control *wbc)
  2001. {
  2002. int ret = 0;
  2003. loff_t size;
  2004. unsigned int len;
  2005. struct buffer_head *page_bufs = NULL;
  2006. struct inode *inode = page->mapping->host;
  2007. struct ext4_io_submit io_submit;
  2008. trace_ext4_writepage(page);
  2009. size = i_size_read(inode);
  2010. if (page->index == size >> PAGE_CACHE_SHIFT)
  2011. len = size & ~PAGE_CACHE_MASK;
  2012. else
  2013. len = PAGE_CACHE_SIZE;
  2014. page_bufs = page_buffers(page);
  2015. /*
  2016. * We cannot do block allocation or other extent handling in this
  2017. * function. If there are buffers needing that, we have to redirty
  2018. * the page. But we may reach here when we do a journal commit via
  2019. * journal_submit_inode_data_buffers() and in that case we must write
  2020. * allocated buffers to achieve data=ordered mode guarantees.
  2021. */
  2022. if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
  2023. ext4_bh_delay_or_unwritten)) {
  2024. redirty_page_for_writepage(wbc, page);
  2025. if (current->flags & PF_MEMALLOC) {
  2026. /*
  2027. * For memory cleaning there's no point in writing only
  2028. * some buffers. So just bail out. Warn if we came here
  2029. * from direct reclaim.
  2030. */
  2031. WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
  2032. == PF_MEMALLOC);
  2033. unlock_page(page);
  2034. return 0;
  2035. }
  2036. }
  2037. if (PageChecked(page) && ext4_should_journal_data(inode))
  2038. /*
  2039. * It's mmapped pagecache. Add buffers and journal it. There
  2040. * doesn't seem much point in redirtying the page here.
  2041. */
  2042. return __ext4_journalled_writepage(page, len);
  2043. memset(&io_submit, 0, sizeof(io_submit));
  2044. ret = ext4_bio_write_page(&io_submit, page, len, wbc);
  2045. ext4_io_submit(&io_submit);
  2046. return ret;
  2047. }
  2048. /*
  2049. * This is called via ext4_da_writepages() to
  2050. * calculate the total number of credits to reserve to fit
  2051. * a single extent allocation into a single transaction,
  2052. * ext4_da_writpeages() will loop calling this before
  2053. * the block allocation.
  2054. */
  2055. static int ext4_da_writepages_trans_blocks(struct inode *inode)
  2056. {
  2057. int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
  2058. /*
  2059. * With non-extent format the journal credit needed to
  2060. * insert nrblocks contiguous block is dependent on
  2061. * number of contiguous block. So we will limit
  2062. * number of contiguous block to a sane value
  2063. */
  2064. if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
  2065. (max_blocks > EXT4_MAX_TRANS_DATA))
  2066. max_blocks = EXT4_MAX_TRANS_DATA;
  2067. return ext4_chunk_trans_blocks(inode, max_blocks);
  2068. }
  2069. /*
  2070. * write_cache_pages_da - walk the list of dirty pages of the given
  2071. * address space and accumulate pages that need writing, and call
  2072. * mpage_da_map_and_submit to map a single contiguous memory region
  2073. * and then write them.
  2074. */
  2075. static int write_cache_pages_da(handle_t *handle,
  2076. struct address_space *mapping,
  2077. struct writeback_control *wbc,
  2078. struct mpage_da_data *mpd,
  2079. pgoff_t *done_index)
  2080. {
  2081. struct buffer_head *bh, *head;
  2082. struct inode *inode = mapping->host;
  2083. struct pagevec pvec;
  2084. unsigned int nr_pages;
  2085. sector_t logical;
  2086. pgoff_t index, end;
  2087. long nr_to_write = wbc->nr_to_write;
  2088. int i, tag, ret = 0;
  2089. memset(mpd, 0, sizeof(struct mpage_da_data));
  2090. mpd->wbc = wbc;
  2091. mpd->inode = inode;
  2092. pagevec_init(&pvec, 0);
  2093. index = wbc->range_start >> PAGE_CACHE_SHIFT;
  2094. end = wbc->range_end >> PAGE_CACHE_SHIFT;
  2095. if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
  2096. tag = PAGECACHE_TAG_TOWRITE;
  2097. else
  2098. tag = PAGECACHE_TAG_DIRTY;
  2099. *done_index = index;
  2100. while (index <= end) {
  2101. nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
  2102. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
  2103. if (nr_pages == 0)
  2104. return 0;
  2105. for (i = 0; i < nr_pages; i++) {
  2106. struct page *page = pvec.pages[i];
  2107. /*
  2108. * At this point, the page may be truncated or
  2109. * invalidated (changing page->mapping to NULL), or
  2110. * even swizzled back from swapper_space to tmpfs file
  2111. * mapping. However, page->index will not change
  2112. * because we have a reference on the page.
  2113. */
  2114. if (page->index > end)
  2115. goto out;
  2116. *done_index = page->index + 1;
  2117. /*
  2118. * If we can't merge this page, and we have
  2119. * accumulated an contiguous region, write it
  2120. */
  2121. if ((mpd->next_page != page->index) &&
  2122. (mpd->next_page != mpd->first_page)) {
  2123. mpage_da_map_and_submit(mpd);
  2124. goto ret_extent_tail;
  2125. }
  2126. lock_page(page);
  2127. /*
  2128. * If the page is no longer dirty, or its
  2129. * mapping no longer corresponds to inode we
  2130. * are writing (which means it has been
  2131. * truncated or invalidated), or the page is
  2132. * already under writeback and we are not
  2133. * doing a data integrity writeback, skip the page
  2134. */
  2135. if (!PageDirty(page) ||
  2136. (PageWriteback(page) &&
  2137. (wbc->sync_mode == WB_SYNC_NONE)) ||
  2138. unlikely(page->mapping != mapping)) {
  2139. unlock_page(page);
  2140. continue;
  2141. }
  2142. wait_on_page_writeback(page);
  2143. BUG_ON(PageWriteback(page));
  2144. /*
  2145. * If we have inline data and arrive here, it means that
  2146. * we will soon create the block for the 1st page, so
  2147. * we'd better clear the inline data here.
  2148. */
  2149. if (ext4_has_inline_data(inode)) {
  2150. BUG_ON(ext4_test_inode_state(inode,
  2151. EXT4_STATE_MAY_INLINE_DATA));
  2152. ext4_destroy_inline_data(handle, inode);
  2153. }
  2154. if (mpd->next_page != page->index)
  2155. mpd->first_page = page->index;
  2156. mpd->next_page = page->index + 1;
  2157. logical = (sector_t) page->index <<
  2158. (PAGE_CACHE_SHIFT - inode->i_blkbits);
  2159. /* Add all dirty buffers to mpd */
  2160. head = page_buffers(page);
  2161. bh = head;
  2162. do {
  2163. BUG_ON(buffer_locked(bh));
  2164. /*
  2165. * We need to try to allocate unmapped blocks
  2166. * in the same page. Otherwise we won't make
  2167. * progress with the page in ext4_writepage
  2168. */
  2169. if (ext4_bh_delay_or_unwritten(NULL, bh)) {
  2170. mpage_add_bh_to_extent(mpd, logical,
  2171. bh->b_state);
  2172. if (mpd->io_done)
  2173. goto ret_extent_tail;
  2174. } else if (buffer_dirty(bh) &&
  2175. buffer_mapped(bh)) {
  2176. /*
  2177. * mapped dirty buffer. We need to
  2178. * update the b_state because we look
  2179. * at b_state in mpage_da_map_blocks.
  2180. * We don't update b_size because if we
  2181. * find an unmapped buffer_head later
  2182. * we need to use the b_state flag of
  2183. * that buffer_head.
  2184. */
  2185. if (mpd->b_size == 0)
  2186. mpd->b_state =
  2187. bh->b_state & BH_FLAGS;
  2188. }
  2189. logical++;
  2190. } while ((bh = bh->b_this_page) != head);
  2191. if (nr_to_write > 0) {
  2192. nr_to_write--;
  2193. if (nr_to_write == 0 &&
  2194. wbc->sync_mode == WB_SYNC_NONE)
  2195. /*
  2196. * We stop writing back only if we are
  2197. * not doing integrity sync. In case of
  2198. * integrity sync we have to keep going
  2199. * because someone may be concurrently
  2200. * dirtying pages, and we might have
  2201. * synced a lot of newly appeared dirty
  2202. * pages, but have not synced all of the
  2203. * old dirty pages.
  2204. */
  2205. goto out;
  2206. }
  2207. }
  2208. pagevec_release(&pvec);
  2209. cond_resched();
  2210. }
  2211. return 0;
  2212. ret_extent_tail:
  2213. ret = MPAGE_DA_EXTENT_TAIL;
  2214. out:
  2215. pagevec_release(&pvec);
  2216. cond_resched();
  2217. return ret;
  2218. }
  2219. static int ext4_da_writepages(struct address_space *mapping,
  2220. struct writeback_control *wbc)
  2221. {
  2222. pgoff_t index;
  2223. int range_whole = 0;
  2224. handle_t *handle = NULL;
  2225. struct mpage_da_data mpd;
  2226. struct inode *inode = mapping->host;
  2227. int pages_written = 0;
  2228. unsigned int max_pages;
  2229. int range_cyclic, cycled = 1, io_done = 0;
  2230. int needed_blocks, ret = 0;
  2231. long desired_nr_to_write, nr_to_writebump = 0;
  2232. loff_t range_start = wbc->range_start;
  2233. struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
  2234. pgoff_t done_index = 0;
  2235. pgoff_t end;
  2236. struct blk_plug plug;
  2237. trace_ext4_da_writepages(inode, wbc);
  2238. /*
  2239. * No pages to write? This is mainly a kludge to avoid starting
  2240. * a transaction for special inodes like journal inode on last iput()
  2241. * because that could violate lock ordering on umount
  2242. */
  2243. if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
  2244. return 0;
  2245. /*
  2246. * If the filesystem has aborted, it is read-only, so return
  2247. * right away instead of dumping stack traces later on that
  2248. * will obscure the real source of the problem. We test
  2249. * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
  2250. * the latter could be true if the filesystem is mounted
  2251. * read-only, and in that case, ext4_da_writepages should
  2252. * *never* be called, so if that ever happens, we would want
  2253. * the stack trace.
  2254. */
  2255. if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
  2256. return -EROFS;
  2257. if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
  2258. range_whole = 1;
  2259. range_cyclic = wbc->range_cyclic;
  2260. if (wbc->range_cyclic) {
  2261. index = mapping->writeback_index;
  2262. if (index)
  2263. cycled = 0;
  2264. wbc->range_start = index << PAGE_CACHE_SHIFT;
  2265. wbc->range_end = LLONG_MAX;
  2266. wbc->range_cyclic = 0;
  2267. end = -1;
  2268. } else {
  2269. index = wbc->range_start >> PAGE_CACHE_SHIFT;
  2270. end = wbc->range_end >> PAGE_CACHE_SHIFT;
  2271. }
  2272. /*
  2273. * This works around two forms of stupidity. The first is in
  2274. * the writeback code, which caps the maximum number of pages
  2275. * written to be 1024 pages. This is wrong on multiple
  2276. * levels; different architectues have a different page size,
  2277. * which changes the maximum amount of data which gets
  2278. * written. Secondly, 4 megabytes is way too small. XFS
  2279. * forces this value to be 16 megabytes by multiplying
  2280. * nr_to_write parameter by four, and then relies on its
  2281. * allocator to allocate larger extents to make them
  2282. * contiguous. Unfortunately this brings us to the second
  2283. * stupidity, which is that ext4's mballoc code only allocates
  2284. * at most 2048 blocks. So we force contiguous writes up to
  2285. * the number of dirty blocks in the inode, or
  2286. * sbi->max_writeback_mb_bump whichever is smaller.
  2287. */
  2288. max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
  2289. if (!range_cyclic && range_whole) {
  2290. if (wbc->nr_to_write == LONG_MAX)
  2291. desired_nr_to_write = wbc->nr_to_write;
  2292. else
  2293. desired_nr_to_write = wbc->nr_to_write * 8;
  2294. } else
  2295. desired_nr_to_write = ext4_num_dirty_pages(inode, index,
  2296. max_pages);
  2297. if (desired_nr_to_write > max_pages)
  2298. desired_nr_to_write = max_pages;
  2299. if (wbc->nr_to_write < desired_nr_to_write) {
  2300. nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
  2301. wbc->nr_to_write = desired_nr_to_write;
  2302. }
  2303. retry:
  2304. if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
  2305. tag_pages_for_writeback(mapping, index, end);
  2306. blk_start_plug(&plug);
  2307. while (!ret && wbc->nr_to_write > 0) {
  2308. /*
  2309. * we insert one extent at a time. So we need
  2310. * credit needed for single extent allocation.
  2311. * journalled mode is currently not supported
  2312. * by delalloc
  2313. */
  2314. BUG_ON(ext4_should_journal_data(inode));
  2315. needed_blocks = ext4_da_writepages_trans_blocks(inode);
  2316. /* start a new transaction*/
  2317. handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
  2318. needed_blocks);
  2319. if (IS_ERR(handle)) {
  2320. ret = PTR_ERR(handle);
  2321. ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
  2322. "%ld pages, ino %lu; err %d", __func__,
  2323. wbc->nr_to_write, inode->i_ino, ret);
  2324. blk_finish_plug(&plug);
  2325. goto out_writepages;
  2326. }
  2327. /*
  2328. * Now call write_cache_pages_da() to find the next
  2329. * contiguous region of logical blocks that need
  2330. * blocks to be allocated by ext4 and submit them.
  2331. */
  2332. ret = write_cache_pages_da(handle, mapping,
  2333. wbc, &mpd, &done_index);
  2334. /*
  2335. * If we have a contiguous extent of pages and we
  2336. * haven't done the I/O yet, map the blocks and submit
  2337. * them for I/O.
  2338. */
  2339. if (!mpd.io_done && mpd.next_page != mpd.first_page) {
  2340. mpage_da_map_and_submit(&mpd);
  2341. ret = MPAGE_DA_EXTENT_TAIL;
  2342. }
  2343. trace_ext4_da_write_pages(inode, &mpd);
  2344. wbc->nr_to_write -= mpd.pages_written;
  2345. ext4_journal_stop(handle);
  2346. if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
  2347. /* commit the transaction which would
  2348. * free blocks released in the transaction
  2349. * and try again
  2350. */
  2351. jbd2_journal_force_commit_nested(sbi->s_journal);
  2352. ret = 0;
  2353. } else if (ret == MPAGE_DA_EXTENT_TAIL) {
  2354. /*
  2355. * Got one extent now try with rest of the pages.
  2356. * If mpd.retval is set -EIO, journal is aborted.
  2357. * So we don't need to write any more.
  2358. */
  2359. pages_written += mpd.pages_written;
  2360. ret = mpd.retval;
  2361. io_done = 1;
  2362. } else if (wbc->nr_to_write)
  2363. /*
  2364. * There is no more writeout needed
  2365. * or we requested for a noblocking writeout
  2366. * and we found the device congested
  2367. */
  2368. break;
  2369. }
  2370. blk_finish_plug(&plug);
  2371. if (!io_done && !cycled) {
  2372. cycled = 1;
  2373. index = 0;
  2374. wbc->range_start = index << PAGE_CACHE_SHIFT;
  2375. wbc->range_end = mapping->writeback_index - 1;
  2376. goto retry;
  2377. }
  2378. /* Update index */
  2379. wbc->range_cyclic = range_cyclic;
  2380. if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
  2381. /*
  2382. * set the writeback_index so that range_cyclic
  2383. * mode will write it back later
  2384. */
  2385. mapping->writeback_index = done_index;
  2386. out_writepages:
  2387. wbc->nr_to_write -= nr_to_writebump;
  2388. wbc->range_start = range_start;
  2389. trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
  2390. return ret;
  2391. }
  2392. static int ext4_nonda_switch(struct super_block *sb)
  2393. {
  2394. s64 free_blocks, dirty_blocks;
  2395. struct ext4_sb_info *sbi = EXT4_SB(sb);
  2396. /*
  2397. * switch to non delalloc mode if we are running low
  2398. * on free block. The free block accounting via percpu
  2399. * counters can get slightly wrong with percpu_counter_batch getting
  2400. * accumulated on each CPU without updating global counters
  2401. * Delalloc need an accurate free block accounting. So switch
  2402. * to non delalloc when we are near to error range.
  2403. */
  2404. free_blocks = EXT4_C2B(sbi,
  2405. percpu_counter_read_positive(&sbi->s_freeclusters_counter));
  2406. dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
  2407. /*
  2408. * Start pushing delalloc when 1/2 of free blocks are dirty.
  2409. */
  2410. if (dirty_blocks && (free_blocks < 2 * dirty_blocks) &&
  2411. !writeback_in_progress(sb->s_bdi) &&
  2412. down_read_trylock(&sb->s_umount)) {
  2413. writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
  2414. up_read(&sb->s_umount);
  2415. }
  2416. if (2 * free_blocks < 3 * dirty_blocks ||
  2417. free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
  2418. /*
  2419. * free block count is less than 150% of dirty blocks
  2420. * or free blocks is less than watermark
  2421. */
  2422. return 1;
  2423. }
  2424. return 0;
  2425. }
  2426. static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
  2427. loff_t pos, unsigned len, unsigned flags,
  2428. struct page **pagep, void **fsdata)
  2429. {
  2430. int ret, retries = 0;
  2431. struct page *page;
  2432. pgoff_t index;
  2433. struct inode *inode = mapping->host;
  2434. handle_t *handle;
  2435. index = pos >> PAGE_CACHE_SHIFT;
  2436. if (ext4_nonda_switch(inode->i_sb)) {
  2437. *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
  2438. return ext4_write_begin(file, mapping, pos,
  2439. len, flags, pagep, fsdata);
  2440. }
  2441. *fsdata = (void *)0;
  2442. trace_ext4_da_write_begin(inode, pos, len, flags);
  2443. if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
  2444. ret = ext4_da_write_inline_data_begin(mapping, inode,
  2445. pos, len, flags,
  2446. pagep, fsdata);
  2447. if (ret < 0)
  2448. return ret;
  2449. if (ret == 1)
  2450. return 0;
  2451. }
  2452. /*
  2453. * grab_cache_page_write_begin() can take a long time if the
  2454. * system is thrashing due to memory pressure, or if the page
  2455. * is being written back. So grab it first before we start
  2456. * the transaction handle. This also allows us to allocate
  2457. * the page (if needed) without using GFP_NOFS.
  2458. */
  2459. retry_grab:
  2460. page = grab_cache_page_write_begin(mapping, index, flags);
  2461. if (!page)
  2462. return -ENOMEM;
  2463. unlock_page(page);
  2464. /*
  2465. * With delayed allocation, we don't log the i_disksize update
  2466. * if there is delayed block allocation. But we still need
  2467. * to journalling the i_disksize update if writes to the end
  2468. * of file which has an already mapped buffer.
  2469. */
  2470. retry_journal:
  2471. handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
  2472. if (IS_ERR(handle)) {
  2473. page_cache_release(page);
  2474. return PTR_ERR(handle);
  2475. }
  2476. lock_page(page);
  2477. if (page->mapping != mapping) {
  2478. /* The page got truncated from under us */
  2479. unlock_page(page);
  2480. page_cache_release(page);
  2481. ext4_journal_stop(handle);
  2482. goto retry_grab;
  2483. }
  2484. /* In case writeback began while the page was unlocked */
  2485. wait_on_page_writeback(page);
  2486. ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
  2487. if (ret < 0) {
  2488. unlock_page(page);
  2489. ext4_journal_stop(handle);
  2490. /*
  2491. * block_write_begin may have instantiated a few blocks
  2492. * outside i_size. Trim these off again. Don't need
  2493. * i_size_read because we hold i_mutex.
  2494. */
  2495. if (pos + len > inode->i_size)
  2496. ext4_truncate_failed_write(inode);
  2497. if (ret == -ENOSPC &&
  2498. ext4_should_retry_alloc(inode->i_sb, &retries))
  2499. goto retry_journal;
  2500. page_cache_release(page);
  2501. return ret;
  2502. }
  2503. *pagep = page;
  2504. return ret;
  2505. }
  2506. /*
  2507. * Check if we should update i_disksize
  2508. * when write to the end of file but not require block allocation
  2509. */
  2510. static int ext4_da_should_update_i_disksize(struct page *page,
  2511. unsigned long offset)
  2512. {
  2513. struct buffer_head *bh;
  2514. struct inode *inode = page->mapping->host;
  2515. unsigned int idx;
  2516. int i;
  2517. bh = page_buffers(page);
  2518. idx = offset >> inode->i_blkbits;
  2519. for (i = 0; i < idx; i++)
  2520. bh = bh->b_this_page;
  2521. if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
  2522. return 0;
  2523. return 1;
  2524. }
  2525. static int ext4_da_write_end(struct file *file,
  2526. struct address_space *mapping,
  2527. loff_t pos, unsigned len, unsigned copied,
  2528. struct page *page, void *fsdata)
  2529. {
  2530. struct inode *inode = mapping->host;
  2531. int ret = 0, ret2;
  2532. handle_t *handle = ext4_journal_current_handle();
  2533. loff_t new_i_size;
  2534. unsigned long start, end;
  2535. int write_mode = (int)(unsigned long)fsdata;
  2536. if (write_mode == FALL_BACK_TO_NONDELALLOC) {
  2537. switch (ext4_inode_journal_mode(inode)) {
  2538. case EXT4_INODE_ORDERED_DATA_MODE:
  2539. return ext4_ordered_write_end(file, mapping, pos,
  2540. len, copied, page, fsdata);
  2541. case EXT4_INODE_WRITEBACK_DATA_MODE:
  2542. return ext4_writeback_write_end(file, mapping, pos,
  2543. len, copied, page, fsdata);
  2544. default:
  2545. BUG();
  2546. }
  2547. }
  2548. trace_ext4_da_write_end(inode, pos, len, copied);
  2549. start = pos & (PAGE_CACHE_SIZE - 1);
  2550. end = start + copied - 1;
  2551. /*
  2552. * generic_write_end() will run mark_inode_dirty() if i_size
  2553. * changes. So let's piggyback the i_disksize mark_inode_dirty
  2554. * into that.
  2555. */
  2556. new_i_size = pos + copied;
  2557. if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
  2558. if (ext4_has_inline_data(inode) ||
  2559. ext4_da_should_update_i_disksize(page, end)) {
  2560. down_write(&EXT4_I(inode)->i_data_sem);
  2561. if (new_i_size > EXT4_I(inode)->i_disksize)
  2562. EXT4_I(inode)->i_disksize = new_i_size;
  2563. up_write(&EXT4_I(inode)->i_data_sem);
  2564. /* We need to mark inode dirty even if
  2565. * new_i_size is less that inode->i_size
  2566. * bu greater than i_disksize.(hint delalloc)
  2567. */
  2568. ext4_mark_inode_dirty(handle, inode);
  2569. }
  2570. }
  2571. if (write_mode != CONVERT_INLINE_DATA &&
  2572. ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
  2573. ext4_has_inline_data(inode))
  2574. ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
  2575. page);
  2576. else
  2577. ret2 = generic_write_end(file, mapping, pos, len, copied,
  2578. page, fsdata);
  2579. copied = ret2;
  2580. if (ret2 < 0)
  2581. ret = ret2;
  2582. ret2 = ext4_journal_stop(handle);
  2583. if (!ret)
  2584. ret = ret2;
  2585. return ret ? ret : copied;
  2586. }
  2587. static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
  2588. {
  2589. /*
  2590. * Drop reserved blocks
  2591. */
  2592. BUG_ON(!PageLocked(page));
  2593. if (!page_has_buffers(page))
  2594. goto out;
  2595. ext4_da_page_release_reservation(page, offset);
  2596. out:
  2597. ext4_invalidatepage(page, offset);
  2598. return;
  2599. }
  2600. /*
  2601. * Force all delayed allocation blocks to be allocated for a given inode.
  2602. */
  2603. int ext4_alloc_da_blocks(struct inode *inode)
  2604. {
  2605. trace_ext4_alloc_da_blocks(inode);
  2606. if (!EXT4_I(inode)->i_reserved_data_blocks &&
  2607. !EXT4_I(inode)->i_reserved_meta_blocks)
  2608. return 0;
  2609. /*
  2610. * We do something simple for now. The filemap_flush() will
  2611. * also start triggering a write of the data blocks, which is
  2612. * not strictly speaking necessary (and for users of
  2613. * laptop_mode, not even desirable). However, to do otherwise
  2614. * would require replicating code paths in:
  2615. *
  2616. * ext4_da_writepages() ->
  2617. * write_cache_pages() ---> (via passed in callback function)
  2618. * __mpage_da_writepage() -->
  2619. * mpage_add_bh_to_extent()
  2620. * mpage_da_map_blocks()
  2621. *
  2622. * The problem is that write_cache_pages(), located in
  2623. * mm/page-writeback.c, marks pages clean in preparation for
  2624. * doing I/O, which is not desirable if we're not planning on
  2625. * doing I/O at all.
  2626. *
  2627. * We could call write_cache_pages(), and then redirty all of
  2628. * the pages by calling redirty_page_for_writepage() but that
  2629. * would be ugly in the extreme. So instead we would need to
  2630. * replicate parts of the code in the above functions,
  2631. * simplifying them because we wouldn't actually intend to
  2632. * write out the pages, but rather only collect contiguous
  2633. * logical block extents, call the multi-block allocator, and
  2634. * then update the buffer heads with the block allocations.
  2635. *
  2636. * For now, though, we'll cheat by calling filemap_flush(),
  2637. * which will map the blocks, and start the I/O, but not
  2638. * actually wait for the I/O to complete.
  2639. */
  2640. return filemap_flush(inode->i_mapping);
  2641. }
  2642. /*
  2643. * bmap() is special. It gets used by applications such as lilo and by
  2644. * the swapper to find the on-disk block of a specific piece of data.
  2645. *
  2646. * Naturally, this is dangerous if the block concerned is still in the
  2647. * journal. If somebody makes a swapfile on an ext4 data-journaling
  2648. * filesystem and enables swap, then they may get a nasty shock when the
  2649. * data getting swapped to that swapfile suddenly gets overwritten by
  2650. * the original zero's written out previously to the journal and
  2651. * awaiting writeback in the kernel's buffer cache.
  2652. *
  2653. * So, if we see any bmap calls here on a modified, data-journaled file,
  2654. * take extra steps to flush any blocks which might be in the cache.
  2655. */
  2656. static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
  2657. {
  2658. struct inode *inode = mapping->host;
  2659. journal_t *journal;
  2660. int err;
  2661. /*
  2662. * We can get here for an inline file via the FIBMAP ioctl
  2663. */
  2664. if (ext4_has_inline_data(inode))
  2665. return 0;
  2666. if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
  2667. test_opt(inode->i_sb, DELALLOC)) {
  2668. /*
  2669. * With delalloc we want to sync the file
  2670. * so that we can make sure we allocate
  2671. * blocks for file
  2672. */
  2673. filemap_write_and_wait(mapping);
  2674. }
  2675. if (EXT4_JOURNAL(inode) &&
  2676. ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
  2677. /*
  2678. * This is a REALLY heavyweight approach, but the use of
  2679. * bmap on dirty files is expected to be extremely rare:
  2680. * only if we run lilo or swapon on a freshly made file
  2681. * do we expect this to happen.
  2682. *
  2683. * (bmap requires CAP_SYS_RAWIO so this does not
  2684. * represent an unprivileged user DOS attack --- we'd be
  2685. * in trouble if mortal users could trigger this path at
  2686. * will.)
  2687. *
  2688. * NB. EXT4_STATE_JDATA is not set on files other than
  2689. * regular files. If somebody wants to bmap a directory
  2690. * or symlink and gets confused because the buffer
  2691. * hasn't yet been flushed to disk, they deserve
  2692. * everything they get.
  2693. */
  2694. ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
  2695. journal = EXT4_JOURNAL(inode);
  2696. jbd2_journal_lock_updates(journal);
  2697. err = jbd2_journal_flush(journal);
  2698. jbd2_journal_unlock_updates(journal);
  2699. if (err)
  2700. return 0;
  2701. }
  2702. return generic_block_bmap(mapping, block, ext4_get_block);
  2703. }
  2704. static int ext4_readpage(struct file *file, struct page *page)
  2705. {
  2706. int ret = -EAGAIN;
  2707. struct inode *inode = page->mapping->host;
  2708. trace_ext4_readpage(page);
  2709. if (ext4_has_inline_data(inode))
  2710. ret = ext4_readpage_inline(inode, page);
  2711. if (ret == -EAGAIN)
  2712. return mpage_readpage(page, ext4_get_block);
  2713. return ret;
  2714. }
  2715. static int
  2716. ext4_readpages(struct file *file, struct address_space *mapping,
  2717. struct list_head *pages, unsigned nr_pages)
  2718. {
  2719. struct inode *inode = mapping->host;
  2720. /* If the file has inline data, no need to do readpages. */
  2721. if (ext4_has_inline_data(inode))
  2722. return 0;
  2723. return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
  2724. }
  2725. static void ext4_invalidatepage(struct page *page, unsigned long offset)
  2726. {
  2727. trace_ext4_invalidatepage(page, offset);
  2728. /* No journalling happens on data buffers when this function is used */
  2729. WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
  2730. block_invalidatepage(page, offset);
  2731. }
  2732. static int __ext4_journalled_invalidatepage(struct page *page,
  2733. unsigned long offset)
  2734. {
  2735. journal_t *journal = EXT4_JOURNAL(page->mapping->host);
  2736. trace_ext4_journalled_invalidatepage(page, offset);
  2737. /*
  2738. * If it's a full truncate we just forget about the pending dirtying
  2739. */
  2740. if (offset == 0)
  2741. ClearPageChecked(page);
  2742. return jbd2_journal_invalidatepage(journal, page, offset);
  2743. }
  2744. /* Wrapper for aops... */
  2745. static void ext4_journalled_invalidatepage(struct page *page,
  2746. unsigned long offset)
  2747. {
  2748. WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0);
  2749. }
  2750. static int ext4_releasepage(struct page *page, gfp_t wait)
  2751. {
  2752. journal_t *journal = EXT4_JOURNAL(page->mapping->host);
  2753. trace_ext4_releasepage(page);
  2754. /* Page has dirty journalled data -> cannot release */
  2755. if (PageChecked(page))
  2756. return 0;
  2757. if (journal)
  2758. return jbd2_journal_try_to_free_buffers(journal, page, wait);
  2759. else
  2760. return try_to_free_buffers(page);
  2761. }
  2762. /*
  2763. * ext4_get_block used when preparing for a DIO write or buffer write.
  2764. * We allocate an uinitialized extent if blocks haven't been allocated.
  2765. * The extent will be converted to initialized after the IO is complete.
  2766. */
  2767. int ext4_get_block_write(struct inode *inode, sector_t iblock,
  2768. struct buffer_head *bh_result, int create)
  2769. {
  2770. ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
  2771. inode->i_ino, create);
  2772. return _ext4_get_block(inode, iblock, bh_result,
  2773. EXT4_GET_BLOCKS_IO_CREATE_EXT);
  2774. }
  2775. static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
  2776. struct buffer_head *bh_result, int create)
  2777. {
  2778. ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
  2779. inode->i_ino, create);
  2780. return _ext4_get_block(inode, iblock, bh_result,
  2781. EXT4_GET_BLOCKS_NO_LOCK);
  2782. }
  2783. static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
  2784. ssize_t size, void *private, int ret,
  2785. bool is_async)
  2786. {
  2787. struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
  2788. ext4_io_end_t *io_end = iocb->private;
  2789. /* if not async direct IO or dio with 0 bytes write, just return */
  2790. if (!io_end || !size)
  2791. goto out;
  2792. ext_debug("ext4_end_io_dio(): io_end 0x%p "
  2793. "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
  2794. iocb->private, io_end->inode->i_ino, iocb, offset,
  2795. size);
  2796. iocb->private = NULL;
  2797. /* if not aio dio with unwritten extents, just free io and return */
  2798. if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
  2799. ext4_free_io_end(io_end);
  2800. out:
  2801. inode_dio_done(inode);
  2802. if (is_async)
  2803. aio_complete(iocb, ret, 0);
  2804. return;
  2805. }
  2806. io_end->offset = offset;
  2807. io_end->size = size;
  2808. if (is_async) {
  2809. io_end->iocb = iocb;
  2810. io_end->result = ret;
  2811. }
  2812. ext4_add_complete_io(io_end);
  2813. }
  2814. /*
  2815. * For ext4 extent files, ext4 will do direct-io write to holes,
  2816. * preallocated extents, and those write extend the file, no need to
  2817. * fall back to buffered IO.
  2818. *
  2819. * For holes, we fallocate those blocks, mark them as uninitialized
  2820. * If those blocks were preallocated, we mark sure they are split, but
  2821. * still keep the range to write as uninitialized.
  2822. *
  2823. * The unwritten extents will be converted to written when DIO is completed.
  2824. * For async direct IO, since the IO may still pending when return, we
  2825. * set up an end_io call back function, which will do the conversion
  2826. * when async direct IO completed.
  2827. *
  2828. * If the O_DIRECT write will extend the file then add this inode to the
  2829. * orphan list. So recovery will truncate it back to the original size
  2830. * if the machine crashes during the write.
  2831. *
  2832. */
  2833. static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
  2834. const struct iovec *iov, loff_t offset,
  2835. unsigned long nr_segs)
  2836. {
  2837. struct file *file = iocb->ki_filp;
  2838. struct inode *inode = file->f_mapping->host;
  2839. ssize_t ret;
  2840. size_t count = iov_length(iov, nr_segs);
  2841. int overwrite = 0;
  2842. get_block_t *get_block_func = NULL;
  2843. int dio_flags = 0;
  2844. loff_t final_size = offset + count;
  2845. /* Use the old path for reads and writes beyond i_size. */
  2846. if (rw != WRITE || final_size > inode->i_size)
  2847. return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
  2848. BUG_ON(iocb->private == NULL);
  2849. /* If we do a overwrite dio, i_mutex locking can be released */
  2850. overwrite = *((int *)iocb->private);
  2851. if (overwrite) {
  2852. atomic_inc(&inode->i_dio_count);
  2853. down_read(&EXT4_I(inode)->i_data_sem);
  2854. mutex_unlock(&inode->i_mutex);
  2855. }
  2856. /*
  2857. * We could direct write to holes and fallocate.
  2858. *
  2859. * Allocated blocks to fill the hole are marked as
  2860. * uninitialized to prevent parallel buffered read to expose
  2861. * the stale data before DIO complete the data IO.
  2862. *
  2863. * As to previously fallocated extents, ext4 get_block will
  2864. * just simply mark the buffer mapped but still keep the
  2865. * extents uninitialized.
  2866. *
  2867. * For non AIO case, we will convert those unwritten extents
  2868. * to written after return back from blockdev_direct_IO.
  2869. *
  2870. * For async DIO, the conversion needs to be deferred when the
  2871. * IO is completed. The ext4 end_io callback function will be
  2872. * called to take care of the conversion work. Here for async
  2873. * case, we allocate an io_end structure to hook to the iocb.
  2874. */
  2875. iocb->private = NULL;
  2876. ext4_inode_aio_set(inode, NULL);
  2877. if (!is_sync_kiocb(iocb)) {
  2878. ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
  2879. if (!io_end) {
  2880. ret = -ENOMEM;
  2881. goto retake_lock;
  2882. }
  2883. io_end->flag |= EXT4_IO_END_DIRECT;
  2884. iocb->private = io_end;
  2885. /*
  2886. * we save the io structure for current async direct
  2887. * IO, so that later ext4_map_blocks() could flag the
  2888. * io structure whether there is a unwritten extents
  2889. * needs to be converted when IO is completed.
  2890. */
  2891. ext4_inode_aio_set(inode, io_end);
  2892. }
  2893. if (overwrite) {
  2894. get_block_func = ext4_get_block_write_nolock;
  2895. } else {
  2896. get_block_func = ext4_get_block_write;
  2897. dio_flags = DIO_LOCKING;
  2898. }
  2899. ret = __blockdev_direct_IO(rw, iocb, inode,
  2900. inode->i_sb->s_bdev, iov,
  2901. offset, nr_segs,
  2902. get_block_func,
  2903. ext4_end_io_dio,
  2904. NULL,
  2905. dio_flags);
  2906. if (iocb->private)
  2907. ext4_inode_aio_set(inode, NULL);
  2908. /*
  2909. * The io_end structure takes a reference to the inode, that
  2910. * structure needs to be destroyed and the reference to the
  2911. * inode need to be dropped, when IO is complete, even with 0
  2912. * byte write, or failed.
  2913. *
  2914. * In the successful AIO DIO case, the io_end structure will
  2915. * be destroyed and the reference to the inode will be dropped
  2916. * after the end_io call back function is called.
  2917. *
  2918. * In the case there is 0 byte write, or error case, since VFS
  2919. * direct IO won't invoke the end_io call back function, we
  2920. * need to free the end_io structure here.
  2921. */
  2922. if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
  2923. ext4_free_io_end(iocb->private);
  2924. iocb->private = NULL;
  2925. } else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
  2926. EXT4_STATE_DIO_UNWRITTEN)) {
  2927. int err;
  2928. /*
  2929. * for non AIO case, since the IO is already
  2930. * completed, we could do the conversion right here
  2931. */
  2932. err = ext4_convert_unwritten_extents(inode,
  2933. offset, ret);
  2934. if (err < 0)
  2935. ret = err;
  2936. ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
  2937. }
  2938. retake_lock:
  2939. /* take i_mutex locking again if we do a ovewrite dio */
  2940. if (overwrite) {
  2941. inode_dio_done(inode);
  2942. up_read(&EXT4_I(inode)->i_data_sem);
  2943. mutex_lock(&inode->i_mutex);
  2944. }
  2945. return ret;
  2946. }
  2947. static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
  2948. const struct iovec *iov, loff_t offset,
  2949. unsigned long nr_segs)
  2950. {
  2951. struct file *file = iocb->ki_filp;
  2952. struct inode *inode = file->f_mapping->host;
  2953. ssize_t ret;
  2954. /*
  2955. * If we are doing data journalling we don't support O_DIRECT
  2956. */
  2957. if (ext4_should_journal_data(inode))
  2958. return 0;
  2959. /* Let buffer I/O handle the inline data case. */
  2960. if (ext4_has_inline_data(inode))
  2961. return 0;
  2962. trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
  2963. if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
  2964. ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
  2965. else
  2966. ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
  2967. trace_ext4_direct_IO_exit(inode, offset,
  2968. iov_length(iov, nr_segs), rw, ret);
  2969. return ret;
  2970. }
  2971. /*
  2972. * Pages can be marked dirty completely asynchronously from ext4's journalling
  2973. * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
  2974. * much here because ->set_page_dirty is called under VFS locks. The page is
  2975. * not necessarily locked.
  2976. *
  2977. * We cannot just dirty the page and leave attached buffers clean, because the
  2978. * buffers' dirty state is "definitive". We cannot just set the buffers dirty
  2979. * or jbddirty because all the journalling code will explode.
  2980. *
  2981. * So what we do is to mark the page "pending dirty" and next time writepage
  2982. * is called, propagate that into the buffers appropriately.
  2983. */
  2984. static int ext4_journalled_set_page_dirty(struct page *page)
  2985. {
  2986. SetPageChecked(page);
  2987. return __set_page_dirty_nobuffers(page);
  2988. }
  2989. static const struct address_space_operations ext4_ordered_aops = {
  2990. .readpage = ext4_readpage,
  2991. .readpages = ext4_readpages,
  2992. .writepage = ext4_writepage,
  2993. .write_begin = ext4_write_begin,
  2994. .write_end = ext4_ordered_write_end,
  2995. .bmap = ext4_bmap,
  2996. .invalidatepage = ext4_invalidatepage,
  2997. .releasepage = ext4_releasepage,
  2998. .direct_IO = ext4_direct_IO,
  2999. .migratepage = buffer_migrate_page,
  3000. .is_partially_uptodate = block_is_partially_uptodate,
  3001. .error_remove_page = generic_error_remove_page,
  3002. };
  3003. static const struct address_space_operations ext4_writeback_aops = {
  3004. .readpage = ext4_readpage,
  3005. .readpages = ext4_readpages,
  3006. .writepage = ext4_writepage,
  3007. .write_begin = ext4_write_begin,
  3008. .write_end = ext4_writeback_write_end,
  3009. .bmap = ext4_bmap,
  3010. .invalidatepage = ext4_invalidatepage,
  3011. .releasepage = ext4_releasepage,
  3012. .direct_IO = ext4_direct_IO,
  3013. .migratepage = buffer_migrate_page,
  3014. .is_partially_uptodate = block_is_partially_uptodate,
  3015. .error_remove_page = generic_error_remove_page,
  3016. };
  3017. static const struct address_space_operations ext4_journalled_aops = {
  3018. .readpage = ext4_readpage,
  3019. .readpages = ext4_readpages,
  3020. .writepage = ext4_writepage,
  3021. .write_begin = ext4_write_begin,
  3022. .write_end = ext4_journalled_write_end,
  3023. .set_page_dirty = ext4_journalled_set_page_dirty,
  3024. .bmap = ext4_bmap,
  3025. .invalidatepage = ext4_journalled_invalidatepage,
  3026. .releasepage = ext4_releasepage,
  3027. .direct_IO = ext4_direct_IO,
  3028. .is_partially_uptodate = block_is_partially_uptodate,
  3029. .error_remove_page = generic_error_remove_page,
  3030. };
  3031. static const struct address_space_operations ext4_da_aops = {
  3032. .readpage = ext4_readpage,
  3033. .readpages = ext4_readpages,
  3034. .writepage = ext4_writepage,
  3035. .writepages = ext4_da_writepages,
  3036. .write_begin = ext4_da_write_begin,
  3037. .write_end = ext4_da_write_end,
  3038. .bmap = ext4_bmap,
  3039. .invalidatepage = ext4_da_invalidatepage,
  3040. .releasepage = ext4_releasepage,
  3041. .direct_IO = ext4_direct_IO,
  3042. .migratepage = buffer_migrate_page,
  3043. .is_partially_uptodate = block_is_partially_uptodate,
  3044. .error_remove_page = generic_error_remove_page,
  3045. };
  3046. void ext4_set_aops(struct inode *inode)
  3047. {
  3048. switch (ext4_inode_journal_mode(inode)) {
  3049. case EXT4_INODE_ORDERED_DATA_MODE:
  3050. if (test_opt(inode->i_sb, DELALLOC))
  3051. inode->i_mapping->a_ops = &ext4_da_aops;
  3052. else
  3053. inode->i_mapping->a_ops = &ext4_ordered_aops;
  3054. break;
  3055. case EXT4_INODE_WRITEBACK_DATA_MODE:
  3056. if (test_opt(inode->i_sb, DELALLOC))
  3057. inode->i_mapping->a_ops = &ext4_da_aops;
  3058. else
  3059. inode->i_mapping->a_ops = &ext4_writeback_aops;
  3060. break;
  3061. case EXT4_INODE_JOURNAL_DATA_MODE:
  3062. inode->i_mapping->a_ops = &ext4_journalled_aops;
  3063. break;
  3064. default:
  3065. BUG();
  3066. }
  3067. }
  3068. /*
  3069. * ext4_discard_partial_page_buffers()
  3070. * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
  3071. * This function finds and locks the page containing the offset
  3072. * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
  3073. * Calling functions that already have the page locked should call
  3074. * ext4_discard_partial_page_buffers_no_lock directly.
  3075. */
  3076. int ext4_discard_partial_page_buffers(handle_t *handle,
  3077. struct address_space *mapping, loff_t from,
  3078. loff_t length, int flags)
  3079. {
  3080. struct inode *inode = mapping->host;
  3081. struct page *page;
  3082. int err = 0;
  3083. page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
  3084. mapping_gfp_mask(mapping) & ~__GFP_FS);
  3085. if (!page)
  3086. return -ENOMEM;
  3087. err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
  3088. from, length, flags);
  3089. unlock_page(page);
  3090. page_cache_release(page);
  3091. return err;
  3092. }
  3093. /*
  3094. * ext4_discard_partial_page_buffers_no_lock()
  3095. * Zeros a page range of length 'length' starting from offset 'from'.
  3096. * Buffer heads that correspond to the block aligned regions of the
  3097. * zeroed range will be unmapped. Unblock aligned regions
  3098. * will have the corresponding buffer head mapped if needed so that
  3099. * that region of the page can be updated with the partial zero out.
  3100. *
  3101. * This function assumes that the page has already been locked. The
  3102. * The range to be discarded must be contained with in the given page.
  3103. * If the specified range exceeds the end of the page it will be shortened
  3104. * to the end of the page that corresponds to 'from'. This function is
  3105. * appropriate for updating a page and it buffer heads to be unmapped and
  3106. * zeroed for blocks that have been either released, or are going to be
  3107. * released.
  3108. *
  3109. * handle: The journal handle
  3110. * inode: The files inode
  3111. * page: A locked page that contains the offset "from"
  3112. * from: The starting byte offset (from the beginning of the file)
  3113. * to begin discarding
  3114. * len: The length of bytes to discard
  3115. * flags: Optional flags that may be used:
  3116. *
  3117. * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
  3118. * Only zero the regions of the page whose buffer heads
  3119. * have already been unmapped. This flag is appropriate
  3120. * for updating the contents of a page whose blocks may
  3121. * have already been released, and we only want to zero
  3122. * out the regions that correspond to those released blocks.
  3123. *
  3124. * Returns zero on success or negative on failure.
  3125. */
  3126. static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
  3127. struct inode *inode, struct page *page, loff_t from,
  3128. loff_t length, int flags)
  3129. {
  3130. ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
  3131. unsigned int offset = from & (PAGE_CACHE_SIZE-1);
  3132. unsigned int blocksize, max, pos;
  3133. ext4_lblk_t iblock;
  3134. struct buffer_head *bh;
  3135. int err = 0;
  3136. blocksize = inode->i_sb->s_blocksize;
  3137. max = PAGE_CACHE_SIZE - offset;
  3138. if (index != page->index)
  3139. return -EINVAL;
  3140. /*
  3141. * correct length if it does not fall between
  3142. * 'from' and the end of the page
  3143. */
  3144. if (length > max || length < 0)
  3145. length = max;
  3146. iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
  3147. if (!page_has_buffers(page))
  3148. create_empty_buffers(page, blocksize, 0);
  3149. /* Find the buffer that contains "offset" */
  3150. bh = page_buffers(page);
  3151. pos = blocksize;
  3152. while (offset >= pos) {
  3153. bh = bh->b_this_page;
  3154. iblock++;
  3155. pos += blocksize;
  3156. }
  3157. pos = offset;
  3158. while (pos < offset + length) {
  3159. unsigned int end_of_block, range_to_discard;
  3160. err = 0;
  3161. /* The length of space left to zero and unmap */
  3162. range_to_discard = offset + length - pos;
  3163. /* The length of space until the end of the block */
  3164. end_of_block = blocksize - (pos & (blocksize-1));
  3165. /*
  3166. * Do not unmap or zero past end of block
  3167. * for this buffer head
  3168. */
  3169. if (range_to_discard > end_of_block)
  3170. range_to_discard = end_of_block;
  3171. /*
  3172. * Skip this buffer head if we are only zeroing unampped
  3173. * regions of the page
  3174. */
  3175. if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
  3176. buffer_mapped(bh))
  3177. goto next;
  3178. /* If the range is block aligned, unmap */
  3179. if (range_to_discard == blocksize) {
  3180. clear_buffer_dirty(bh);
  3181. bh->b_bdev = NULL;
  3182. clear_buffer_mapped(bh);
  3183. clear_buffer_req(bh);
  3184. clear_buffer_new(bh);
  3185. clear_buffer_delay(bh);
  3186. clear_buffer_unwritten(bh);
  3187. clear_buffer_uptodate(bh);
  3188. zero_user(page, pos, range_to_discard);
  3189. BUFFER_TRACE(bh, "Buffer discarded");
  3190. goto next;
  3191. }
  3192. /*
  3193. * If this block is not completely contained in the range
  3194. * to be discarded, then it is not going to be released. Because
  3195. * we need to keep this block, we need to make sure this part
  3196. * of the page is uptodate before we modify it by writeing
  3197. * partial zeros on it.
  3198. */
  3199. if (!buffer_mapped(bh)) {
  3200. /*
  3201. * Buffer head must be mapped before we can read
  3202. * from the block
  3203. */
  3204. BUFFER_TRACE(bh, "unmapped");
  3205. ext4_get_block(inode, iblock, bh, 0);
  3206. /* unmapped? It's a hole - nothing to do */
  3207. if (!buffer_mapped(bh)) {
  3208. BUFFER_TRACE(bh, "still unmapped");
  3209. goto next;
  3210. }
  3211. }
  3212. /* Ok, it's mapped. Make sure it's up-to-date */
  3213. if (PageUptodate(page))
  3214. set_buffer_uptodate(bh);
  3215. if (!buffer_uptodate(bh)) {
  3216. err = -EIO;
  3217. ll_rw_block(READ, 1, &bh);
  3218. wait_on_buffer(bh);
  3219. /* Uhhuh. Read error. Complain and punt.*/
  3220. if (!buffer_uptodate(bh))
  3221. goto next;
  3222. }
  3223. if (ext4_should_journal_data(inode)) {
  3224. BUFFER_TRACE(bh, "get write access");
  3225. err = ext4_journal_get_write_access(handle, bh);
  3226. if (err)
  3227. goto next;
  3228. }
  3229. zero_user(page, pos, range_to_discard);
  3230. err = 0;
  3231. if (ext4_should_journal_data(inode)) {
  3232. err = ext4_handle_dirty_metadata(handle, inode, bh);
  3233. } else
  3234. mark_buffer_dirty(bh);
  3235. BUFFER_TRACE(bh, "Partial buffer zeroed");
  3236. next:
  3237. bh = bh->b_this_page;
  3238. iblock++;
  3239. pos += range_to_discard;
  3240. }
  3241. return err;
  3242. }
  3243. int ext4_can_truncate(struct inode *inode)
  3244. {
  3245. if (S_ISREG(inode->i_mode))
  3246. return 1;
  3247. if (S_ISDIR(inode->i_mode))
  3248. return 1;
  3249. if (S_ISLNK(inode->i_mode))
  3250. return !ext4_inode_is_fast_symlink(inode);
  3251. return 0;
  3252. }
  3253. /*
  3254. * ext4_punch_hole: punches a hole in a file by releaseing the blocks
  3255. * associated with the given offset and length
  3256. *
  3257. * @inode: File inode
  3258. * @offset: The offset where the hole will begin
  3259. * @len: The length of the hole
  3260. *
  3261. * Returns: 0 on success or negative on failure
  3262. */
  3263. int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
  3264. {
  3265. struct inode *inode = file->f_path.dentry->d_inode;
  3266. if (!S_ISREG(inode->i_mode))
  3267. return -EOPNOTSUPP;
  3268. if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
  3269. return ext4_ind_punch_hole(file, offset, length);
  3270. if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
  3271. /* TODO: Add support for bigalloc file systems */
  3272. return -EOPNOTSUPP;
  3273. }
  3274. trace_ext4_punch_hole(inode, offset, length);
  3275. return ext4_ext_punch_hole(file, offset, length);
  3276. }
  3277. /*
  3278. * ext4_truncate()
  3279. *
  3280. * We block out ext4_get_block() block instantiations across the entire
  3281. * transaction, and VFS/VM ensures that ext4_truncate() cannot run
  3282. * simultaneously on behalf of the same inode.
  3283. *
  3284. * As we work through the truncate and commit bits of it to the journal there
  3285. * is one core, guiding principle: the file's tree must always be consistent on
  3286. * disk. We must be able to restart the truncate after a crash.
  3287. *
  3288. * The file's tree may be transiently inconsistent in memory (although it
  3289. * probably isn't), but whenever we close off and commit a journal transaction,
  3290. * the contents of (the filesystem + the journal) must be consistent and
  3291. * restartable. It's pretty simple, really: bottom up, right to left (although
  3292. * left-to-right works OK too).
  3293. *
  3294. * Note that at recovery time, journal replay occurs *before* the restart of
  3295. * truncate against the orphan inode list.
  3296. *
  3297. * The committed inode has the new, desired i_size (which is the same as
  3298. * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
  3299. * that this inode's truncate did not complete and it will again call
  3300. * ext4_truncate() to have another go. So there will be instantiated blocks
  3301. * to the right of the truncation point in a crashed ext4 filesystem. But
  3302. * that's fine - as long as they are linked from the inode, the post-crash
  3303. * ext4_truncate() run will find them and release them.
  3304. */
  3305. void ext4_truncate(struct inode *inode)
  3306. {
  3307. trace_ext4_truncate_enter(inode);
  3308. if (!ext4_can_truncate(inode))
  3309. return;
  3310. ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
  3311. if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
  3312. ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
  3313. if (ext4_has_inline_data(inode)) {
  3314. int has_inline = 1;
  3315. ext4_inline_data_truncate(inode, &has_inline);
  3316. if (has_inline)
  3317. return;
  3318. }
  3319. if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
  3320. ext4_ext_truncate(inode);
  3321. else
  3322. ext4_ind_truncate(inode);
  3323. trace_ext4_truncate_exit(inode);
  3324. }
  3325. /*
  3326. * ext4_get_inode_loc returns with an extra refcount against the inode's
  3327. * underlying buffer_head on success. If 'in_mem' is true, we have all
  3328. * data in memory that is needed to recreate the on-disk version of this
  3329. * inode.
  3330. */
  3331. static int __ext4_get_inode_loc(struct inode *inode,
  3332. struct ext4_iloc *iloc, int in_mem)
  3333. {
  3334. struct ext4_group_desc *gdp;
  3335. struct buffer_head *bh;
  3336. struct super_block *sb = inode->i_sb;
  3337. ext4_fsblk_t block;
  3338. int inodes_per_block, inode_offset;
  3339. iloc->bh = NULL;
  3340. if (!ext4_valid_inum(sb, inode->i_ino))
  3341. return -EIO;
  3342. iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
  3343. gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
  3344. if (!gdp)
  3345. return -EIO;
  3346. /*
  3347. * Figure out the offset within the block group inode table
  3348. */
  3349. inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
  3350. inode_offset = ((inode->i_ino - 1) %
  3351. EXT4_INODES_PER_GROUP(sb));
  3352. block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
  3353. iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
  3354. bh = sb_getblk(sb, block);
  3355. if (unlikely(!bh))
  3356. return -ENOMEM;
  3357. if (!buffer_uptodate(bh)) {
  3358. lock_buffer(bh);
  3359. /*
  3360. * If the buffer has the write error flag, we have failed
  3361. * to write out another inode in the same block. In this
  3362. * case, we don't have to read the block because we may
  3363. * read the old inode data successfully.
  3364. */
  3365. if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
  3366. set_buffer_uptodate(bh);
  3367. if (buffer_uptodate(bh)) {
  3368. /* someone brought it uptodate while we waited */
  3369. unlock_buffer(bh);
  3370. goto has_buffer;
  3371. }
  3372. /*
  3373. * If we have all information of the inode in memory and this
  3374. * is the only valid inode in the block, we need not read the
  3375. * block.
  3376. */
  3377. if (in_mem) {
  3378. struct buffer_head *bitmap_bh;
  3379. int i, start;
  3380. start = inode_offset & ~(inodes_per_block - 1);
  3381. /* Is the inode bitmap in cache? */
  3382. bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
  3383. if (unlikely(!bitmap_bh))
  3384. goto make_io;
  3385. /*
  3386. * If the inode bitmap isn't in cache then the
  3387. * optimisation may end up performing two reads instead
  3388. * of one, so skip it.
  3389. */
  3390. if (!buffer_uptodate(bitmap_bh)) {
  3391. brelse(bitmap_bh);
  3392. goto make_io;
  3393. }
  3394. for (i = start; i < start + inodes_per_block; i++) {
  3395. if (i == inode_offset)
  3396. continue;
  3397. if (ext4_test_bit(i, bitmap_bh->b_data))
  3398. break;
  3399. }
  3400. brelse(bitmap_bh);
  3401. if (i == start + inodes_per_block) {
  3402. /* all other inodes are free, so skip I/O */
  3403. memset(bh->b_data, 0, bh->b_size);
  3404. set_buffer_uptodate(bh);
  3405. unlock_buffer(bh);
  3406. goto has_buffer;
  3407. }
  3408. }
  3409. make_io:
  3410. /*
  3411. * If we need to do any I/O, try to pre-readahead extra
  3412. * blocks from the inode table.
  3413. */
  3414. if (EXT4_SB(sb)->s_inode_readahead_blks) {
  3415. ext4_fsblk_t b, end, table;
  3416. unsigned num;
  3417. table = ext4_inode_table(sb, gdp);
  3418. /* s_inode_readahead_blks is always a power of 2 */
  3419. b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
  3420. if (table > b)
  3421. b = table;
  3422. end = b + EXT4_SB(sb)->s_inode_readahead_blks;
  3423. num = EXT4_INODES_PER_GROUP(sb);
  3424. if (ext4_has_group_desc_csum(sb))
  3425. num -= ext4_itable_unused_count(sb, gdp);
  3426. table += num / inodes_per_block;
  3427. if (end > table)
  3428. end = table;
  3429. while (b <= end)
  3430. sb_breadahead(sb, b++);
  3431. }
  3432. /*
  3433. * There are other valid inodes in the buffer, this inode
  3434. * has in-inode xattrs, or we don't have this inode in memory.
  3435. * Read the block from disk.
  3436. */
  3437. trace_ext4_load_inode(inode);
  3438. get_bh(bh);
  3439. bh->b_end_io = end_buffer_read_sync;
  3440. submit_bh(READ | REQ_META | REQ_PRIO, bh);
  3441. wait_on_buffer(bh);
  3442. if (!buffer_uptodate(bh)) {
  3443. EXT4_ERROR_INODE_BLOCK(inode, block,
  3444. "unable to read itable block");
  3445. brelse(bh);
  3446. return -EIO;
  3447. }
  3448. }
  3449. has_buffer:
  3450. iloc->bh = bh;
  3451. return 0;
  3452. }
  3453. int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
  3454. {
  3455. /* We have all inode data except xattrs in memory here. */
  3456. return __ext4_get_inode_loc(inode, iloc,
  3457. !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
  3458. }
  3459. void ext4_set_inode_flags(struct inode *inode)
  3460. {
  3461. unsigned int flags = EXT4_I(inode)->i_flags;
  3462. inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
  3463. if (flags & EXT4_SYNC_FL)
  3464. inode->i_flags |= S_SYNC;
  3465. if (flags & EXT4_APPEND_FL)
  3466. inode->i_flags |= S_APPEND;
  3467. if (flags & EXT4_IMMUTABLE_FL)
  3468. inode->i_flags |= S_IMMUTABLE;
  3469. if (flags & EXT4_NOATIME_FL)
  3470. inode->i_flags |= S_NOATIME;
  3471. if (flags & EXT4_DIRSYNC_FL)
  3472. inode->i_flags |= S_DIRSYNC;
  3473. }
  3474. /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
  3475. void ext4_get_inode_flags(struct ext4_inode_info *ei)
  3476. {
  3477. unsigned int vfs_fl;
  3478. unsigned long old_fl, new_fl;
  3479. do {
  3480. vfs_fl = ei->vfs_inode.i_flags;
  3481. old_fl = ei->i_flags;
  3482. new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
  3483. EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
  3484. EXT4_DIRSYNC_FL);
  3485. if (vfs_fl & S_SYNC)
  3486. new_fl |= EXT4_SYNC_FL;
  3487. if (vfs_fl & S_APPEND)
  3488. new_fl |= EXT4_APPEND_FL;
  3489. if (vfs_fl & S_IMMUTABLE)
  3490. new_fl |= EXT4_IMMUTABLE_FL;
  3491. if (vfs_fl & S_NOATIME)
  3492. new_fl |= EXT4_NOATIME_FL;
  3493. if (vfs_fl & S_DIRSYNC)
  3494. new_fl |= EXT4_DIRSYNC_FL;
  3495. } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
  3496. }
  3497. static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
  3498. struct ext4_inode_info *ei)
  3499. {
  3500. blkcnt_t i_blocks ;
  3501. struct inode *inode = &(ei->vfs_inode);
  3502. struct super_block *sb = inode->i_sb;
  3503. if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
  3504. EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
  3505. /* we are using combined 48 bit field */
  3506. i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
  3507. le32_to_cpu(raw_inode->i_blocks_lo);
  3508. if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
  3509. /* i_blocks represent file system block size */
  3510. return i_blocks << (inode->i_blkbits - 9);
  3511. } else {
  3512. return i_blocks;
  3513. }
  3514. } else {
  3515. return le32_to_cpu(raw_inode->i_blocks_lo);
  3516. }
  3517. }
  3518. static inline void ext4_iget_extra_inode(struct inode *inode,
  3519. struct ext4_inode *raw_inode,
  3520. struct ext4_inode_info *ei)
  3521. {
  3522. __le32 *magic = (void *)raw_inode +
  3523. EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
  3524. if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
  3525. ext4_set_inode_state(inode, EXT4_STATE_XATTR);
  3526. ext4_find_inline_data_nolock(inode);
  3527. } else
  3528. EXT4_I(inode)->i_inline_off = 0;
  3529. }
  3530. struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
  3531. {
  3532. struct ext4_iloc iloc;
  3533. struct ext4_inode *raw_inode;
  3534. struct ext4_inode_info *ei;
  3535. struct inode *inode;
  3536. journal_t *journal = EXT4_SB(sb)->s_journal;
  3537. long ret;
  3538. int block;
  3539. uid_t i_uid;
  3540. gid_t i_gid;
  3541. inode = iget_locked(sb, ino);
  3542. if (!inode)
  3543. return ERR_PTR(-ENOMEM);
  3544. if (!(inode->i_state & I_NEW))
  3545. return inode;
  3546. ei = EXT4_I(inode);
  3547. iloc.bh = NULL;
  3548. ret = __ext4_get_inode_loc(inode, &iloc, 0);
  3549. if (ret < 0)
  3550. goto bad_inode;
  3551. raw_inode = ext4_raw_inode(&iloc);
  3552. if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
  3553. ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
  3554. if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
  3555. EXT4_INODE_SIZE(inode->i_sb)) {
  3556. EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
  3557. EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
  3558. EXT4_INODE_SIZE(inode->i_sb));
  3559. ret = -EIO;
  3560. goto bad_inode;
  3561. }
  3562. } else
  3563. ei->i_extra_isize = 0;
  3564. /* Precompute checksum seed for inode metadata */
  3565. if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
  3566. EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
  3567. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  3568. __u32 csum;
  3569. __le32 inum = cpu_to_le32(inode->i_ino);
  3570. __le32 gen = raw_inode->i_generation;
  3571. csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
  3572. sizeof(inum));
  3573. ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
  3574. sizeof(gen));
  3575. }
  3576. if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
  3577. EXT4_ERROR_INODE(inode, "checksum invalid");
  3578. ret = -EIO;
  3579. goto bad_inode;
  3580. }
  3581. inode->i_mode = le16_to_cpu(raw_inode->i_mode);
  3582. i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
  3583. i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
  3584. if (!(test_opt(inode->i_sb, NO_UID32))) {
  3585. i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
  3586. i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
  3587. }
  3588. i_uid_write(inode, i_uid);
  3589. i_gid_write(inode, i_gid);
  3590. set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
  3591. ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
  3592. ei->i_inline_off = 0;
  3593. ei->i_dir_start_lookup = 0;
  3594. ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
  3595. /* We now have enough fields to check if the inode was active or not.
  3596. * This is needed because nfsd might try to access dead inodes
  3597. * the test is that same one that e2fsck uses
  3598. * NeilBrown 1999oct15
  3599. */
  3600. if (inode->i_nlink == 0) {
  3601. if (inode->i_mode == 0 ||
  3602. !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
  3603. /* this inode is deleted */
  3604. ret = -ESTALE;
  3605. goto bad_inode;
  3606. }
  3607. /* The only unlinked inodes we let through here have
  3608. * valid i_mode and are being read by the orphan
  3609. * recovery code: that's fine, we're about to complete
  3610. * the process of deleting those. */
  3611. }
  3612. ei->i_flags = le32_to_cpu(raw_inode->i_flags);
  3613. inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
  3614. ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
  3615. if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
  3616. ei->i_file_acl |=
  3617. ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
  3618. inode->i_size = ext4_isize(raw_inode);
  3619. ei->i_disksize = inode->i_size;
  3620. #ifdef CONFIG_QUOTA
  3621. ei->i_reserved_quota = 0;
  3622. #endif
  3623. inode->i_generation = le32_to_cpu(raw_inode->i_generation);
  3624. ei->i_block_group = iloc.block_group;
  3625. ei->i_last_alloc_group = ~0;
  3626. /*
  3627. * NOTE! The in-memory inode i_data array is in little-endian order
  3628. * even on big-endian machines: we do NOT byteswap the block numbers!
  3629. */
  3630. for (block = 0; block < EXT4_N_BLOCKS; block++)
  3631. ei->i_data[block] = raw_inode->i_block[block];
  3632. INIT_LIST_HEAD(&ei->i_orphan);
  3633. /*
  3634. * Set transaction id's of transactions that have to be committed
  3635. * to finish f[data]sync. We set them to currently running transaction
  3636. * as we cannot be sure that the inode or some of its metadata isn't
  3637. * part of the transaction - the inode could have been reclaimed and
  3638. * now it is reread from disk.
  3639. */
  3640. if (journal) {
  3641. transaction_t *transaction;
  3642. tid_t tid;
  3643. read_lock(&journal->j_state_lock);
  3644. if (journal->j_running_transaction)
  3645. transaction = journal->j_running_transaction;
  3646. else
  3647. transaction = journal->j_committing_transaction;
  3648. if (transaction)
  3649. tid = transaction->t_tid;
  3650. else
  3651. tid = journal->j_commit_sequence;
  3652. read_unlock(&journal->j_state_lock);
  3653. ei->i_sync_tid = tid;
  3654. ei->i_datasync_tid = tid;
  3655. }
  3656. if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
  3657. if (ei->i_extra_isize == 0) {
  3658. /* The extra space is currently unused. Use it. */
  3659. ei->i_extra_isize = sizeof(struct ext4_inode) -
  3660. EXT4_GOOD_OLD_INODE_SIZE;
  3661. } else {
  3662. ext4_iget_extra_inode(inode, raw_inode, ei);
  3663. }
  3664. }
  3665. EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
  3666. EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
  3667. EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
  3668. EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
  3669. inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
  3670. if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
  3671. if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
  3672. inode->i_version |=
  3673. (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
  3674. }
  3675. ret = 0;
  3676. if (ei->i_file_acl &&
  3677. !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
  3678. EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
  3679. ei->i_file_acl);
  3680. ret = -EIO;
  3681. goto bad_inode;
  3682. } else if (!ext4_has_inline_data(inode)) {
  3683. if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
  3684. if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
  3685. (S_ISLNK(inode->i_mode) &&
  3686. !ext4_inode_is_fast_symlink(inode))))
  3687. /* Validate extent which is part of inode */
  3688. ret = ext4_ext_check_inode(inode);
  3689. } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
  3690. (S_ISLNK(inode->i_mode) &&
  3691. !ext4_inode_is_fast_symlink(inode))) {
  3692. /* Validate block references which are part of inode */
  3693. ret = ext4_ind_check_inode(inode);
  3694. }
  3695. }
  3696. if (ret)
  3697. goto bad_inode;
  3698. if (S_ISREG(inode->i_mode)) {
  3699. inode->i_op = &ext4_file_inode_operations;
  3700. inode->i_fop = &ext4_file_operations;
  3701. ext4_set_aops(inode);
  3702. } else if (S_ISDIR(inode->i_mode)) {
  3703. inode->i_op = &ext4_dir_inode_operations;
  3704. inode->i_fop = &ext4_dir_operations;
  3705. } else if (S_ISLNK(inode->i_mode)) {
  3706. if (ext4_inode_is_fast_symlink(inode)) {
  3707. inode->i_op = &ext4_fast_symlink_inode_operations;
  3708. nd_terminate_link(ei->i_data, inode->i_size,
  3709. sizeof(ei->i_data) - 1);
  3710. } else {
  3711. inode->i_op = &ext4_symlink_inode_operations;
  3712. ext4_set_aops(inode);
  3713. }
  3714. } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
  3715. S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
  3716. inode->i_op = &ext4_special_inode_operations;
  3717. if (raw_inode->i_block[0])
  3718. init_special_inode(inode, inode->i_mode,
  3719. old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
  3720. else
  3721. init_special_inode(inode, inode->i_mode,
  3722. new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
  3723. } else {
  3724. ret = -EIO;
  3725. EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
  3726. goto bad_inode;
  3727. }
  3728. brelse(iloc.bh);
  3729. ext4_set_inode_flags(inode);
  3730. unlock_new_inode(inode);
  3731. return inode;
  3732. bad_inode:
  3733. brelse(iloc.bh);
  3734. iget_failed(inode);
  3735. return ERR_PTR(ret);
  3736. }
  3737. static int ext4_inode_blocks_set(handle_t *handle,
  3738. struct ext4_inode *raw_inode,
  3739. struct ext4_inode_info *ei)
  3740. {
  3741. struct inode *inode = &(ei->vfs_inode);
  3742. u64 i_blocks = inode->i_blocks;
  3743. struct super_block *sb = inode->i_sb;
  3744. if (i_blocks <= ~0U) {
  3745. /*
  3746. * i_blocks can be represented in a 32 bit variable
  3747. * as multiple of 512 bytes
  3748. */
  3749. raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
  3750. raw_inode->i_blocks_high = 0;
  3751. ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
  3752. return 0;
  3753. }
  3754. if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
  3755. return -EFBIG;
  3756. if (i_blocks <= 0xffffffffffffULL) {
  3757. /*
  3758. * i_blocks can be represented in a 48 bit variable
  3759. * as multiple of 512 bytes
  3760. */
  3761. raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
  3762. raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
  3763. ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
  3764. } else {
  3765. ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
  3766. /* i_block is stored in file system block size */
  3767. i_blocks = i_blocks >> (inode->i_blkbits - 9);
  3768. raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
  3769. raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
  3770. }
  3771. return 0;
  3772. }
  3773. /*
  3774. * Post the struct inode info into an on-disk inode location in the
  3775. * buffer-cache. This gobbles the caller's reference to the
  3776. * buffer_head in the inode location struct.
  3777. *
  3778. * The caller must have write access to iloc->bh.
  3779. */
  3780. static int ext4_do_update_inode(handle_t *handle,
  3781. struct inode *inode,
  3782. struct ext4_iloc *iloc)
  3783. {
  3784. struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
  3785. struct ext4_inode_info *ei = EXT4_I(inode);
  3786. struct buffer_head *bh = iloc->bh;
  3787. int err = 0, rc, block;
  3788. int need_datasync = 0;
  3789. uid_t i_uid;
  3790. gid_t i_gid;
  3791. /* For fields not not tracking in the in-memory inode,
  3792. * initialise them to zero for new inodes. */
  3793. if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
  3794. memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
  3795. ext4_get_inode_flags(ei);
  3796. raw_inode->i_mode = cpu_to_le16(inode->i_mode);
  3797. i_uid = i_uid_read(inode);
  3798. i_gid = i_gid_read(inode);
  3799. if (!(test_opt(inode->i_sb, NO_UID32))) {
  3800. raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
  3801. raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
  3802. /*
  3803. * Fix up interoperability with old kernels. Otherwise, old inodes get
  3804. * re-used with the upper 16 bits of the uid/gid intact
  3805. */
  3806. if (!ei->i_dtime) {
  3807. raw_inode->i_uid_high =
  3808. cpu_to_le16(high_16_bits(i_uid));
  3809. raw_inode->i_gid_high =
  3810. cpu_to_le16(high_16_bits(i_gid));
  3811. } else {
  3812. raw_inode->i_uid_high = 0;
  3813. raw_inode->i_gid_high = 0;
  3814. }
  3815. } else {
  3816. raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
  3817. raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
  3818. raw_inode->i_uid_high = 0;
  3819. raw_inode->i_gid_high = 0;
  3820. }
  3821. raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
  3822. EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
  3823. EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
  3824. EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
  3825. EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
  3826. if (ext4_inode_blocks_set(handle, raw_inode, ei))
  3827. goto out_brelse;
  3828. raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
  3829. raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
  3830. if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
  3831. cpu_to_le32(EXT4_OS_HURD))
  3832. raw_inode->i_file_acl_high =
  3833. cpu_to_le16(ei->i_file_acl >> 32);
  3834. raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
  3835. if (ei->i_disksize != ext4_isize(raw_inode)) {
  3836. ext4_isize_set(raw_inode, ei->i_disksize);
  3837. need_datasync = 1;
  3838. }
  3839. if (ei->i_disksize > 0x7fffffffULL) {
  3840. struct super_block *sb = inode->i_sb;
  3841. if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
  3842. EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
  3843. EXT4_SB(sb)->s_es->s_rev_level ==
  3844. cpu_to_le32(EXT4_GOOD_OLD_REV)) {
  3845. /* If this is the first large file
  3846. * created, add a flag to the superblock.
  3847. */
  3848. err = ext4_journal_get_write_access(handle,
  3849. EXT4_SB(sb)->s_sbh);
  3850. if (err)
  3851. goto out_brelse;
  3852. ext4_update_dynamic_rev(sb);
  3853. EXT4_SET_RO_COMPAT_FEATURE(sb,
  3854. EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
  3855. ext4_handle_sync(handle);
  3856. err = ext4_handle_dirty_super(handle, sb);
  3857. }
  3858. }
  3859. raw_inode->i_generation = cpu_to_le32(inode->i_generation);
  3860. if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
  3861. if (old_valid_dev(inode->i_rdev)) {
  3862. raw_inode->i_block[0] =
  3863. cpu_to_le32(old_encode_dev(inode->i_rdev));
  3864. raw_inode->i_block[1] = 0;
  3865. } else {
  3866. raw_inode->i_block[0] = 0;
  3867. raw_inode->i_block[1] =
  3868. cpu_to_le32(new_encode_dev(inode->i_rdev));
  3869. raw_inode->i_block[2] = 0;
  3870. }
  3871. } else if (!ext4_has_inline_data(inode)) {
  3872. for (block = 0; block < EXT4_N_BLOCKS; block++)
  3873. raw_inode->i_block[block] = ei->i_data[block];
  3874. }
  3875. raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
  3876. if (ei->i_extra_isize) {
  3877. if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
  3878. raw_inode->i_version_hi =
  3879. cpu_to_le32(inode->i_version >> 32);
  3880. raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
  3881. }
  3882. ext4_inode_csum_set(inode, raw_inode, ei);
  3883. BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
  3884. rc = ext4_handle_dirty_metadata(handle, NULL, bh);
  3885. if (!err)
  3886. err = rc;
  3887. ext4_clear_inode_state(inode, EXT4_STATE_NEW);
  3888. ext4_update_inode_fsync_trans(handle, inode, need_datasync);
  3889. out_brelse:
  3890. brelse(bh);
  3891. ext4_std_error(inode->i_sb, err);
  3892. return err;
  3893. }
  3894. /*
  3895. * ext4_write_inode()
  3896. *
  3897. * We are called from a few places:
  3898. *
  3899. * - Within generic_file_write() for O_SYNC files.
  3900. * Here, there will be no transaction running. We wait for any running
  3901. * transaction to commit.
  3902. *
  3903. * - Within sys_sync(), kupdate and such.
  3904. * We wait on commit, if tol to.
  3905. *
  3906. * - Within prune_icache() (PF_MEMALLOC == true)
  3907. * Here we simply return. We can't afford to block kswapd on the
  3908. * journal commit.
  3909. *
  3910. * In all cases it is actually safe for us to return without doing anything,
  3911. * because the inode has been copied into a raw inode buffer in
  3912. * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
  3913. * knfsd.
  3914. *
  3915. * Note that we are absolutely dependent upon all inode dirtiers doing the
  3916. * right thing: they *must* call mark_inode_dirty() after dirtying info in
  3917. * which we are interested.
  3918. *
  3919. * It would be a bug for them to not do this. The code:
  3920. *
  3921. * mark_inode_dirty(inode)
  3922. * stuff();
  3923. * inode->i_size = expr;
  3924. *
  3925. * is in error because a kswapd-driven write_inode() could occur while
  3926. * `stuff()' is running, and the new i_size will be lost. Plus the inode
  3927. * will no longer be on the superblock's dirty inode list.
  3928. */
  3929. int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
  3930. {
  3931. int err;
  3932. if (current->flags & PF_MEMALLOC)
  3933. return 0;
  3934. if (EXT4_SB(inode->i_sb)->s_journal) {
  3935. if (ext4_journal_current_handle()) {
  3936. jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
  3937. dump_stack();
  3938. return -EIO;
  3939. }
  3940. if (wbc->sync_mode != WB_SYNC_ALL)
  3941. return 0;
  3942. err = ext4_force_commit(inode->i_sb);
  3943. } else {
  3944. struct ext4_iloc iloc;
  3945. err = __ext4_get_inode_loc(inode, &iloc, 0);
  3946. if (err)
  3947. return err;
  3948. if (wbc->sync_mode == WB_SYNC_ALL)
  3949. sync_dirty_buffer(iloc.bh);
  3950. if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
  3951. EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
  3952. "IO error syncing inode");
  3953. err = -EIO;
  3954. }
  3955. brelse(iloc.bh);
  3956. }
  3957. return err;
  3958. }
  3959. /*
  3960. * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
  3961. * buffers that are attached to a page stradding i_size and are undergoing
  3962. * commit. In that case we have to wait for commit to finish and try again.
  3963. */
  3964. static void ext4_wait_for_tail_page_commit(struct inode *inode)
  3965. {
  3966. struct page *page;
  3967. unsigned offset;
  3968. journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
  3969. tid_t commit_tid = 0;
  3970. int ret;
  3971. offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
  3972. /*
  3973. * All buffers in the last page remain valid? Then there's nothing to
  3974. * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
  3975. * blocksize case
  3976. */
  3977. if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
  3978. return;
  3979. while (1) {
  3980. page = find_lock_page(inode->i_mapping,
  3981. inode->i_size >> PAGE_CACHE_SHIFT);
  3982. if (!page)
  3983. return;
  3984. ret = __ext4_journalled_invalidatepage(page, offset);
  3985. unlock_page(page);
  3986. page_cache_release(page);
  3987. if (ret != -EBUSY)
  3988. return;
  3989. commit_tid = 0;
  3990. read_lock(&journal->j_state_lock);
  3991. if (journal->j_committing_transaction)
  3992. commit_tid = journal->j_committing_transaction->t_tid;
  3993. read_unlock(&journal->j_state_lock);
  3994. if (commit_tid)
  3995. jbd2_log_wait_commit(journal, commit_tid);
  3996. }
  3997. }
  3998. /*
  3999. * ext4_setattr()
  4000. *
  4001. * Called from notify_change.
  4002. *
  4003. * We want to trap VFS attempts to truncate the file as soon as
  4004. * possible. In particular, we want to make sure that when the VFS
  4005. * shrinks i_size, we put the inode on the orphan list and modify
  4006. * i_disksize immediately, so that during the subsequent flushing of
  4007. * dirty pages and freeing of disk blocks, we can guarantee that any
  4008. * commit will leave the blocks being flushed in an unused state on
  4009. * disk. (On recovery, the inode will get truncated and the blocks will
  4010. * be freed, so we have a strong guarantee that no future commit will
  4011. * leave these blocks visible to the user.)
  4012. *
  4013. * Another thing we have to assure is that if we are in ordered mode
  4014. * and inode is still attached to the committing transaction, we must
  4015. * we start writeout of all the dirty pages which are being truncated.
  4016. * This way we are sure that all the data written in the previous
  4017. * transaction are already on disk (truncate waits for pages under
  4018. * writeback).
  4019. *
  4020. * Called with inode->i_mutex down.
  4021. */
  4022. int ext4_setattr(struct dentry *dentry, struct iattr *attr)
  4023. {
  4024. struct inode *inode = dentry->d_inode;
  4025. int error, rc = 0;
  4026. int orphan = 0;
  4027. const unsigned int ia_valid = attr->ia_valid;
  4028. error = inode_change_ok(inode, attr);
  4029. if (error)
  4030. return error;
  4031. if (is_quota_modification(inode, attr))
  4032. dquot_initialize(inode);
  4033. if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
  4034. (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
  4035. handle_t *handle;
  4036. /* (user+group)*(old+new) structure, inode write (sb,
  4037. * inode block, ? - but truncate inode update has it) */
  4038. handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
  4039. (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
  4040. EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
  4041. if (IS_ERR(handle)) {
  4042. error = PTR_ERR(handle);
  4043. goto err_out;
  4044. }
  4045. error = dquot_transfer(inode, attr);
  4046. if (error) {
  4047. ext4_journal_stop(handle);
  4048. return error;
  4049. }
  4050. /* Update corresponding info in inode so that everything is in
  4051. * one transaction */
  4052. if (attr->ia_valid & ATTR_UID)
  4053. inode->i_uid = attr->ia_uid;
  4054. if (attr->ia_valid & ATTR_GID)
  4055. inode->i_gid = attr->ia_gid;
  4056. error = ext4_mark_inode_dirty(handle, inode);
  4057. ext4_journal_stop(handle);
  4058. }
  4059. if (attr->ia_valid & ATTR_SIZE) {
  4060. if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
  4061. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  4062. if (attr->ia_size > sbi->s_bitmap_maxbytes)
  4063. return -EFBIG;
  4064. }
  4065. }
  4066. if (S_ISREG(inode->i_mode) &&
  4067. attr->ia_valid & ATTR_SIZE &&
  4068. (attr->ia_size < inode->i_size)) {
  4069. handle_t *handle;
  4070. handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
  4071. if (IS_ERR(handle)) {
  4072. error = PTR_ERR(handle);
  4073. goto err_out;
  4074. }
  4075. if (ext4_handle_valid(handle)) {
  4076. error = ext4_orphan_add(handle, inode);
  4077. orphan = 1;
  4078. }
  4079. EXT4_I(inode)->i_disksize = attr->ia_size;
  4080. rc = ext4_mark_inode_dirty(handle, inode);
  4081. if (!error)
  4082. error = rc;
  4083. ext4_journal_stop(handle);
  4084. if (ext4_should_order_data(inode)) {
  4085. error = ext4_begin_ordered_truncate(inode,
  4086. attr->ia_size);
  4087. if (error) {
  4088. /* Do as much error cleanup as possible */
  4089. handle = ext4_journal_start(inode,
  4090. EXT4_HT_INODE, 3);
  4091. if (IS_ERR(handle)) {
  4092. ext4_orphan_del(NULL, inode);
  4093. goto err_out;
  4094. }
  4095. ext4_orphan_del(handle, inode);
  4096. orphan = 0;
  4097. ext4_journal_stop(handle);
  4098. goto err_out;
  4099. }
  4100. }
  4101. }
  4102. if (attr->ia_valid & ATTR_SIZE) {
  4103. if (attr->ia_size != inode->i_size) {
  4104. loff_t oldsize = inode->i_size;
  4105. i_size_write(inode, attr->ia_size);
  4106. /*
  4107. * Blocks are going to be removed from the inode. Wait
  4108. * for dio in flight. Temporarily disable
  4109. * dioread_nolock to prevent livelock.
  4110. */
  4111. if (orphan) {
  4112. if (!ext4_should_journal_data(inode)) {
  4113. ext4_inode_block_unlocked_dio(inode);
  4114. inode_dio_wait(inode);
  4115. ext4_inode_resume_unlocked_dio(inode);
  4116. } else
  4117. ext4_wait_for_tail_page_commit(inode);
  4118. }
  4119. /*
  4120. * Truncate pagecache after we've waited for commit
  4121. * in data=journal mode to make pages freeable.
  4122. */
  4123. truncate_pagecache(inode, oldsize, inode->i_size);
  4124. }
  4125. ext4_truncate(inode);
  4126. }
  4127. if (!rc) {
  4128. setattr_copy(inode, attr);
  4129. mark_inode_dirty(inode);
  4130. }
  4131. /*
  4132. * If the call to ext4_truncate failed to get a transaction handle at
  4133. * all, we need to clean up the in-core orphan list manually.
  4134. */
  4135. if (orphan && inode->i_nlink)
  4136. ext4_orphan_del(NULL, inode);
  4137. if (!rc && (ia_valid & ATTR_MODE))
  4138. rc = ext4_acl_chmod(inode);
  4139. err_out:
  4140. ext4_std_error(inode->i_sb, error);
  4141. if (!error)
  4142. error = rc;
  4143. return error;
  4144. }
  4145. int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
  4146. struct kstat *stat)
  4147. {
  4148. struct inode *inode;
  4149. unsigned long delalloc_blocks;
  4150. inode = dentry->d_inode;
  4151. generic_fillattr(inode, stat);
  4152. /*
  4153. * We can't update i_blocks if the block allocation is delayed
  4154. * otherwise in the case of system crash before the real block
  4155. * allocation is done, we will have i_blocks inconsistent with
  4156. * on-disk file blocks.
  4157. * We always keep i_blocks updated together with real
  4158. * allocation. But to not confuse with user, stat
  4159. * will return the blocks that include the delayed allocation
  4160. * blocks for this file.
  4161. */
  4162. delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
  4163. EXT4_I(inode)->i_reserved_data_blocks);
  4164. stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
  4165. return 0;
  4166. }
  4167. static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
  4168. {
  4169. if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
  4170. return ext4_ind_trans_blocks(inode, nrblocks, chunk);
  4171. return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
  4172. }
  4173. /*
  4174. * Account for index blocks, block groups bitmaps and block group
  4175. * descriptor blocks if modify datablocks and index blocks
  4176. * worse case, the indexs blocks spread over different block groups
  4177. *
  4178. * If datablocks are discontiguous, they are possible to spread over
  4179. * different block groups too. If they are contiguous, with flexbg,
  4180. * they could still across block group boundary.
  4181. *
  4182. * Also account for superblock, inode, quota and xattr blocks
  4183. */
  4184. static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
  4185. {
  4186. ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
  4187. int gdpblocks;
  4188. int idxblocks;
  4189. int ret = 0;
  4190. /*
  4191. * How many index blocks need to touch to modify nrblocks?
  4192. * The "Chunk" flag indicating whether the nrblocks is
  4193. * physically contiguous on disk
  4194. *
  4195. * For Direct IO and fallocate, they calls get_block to allocate
  4196. * one single extent at a time, so they could set the "Chunk" flag
  4197. */
  4198. idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
  4199. ret = idxblocks;
  4200. /*
  4201. * Now let's see how many group bitmaps and group descriptors need
  4202. * to account
  4203. */
  4204. groups = idxblocks;
  4205. if (chunk)
  4206. groups += 1;
  4207. else
  4208. groups += nrblocks;
  4209. gdpblocks = groups;
  4210. if (groups > ngroups)
  4211. groups = ngroups;
  4212. if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
  4213. gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
  4214. /* bitmaps and block group descriptor blocks */
  4215. ret += groups + gdpblocks;
  4216. /* Blocks for super block, inode, quota and xattr blocks */
  4217. ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
  4218. return ret;
  4219. }
  4220. /*
  4221. * Calculate the total number of credits to reserve to fit
  4222. * the modification of a single pages into a single transaction,
  4223. * which may include multiple chunks of block allocations.
  4224. *
  4225. * This could be called via ext4_write_begin()
  4226. *
  4227. * We need to consider the worse case, when
  4228. * one new block per extent.
  4229. */
  4230. int ext4_writepage_trans_blocks(struct inode *inode)
  4231. {
  4232. int bpp = ext4_journal_blocks_per_page(inode);
  4233. int ret;
  4234. ret = ext4_meta_trans_blocks(inode, bpp, 0);
  4235. /* Account for data blocks for journalled mode */
  4236. if (ext4_should_journal_data(inode))
  4237. ret += bpp;
  4238. return ret;
  4239. }
  4240. /*
  4241. * Calculate the journal credits for a chunk of data modification.
  4242. *
  4243. * This is called from DIO, fallocate or whoever calling
  4244. * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
  4245. *
  4246. * journal buffers for data blocks are not included here, as DIO
  4247. * and fallocate do no need to journal data buffers.
  4248. */
  4249. int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
  4250. {
  4251. return ext4_meta_trans_blocks(inode, nrblocks, 1);
  4252. }
  4253. /*
  4254. * The caller must have previously called ext4_reserve_inode_write().
  4255. * Give this, we know that the caller already has write access to iloc->bh.
  4256. */
  4257. int ext4_mark_iloc_dirty(handle_t *handle,
  4258. struct inode *inode, struct ext4_iloc *iloc)
  4259. {
  4260. int err = 0;
  4261. if (IS_I_VERSION(inode))
  4262. inode_inc_iversion(inode);
  4263. /* the do_update_inode consumes one bh->b_count */
  4264. get_bh(iloc->bh);
  4265. /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
  4266. err = ext4_do_update_inode(handle, inode, iloc);
  4267. put_bh(iloc->bh);
  4268. return err;
  4269. }
  4270. /*
  4271. * On success, We end up with an outstanding reference count against
  4272. * iloc->bh. This _must_ be cleaned up later.
  4273. */
  4274. int
  4275. ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
  4276. struct ext4_iloc *iloc)
  4277. {
  4278. int err;
  4279. err = ext4_get_inode_loc(inode, iloc);
  4280. if (!err) {
  4281. BUFFER_TRACE(iloc->bh, "get_write_access");
  4282. err = ext4_journal_get_write_access(handle, iloc->bh);
  4283. if (err) {
  4284. brelse(iloc->bh);
  4285. iloc->bh = NULL;
  4286. }
  4287. }
  4288. ext4_std_error(inode->i_sb, err);
  4289. return err;
  4290. }
  4291. /*
  4292. * Expand an inode by new_extra_isize bytes.
  4293. * Returns 0 on success or negative error number on failure.
  4294. */
  4295. static int ext4_expand_extra_isize(struct inode *inode,
  4296. unsigned int new_extra_isize,
  4297. struct ext4_iloc iloc,
  4298. handle_t *handle)
  4299. {
  4300. struct ext4_inode *raw_inode;
  4301. struct ext4_xattr_ibody_header *header;
  4302. if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
  4303. return 0;
  4304. raw_inode = ext4_raw_inode(&iloc);
  4305. header = IHDR(inode, raw_inode);
  4306. /* No extended attributes present */
  4307. if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
  4308. header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
  4309. memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
  4310. new_extra_isize);
  4311. EXT4_I(inode)->i_extra_isize = new_extra_isize;
  4312. return 0;
  4313. }
  4314. /* try to expand with EAs present */
  4315. return ext4_expand_extra_isize_ea(inode, new_extra_isize,
  4316. raw_inode, handle);
  4317. }
  4318. /*
  4319. * What we do here is to mark the in-core inode as clean with respect to inode
  4320. * dirtiness (it may still be data-dirty).
  4321. * This means that the in-core inode may be reaped by prune_icache
  4322. * without having to perform any I/O. This is a very good thing,
  4323. * because *any* task may call prune_icache - even ones which
  4324. * have a transaction open against a different journal.
  4325. *
  4326. * Is this cheating? Not really. Sure, we haven't written the
  4327. * inode out, but prune_icache isn't a user-visible syncing function.
  4328. * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
  4329. * we start and wait on commits.
  4330. */
  4331. int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
  4332. {
  4333. struct ext4_iloc iloc;
  4334. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  4335. static unsigned int mnt_count;
  4336. int err, ret;
  4337. might_sleep();
  4338. trace_ext4_mark_inode_dirty(inode, _RET_IP_);
  4339. err = ext4_reserve_inode_write(handle, inode, &iloc);
  4340. if (ext4_handle_valid(handle) &&
  4341. EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
  4342. !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
  4343. /*
  4344. * We need extra buffer credits since we may write into EA block
  4345. * with this same handle. If journal_extend fails, then it will
  4346. * only result in a minor loss of functionality for that inode.
  4347. * If this is felt to be critical, then e2fsck should be run to
  4348. * force a large enough s_min_extra_isize.
  4349. */
  4350. if ((jbd2_journal_extend(handle,
  4351. EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
  4352. ret = ext4_expand_extra_isize(inode,
  4353. sbi->s_want_extra_isize,
  4354. iloc, handle);
  4355. if (ret) {
  4356. ext4_set_inode_state(inode,
  4357. EXT4_STATE_NO_EXPAND);
  4358. if (mnt_count !=
  4359. le16_to_cpu(sbi->s_es->s_mnt_count)) {
  4360. ext4_warning(inode->i_sb,
  4361. "Unable to expand inode %lu. Delete"
  4362. " some EAs or run e2fsck.",
  4363. inode->i_ino);
  4364. mnt_count =
  4365. le16_to_cpu(sbi->s_es->s_mnt_count);
  4366. }
  4367. }
  4368. }
  4369. }
  4370. if (!err)
  4371. err = ext4_mark_iloc_dirty(handle, inode, &iloc);
  4372. return err;
  4373. }
  4374. /*
  4375. * ext4_dirty_inode() is called from __mark_inode_dirty()
  4376. *
  4377. * We're really interested in the case where a file is being extended.
  4378. * i_size has been changed by generic_commit_write() and we thus need
  4379. * to include the updated inode in the current transaction.
  4380. *
  4381. * Also, dquot_alloc_block() will always dirty the inode when blocks
  4382. * are allocated to the file.
  4383. *
  4384. * If the inode is marked synchronous, we don't honour that here - doing
  4385. * so would cause a commit on atime updates, which we don't bother doing.
  4386. * We handle synchronous inodes at the highest possible level.
  4387. */
  4388. void ext4_dirty_inode(struct inode *inode, int flags)
  4389. {
  4390. handle_t *handle;
  4391. handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
  4392. if (IS_ERR(handle))
  4393. goto out;
  4394. ext4_mark_inode_dirty(handle, inode);
  4395. ext4_journal_stop(handle);
  4396. out:
  4397. return;
  4398. }
  4399. #if 0
  4400. /*
  4401. * Bind an inode's backing buffer_head into this transaction, to prevent
  4402. * it from being flushed to disk early. Unlike
  4403. * ext4_reserve_inode_write, this leaves behind no bh reference and
  4404. * returns no iloc structure, so the caller needs to repeat the iloc
  4405. * lookup to mark the inode dirty later.
  4406. */
  4407. static int ext4_pin_inode(handle_t *handle, struct inode *inode)
  4408. {
  4409. struct ext4_iloc iloc;
  4410. int err = 0;
  4411. if (handle) {
  4412. err = ext4_get_inode_loc(inode, &iloc);
  4413. if (!err) {
  4414. BUFFER_TRACE(iloc.bh, "get_write_access");
  4415. err = jbd2_journal_get_write_access(handle, iloc.bh);
  4416. if (!err)
  4417. err = ext4_handle_dirty_metadata(handle,
  4418. NULL,
  4419. iloc.bh);
  4420. brelse(iloc.bh);
  4421. }
  4422. }
  4423. ext4_std_error(inode->i_sb, err);
  4424. return err;
  4425. }
  4426. #endif
  4427. int ext4_change_inode_journal_flag(struct inode *inode, int val)
  4428. {
  4429. journal_t *journal;
  4430. handle_t *handle;
  4431. int err;
  4432. /*
  4433. * We have to be very careful here: changing a data block's
  4434. * journaling status dynamically is dangerous. If we write a
  4435. * data block to the journal, change the status and then delete
  4436. * that block, we risk forgetting to revoke the old log record
  4437. * from the journal and so a subsequent replay can corrupt data.
  4438. * So, first we make sure that the journal is empty and that
  4439. * nobody is changing anything.
  4440. */
  4441. journal = EXT4_JOURNAL(inode);
  4442. if (!journal)
  4443. return 0;
  4444. if (is_journal_aborted(journal))
  4445. return -EROFS;
  4446. /* We have to allocate physical blocks for delalloc blocks
  4447. * before flushing journal. otherwise delalloc blocks can not
  4448. * be allocated any more. even more truncate on delalloc blocks
  4449. * could trigger BUG by flushing delalloc blocks in journal.
  4450. * There is no delalloc block in non-journal data mode.
  4451. */
  4452. if (val && test_opt(inode->i_sb, DELALLOC)) {
  4453. err = ext4_alloc_da_blocks(inode);
  4454. if (err < 0)
  4455. return err;
  4456. }
  4457. /* Wait for all existing dio workers */
  4458. ext4_inode_block_unlocked_dio(inode);
  4459. inode_dio_wait(inode);
  4460. jbd2_journal_lock_updates(journal);
  4461. /*
  4462. * OK, there are no updates running now, and all cached data is
  4463. * synced to disk. We are now in a completely consistent state
  4464. * which doesn't have anything in the journal, and we know that
  4465. * no filesystem updates are running, so it is safe to modify
  4466. * the inode's in-core data-journaling state flag now.
  4467. */
  4468. if (val)
  4469. ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
  4470. else {
  4471. jbd2_journal_flush(journal);
  4472. ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
  4473. }
  4474. ext4_set_aops(inode);
  4475. jbd2_journal_unlock_updates(journal);
  4476. ext4_inode_resume_unlocked_dio(inode);
  4477. /* Finally we can mark the inode as dirty. */
  4478. handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
  4479. if (IS_ERR(handle))
  4480. return PTR_ERR(handle);
  4481. err = ext4_mark_inode_dirty(handle, inode);
  4482. ext4_handle_sync(handle);
  4483. ext4_journal_stop(handle);
  4484. ext4_std_error(inode->i_sb, err);
  4485. return err;
  4486. }
  4487. static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
  4488. {
  4489. return !buffer_mapped(bh);
  4490. }
  4491. int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
  4492. {
  4493. struct page *page = vmf->page;
  4494. loff_t size;
  4495. unsigned long len;
  4496. int ret;
  4497. struct file *file = vma->vm_file;
  4498. struct inode *inode = file->f_path.dentry->d_inode;
  4499. struct address_space *mapping = inode->i_mapping;
  4500. handle_t *handle;
  4501. get_block_t *get_block;
  4502. int retries = 0;
  4503. sb_start_pagefault(inode->i_sb);
  4504. file_update_time(vma->vm_file);
  4505. /* Delalloc case is easy... */
  4506. if (test_opt(inode->i_sb, DELALLOC) &&
  4507. !ext4_should_journal_data(inode) &&
  4508. !ext4_nonda_switch(inode->i_sb)) {
  4509. do {
  4510. ret = __block_page_mkwrite(vma, vmf,
  4511. ext4_da_get_block_prep);
  4512. } while (ret == -ENOSPC &&
  4513. ext4_should_retry_alloc(inode->i_sb, &retries));
  4514. goto out_ret;
  4515. }
  4516. lock_page(page);
  4517. size = i_size_read(inode);
  4518. /* Page got truncated from under us? */
  4519. if (page->mapping != mapping || page_offset(page) > size) {
  4520. unlock_page(page);
  4521. ret = VM_FAULT_NOPAGE;
  4522. goto out;
  4523. }
  4524. if (page->index == size >> PAGE_CACHE_SHIFT)
  4525. len = size & ~PAGE_CACHE_MASK;
  4526. else
  4527. len = PAGE_CACHE_SIZE;
  4528. /*
  4529. * Return if we have all the buffers mapped. This avoids the need to do
  4530. * journal_start/journal_stop which can block and take a long time
  4531. */
  4532. if (page_has_buffers(page)) {
  4533. if (!ext4_walk_page_buffers(NULL, page_buffers(page),
  4534. 0, len, NULL,
  4535. ext4_bh_unmapped)) {
  4536. /* Wait so that we don't change page under IO */
  4537. wait_on_page_writeback(page);
  4538. ret = VM_FAULT_LOCKED;
  4539. goto out;
  4540. }
  4541. }
  4542. unlock_page(page);
  4543. /* OK, we need to fill the hole... */
  4544. if (ext4_should_dioread_nolock(inode))
  4545. get_block = ext4_get_block_write;
  4546. else
  4547. get_block = ext4_get_block;
  4548. retry_alloc:
  4549. handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
  4550. ext4_writepage_trans_blocks(inode));
  4551. if (IS_ERR(handle)) {
  4552. ret = VM_FAULT_SIGBUS;
  4553. goto out;
  4554. }
  4555. ret = __block_page_mkwrite(vma, vmf, get_block);
  4556. if (!ret && ext4_should_journal_data(inode)) {
  4557. if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
  4558. PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
  4559. unlock_page(page);
  4560. ret = VM_FAULT_SIGBUS;
  4561. ext4_journal_stop(handle);
  4562. goto out;
  4563. }
  4564. ext4_set_inode_state(inode, EXT4_STATE_JDATA);
  4565. }
  4566. ext4_journal_stop(handle);
  4567. if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
  4568. goto retry_alloc;
  4569. out_ret:
  4570. ret = block_page_mkwrite_return(ret);
  4571. out:
  4572. sb_end_pagefault(inode->i_sb);
  4573. return ret;
  4574. }