e1000_main.c 120 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332
  1. /*******************************************************************************
  2. Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
  3. This program is free software; you can redistribute it and/or modify it
  4. under the terms of the GNU General Public License as published by the Free
  5. Software Foundation; either version 2 of the License, or (at your option)
  6. any later version.
  7. This program is distributed in the hope that it will be useful, but WITHOUT
  8. ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  9. FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  10. more details.
  11. You should have received a copy of the GNU General Public License along with
  12. this program; if not, write to the Free Software Foundation, Inc., 59
  13. Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  14. The full GNU General Public License is included in this distribution in the
  15. file called LICENSE.
  16. Contact Information:
  17. Linux NICS <linux.nics@intel.com>
  18. Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  19. *******************************************************************************/
  20. #include "e1000.h"
  21. /* Change Log
  22. * 6.0.58 4/20/05
  23. * o Accepted ethtool cleanup patch from Stephen Hemminger
  24. * 6.0.44+ 2/15/05
  25. * o applied Anton's patch to resolve tx hang in hardware
  26. * o Applied Andrew Mortons patch - e1000 stops working after resume
  27. */
  28. char e1000_driver_name[] = "e1000";
  29. char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
  30. #ifndef CONFIG_E1000_NAPI
  31. #define DRIVERNAPI
  32. #else
  33. #define DRIVERNAPI "-NAPI"
  34. #endif
  35. #define DRV_VERSION "6.0.60-k2"DRIVERNAPI
  36. char e1000_driver_version[] = DRV_VERSION;
  37. char e1000_copyright[] = "Copyright (c) 1999-2005 Intel Corporation.";
  38. /* e1000_pci_tbl - PCI Device ID Table
  39. *
  40. * Last entry must be all 0s
  41. *
  42. * Macro expands to...
  43. * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
  44. */
  45. static struct pci_device_id e1000_pci_tbl[] = {
  46. INTEL_E1000_ETHERNET_DEVICE(0x1000),
  47. INTEL_E1000_ETHERNET_DEVICE(0x1001),
  48. INTEL_E1000_ETHERNET_DEVICE(0x1004),
  49. INTEL_E1000_ETHERNET_DEVICE(0x1008),
  50. INTEL_E1000_ETHERNET_DEVICE(0x1009),
  51. INTEL_E1000_ETHERNET_DEVICE(0x100C),
  52. INTEL_E1000_ETHERNET_DEVICE(0x100D),
  53. INTEL_E1000_ETHERNET_DEVICE(0x100E),
  54. INTEL_E1000_ETHERNET_DEVICE(0x100F),
  55. INTEL_E1000_ETHERNET_DEVICE(0x1010),
  56. INTEL_E1000_ETHERNET_DEVICE(0x1011),
  57. INTEL_E1000_ETHERNET_DEVICE(0x1012),
  58. INTEL_E1000_ETHERNET_DEVICE(0x1013),
  59. INTEL_E1000_ETHERNET_DEVICE(0x1014),
  60. INTEL_E1000_ETHERNET_DEVICE(0x1015),
  61. INTEL_E1000_ETHERNET_DEVICE(0x1016),
  62. INTEL_E1000_ETHERNET_DEVICE(0x1017),
  63. INTEL_E1000_ETHERNET_DEVICE(0x1018),
  64. INTEL_E1000_ETHERNET_DEVICE(0x1019),
  65. INTEL_E1000_ETHERNET_DEVICE(0x101A),
  66. INTEL_E1000_ETHERNET_DEVICE(0x101D),
  67. INTEL_E1000_ETHERNET_DEVICE(0x101E),
  68. INTEL_E1000_ETHERNET_DEVICE(0x1026),
  69. INTEL_E1000_ETHERNET_DEVICE(0x1027),
  70. INTEL_E1000_ETHERNET_DEVICE(0x1028),
  71. INTEL_E1000_ETHERNET_DEVICE(0x1075),
  72. INTEL_E1000_ETHERNET_DEVICE(0x1076),
  73. INTEL_E1000_ETHERNET_DEVICE(0x1077),
  74. INTEL_E1000_ETHERNET_DEVICE(0x1078),
  75. INTEL_E1000_ETHERNET_DEVICE(0x1079),
  76. INTEL_E1000_ETHERNET_DEVICE(0x107A),
  77. INTEL_E1000_ETHERNET_DEVICE(0x107B),
  78. INTEL_E1000_ETHERNET_DEVICE(0x107C),
  79. INTEL_E1000_ETHERNET_DEVICE(0x108A),
  80. INTEL_E1000_ETHERNET_DEVICE(0x108B),
  81. INTEL_E1000_ETHERNET_DEVICE(0x108C),
  82. INTEL_E1000_ETHERNET_DEVICE(0x1099),
  83. /* required last entry */
  84. {0,}
  85. };
  86. MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
  87. int e1000_up(struct e1000_adapter *adapter);
  88. void e1000_down(struct e1000_adapter *adapter);
  89. void e1000_reset(struct e1000_adapter *adapter);
  90. int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
  91. int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
  92. int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
  93. void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
  94. void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
  95. int e1000_setup_tx_resources(struct e1000_adapter *adapter,
  96. struct e1000_tx_ring *txdr);
  97. int e1000_setup_rx_resources(struct e1000_adapter *adapter,
  98. struct e1000_rx_ring *rxdr);
  99. void e1000_free_tx_resources(struct e1000_adapter *adapter,
  100. struct e1000_tx_ring *tx_ring);
  101. void e1000_free_rx_resources(struct e1000_adapter *adapter,
  102. struct e1000_rx_ring *rx_ring);
  103. void e1000_update_stats(struct e1000_adapter *adapter);
  104. /* Local Function Prototypes */
  105. static int e1000_init_module(void);
  106. static void e1000_exit_module(void);
  107. static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
  108. static void __devexit e1000_remove(struct pci_dev *pdev);
  109. static int e1000_alloc_queues(struct e1000_adapter *adapter);
  110. #ifdef CONFIG_E1000_MQ
  111. static void e1000_setup_queue_mapping(struct e1000_adapter *adapter);
  112. #endif
  113. static int e1000_sw_init(struct e1000_adapter *adapter);
  114. static int e1000_open(struct net_device *netdev);
  115. static int e1000_close(struct net_device *netdev);
  116. static void e1000_configure_tx(struct e1000_adapter *adapter);
  117. static void e1000_configure_rx(struct e1000_adapter *adapter);
  118. static void e1000_setup_rctl(struct e1000_adapter *adapter);
  119. static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
  120. static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
  121. static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
  122. struct e1000_tx_ring *tx_ring);
  123. static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
  124. struct e1000_rx_ring *rx_ring);
  125. static void e1000_set_multi(struct net_device *netdev);
  126. static void e1000_update_phy_info(unsigned long data);
  127. static void e1000_watchdog(unsigned long data);
  128. static void e1000_watchdog_task(struct e1000_adapter *adapter);
  129. static void e1000_82547_tx_fifo_stall(unsigned long data);
  130. static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
  131. static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
  132. static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
  133. static int e1000_set_mac(struct net_device *netdev, void *p);
  134. static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs);
  135. static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
  136. struct e1000_tx_ring *tx_ring);
  137. #ifdef CONFIG_E1000_NAPI
  138. static int e1000_clean(struct net_device *poll_dev, int *budget);
  139. static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
  140. struct e1000_rx_ring *rx_ring,
  141. int *work_done, int work_to_do);
  142. static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
  143. struct e1000_rx_ring *rx_ring,
  144. int *work_done, int work_to_do);
  145. #else
  146. static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
  147. struct e1000_rx_ring *rx_ring);
  148. static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
  149. struct e1000_rx_ring *rx_ring);
  150. #endif
  151. static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
  152. struct e1000_rx_ring *rx_ring);
  153. static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
  154. struct e1000_rx_ring *rx_ring);
  155. static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
  156. static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
  157. int cmd);
  158. void e1000_set_ethtool_ops(struct net_device *netdev);
  159. static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
  160. static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
  161. static void e1000_tx_timeout(struct net_device *dev);
  162. static void e1000_tx_timeout_task(struct net_device *dev);
  163. static void e1000_smartspeed(struct e1000_adapter *adapter);
  164. static inline int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
  165. struct sk_buff *skb);
  166. static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
  167. static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
  168. static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
  169. static void e1000_restore_vlan(struct e1000_adapter *adapter);
  170. static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
  171. #ifdef CONFIG_PM
  172. static int e1000_resume(struct pci_dev *pdev);
  173. #endif
  174. #ifdef CONFIG_NET_POLL_CONTROLLER
  175. /* for netdump / net console */
  176. static void e1000_netpoll (struct net_device *netdev);
  177. #endif
  178. #ifdef CONFIG_E1000_MQ
  179. /* for multiple Rx queues */
  180. void e1000_rx_schedule(void *data);
  181. #endif
  182. /* Exported from other modules */
  183. extern void e1000_check_options(struct e1000_adapter *adapter);
  184. static struct pci_driver e1000_driver = {
  185. .name = e1000_driver_name,
  186. .id_table = e1000_pci_tbl,
  187. .probe = e1000_probe,
  188. .remove = __devexit_p(e1000_remove),
  189. /* Power Managment Hooks */
  190. #ifdef CONFIG_PM
  191. .suspend = e1000_suspend,
  192. .resume = e1000_resume
  193. #endif
  194. };
  195. MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
  196. MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
  197. MODULE_LICENSE("GPL");
  198. MODULE_VERSION(DRV_VERSION);
  199. static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
  200. module_param(debug, int, 0);
  201. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  202. /**
  203. * e1000_init_module - Driver Registration Routine
  204. *
  205. * e1000_init_module is the first routine called when the driver is
  206. * loaded. All it does is register with the PCI subsystem.
  207. **/
  208. static int __init
  209. e1000_init_module(void)
  210. {
  211. int ret;
  212. printk(KERN_INFO "%s - version %s\n",
  213. e1000_driver_string, e1000_driver_version);
  214. printk(KERN_INFO "%s\n", e1000_copyright);
  215. ret = pci_module_init(&e1000_driver);
  216. return ret;
  217. }
  218. module_init(e1000_init_module);
  219. /**
  220. * e1000_exit_module - Driver Exit Cleanup Routine
  221. *
  222. * e1000_exit_module is called just before the driver is removed
  223. * from memory.
  224. **/
  225. static void __exit
  226. e1000_exit_module(void)
  227. {
  228. pci_unregister_driver(&e1000_driver);
  229. }
  230. module_exit(e1000_exit_module);
  231. /**
  232. * e1000_irq_disable - Mask off interrupt generation on the NIC
  233. * @adapter: board private structure
  234. **/
  235. static inline void
  236. e1000_irq_disable(struct e1000_adapter *adapter)
  237. {
  238. atomic_inc(&adapter->irq_sem);
  239. E1000_WRITE_REG(&adapter->hw, IMC, ~0);
  240. E1000_WRITE_FLUSH(&adapter->hw);
  241. synchronize_irq(adapter->pdev->irq);
  242. }
  243. /**
  244. * e1000_irq_enable - Enable default interrupt generation settings
  245. * @adapter: board private structure
  246. **/
  247. static inline void
  248. e1000_irq_enable(struct e1000_adapter *adapter)
  249. {
  250. if(likely(atomic_dec_and_test(&adapter->irq_sem))) {
  251. E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
  252. E1000_WRITE_FLUSH(&adapter->hw);
  253. }
  254. }
  255. void
  256. e1000_update_mng_vlan(struct e1000_adapter *adapter)
  257. {
  258. struct net_device *netdev = adapter->netdev;
  259. uint16_t vid = adapter->hw.mng_cookie.vlan_id;
  260. uint16_t old_vid = adapter->mng_vlan_id;
  261. if(adapter->vlgrp) {
  262. if(!adapter->vlgrp->vlan_devices[vid]) {
  263. if(adapter->hw.mng_cookie.status &
  264. E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
  265. e1000_vlan_rx_add_vid(netdev, vid);
  266. adapter->mng_vlan_id = vid;
  267. } else
  268. adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
  269. if((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
  270. (vid != old_vid) &&
  271. !adapter->vlgrp->vlan_devices[old_vid])
  272. e1000_vlan_rx_kill_vid(netdev, old_vid);
  273. }
  274. }
  275. }
  276. int
  277. e1000_up(struct e1000_adapter *adapter)
  278. {
  279. struct net_device *netdev = adapter->netdev;
  280. int i, err;
  281. /* hardware has been reset, we need to reload some things */
  282. /* Reset the PHY if it was previously powered down */
  283. if(adapter->hw.media_type == e1000_media_type_copper) {
  284. uint16_t mii_reg;
  285. e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
  286. if(mii_reg & MII_CR_POWER_DOWN)
  287. e1000_phy_reset(&adapter->hw);
  288. }
  289. e1000_set_multi(netdev);
  290. e1000_restore_vlan(adapter);
  291. e1000_configure_tx(adapter);
  292. e1000_setup_rctl(adapter);
  293. e1000_configure_rx(adapter);
  294. for (i = 0; i < adapter->num_queues; i++)
  295. adapter->alloc_rx_buf(adapter, &adapter->rx_ring[i]);
  296. #ifdef CONFIG_PCI_MSI
  297. if(adapter->hw.mac_type > e1000_82547_rev_2) {
  298. adapter->have_msi = TRUE;
  299. if((err = pci_enable_msi(adapter->pdev))) {
  300. DPRINTK(PROBE, ERR,
  301. "Unable to allocate MSI interrupt Error: %d\n", err);
  302. adapter->have_msi = FALSE;
  303. }
  304. }
  305. #endif
  306. if((err = request_irq(adapter->pdev->irq, &e1000_intr,
  307. SA_SHIRQ | SA_SAMPLE_RANDOM,
  308. netdev->name, netdev))) {
  309. DPRINTK(PROBE, ERR,
  310. "Unable to allocate interrupt Error: %d\n", err);
  311. return err;
  312. }
  313. mod_timer(&adapter->watchdog_timer, jiffies);
  314. #ifdef CONFIG_E1000_NAPI
  315. netif_poll_enable(netdev);
  316. #endif
  317. e1000_irq_enable(adapter);
  318. return 0;
  319. }
  320. void
  321. e1000_down(struct e1000_adapter *adapter)
  322. {
  323. struct net_device *netdev = adapter->netdev;
  324. e1000_irq_disable(adapter);
  325. #ifdef CONFIG_E1000_MQ
  326. while (atomic_read(&adapter->rx_sched_call_data.count) != 0);
  327. #endif
  328. free_irq(adapter->pdev->irq, netdev);
  329. #ifdef CONFIG_PCI_MSI
  330. if(adapter->hw.mac_type > e1000_82547_rev_2 &&
  331. adapter->have_msi == TRUE)
  332. pci_disable_msi(adapter->pdev);
  333. #endif
  334. del_timer_sync(&adapter->tx_fifo_stall_timer);
  335. del_timer_sync(&adapter->watchdog_timer);
  336. del_timer_sync(&adapter->phy_info_timer);
  337. #ifdef CONFIG_E1000_NAPI
  338. netif_poll_disable(netdev);
  339. #endif
  340. adapter->link_speed = 0;
  341. adapter->link_duplex = 0;
  342. netif_carrier_off(netdev);
  343. netif_stop_queue(netdev);
  344. e1000_reset(adapter);
  345. e1000_clean_all_tx_rings(adapter);
  346. e1000_clean_all_rx_rings(adapter);
  347. /* If WoL is not enabled
  348. * and management mode is not IAMT
  349. * Power down the PHY so no link is implied when interface is down */
  350. if(!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
  351. adapter->hw.media_type == e1000_media_type_copper &&
  352. !e1000_check_mng_mode(&adapter->hw) &&
  353. !(E1000_READ_REG(&adapter->hw, MANC) & E1000_MANC_SMBUS_EN)) {
  354. uint16_t mii_reg;
  355. e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
  356. mii_reg |= MII_CR_POWER_DOWN;
  357. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
  358. mdelay(1);
  359. }
  360. }
  361. void
  362. e1000_reset(struct e1000_adapter *adapter)
  363. {
  364. struct net_device *netdev = adapter->netdev;
  365. uint32_t pba, manc;
  366. uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
  367. uint16_t fc_low_water_mark = E1000_FC_LOW_DIFF;
  368. /* Repartition Pba for greater than 9k mtu
  369. * To take effect CTRL.RST is required.
  370. */
  371. switch (adapter->hw.mac_type) {
  372. case e1000_82547:
  373. case e1000_82547_rev_2:
  374. pba = E1000_PBA_30K;
  375. break;
  376. case e1000_82571:
  377. case e1000_82572:
  378. pba = E1000_PBA_38K;
  379. break;
  380. case e1000_82573:
  381. pba = E1000_PBA_12K;
  382. break;
  383. default:
  384. pba = E1000_PBA_48K;
  385. break;
  386. }
  387. if((adapter->hw.mac_type != e1000_82573) &&
  388. (adapter->rx_buffer_len > E1000_RXBUFFER_8192)) {
  389. pba -= 8; /* allocate more FIFO for Tx */
  390. /* send an XOFF when there is enough space in the
  391. * Rx FIFO to hold one extra full size Rx packet
  392. */
  393. fc_high_water_mark = netdev->mtu + ENET_HEADER_SIZE +
  394. ETHERNET_FCS_SIZE + 1;
  395. fc_low_water_mark = fc_high_water_mark + 8;
  396. }
  397. if(adapter->hw.mac_type == e1000_82547) {
  398. adapter->tx_fifo_head = 0;
  399. adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
  400. adapter->tx_fifo_size =
  401. (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
  402. atomic_set(&adapter->tx_fifo_stall, 0);
  403. }
  404. E1000_WRITE_REG(&adapter->hw, PBA, pba);
  405. /* flow control settings */
  406. adapter->hw.fc_high_water = (pba << E1000_PBA_BYTES_SHIFT) -
  407. fc_high_water_mark;
  408. adapter->hw.fc_low_water = (pba << E1000_PBA_BYTES_SHIFT) -
  409. fc_low_water_mark;
  410. adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
  411. adapter->hw.fc_send_xon = 1;
  412. adapter->hw.fc = adapter->hw.original_fc;
  413. /* Allow time for pending master requests to run */
  414. e1000_reset_hw(&adapter->hw);
  415. if(adapter->hw.mac_type >= e1000_82544)
  416. E1000_WRITE_REG(&adapter->hw, WUC, 0);
  417. if(e1000_init_hw(&adapter->hw))
  418. DPRINTK(PROBE, ERR, "Hardware Error\n");
  419. e1000_update_mng_vlan(adapter);
  420. /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
  421. E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
  422. e1000_reset_adaptive(&adapter->hw);
  423. e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
  424. if (adapter->en_mng_pt) {
  425. manc = E1000_READ_REG(&adapter->hw, MANC);
  426. manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
  427. E1000_WRITE_REG(&adapter->hw, MANC, manc);
  428. }
  429. }
  430. /**
  431. * e1000_probe - Device Initialization Routine
  432. * @pdev: PCI device information struct
  433. * @ent: entry in e1000_pci_tbl
  434. *
  435. * Returns 0 on success, negative on failure
  436. *
  437. * e1000_probe initializes an adapter identified by a pci_dev structure.
  438. * The OS initialization, configuring of the adapter private structure,
  439. * and a hardware reset occur.
  440. **/
  441. static int __devinit
  442. e1000_probe(struct pci_dev *pdev,
  443. const struct pci_device_id *ent)
  444. {
  445. struct net_device *netdev;
  446. struct e1000_adapter *adapter;
  447. unsigned long mmio_start, mmio_len;
  448. uint32_t ctrl_ext;
  449. uint32_t swsm;
  450. static int cards_found = 0;
  451. int i, err, pci_using_dac;
  452. uint16_t eeprom_data;
  453. uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
  454. if((err = pci_enable_device(pdev)))
  455. return err;
  456. if(!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) {
  457. pci_using_dac = 1;
  458. } else {
  459. if((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
  460. E1000_ERR("No usable DMA configuration, aborting\n");
  461. return err;
  462. }
  463. pci_using_dac = 0;
  464. }
  465. if((err = pci_request_regions(pdev, e1000_driver_name)))
  466. return err;
  467. pci_set_master(pdev);
  468. netdev = alloc_etherdev(sizeof(struct e1000_adapter));
  469. if(!netdev) {
  470. err = -ENOMEM;
  471. goto err_alloc_etherdev;
  472. }
  473. SET_MODULE_OWNER(netdev);
  474. SET_NETDEV_DEV(netdev, &pdev->dev);
  475. pci_set_drvdata(pdev, netdev);
  476. adapter = netdev_priv(netdev);
  477. adapter->netdev = netdev;
  478. adapter->pdev = pdev;
  479. adapter->hw.back = adapter;
  480. adapter->msg_enable = (1 << debug) - 1;
  481. mmio_start = pci_resource_start(pdev, BAR_0);
  482. mmio_len = pci_resource_len(pdev, BAR_0);
  483. adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
  484. if(!adapter->hw.hw_addr) {
  485. err = -EIO;
  486. goto err_ioremap;
  487. }
  488. for(i = BAR_1; i <= BAR_5; i++) {
  489. if(pci_resource_len(pdev, i) == 0)
  490. continue;
  491. if(pci_resource_flags(pdev, i) & IORESOURCE_IO) {
  492. adapter->hw.io_base = pci_resource_start(pdev, i);
  493. break;
  494. }
  495. }
  496. netdev->open = &e1000_open;
  497. netdev->stop = &e1000_close;
  498. netdev->hard_start_xmit = &e1000_xmit_frame;
  499. netdev->get_stats = &e1000_get_stats;
  500. netdev->set_multicast_list = &e1000_set_multi;
  501. netdev->set_mac_address = &e1000_set_mac;
  502. netdev->change_mtu = &e1000_change_mtu;
  503. netdev->do_ioctl = &e1000_ioctl;
  504. e1000_set_ethtool_ops(netdev);
  505. netdev->tx_timeout = &e1000_tx_timeout;
  506. netdev->watchdog_timeo = 5 * HZ;
  507. #ifdef CONFIG_E1000_NAPI
  508. netdev->poll = &e1000_clean;
  509. netdev->weight = 64;
  510. #endif
  511. netdev->vlan_rx_register = e1000_vlan_rx_register;
  512. netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
  513. netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
  514. #ifdef CONFIG_NET_POLL_CONTROLLER
  515. netdev->poll_controller = e1000_netpoll;
  516. #endif
  517. strcpy(netdev->name, pci_name(pdev));
  518. netdev->mem_start = mmio_start;
  519. netdev->mem_end = mmio_start + mmio_len;
  520. netdev->base_addr = adapter->hw.io_base;
  521. adapter->bd_number = cards_found;
  522. /* setup the private structure */
  523. if((err = e1000_sw_init(adapter)))
  524. goto err_sw_init;
  525. if((err = e1000_check_phy_reset_block(&adapter->hw)))
  526. DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
  527. if(adapter->hw.mac_type >= e1000_82543) {
  528. netdev->features = NETIF_F_SG |
  529. NETIF_F_HW_CSUM |
  530. NETIF_F_HW_VLAN_TX |
  531. NETIF_F_HW_VLAN_RX |
  532. NETIF_F_HW_VLAN_FILTER;
  533. }
  534. #ifdef NETIF_F_TSO
  535. if((adapter->hw.mac_type >= e1000_82544) &&
  536. (adapter->hw.mac_type != e1000_82547))
  537. netdev->features |= NETIF_F_TSO;
  538. #ifdef NETIF_F_TSO_IPV6
  539. if(adapter->hw.mac_type > e1000_82547_rev_2)
  540. netdev->features |= NETIF_F_TSO_IPV6;
  541. #endif
  542. #endif
  543. if(pci_using_dac)
  544. netdev->features |= NETIF_F_HIGHDMA;
  545. /* hard_start_xmit is safe against parallel locking */
  546. netdev->features |= NETIF_F_LLTX;
  547. adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
  548. /* before reading the EEPROM, reset the controller to
  549. * put the device in a known good starting state */
  550. e1000_reset_hw(&adapter->hw);
  551. /* make sure the EEPROM is good */
  552. if(e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
  553. DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
  554. err = -EIO;
  555. goto err_eeprom;
  556. }
  557. /* copy the MAC address out of the EEPROM */
  558. if(e1000_read_mac_addr(&adapter->hw))
  559. DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
  560. memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
  561. memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
  562. if(!is_valid_ether_addr(netdev->perm_addr)) {
  563. DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
  564. err = -EIO;
  565. goto err_eeprom;
  566. }
  567. e1000_read_part_num(&adapter->hw, &(adapter->part_num));
  568. e1000_get_bus_info(&adapter->hw);
  569. init_timer(&adapter->tx_fifo_stall_timer);
  570. adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
  571. adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
  572. init_timer(&adapter->watchdog_timer);
  573. adapter->watchdog_timer.function = &e1000_watchdog;
  574. adapter->watchdog_timer.data = (unsigned long) adapter;
  575. INIT_WORK(&adapter->watchdog_task,
  576. (void (*)(void *))e1000_watchdog_task, adapter);
  577. init_timer(&adapter->phy_info_timer);
  578. adapter->phy_info_timer.function = &e1000_update_phy_info;
  579. adapter->phy_info_timer.data = (unsigned long) adapter;
  580. INIT_WORK(&adapter->tx_timeout_task,
  581. (void (*)(void *))e1000_tx_timeout_task, netdev);
  582. /* we're going to reset, so assume we have no link for now */
  583. netif_carrier_off(netdev);
  584. netif_stop_queue(netdev);
  585. e1000_check_options(adapter);
  586. /* Initial Wake on LAN setting
  587. * If APM wake is enabled in the EEPROM,
  588. * enable the ACPI Magic Packet filter
  589. */
  590. switch(adapter->hw.mac_type) {
  591. case e1000_82542_rev2_0:
  592. case e1000_82542_rev2_1:
  593. case e1000_82543:
  594. break;
  595. case e1000_82544:
  596. e1000_read_eeprom(&adapter->hw,
  597. EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
  598. eeprom_apme_mask = E1000_EEPROM_82544_APM;
  599. break;
  600. case e1000_82546:
  601. case e1000_82546_rev_3:
  602. if((E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
  603. && (adapter->hw.media_type == e1000_media_type_copper)) {
  604. e1000_read_eeprom(&adapter->hw,
  605. EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
  606. break;
  607. }
  608. /* Fall Through */
  609. default:
  610. e1000_read_eeprom(&adapter->hw,
  611. EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
  612. break;
  613. }
  614. if(eeprom_data & eeprom_apme_mask)
  615. adapter->wol |= E1000_WUFC_MAG;
  616. /* reset the hardware with the new settings */
  617. e1000_reset(adapter);
  618. /* Let firmware know the driver has taken over */
  619. switch(adapter->hw.mac_type) {
  620. case e1000_82571:
  621. case e1000_82572:
  622. ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
  623. E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
  624. ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
  625. break;
  626. case e1000_82573:
  627. swsm = E1000_READ_REG(&adapter->hw, SWSM);
  628. E1000_WRITE_REG(&adapter->hw, SWSM,
  629. swsm | E1000_SWSM_DRV_LOAD);
  630. break;
  631. default:
  632. break;
  633. }
  634. strcpy(netdev->name, "eth%d");
  635. if((err = register_netdev(netdev)))
  636. goto err_register;
  637. DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
  638. cards_found++;
  639. return 0;
  640. err_register:
  641. err_sw_init:
  642. err_eeprom:
  643. iounmap(adapter->hw.hw_addr);
  644. err_ioremap:
  645. free_netdev(netdev);
  646. err_alloc_etherdev:
  647. pci_release_regions(pdev);
  648. return err;
  649. }
  650. /**
  651. * e1000_remove - Device Removal Routine
  652. * @pdev: PCI device information struct
  653. *
  654. * e1000_remove is called by the PCI subsystem to alert the driver
  655. * that it should release a PCI device. The could be caused by a
  656. * Hot-Plug event, or because the driver is going to be removed from
  657. * memory.
  658. **/
  659. static void __devexit
  660. e1000_remove(struct pci_dev *pdev)
  661. {
  662. struct net_device *netdev = pci_get_drvdata(pdev);
  663. struct e1000_adapter *adapter = netdev_priv(netdev);
  664. uint32_t ctrl_ext;
  665. uint32_t manc, swsm;
  666. flush_scheduled_work();
  667. #ifdef CONFIG_E1000_NAPI
  668. int i;
  669. #endif
  670. if(adapter->hw.mac_type >= e1000_82540 &&
  671. adapter->hw.media_type == e1000_media_type_copper) {
  672. manc = E1000_READ_REG(&adapter->hw, MANC);
  673. if(manc & E1000_MANC_SMBUS_EN) {
  674. manc |= E1000_MANC_ARP_EN;
  675. E1000_WRITE_REG(&adapter->hw, MANC, manc);
  676. }
  677. }
  678. switch(adapter->hw.mac_type) {
  679. case e1000_82571:
  680. case e1000_82572:
  681. ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
  682. E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
  683. ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
  684. break;
  685. case e1000_82573:
  686. swsm = E1000_READ_REG(&adapter->hw, SWSM);
  687. E1000_WRITE_REG(&adapter->hw, SWSM,
  688. swsm & ~E1000_SWSM_DRV_LOAD);
  689. break;
  690. default:
  691. break;
  692. }
  693. unregister_netdev(netdev);
  694. #ifdef CONFIG_E1000_NAPI
  695. for (i = 0; i < adapter->num_queues; i++)
  696. __dev_put(&adapter->polling_netdev[i]);
  697. #endif
  698. if(!e1000_check_phy_reset_block(&adapter->hw))
  699. e1000_phy_hw_reset(&adapter->hw);
  700. kfree(adapter->tx_ring);
  701. kfree(adapter->rx_ring);
  702. #ifdef CONFIG_E1000_NAPI
  703. kfree(adapter->polling_netdev);
  704. #endif
  705. iounmap(adapter->hw.hw_addr);
  706. pci_release_regions(pdev);
  707. #ifdef CONFIG_E1000_MQ
  708. free_percpu(adapter->cpu_netdev);
  709. free_percpu(adapter->cpu_tx_ring);
  710. #endif
  711. free_netdev(netdev);
  712. pci_disable_device(pdev);
  713. }
  714. /**
  715. * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
  716. * @adapter: board private structure to initialize
  717. *
  718. * e1000_sw_init initializes the Adapter private data structure.
  719. * Fields are initialized based on PCI device information and
  720. * OS network device settings (MTU size).
  721. **/
  722. static int __devinit
  723. e1000_sw_init(struct e1000_adapter *adapter)
  724. {
  725. struct e1000_hw *hw = &adapter->hw;
  726. struct net_device *netdev = adapter->netdev;
  727. struct pci_dev *pdev = adapter->pdev;
  728. #ifdef CONFIG_E1000_NAPI
  729. int i;
  730. #endif
  731. /* PCI config space info */
  732. hw->vendor_id = pdev->vendor;
  733. hw->device_id = pdev->device;
  734. hw->subsystem_vendor_id = pdev->subsystem_vendor;
  735. hw->subsystem_id = pdev->subsystem_device;
  736. pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
  737. pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
  738. adapter->rx_buffer_len = E1000_RXBUFFER_2048;
  739. adapter->rx_ps_bsize0 = E1000_RXBUFFER_256;
  740. hw->max_frame_size = netdev->mtu +
  741. ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
  742. hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
  743. /* identify the MAC */
  744. if(e1000_set_mac_type(hw)) {
  745. DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
  746. return -EIO;
  747. }
  748. /* initialize eeprom parameters */
  749. if(e1000_init_eeprom_params(hw)) {
  750. E1000_ERR("EEPROM initialization failed\n");
  751. return -EIO;
  752. }
  753. switch(hw->mac_type) {
  754. default:
  755. break;
  756. case e1000_82541:
  757. case e1000_82547:
  758. case e1000_82541_rev_2:
  759. case e1000_82547_rev_2:
  760. hw->phy_init_script = 1;
  761. break;
  762. }
  763. e1000_set_media_type(hw);
  764. hw->wait_autoneg_complete = FALSE;
  765. hw->tbi_compatibility_en = TRUE;
  766. hw->adaptive_ifs = TRUE;
  767. /* Copper options */
  768. if(hw->media_type == e1000_media_type_copper) {
  769. hw->mdix = AUTO_ALL_MODES;
  770. hw->disable_polarity_correction = FALSE;
  771. hw->master_slave = E1000_MASTER_SLAVE;
  772. }
  773. #ifdef CONFIG_E1000_MQ
  774. /* Number of supported queues */
  775. switch (hw->mac_type) {
  776. case e1000_82571:
  777. case e1000_82572:
  778. adapter->num_queues = 2;
  779. break;
  780. default:
  781. adapter->num_queues = 1;
  782. break;
  783. }
  784. adapter->num_queues = min(adapter->num_queues, num_online_cpus());
  785. #else
  786. adapter->num_queues = 1;
  787. #endif
  788. if (e1000_alloc_queues(adapter)) {
  789. DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
  790. return -ENOMEM;
  791. }
  792. #ifdef CONFIG_E1000_NAPI
  793. for (i = 0; i < adapter->num_queues; i++) {
  794. adapter->polling_netdev[i].priv = adapter;
  795. adapter->polling_netdev[i].poll = &e1000_clean;
  796. adapter->polling_netdev[i].weight = 64;
  797. dev_hold(&adapter->polling_netdev[i]);
  798. set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
  799. }
  800. #endif
  801. #ifdef CONFIG_E1000_MQ
  802. e1000_setup_queue_mapping(adapter);
  803. #endif
  804. atomic_set(&adapter->irq_sem, 1);
  805. spin_lock_init(&adapter->stats_lock);
  806. return 0;
  807. }
  808. /**
  809. * e1000_alloc_queues - Allocate memory for all rings
  810. * @adapter: board private structure to initialize
  811. *
  812. * We allocate one ring per queue at run-time since we don't know the
  813. * number of queues at compile-time. The polling_netdev array is
  814. * intended for Multiqueue, but should work fine with a single queue.
  815. **/
  816. static int __devinit
  817. e1000_alloc_queues(struct e1000_adapter *adapter)
  818. {
  819. int size;
  820. size = sizeof(struct e1000_tx_ring) * adapter->num_queues;
  821. adapter->tx_ring = kmalloc(size, GFP_KERNEL);
  822. if (!adapter->tx_ring)
  823. return -ENOMEM;
  824. memset(adapter->tx_ring, 0, size);
  825. size = sizeof(struct e1000_rx_ring) * adapter->num_queues;
  826. adapter->rx_ring = kmalloc(size, GFP_KERNEL);
  827. if (!adapter->rx_ring) {
  828. kfree(adapter->tx_ring);
  829. return -ENOMEM;
  830. }
  831. memset(adapter->rx_ring, 0, size);
  832. #ifdef CONFIG_E1000_NAPI
  833. size = sizeof(struct net_device) * adapter->num_queues;
  834. adapter->polling_netdev = kmalloc(size, GFP_KERNEL);
  835. if (!adapter->polling_netdev) {
  836. kfree(adapter->tx_ring);
  837. kfree(adapter->rx_ring);
  838. return -ENOMEM;
  839. }
  840. memset(adapter->polling_netdev, 0, size);
  841. #endif
  842. return E1000_SUCCESS;
  843. }
  844. #ifdef CONFIG_E1000_MQ
  845. static void __devinit
  846. e1000_setup_queue_mapping(struct e1000_adapter *adapter)
  847. {
  848. int i, cpu;
  849. adapter->rx_sched_call_data.func = e1000_rx_schedule;
  850. adapter->rx_sched_call_data.info = adapter->netdev;
  851. cpus_clear(adapter->rx_sched_call_data.cpumask);
  852. adapter->cpu_netdev = alloc_percpu(struct net_device *);
  853. adapter->cpu_tx_ring = alloc_percpu(struct e1000_tx_ring *);
  854. lock_cpu_hotplug();
  855. i = 0;
  856. for_each_online_cpu(cpu) {
  857. *per_cpu_ptr(adapter->cpu_tx_ring, cpu) = &adapter->tx_ring[i % adapter->num_queues];
  858. /* This is incomplete because we'd like to assign separate
  859. * physical cpus to these netdev polling structures and
  860. * avoid saturating a subset of cpus.
  861. */
  862. if (i < adapter->num_queues) {
  863. *per_cpu_ptr(adapter->cpu_netdev, cpu) = &adapter->polling_netdev[i];
  864. adapter->cpu_for_queue[i] = cpu;
  865. } else
  866. *per_cpu_ptr(adapter->cpu_netdev, cpu) = NULL;
  867. i++;
  868. }
  869. unlock_cpu_hotplug();
  870. }
  871. #endif
  872. /**
  873. * e1000_open - Called when a network interface is made active
  874. * @netdev: network interface device structure
  875. *
  876. * Returns 0 on success, negative value on failure
  877. *
  878. * The open entry point is called when a network interface is made
  879. * active by the system (IFF_UP). At this point all resources needed
  880. * for transmit and receive operations are allocated, the interrupt
  881. * handler is registered with the OS, the watchdog timer is started,
  882. * and the stack is notified that the interface is ready.
  883. **/
  884. static int
  885. e1000_open(struct net_device *netdev)
  886. {
  887. struct e1000_adapter *adapter = netdev_priv(netdev);
  888. int err;
  889. /* allocate transmit descriptors */
  890. if ((err = e1000_setup_all_tx_resources(adapter)))
  891. goto err_setup_tx;
  892. /* allocate receive descriptors */
  893. if ((err = e1000_setup_all_rx_resources(adapter)))
  894. goto err_setup_rx;
  895. if((err = e1000_up(adapter)))
  896. goto err_up;
  897. adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
  898. if((adapter->hw.mng_cookie.status &
  899. E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
  900. e1000_update_mng_vlan(adapter);
  901. }
  902. return E1000_SUCCESS;
  903. err_up:
  904. e1000_free_all_rx_resources(adapter);
  905. err_setup_rx:
  906. e1000_free_all_tx_resources(adapter);
  907. err_setup_tx:
  908. e1000_reset(adapter);
  909. return err;
  910. }
  911. /**
  912. * e1000_close - Disables a network interface
  913. * @netdev: network interface device structure
  914. *
  915. * Returns 0, this is not allowed to fail
  916. *
  917. * The close entry point is called when an interface is de-activated
  918. * by the OS. The hardware is still under the drivers control, but
  919. * needs to be disabled. A global MAC reset is issued to stop the
  920. * hardware, and all transmit and receive resources are freed.
  921. **/
  922. static int
  923. e1000_close(struct net_device *netdev)
  924. {
  925. struct e1000_adapter *adapter = netdev_priv(netdev);
  926. e1000_down(adapter);
  927. e1000_free_all_tx_resources(adapter);
  928. e1000_free_all_rx_resources(adapter);
  929. if((adapter->hw.mng_cookie.status &
  930. E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
  931. e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
  932. }
  933. return 0;
  934. }
  935. /**
  936. * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
  937. * @adapter: address of board private structure
  938. * @start: address of beginning of memory
  939. * @len: length of memory
  940. **/
  941. static inline boolean_t
  942. e1000_check_64k_bound(struct e1000_adapter *adapter,
  943. void *start, unsigned long len)
  944. {
  945. unsigned long begin = (unsigned long) start;
  946. unsigned long end = begin + len;
  947. /* First rev 82545 and 82546 need to not allow any memory
  948. * write location to cross 64k boundary due to errata 23 */
  949. if (adapter->hw.mac_type == e1000_82545 ||
  950. adapter->hw.mac_type == e1000_82546) {
  951. return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
  952. }
  953. return TRUE;
  954. }
  955. /**
  956. * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
  957. * @adapter: board private structure
  958. * @txdr: tx descriptor ring (for a specific queue) to setup
  959. *
  960. * Return 0 on success, negative on failure
  961. **/
  962. int
  963. e1000_setup_tx_resources(struct e1000_adapter *adapter,
  964. struct e1000_tx_ring *txdr)
  965. {
  966. struct pci_dev *pdev = adapter->pdev;
  967. int size;
  968. size = sizeof(struct e1000_buffer) * txdr->count;
  969. txdr->buffer_info = vmalloc(size);
  970. if(!txdr->buffer_info) {
  971. DPRINTK(PROBE, ERR,
  972. "Unable to allocate memory for the transmit descriptor ring\n");
  973. return -ENOMEM;
  974. }
  975. memset(txdr->buffer_info, 0, size);
  976. memset(&txdr->previous_buffer_info, 0, sizeof(struct e1000_buffer));
  977. /* round up to nearest 4K */
  978. txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
  979. E1000_ROUNDUP(txdr->size, 4096);
  980. txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
  981. if(!txdr->desc) {
  982. setup_tx_desc_die:
  983. vfree(txdr->buffer_info);
  984. DPRINTK(PROBE, ERR,
  985. "Unable to allocate memory for the transmit descriptor ring\n");
  986. return -ENOMEM;
  987. }
  988. /* Fix for errata 23, can't cross 64kB boundary */
  989. if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
  990. void *olddesc = txdr->desc;
  991. dma_addr_t olddma = txdr->dma;
  992. DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
  993. "at %p\n", txdr->size, txdr->desc);
  994. /* Try again, without freeing the previous */
  995. txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
  996. if(!txdr->desc) {
  997. /* Failed allocation, critical failure */
  998. pci_free_consistent(pdev, txdr->size, olddesc, olddma);
  999. goto setup_tx_desc_die;
  1000. }
  1001. if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
  1002. /* give up */
  1003. pci_free_consistent(pdev, txdr->size, txdr->desc,
  1004. txdr->dma);
  1005. pci_free_consistent(pdev, txdr->size, olddesc, olddma);
  1006. DPRINTK(PROBE, ERR,
  1007. "Unable to allocate aligned memory "
  1008. "for the transmit descriptor ring\n");
  1009. vfree(txdr->buffer_info);
  1010. return -ENOMEM;
  1011. } else {
  1012. /* Free old allocation, new allocation was successful */
  1013. pci_free_consistent(pdev, txdr->size, olddesc, olddma);
  1014. }
  1015. }
  1016. memset(txdr->desc, 0, txdr->size);
  1017. txdr->next_to_use = 0;
  1018. txdr->next_to_clean = 0;
  1019. spin_lock_init(&txdr->tx_lock);
  1020. return 0;
  1021. }
  1022. /**
  1023. * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
  1024. * (Descriptors) for all queues
  1025. * @adapter: board private structure
  1026. *
  1027. * If this function returns with an error, then it's possible one or
  1028. * more of the rings is populated (while the rest are not). It is the
  1029. * callers duty to clean those orphaned rings.
  1030. *
  1031. * Return 0 on success, negative on failure
  1032. **/
  1033. int
  1034. e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
  1035. {
  1036. int i, err = 0;
  1037. for (i = 0; i < adapter->num_queues; i++) {
  1038. err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
  1039. if (err) {
  1040. DPRINTK(PROBE, ERR,
  1041. "Allocation for Tx Queue %u failed\n", i);
  1042. break;
  1043. }
  1044. }
  1045. return err;
  1046. }
  1047. /**
  1048. * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
  1049. * @adapter: board private structure
  1050. *
  1051. * Configure the Tx unit of the MAC after a reset.
  1052. **/
  1053. static void
  1054. e1000_configure_tx(struct e1000_adapter *adapter)
  1055. {
  1056. uint64_t tdba;
  1057. struct e1000_hw *hw = &adapter->hw;
  1058. uint32_t tdlen, tctl, tipg, tarc;
  1059. /* Setup the HW Tx Head and Tail descriptor pointers */
  1060. switch (adapter->num_queues) {
  1061. case 2:
  1062. tdba = adapter->tx_ring[1].dma;
  1063. tdlen = adapter->tx_ring[1].count *
  1064. sizeof(struct e1000_tx_desc);
  1065. E1000_WRITE_REG(hw, TDBAL1, (tdba & 0x00000000ffffffffULL));
  1066. E1000_WRITE_REG(hw, TDBAH1, (tdba >> 32));
  1067. E1000_WRITE_REG(hw, TDLEN1, tdlen);
  1068. E1000_WRITE_REG(hw, TDH1, 0);
  1069. E1000_WRITE_REG(hw, TDT1, 0);
  1070. adapter->tx_ring[1].tdh = E1000_TDH1;
  1071. adapter->tx_ring[1].tdt = E1000_TDT1;
  1072. /* Fall Through */
  1073. case 1:
  1074. default:
  1075. tdba = adapter->tx_ring[0].dma;
  1076. tdlen = adapter->tx_ring[0].count *
  1077. sizeof(struct e1000_tx_desc);
  1078. E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
  1079. E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
  1080. E1000_WRITE_REG(hw, TDLEN, tdlen);
  1081. E1000_WRITE_REG(hw, TDH, 0);
  1082. E1000_WRITE_REG(hw, TDT, 0);
  1083. adapter->tx_ring[0].tdh = E1000_TDH;
  1084. adapter->tx_ring[0].tdt = E1000_TDT;
  1085. break;
  1086. }
  1087. /* Set the default values for the Tx Inter Packet Gap timer */
  1088. switch (hw->mac_type) {
  1089. case e1000_82542_rev2_0:
  1090. case e1000_82542_rev2_1:
  1091. tipg = DEFAULT_82542_TIPG_IPGT;
  1092. tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
  1093. tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
  1094. break;
  1095. default:
  1096. if (hw->media_type == e1000_media_type_fiber ||
  1097. hw->media_type == e1000_media_type_internal_serdes)
  1098. tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
  1099. else
  1100. tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
  1101. tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
  1102. tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
  1103. }
  1104. E1000_WRITE_REG(hw, TIPG, tipg);
  1105. /* Set the Tx Interrupt Delay register */
  1106. E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
  1107. if (hw->mac_type >= e1000_82540)
  1108. E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
  1109. /* Program the Transmit Control Register */
  1110. tctl = E1000_READ_REG(hw, TCTL);
  1111. tctl &= ~E1000_TCTL_CT;
  1112. tctl |= E1000_TCTL_EN | E1000_TCTL_PSP | E1000_TCTL_RTLC |
  1113. (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
  1114. E1000_WRITE_REG(hw, TCTL, tctl);
  1115. if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
  1116. tarc = E1000_READ_REG(hw, TARC0);
  1117. tarc |= ((1 << 25) | (1 << 21));
  1118. E1000_WRITE_REG(hw, TARC0, tarc);
  1119. tarc = E1000_READ_REG(hw, TARC1);
  1120. tarc |= (1 << 25);
  1121. if (tctl & E1000_TCTL_MULR)
  1122. tarc &= ~(1 << 28);
  1123. else
  1124. tarc |= (1 << 28);
  1125. E1000_WRITE_REG(hw, TARC1, tarc);
  1126. }
  1127. e1000_config_collision_dist(hw);
  1128. /* Setup Transmit Descriptor Settings for eop descriptor */
  1129. adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
  1130. E1000_TXD_CMD_IFCS;
  1131. if (hw->mac_type < e1000_82543)
  1132. adapter->txd_cmd |= E1000_TXD_CMD_RPS;
  1133. else
  1134. adapter->txd_cmd |= E1000_TXD_CMD_RS;
  1135. /* Cache if we're 82544 running in PCI-X because we'll
  1136. * need this to apply a workaround later in the send path. */
  1137. if (hw->mac_type == e1000_82544 &&
  1138. hw->bus_type == e1000_bus_type_pcix)
  1139. adapter->pcix_82544 = 1;
  1140. }
  1141. /**
  1142. * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
  1143. * @adapter: board private structure
  1144. * @rxdr: rx descriptor ring (for a specific queue) to setup
  1145. *
  1146. * Returns 0 on success, negative on failure
  1147. **/
  1148. int
  1149. e1000_setup_rx_resources(struct e1000_adapter *adapter,
  1150. struct e1000_rx_ring *rxdr)
  1151. {
  1152. struct pci_dev *pdev = adapter->pdev;
  1153. int size, desc_len;
  1154. size = sizeof(struct e1000_buffer) * rxdr->count;
  1155. rxdr->buffer_info = vmalloc(size);
  1156. if (!rxdr->buffer_info) {
  1157. DPRINTK(PROBE, ERR,
  1158. "Unable to allocate memory for the receive descriptor ring\n");
  1159. return -ENOMEM;
  1160. }
  1161. memset(rxdr->buffer_info, 0, size);
  1162. size = sizeof(struct e1000_ps_page) * rxdr->count;
  1163. rxdr->ps_page = kmalloc(size, GFP_KERNEL);
  1164. if(!rxdr->ps_page) {
  1165. vfree(rxdr->buffer_info);
  1166. DPRINTK(PROBE, ERR,
  1167. "Unable to allocate memory for the receive descriptor ring\n");
  1168. return -ENOMEM;
  1169. }
  1170. memset(rxdr->ps_page, 0, size);
  1171. size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
  1172. rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
  1173. if(!rxdr->ps_page_dma) {
  1174. vfree(rxdr->buffer_info);
  1175. kfree(rxdr->ps_page);
  1176. DPRINTK(PROBE, ERR,
  1177. "Unable to allocate memory for the receive descriptor ring\n");
  1178. return -ENOMEM;
  1179. }
  1180. memset(rxdr->ps_page_dma, 0, size);
  1181. if(adapter->hw.mac_type <= e1000_82547_rev_2)
  1182. desc_len = sizeof(struct e1000_rx_desc);
  1183. else
  1184. desc_len = sizeof(union e1000_rx_desc_packet_split);
  1185. /* Round up to nearest 4K */
  1186. rxdr->size = rxdr->count * desc_len;
  1187. E1000_ROUNDUP(rxdr->size, 4096);
  1188. rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
  1189. if (!rxdr->desc) {
  1190. DPRINTK(PROBE, ERR,
  1191. "Unable to allocate memory for the receive descriptor ring\n");
  1192. setup_rx_desc_die:
  1193. vfree(rxdr->buffer_info);
  1194. kfree(rxdr->ps_page);
  1195. kfree(rxdr->ps_page_dma);
  1196. return -ENOMEM;
  1197. }
  1198. /* Fix for errata 23, can't cross 64kB boundary */
  1199. if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
  1200. void *olddesc = rxdr->desc;
  1201. dma_addr_t olddma = rxdr->dma;
  1202. DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
  1203. "at %p\n", rxdr->size, rxdr->desc);
  1204. /* Try again, without freeing the previous */
  1205. rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
  1206. /* Failed allocation, critical failure */
  1207. if (!rxdr->desc) {
  1208. pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
  1209. DPRINTK(PROBE, ERR,
  1210. "Unable to allocate memory "
  1211. "for the receive descriptor ring\n");
  1212. goto setup_rx_desc_die;
  1213. }
  1214. if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
  1215. /* give up */
  1216. pci_free_consistent(pdev, rxdr->size, rxdr->desc,
  1217. rxdr->dma);
  1218. pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
  1219. DPRINTK(PROBE, ERR,
  1220. "Unable to allocate aligned memory "
  1221. "for the receive descriptor ring\n");
  1222. goto setup_rx_desc_die;
  1223. } else {
  1224. /* Free old allocation, new allocation was successful */
  1225. pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
  1226. }
  1227. }
  1228. memset(rxdr->desc, 0, rxdr->size);
  1229. rxdr->next_to_clean = 0;
  1230. rxdr->next_to_use = 0;
  1231. return 0;
  1232. }
  1233. /**
  1234. * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
  1235. * (Descriptors) for all queues
  1236. * @adapter: board private structure
  1237. *
  1238. * If this function returns with an error, then it's possible one or
  1239. * more of the rings is populated (while the rest are not). It is the
  1240. * callers duty to clean those orphaned rings.
  1241. *
  1242. * Return 0 on success, negative on failure
  1243. **/
  1244. int
  1245. e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
  1246. {
  1247. int i, err = 0;
  1248. for (i = 0; i < adapter->num_queues; i++) {
  1249. err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
  1250. if (err) {
  1251. DPRINTK(PROBE, ERR,
  1252. "Allocation for Rx Queue %u failed\n", i);
  1253. break;
  1254. }
  1255. }
  1256. return err;
  1257. }
  1258. /**
  1259. * e1000_setup_rctl - configure the receive control registers
  1260. * @adapter: Board private structure
  1261. **/
  1262. static void
  1263. e1000_setup_rctl(struct e1000_adapter *adapter)
  1264. {
  1265. uint32_t rctl, rfctl;
  1266. uint32_t psrctl = 0;
  1267. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  1268. rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
  1269. rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
  1270. E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
  1271. (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
  1272. if(adapter->hw.tbi_compatibility_on == 1)
  1273. rctl |= E1000_RCTL_SBP;
  1274. else
  1275. rctl &= ~E1000_RCTL_SBP;
  1276. if (adapter->netdev->mtu <= ETH_DATA_LEN)
  1277. rctl &= ~E1000_RCTL_LPE;
  1278. else
  1279. rctl |= E1000_RCTL_LPE;
  1280. /* Setup buffer sizes */
  1281. if(adapter->hw.mac_type >= e1000_82571) {
  1282. /* We can now specify buffers in 1K increments.
  1283. * BSIZE and BSEX are ignored in this case. */
  1284. rctl |= adapter->rx_buffer_len << 0x11;
  1285. } else {
  1286. rctl &= ~E1000_RCTL_SZ_4096;
  1287. rctl |= E1000_RCTL_BSEX;
  1288. switch (adapter->rx_buffer_len) {
  1289. case E1000_RXBUFFER_2048:
  1290. default:
  1291. rctl |= E1000_RCTL_SZ_2048;
  1292. rctl &= ~E1000_RCTL_BSEX;
  1293. break;
  1294. case E1000_RXBUFFER_4096:
  1295. rctl |= E1000_RCTL_SZ_4096;
  1296. break;
  1297. case E1000_RXBUFFER_8192:
  1298. rctl |= E1000_RCTL_SZ_8192;
  1299. break;
  1300. case E1000_RXBUFFER_16384:
  1301. rctl |= E1000_RCTL_SZ_16384;
  1302. break;
  1303. }
  1304. }
  1305. #ifdef CONFIG_E1000_PACKET_SPLIT
  1306. /* 82571 and greater support packet-split where the protocol
  1307. * header is placed in skb->data and the packet data is
  1308. * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
  1309. * In the case of a non-split, skb->data is linearly filled,
  1310. * followed by the page buffers. Therefore, skb->data is
  1311. * sized to hold the largest protocol header.
  1312. */
  1313. adapter->rx_ps = (adapter->hw.mac_type > e1000_82547_rev_2)
  1314. && (adapter->netdev->mtu
  1315. < ((3 * PAGE_SIZE) + adapter->rx_ps_bsize0));
  1316. #endif
  1317. if(adapter->rx_ps) {
  1318. /* Configure extra packet-split registers */
  1319. rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
  1320. rfctl |= E1000_RFCTL_EXTEN;
  1321. /* disable IPv6 packet split support */
  1322. rfctl |= E1000_RFCTL_IPV6_DIS;
  1323. E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
  1324. rctl |= E1000_RCTL_DTYP_PS | E1000_RCTL_SECRC;
  1325. psrctl |= adapter->rx_ps_bsize0 >>
  1326. E1000_PSRCTL_BSIZE0_SHIFT;
  1327. psrctl |= PAGE_SIZE >>
  1328. E1000_PSRCTL_BSIZE1_SHIFT;
  1329. psrctl |= PAGE_SIZE <<
  1330. E1000_PSRCTL_BSIZE2_SHIFT;
  1331. psrctl |= PAGE_SIZE <<
  1332. E1000_PSRCTL_BSIZE3_SHIFT;
  1333. E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
  1334. }
  1335. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  1336. }
  1337. /**
  1338. * e1000_configure_rx - Configure 8254x Receive Unit after Reset
  1339. * @adapter: board private structure
  1340. *
  1341. * Configure the Rx unit of the MAC after a reset.
  1342. **/
  1343. static void
  1344. e1000_configure_rx(struct e1000_adapter *adapter)
  1345. {
  1346. uint64_t rdba;
  1347. struct e1000_hw *hw = &adapter->hw;
  1348. uint32_t rdlen, rctl, rxcsum, ctrl_ext;
  1349. #ifdef CONFIG_E1000_MQ
  1350. uint32_t reta, mrqc;
  1351. int i;
  1352. #endif
  1353. if(adapter->rx_ps) {
  1354. rdlen = adapter->rx_ring[0].count *
  1355. sizeof(union e1000_rx_desc_packet_split);
  1356. adapter->clean_rx = e1000_clean_rx_irq_ps;
  1357. adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
  1358. } else {
  1359. rdlen = adapter->rx_ring[0].count *
  1360. sizeof(struct e1000_rx_desc);
  1361. adapter->clean_rx = e1000_clean_rx_irq;
  1362. adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
  1363. }
  1364. /* disable receives while setting up the descriptors */
  1365. rctl = E1000_READ_REG(hw, RCTL);
  1366. E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
  1367. /* set the Receive Delay Timer Register */
  1368. E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
  1369. if (hw->mac_type >= e1000_82540) {
  1370. E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
  1371. if(adapter->itr > 1)
  1372. E1000_WRITE_REG(hw, ITR,
  1373. 1000000000 / (adapter->itr * 256));
  1374. }
  1375. if (hw->mac_type >= e1000_82571) {
  1376. /* Reset delay timers after every interrupt */
  1377. ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
  1378. ctrl_ext |= E1000_CTRL_EXT_CANC;
  1379. E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
  1380. E1000_WRITE_FLUSH(hw);
  1381. }
  1382. /* Setup the HW Rx Head and Tail Descriptor Pointers and
  1383. * the Base and Length of the Rx Descriptor Ring */
  1384. switch (adapter->num_queues) {
  1385. #ifdef CONFIG_E1000_MQ
  1386. case 2:
  1387. rdba = adapter->rx_ring[1].dma;
  1388. E1000_WRITE_REG(hw, RDBAL1, (rdba & 0x00000000ffffffffULL));
  1389. E1000_WRITE_REG(hw, RDBAH1, (rdba >> 32));
  1390. E1000_WRITE_REG(hw, RDLEN1, rdlen);
  1391. E1000_WRITE_REG(hw, RDH1, 0);
  1392. E1000_WRITE_REG(hw, RDT1, 0);
  1393. adapter->rx_ring[1].rdh = E1000_RDH1;
  1394. adapter->rx_ring[1].rdt = E1000_RDT1;
  1395. /* Fall Through */
  1396. #endif
  1397. case 1:
  1398. default:
  1399. rdba = adapter->rx_ring[0].dma;
  1400. E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
  1401. E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
  1402. E1000_WRITE_REG(hw, RDLEN, rdlen);
  1403. E1000_WRITE_REG(hw, RDH, 0);
  1404. E1000_WRITE_REG(hw, RDT, 0);
  1405. adapter->rx_ring[0].rdh = E1000_RDH;
  1406. adapter->rx_ring[0].rdt = E1000_RDT;
  1407. break;
  1408. }
  1409. #ifdef CONFIG_E1000_MQ
  1410. if (adapter->num_queues > 1) {
  1411. uint32_t random[10];
  1412. get_random_bytes(&random[0], 40);
  1413. if (hw->mac_type <= e1000_82572) {
  1414. E1000_WRITE_REG(hw, RSSIR, 0);
  1415. E1000_WRITE_REG(hw, RSSIM, 0);
  1416. }
  1417. switch (adapter->num_queues) {
  1418. case 2:
  1419. default:
  1420. reta = 0x00800080;
  1421. mrqc = E1000_MRQC_ENABLE_RSS_2Q;
  1422. break;
  1423. }
  1424. /* Fill out redirection table */
  1425. for (i = 0; i < 32; i++)
  1426. E1000_WRITE_REG_ARRAY(hw, RETA, i, reta);
  1427. /* Fill out hash function seeds */
  1428. for (i = 0; i < 10; i++)
  1429. E1000_WRITE_REG_ARRAY(hw, RSSRK, i, random[i]);
  1430. mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
  1431. E1000_MRQC_RSS_FIELD_IPV4_TCP);
  1432. E1000_WRITE_REG(hw, MRQC, mrqc);
  1433. }
  1434. /* Multiqueue and packet checksumming are mutually exclusive. */
  1435. if (hw->mac_type >= e1000_82571) {
  1436. rxcsum = E1000_READ_REG(hw, RXCSUM);
  1437. rxcsum |= E1000_RXCSUM_PCSD;
  1438. E1000_WRITE_REG(hw, RXCSUM, rxcsum);
  1439. }
  1440. #else
  1441. /* Enable 82543 Receive Checksum Offload for TCP and UDP */
  1442. if (hw->mac_type >= e1000_82543) {
  1443. rxcsum = E1000_READ_REG(hw, RXCSUM);
  1444. if(adapter->rx_csum == TRUE) {
  1445. rxcsum |= E1000_RXCSUM_TUOFL;
  1446. /* Enable 82571 IPv4 payload checksum for UDP fragments
  1447. * Must be used in conjunction with packet-split. */
  1448. if((adapter->hw.mac_type > e1000_82547_rev_2) &&
  1449. (adapter->rx_ps)) {
  1450. rxcsum |= E1000_RXCSUM_IPPCSE;
  1451. }
  1452. } else {
  1453. rxcsum &= ~E1000_RXCSUM_TUOFL;
  1454. /* don't need to clear IPPCSE as it defaults to 0 */
  1455. }
  1456. E1000_WRITE_REG(hw, RXCSUM, rxcsum);
  1457. }
  1458. #endif /* CONFIG_E1000_MQ */
  1459. if (hw->mac_type == e1000_82573)
  1460. E1000_WRITE_REG(hw, ERT, 0x0100);
  1461. /* Enable Receives */
  1462. E1000_WRITE_REG(hw, RCTL, rctl);
  1463. }
  1464. /**
  1465. * e1000_free_tx_resources - Free Tx Resources per Queue
  1466. * @adapter: board private structure
  1467. * @tx_ring: Tx descriptor ring for a specific queue
  1468. *
  1469. * Free all transmit software resources
  1470. **/
  1471. void
  1472. e1000_free_tx_resources(struct e1000_adapter *adapter,
  1473. struct e1000_tx_ring *tx_ring)
  1474. {
  1475. struct pci_dev *pdev = adapter->pdev;
  1476. e1000_clean_tx_ring(adapter, tx_ring);
  1477. vfree(tx_ring->buffer_info);
  1478. tx_ring->buffer_info = NULL;
  1479. pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
  1480. tx_ring->desc = NULL;
  1481. }
  1482. /**
  1483. * e1000_free_all_tx_resources - Free Tx Resources for All Queues
  1484. * @adapter: board private structure
  1485. *
  1486. * Free all transmit software resources
  1487. **/
  1488. void
  1489. e1000_free_all_tx_resources(struct e1000_adapter *adapter)
  1490. {
  1491. int i;
  1492. for (i = 0; i < adapter->num_queues; i++)
  1493. e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
  1494. }
  1495. static inline void
  1496. e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
  1497. struct e1000_buffer *buffer_info)
  1498. {
  1499. if(buffer_info->dma) {
  1500. pci_unmap_page(adapter->pdev,
  1501. buffer_info->dma,
  1502. buffer_info->length,
  1503. PCI_DMA_TODEVICE);
  1504. buffer_info->dma = 0;
  1505. }
  1506. if(buffer_info->skb) {
  1507. dev_kfree_skb_any(buffer_info->skb);
  1508. buffer_info->skb = NULL;
  1509. }
  1510. }
  1511. /**
  1512. * e1000_clean_tx_ring - Free Tx Buffers
  1513. * @adapter: board private structure
  1514. * @tx_ring: ring to be cleaned
  1515. **/
  1516. static void
  1517. e1000_clean_tx_ring(struct e1000_adapter *adapter,
  1518. struct e1000_tx_ring *tx_ring)
  1519. {
  1520. struct e1000_buffer *buffer_info;
  1521. unsigned long size;
  1522. unsigned int i;
  1523. /* Free all the Tx ring sk_buffs */
  1524. if (likely(tx_ring->previous_buffer_info.skb != NULL)) {
  1525. e1000_unmap_and_free_tx_resource(adapter,
  1526. &tx_ring->previous_buffer_info);
  1527. }
  1528. for(i = 0; i < tx_ring->count; i++) {
  1529. buffer_info = &tx_ring->buffer_info[i];
  1530. e1000_unmap_and_free_tx_resource(adapter, buffer_info);
  1531. }
  1532. size = sizeof(struct e1000_buffer) * tx_ring->count;
  1533. memset(tx_ring->buffer_info, 0, size);
  1534. /* Zero out the descriptor ring */
  1535. memset(tx_ring->desc, 0, tx_ring->size);
  1536. tx_ring->next_to_use = 0;
  1537. tx_ring->next_to_clean = 0;
  1538. writel(0, adapter->hw.hw_addr + tx_ring->tdh);
  1539. writel(0, adapter->hw.hw_addr + tx_ring->tdt);
  1540. }
  1541. /**
  1542. * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
  1543. * @adapter: board private structure
  1544. **/
  1545. static void
  1546. e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
  1547. {
  1548. int i;
  1549. for (i = 0; i < adapter->num_queues; i++)
  1550. e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
  1551. }
  1552. /**
  1553. * e1000_free_rx_resources - Free Rx Resources
  1554. * @adapter: board private structure
  1555. * @rx_ring: ring to clean the resources from
  1556. *
  1557. * Free all receive software resources
  1558. **/
  1559. void
  1560. e1000_free_rx_resources(struct e1000_adapter *adapter,
  1561. struct e1000_rx_ring *rx_ring)
  1562. {
  1563. struct pci_dev *pdev = adapter->pdev;
  1564. e1000_clean_rx_ring(adapter, rx_ring);
  1565. vfree(rx_ring->buffer_info);
  1566. rx_ring->buffer_info = NULL;
  1567. kfree(rx_ring->ps_page);
  1568. rx_ring->ps_page = NULL;
  1569. kfree(rx_ring->ps_page_dma);
  1570. rx_ring->ps_page_dma = NULL;
  1571. pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
  1572. rx_ring->desc = NULL;
  1573. }
  1574. /**
  1575. * e1000_free_all_rx_resources - Free Rx Resources for All Queues
  1576. * @adapter: board private structure
  1577. *
  1578. * Free all receive software resources
  1579. **/
  1580. void
  1581. e1000_free_all_rx_resources(struct e1000_adapter *adapter)
  1582. {
  1583. int i;
  1584. for (i = 0; i < adapter->num_queues; i++)
  1585. e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
  1586. }
  1587. /**
  1588. * e1000_clean_rx_ring - Free Rx Buffers per Queue
  1589. * @adapter: board private structure
  1590. * @rx_ring: ring to free buffers from
  1591. **/
  1592. static void
  1593. e1000_clean_rx_ring(struct e1000_adapter *adapter,
  1594. struct e1000_rx_ring *rx_ring)
  1595. {
  1596. struct e1000_buffer *buffer_info;
  1597. struct e1000_ps_page *ps_page;
  1598. struct e1000_ps_page_dma *ps_page_dma;
  1599. struct pci_dev *pdev = adapter->pdev;
  1600. unsigned long size;
  1601. unsigned int i, j;
  1602. /* Free all the Rx ring sk_buffs */
  1603. for(i = 0; i < rx_ring->count; i++) {
  1604. buffer_info = &rx_ring->buffer_info[i];
  1605. if(buffer_info->skb) {
  1606. ps_page = &rx_ring->ps_page[i];
  1607. ps_page_dma = &rx_ring->ps_page_dma[i];
  1608. pci_unmap_single(pdev,
  1609. buffer_info->dma,
  1610. buffer_info->length,
  1611. PCI_DMA_FROMDEVICE);
  1612. dev_kfree_skb(buffer_info->skb);
  1613. buffer_info->skb = NULL;
  1614. for(j = 0; j < PS_PAGE_BUFFERS; j++) {
  1615. if(!ps_page->ps_page[j]) break;
  1616. pci_unmap_single(pdev,
  1617. ps_page_dma->ps_page_dma[j],
  1618. PAGE_SIZE, PCI_DMA_FROMDEVICE);
  1619. ps_page_dma->ps_page_dma[j] = 0;
  1620. put_page(ps_page->ps_page[j]);
  1621. ps_page->ps_page[j] = NULL;
  1622. }
  1623. }
  1624. }
  1625. size = sizeof(struct e1000_buffer) * rx_ring->count;
  1626. memset(rx_ring->buffer_info, 0, size);
  1627. size = sizeof(struct e1000_ps_page) * rx_ring->count;
  1628. memset(rx_ring->ps_page, 0, size);
  1629. size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
  1630. memset(rx_ring->ps_page_dma, 0, size);
  1631. /* Zero out the descriptor ring */
  1632. memset(rx_ring->desc, 0, rx_ring->size);
  1633. rx_ring->next_to_clean = 0;
  1634. rx_ring->next_to_use = 0;
  1635. writel(0, adapter->hw.hw_addr + rx_ring->rdh);
  1636. writel(0, adapter->hw.hw_addr + rx_ring->rdt);
  1637. }
  1638. /**
  1639. * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
  1640. * @adapter: board private structure
  1641. **/
  1642. static void
  1643. e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
  1644. {
  1645. int i;
  1646. for (i = 0; i < adapter->num_queues; i++)
  1647. e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
  1648. }
  1649. /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
  1650. * and memory write and invalidate disabled for certain operations
  1651. */
  1652. static void
  1653. e1000_enter_82542_rst(struct e1000_adapter *adapter)
  1654. {
  1655. struct net_device *netdev = adapter->netdev;
  1656. uint32_t rctl;
  1657. e1000_pci_clear_mwi(&adapter->hw);
  1658. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  1659. rctl |= E1000_RCTL_RST;
  1660. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  1661. E1000_WRITE_FLUSH(&adapter->hw);
  1662. mdelay(5);
  1663. if(netif_running(netdev))
  1664. e1000_clean_all_rx_rings(adapter);
  1665. }
  1666. static void
  1667. e1000_leave_82542_rst(struct e1000_adapter *adapter)
  1668. {
  1669. struct net_device *netdev = adapter->netdev;
  1670. uint32_t rctl;
  1671. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  1672. rctl &= ~E1000_RCTL_RST;
  1673. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  1674. E1000_WRITE_FLUSH(&adapter->hw);
  1675. mdelay(5);
  1676. if(adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
  1677. e1000_pci_set_mwi(&adapter->hw);
  1678. if(netif_running(netdev)) {
  1679. e1000_configure_rx(adapter);
  1680. e1000_alloc_rx_buffers(adapter, &adapter->rx_ring[0]);
  1681. }
  1682. }
  1683. /**
  1684. * e1000_set_mac - Change the Ethernet Address of the NIC
  1685. * @netdev: network interface device structure
  1686. * @p: pointer to an address structure
  1687. *
  1688. * Returns 0 on success, negative on failure
  1689. **/
  1690. static int
  1691. e1000_set_mac(struct net_device *netdev, void *p)
  1692. {
  1693. struct e1000_adapter *adapter = netdev_priv(netdev);
  1694. struct sockaddr *addr = p;
  1695. if(!is_valid_ether_addr(addr->sa_data))
  1696. return -EADDRNOTAVAIL;
  1697. /* 82542 2.0 needs to be in reset to write receive address registers */
  1698. if(adapter->hw.mac_type == e1000_82542_rev2_0)
  1699. e1000_enter_82542_rst(adapter);
  1700. memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
  1701. memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
  1702. e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
  1703. /* With 82571 controllers, LAA may be overwritten (with the default)
  1704. * due to controller reset from the other port. */
  1705. if (adapter->hw.mac_type == e1000_82571) {
  1706. /* activate the work around */
  1707. adapter->hw.laa_is_present = 1;
  1708. /* Hold a copy of the LAA in RAR[14] This is done so that
  1709. * between the time RAR[0] gets clobbered and the time it
  1710. * gets fixed (in e1000_watchdog), the actual LAA is in one
  1711. * of the RARs and no incoming packets directed to this port
  1712. * are dropped. Eventaully the LAA will be in RAR[0] and
  1713. * RAR[14] */
  1714. e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
  1715. E1000_RAR_ENTRIES - 1);
  1716. }
  1717. if(adapter->hw.mac_type == e1000_82542_rev2_0)
  1718. e1000_leave_82542_rst(adapter);
  1719. return 0;
  1720. }
  1721. /**
  1722. * e1000_set_multi - Multicast and Promiscuous mode set
  1723. * @netdev: network interface device structure
  1724. *
  1725. * The set_multi entry point is called whenever the multicast address
  1726. * list or the network interface flags are updated. This routine is
  1727. * responsible for configuring the hardware for proper multicast,
  1728. * promiscuous mode, and all-multi behavior.
  1729. **/
  1730. static void
  1731. e1000_set_multi(struct net_device *netdev)
  1732. {
  1733. struct e1000_adapter *adapter = netdev_priv(netdev);
  1734. struct e1000_hw *hw = &adapter->hw;
  1735. struct dev_mc_list *mc_ptr;
  1736. uint32_t rctl;
  1737. uint32_t hash_value;
  1738. int i, rar_entries = E1000_RAR_ENTRIES;
  1739. /* reserve RAR[14] for LAA over-write work-around */
  1740. if (adapter->hw.mac_type == e1000_82571)
  1741. rar_entries--;
  1742. /* Check for Promiscuous and All Multicast modes */
  1743. rctl = E1000_READ_REG(hw, RCTL);
  1744. if(netdev->flags & IFF_PROMISC) {
  1745. rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
  1746. } else if(netdev->flags & IFF_ALLMULTI) {
  1747. rctl |= E1000_RCTL_MPE;
  1748. rctl &= ~E1000_RCTL_UPE;
  1749. } else {
  1750. rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
  1751. }
  1752. E1000_WRITE_REG(hw, RCTL, rctl);
  1753. /* 82542 2.0 needs to be in reset to write receive address registers */
  1754. if(hw->mac_type == e1000_82542_rev2_0)
  1755. e1000_enter_82542_rst(adapter);
  1756. /* load the first 14 multicast address into the exact filters 1-14
  1757. * RAR 0 is used for the station MAC adddress
  1758. * if there are not 14 addresses, go ahead and clear the filters
  1759. * -- with 82571 controllers only 0-13 entries are filled here
  1760. */
  1761. mc_ptr = netdev->mc_list;
  1762. for(i = 1; i < rar_entries; i++) {
  1763. if (mc_ptr) {
  1764. e1000_rar_set(hw, mc_ptr->dmi_addr, i);
  1765. mc_ptr = mc_ptr->next;
  1766. } else {
  1767. E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
  1768. E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
  1769. }
  1770. }
  1771. /* clear the old settings from the multicast hash table */
  1772. for(i = 0; i < E1000_NUM_MTA_REGISTERS; i++)
  1773. E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
  1774. /* load any remaining addresses into the hash table */
  1775. for(; mc_ptr; mc_ptr = mc_ptr->next) {
  1776. hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
  1777. e1000_mta_set(hw, hash_value);
  1778. }
  1779. if(hw->mac_type == e1000_82542_rev2_0)
  1780. e1000_leave_82542_rst(adapter);
  1781. }
  1782. /* Need to wait a few seconds after link up to get diagnostic information from
  1783. * the phy */
  1784. static void
  1785. e1000_update_phy_info(unsigned long data)
  1786. {
  1787. struct e1000_adapter *adapter = (struct e1000_adapter *) data;
  1788. e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
  1789. }
  1790. /**
  1791. * e1000_82547_tx_fifo_stall - Timer Call-back
  1792. * @data: pointer to adapter cast into an unsigned long
  1793. **/
  1794. static void
  1795. e1000_82547_tx_fifo_stall(unsigned long data)
  1796. {
  1797. struct e1000_adapter *adapter = (struct e1000_adapter *) data;
  1798. struct net_device *netdev = adapter->netdev;
  1799. uint32_t tctl;
  1800. if(atomic_read(&adapter->tx_fifo_stall)) {
  1801. if((E1000_READ_REG(&adapter->hw, TDT) ==
  1802. E1000_READ_REG(&adapter->hw, TDH)) &&
  1803. (E1000_READ_REG(&adapter->hw, TDFT) ==
  1804. E1000_READ_REG(&adapter->hw, TDFH)) &&
  1805. (E1000_READ_REG(&adapter->hw, TDFTS) ==
  1806. E1000_READ_REG(&adapter->hw, TDFHS))) {
  1807. tctl = E1000_READ_REG(&adapter->hw, TCTL);
  1808. E1000_WRITE_REG(&adapter->hw, TCTL,
  1809. tctl & ~E1000_TCTL_EN);
  1810. E1000_WRITE_REG(&adapter->hw, TDFT,
  1811. adapter->tx_head_addr);
  1812. E1000_WRITE_REG(&adapter->hw, TDFH,
  1813. adapter->tx_head_addr);
  1814. E1000_WRITE_REG(&adapter->hw, TDFTS,
  1815. adapter->tx_head_addr);
  1816. E1000_WRITE_REG(&adapter->hw, TDFHS,
  1817. adapter->tx_head_addr);
  1818. E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
  1819. E1000_WRITE_FLUSH(&adapter->hw);
  1820. adapter->tx_fifo_head = 0;
  1821. atomic_set(&adapter->tx_fifo_stall, 0);
  1822. netif_wake_queue(netdev);
  1823. } else {
  1824. mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
  1825. }
  1826. }
  1827. }
  1828. /**
  1829. * e1000_watchdog - Timer Call-back
  1830. * @data: pointer to adapter cast into an unsigned long
  1831. **/
  1832. static void
  1833. e1000_watchdog(unsigned long data)
  1834. {
  1835. struct e1000_adapter *adapter = (struct e1000_adapter *) data;
  1836. /* Do the rest outside of interrupt context */
  1837. schedule_work(&adapter->watchdog_task);
  1838. }
  1839. static void
  1840. e1000_watchdog_task(struct e1000_adapter *adapter)
  1841. {
  1842. struct net_device *netdev = adapter->netdev;
  1843. struct e1000_tx_ring *txdr = &adapter->tx_ring[0];
  1844. uint32_t link;
  1845. e1000_check_for_link(&adapter->hw);
  1846. if (adapter->hw.mac_type == e1000_82573) {
  1847. e1000_enable_tx_pkt_filtering(&adapter->hw);
  1848. if(adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
  1849. e1000_update_mng_vlan(adapter);
  1850. }
  1851. if((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
  1852. !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
  1853. link = !adapter->hw.serdes_link_down;
  1854. else
  1855. link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
  1856. if(link) {
  1857. if(!netif_carrier_ok(netdev)) {
  1858. e1000_get_speed_and_duplex(&adapter->hw,
  1859. &adapter->link_speed,
  1860. &adapter->link_duplex);
  1861. DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
  1862. adapter->link_speed,
  1863. adapter->link_duplex == FULL_DUPLEX ?
  1864. "Full Duplex" : "Half Duplex");
  1865. netif_carrier_on(netdev);
  1866. netif_wake_queue(netdev);
  1867. mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
  1868. adapter->smartspeed = 0;
  1869. }
  1870. } else {
  1871. if(netif_carrier_ok(netdev)) {
  1872. adapter->link_speed = 0;
  1873. adapter->link_duplex = 0;
  1874. DPRINTK(LINK, INFO, "NIC Link is Down\n");
  1875. netif_carrier_off(netdev);
  1876. netif_stop_queue(netdev);
  1877. mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
  1878. }
  1879. e1000_smartspeed(adapter);
  1880. }
  1881. e1000_update_stats(adapter);
  1882. adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
  1883. adapter->tpt_old = adapter->stats.tpt;
  1884. adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
  1885. adapter->colc_old = adapter->stats.colc;
  1886. adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
  1887. adapter->gorcl_old = adapter->stats.gorcl;
  1888. adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
  1889. adapter->gotcl_old = adapter->stats.gotcl;
  1890. e1000_update_adaptive(&adapter->hw);
  1891. if (adapter->num_queues == 1 && !netif_carrier_ok(netdev)) {
  1892. if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
  1893. /* We've lost link, so the controller stops DMA,
  1894. * but we've got queued Tx work that's never going
  1895. * to get done, so reset controller to flush Tx.
  1896. * (Do the reset outside of interrupt context). */
  1897. schedule_work(&adapter->tx_timeout_task);
  1898. }
  1899. }
  1900. /* Dynamic mode for Interrupt Throttle Rate (ITR) */
  1901. if(adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
  1902. /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
  1903. * asymmetrical Tx or Rx gets ITR=8000; everyone
  1904. * else is between 2000-8000. */
  1905. uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
  1906. uint32_t dif = (adapter->gotcl > adapter->gorcl ?
  1907. adapter->gotcl - adapter->gorcl :
  1908. adapter->gorcl - adapter->gotcl) / 10000;
  1909. uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
  1910. E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
  1911. }
  1912. /* Cause software interrupt to ensure rx ring is cleaned */
  1913. E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
  1914. /* Force detection of hung controller every watchdog period */
  1915. adapter->detect_tx_hung = TRUE;
  1916. /* With 82571 controllers, LAA may be overwritten due to controller
  1917. * reset from the other port. Set the appropriate LAA in RAR[0] */
  1918. if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
  1919. e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
  1920. /* Reset the timer */
  1921. mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
  1922. }
  1923. #define E1000_TX_FLAGS_CSUM 0x00000001
  1924. #define E1000_TX_FLAGS_VLAN 0x00000002
  1925. #define E1000_TX_FLAGS_TSO 0x00000004
  1926. #define E1000_TX_FLAGS_IPV4 0x00000008
  1927. #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
  1928. #define E1000_TX_FLAGS_VLAN_SHIFT 16
  1929. static inline int
  1930. e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
  1931. struct sk_buff *skb)
  1932. {
  1933. #ifdef NETIF_F_TSO
  1934. struct e1000_context_desc *context_desc;
  1935. unsigned int i;
  1936. uint32_t cmd_length = 0;
  1937. uint16_t ipcse = 0, tucse, mss;
  1938. uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
  1939. int err;
  1940. if(skb_shinfo(skb)->tso_size) {
  1941. if (skb_header_cloned(skb)) {
  1942. err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
  1943. if (err)
  1944. return err;
  1945. }
  1946. hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
  1947. mss = skb_shinfo(skb)->tso_size;
  1948. if(skb->protocol == ntohs(ETH_P_IP)) {
  1949. skb->nh.iph->tot_len = 0;
  1950. skb->nh.iph->check = 0;
  1951. skb->h.th->check =
  1952. ~csum_tcpudp_magic(skb->nh.iph->saddr,
  1953. skb->nh.iph->daddr,
  1954. 0,
  1955. IPPROTO_TCP,
  1956. 0);
  1957. cmd_length = E1000_TXD_CMD_IP;
  1958. ipcse = skb->h.raw - skb->data - 1;
  1959. #ifdef NETIF_F_TSO_IPV6
  1960. } else if(skb->protocol == ntohs(ETH_P_IPV6)) {
  1961. skb->nh.ipv6h->payload_len = 0;
  1962. skb->h.th->check =
  1963. ~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
  1964. &skb->nh.ipv6h->daddr,
  1965. 0,
  1966. IPPROTO_TCP,
  1967. 0);
  1968. ipcse = 0;
  1969. #endif
  1970. }
  1971. ipcss = skb->nh.raw - skb->data;
  1972. ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
  1973. tucss = skb->h.raw - skb->data;
  1974. tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
  1975. tucse = 0;
  1976. cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
  1977. E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
  1978. i = tx_ring->next_to_use;
  1979. context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
  1980. context_desc->lower_setup.ip_fields.ipcss = ipcss;
  1981. context_desc->lower_setup.ip_fields.ipcso = ipcso;
  1982. context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
  1983. context_desc->upper_setup.tcp_fields.tucss = tucss;
  1984. context_desc->upper_setup.tcp_fields.tucso = tucso;
  1985. context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
  1986. context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
  1987. context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
  1988. context_desc->cmd_and_length = cpu_to_le32(cmd_length);
  1989. if (++i == tx_ring->count) i = 0;
  1990. tx_ring->next_to_use = i;
  1991. return 1;
  1992. }
  1993. #endif
  1994. return 0;
  1995. }
  1996. static inline boolean_t
  1997. e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
  1998. struct sk_buff *skb)
  1999. {
  2000. struct e1000_context_desc *context_desc;
  2001. unsigned int i;
  2002. uint8_t css;
  2003. if(likely(skb->ip_summed == CHECKSUM_HW)) {
  2004. css = skb->h.raw - skb->data;
  2005. i = tx_ring->next_to_use;
  2006. context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
  2007. context_desc->upper_setup.tcp_fields.tucss = css;
  2008. context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
  2009. context_desc->upper_setup.tcp_fields.tucse = 0;
  2010. context_desc->tcp_seg_setup.data = 0;
  2011. context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
  2012. if (unlikely(++i == tx_ring->count)) i = 0;
  2013. tx_ring->next_to_use = i;
  2014. return TRUE;
  2015. }
  2016. return FALSE;
  2017. }
  2018. #define E1000_MAX_TXD_PWR 12
  2019. #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
  2020. static inline int
  2021. e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
  2022. struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
  2023. unsigned int nr_frags, unsigned int mss)
  2024. {
  2025. struct e1000_buffer *buffer_info;
  2026. unsigned int len = skb->len;
  2027. unsigned int offset = 0, size, count = 0, i;
  2028. unsigned int f;
  2029. len -= skb->data_len;
  2030. i = tx_ring->next_to_use;
  2031. while(len) {
  2032. buffer_info = &tx_ring->buffer_info[i];
  2033. size = min(len, max_per_txd);
  2034. #ifdef NETIF_F_TSO
  2035. /* Workaround for premature desc write-backs
  2036. * in TSO mode. Append 4-byte sentinel desc */
  2037. if(unlikely(mss && !nr_frags && size == len && size > 8))
  2038. size -= 4;
  2039. #endif
  2040. /* work-around for errata 10 and it applies
  2041. * to all controllers in PCI-X mode
  2042. * The fix is to make sure that the first descriptor of a
  2043. * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
  2044. */
  2045. if(unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
  2046. (size > 2015) && count == 0))
  2047. size = 2015;
  2048. /* Workaround for potential 82544 hang in PCI-X. Avoid
  2049. * terminating buffers within evenly-aligned dwords. */
  2050. if(unlikely(adapter->pcix_82544 &&
  2051. !((unsigned long)(skb->data + offset + size - 1) & 4) &&
  2052. size > 4))
  2053. size -= 4;
  2054. buffer_info->length = size;
  2055. buffer_info->dma =
  2056. pci_map_single(adapter->pdev,
  2057. skb->data + offset,
  2058. size,
  2059. PCI_DMA_TODEVICE);
  2060. buffer_info->time_stamp = jiffies;
  2061. len -= size;
  2062. offset += size;
  2063. count++;
  2064. if(unlikely(++i == tx_ring->count)) i = 0;
  2065. }
  2066. for(f = 0; f < nr_frags; f++) {
  2067. struct skb_frag_struct *frag;
  2068. frag = &skb_shinfo(skb)->frags[f];
  2069. len = frag->size;
  2070. offset = frag->page_offset;
  2071. while(len) {
  2072. buffer_info = &tx_ring->buffer_info[i];
  2073. size = min(len, max_per_txd);
  2074. #ifdef NETIF_F_TSO
  2075. /* Workaround for premature desc write-backs
  2076. * in TSO mode. Append 4-byte sentinel desc */
  2077. if(unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
  2078. size -= 4;
  2079. #endif
  2080. /* Workaround for potential 82544 hang in PCI-X.
  2081. * Avoid terminating buffers within evenly-aligned
  2082. * dwords. */
  2083. if(unlikely(adapter->pcix_82544 &&
  2084. !((unsigned long)(frag->page+offset+size-1) & 4) &&
  2085. size > 4))
  2086. size -= 4;
  2087. buffer_info->length = size;
  2088. buffer_info->dma =
  2089. pci_map_page(adapter->pdev,
  2090. frag->page,
  2091. offset,
  2092. size,
  2093. PCI_DMA_TODEVICE);
  2094. buffer_info->time_stamp = jiffies;
  2095. len -= size;
  2096. offset += size;
  2097. count++;
  2098. if(unlikely(++i == tx_ring->count)) i = 0;
  2099. }
  2100. }
  2101. i = (i == 0) ? tx_ring->count - 1 : i - 1;
  2102. tx_ring->buffer_info[i].skb = skb;
  2103. tx_ring->buffer_info[first].next_to_watch = i;
  2104. return count;
  2105. }
  2106. static inline void
  2107. e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
  2108. int tx_flags, int count)
  2109. {
  2110. struct e1000_tx_desc *tx_desc = NULL;
  2111. struct e1000_buffer *buffer_info;
  2112. uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
  2113. unsigned int i;
  2114. if(likely(tx_flags & E1000_TX_FLAGS_TSO)) {
  2115. txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
  2116. E1000_TXD_CMD_TSE;
  2117. txd_upper |= E1000_TXD_POPTS_TXSM << 8;
  2118. if(likely(tx_flags & E1000_TX_FLAGS_IPV4))
  2119. txd_upper |= E1000_TXD_POPTS_IXSM << 8;
  2120. }
  2121. if(likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
  2122. txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
  2123. txd_upper |= E1000_TXD_POPTS_TXSM << 8;
  2124. }
  2125. if(unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
  2126. txd_lower |= E1000_TXD_CMD_VLE;
  2127. txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
  2128. }
  2129. i = tx_ring->next_to_use;
  2130. while(count--) {
  2131. buffer_info = &tx_ring->buffer_info[i];
  2132. tx_desc = E1000_TX_DESC(*tx_ring, i);
  2133. tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
  2134. tx_desc->lower.data =
  2135. cpu_to_le32(txd_lower | buffer_info->length);
  2136. tx_desc->upper.data = cpu_to_le32(txd_upper);
  2137. if(unlikely(++i == tx_ring->count)) i = 0;
  2138. }
  2139. tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
  2140. /* Force memory writes to complete before letting h/w
  2141. * know there are new descriptors to fetch. (Only
  2142. * applicable for weak-ordered memory model archs,
  2143. * such as IA-64). */
  2144. wmb();
  2145. tx_ring->next_to_use = i;
  2146. writel(i, adapter->hw.hw_addr + tx_ring->tdt);
  2147. }
  2148. /**
  2149. * 82547 workaround to avoid controller hang in half-duplex environment.
  2150. * The workaround is to avoid queuing a large packet that would span
  2151. * the internal Tx FIFO ring boundary by notifying the stack to resend
  2152. * the packet at a later time. This gives the Tx FIFO an opportunity to
  2153. * flush all packets. When that occurs, we reset the Tx FIFO pointers
  2154. * to the beginning of the Tx FIFO.
  2155. **/
  2156. #define E1000_FIFO_HDR 0x10
  2157. #define E1000_82547_PAD_LEN 0x3E0
  2158. static inline int
  2159. e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
  2160. {
  2161. uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
  2162. uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
  2163. E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
  2164. if(adapter->link_duplex != HALF_DUPLEX)
  2165. goto no_fifo_stall_required;
  2166. if(atomic_read(&adapter->tx_fifo_stall))
  2167. return 1;
  2168. if(skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
  2169. atomic_set(&adapter->tx_fifo_stall, 1);
  2170. return 1;
  2171. }
  2172. no_fifo_stall_required:
  2173. adapter->tx_fifo_head += skb_fifo_len;
  2174. if(adapter->tx_fifo_head >= adapter->tx_fifo_size)
  2175. adapter->tx_fifo_head -= adapter->tx_fifo_size;
  2176. return 0;
  2177. }
  2178. #define MINIMUM_DHCP_PACKET_SIZE 282
  2179. static inline int
  2180. e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
  2181. {
  2182. struct e1000_hw *hw = &adapter->hw;
  2183. uint16_t length, offset;
  2184. if(vlan_tx_tag_present(skb)) {
  2185. if(!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
  2186. ( adapter->hw.mng_cookie.status &
  2187. E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
  2188. return 0;
  2189. }
  2190. if(htons(ETH_P_IP) == skb->protocol) {
  2191. const struct iphdr *ip = skb->nh.iph;
  2192. if(IPPROTO_UDP == ip->protocol) {
  2193. struct udphdr *udp = (struct udphdr *)(skb->h.uh);
  2194. if(ntohs(udp->dest) == 67) {
  2195. offset = (uint8_t *)udp + 8 - skb->data;
  2196. length = skb->len - offset;
  2197. return e1000_mng_write_dhcp_info(hw,
  2198. (uint8_t *)udp + 8, length);
  2199. }
  2200. }
  2201. } else if((skb->len > MINIMUM_DHCP_PACKET_SIZE) && (!skb->protocol)) {
  2202. struct ethhdr *eth = (struct ethhdr *) skb->data;
  2203. if((htons(ETH_P_IP) == eth->h_proto)) {
  2204. const struct iphdr *ip =
  2205. (struct iphdr *)((uint8_t *)skb->data+14);
  2206. if(IPPROTO_UDP == ip->protocol) {
  2207. struct udphdr *udp =
  2208. (struct udphdr *)((uint8_t *)ip +
  2209. (ip->ihl << 2));
  2210. if(ntohs(udp->dest) == 67) {
  2211. offset = (uint8_t *)udp + 8 - skb->data;
  2212. length = skb->len - offset;
  2213. return e1000_mng_write_dhcp_info(hw,
  2214. (uint8_t *)udp + 8,
  2215. length);
  2216. }
  2217. }
  2218. }
  2219. }
  2220. return 0;
  2221. }
  2222. #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
  2223. static int
  2224. e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
  2225. {
  2226. struct e1000_adapter *adapter = netdev_priv(netdev);
  2227. struct e1000_tx_ring *tx_ring;
  2228. unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
  2229. unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
  2230. unsigned int tx_flags = 0;
  2231. unsigned int len = skb->len;
  2232. unsigned long flags;
  2233. unsigned int nr_frags = 0;
  2234. unsigned int mss = 0;
  2235. int count = 0;
  2236. int tso;
  2237. unsigned int f;
  2238. len -= skb->data_len;
  2239. #ifdef CONFIG_E1000_MQ
  2240. tx_ring = *per_cpu_ptr(adapter->cpu_tx_ring, smp_processor_id());
  2241. #else
  2242. tx_ring = adapter->tx_ring;
  2243. #endif
  2244. if (unlikely(skb->len <= 0)) {
  2245. dev_kfree_skb_any(skb);
  2246. return NETDEV_TX_OK;
  2247. }
  2248. #ifdef NETIF_F_TSO
  2249. mss = skb_shinfo(skb)->tso_size;
  2250. /* The controller does a simple calculation to
  2251. * make sure there is enough room in the FIFO before
  2252. * initiating the DMA for each buffer. The calc is:
  2253. * 4 = ceil(buffer len/mss). To make sure we don't
  2254. * overrun the FIFO, adjust the max buffer len if mss
  2255. * drops. */
  2256. if(mss) {
  2257. max_per_txd = min(mss << 2, max_per_txd);
  2258. max_txd_pwr = fls(max_per_txd) - 1;
  2259. }
  2260. if((mss) || (skb->ip_summed == CHECKSUM_HW))
  2261. count++;
  2262. count++;
  2263. #else
  2264. if(skb->ip_summed == CHECKSUM_HW)
  2265. count++;
  2266. #endif
  2267. count += TXD_USE_COUNT(len, max_txd_pwr);
  2268. if(adapter->pcix_82544)
  2269. count++;
  2270. /* work-around for errata 10 and it applies to all controllers
  2271. * in PCI-X mode, so add one more descriptor to the count
  2272. */
  2273. if(unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
  2274. (len > 2015)))
  2275. count++;
  2276. nr_frags = skb_shinfo(skb)->nr_frags;
  2277. for(f = 0; f < nr_frags; f++)
  2278. count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
  2279. max_txd_pwr);
  2280. if(adapter->pcix_82544)
  2281. count += nr_frags;
  2282. #ifdef NETIF_F_TSO
  2283. /* TSO Workaround for 82571/2 Controllers -- if skb->data
  2284. * points to just header, pull a few bytes of payload from
  2285. * frags into skb->data */
  2286. if (skb_shinfo(skb)->tso_size) {
  2287. uint8_t hdr_len;
  2288. hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
  2289. if (skb->data_len && (hdr_len < (skb->len - skb->data_len)) &&
  2290. (adapter->hw.mac_type == e1000_82571 ||
  2291. adapter->hw.mac_type == e1000_82572)) {
  2292. unsigned int pull_size;
  2293. pull_size = min((unsigned int)4, skb->data_len);
  2294. if (!__pskb_pull_tail(skb, pull_size)) {
  2295. printk(KERN_ERR "__pskb_pull_tail failed.\n");
  2296. dev_kfree_skb_any(skb);
  2297. return -EFAULT;
  2298. }
  2299. }
  2300. }
  2301. #endif
  2302. if(adapter->hw.tx_pkt_filtering && (adapter->hw.mac_type == e1000_82573) )
  2303. e1000_transfer_dhcp_info(adapter, skb);
  2304. local_irq_save(flags);
  2305. if (!spin_trylock(&tx_ring->tx_lock)) {
  2306. /* Collision - tell upper layer to requeue */
  2307. local_irq_restore(flags);
  2308. return NETDEV_TX_LOCKED;
  2309. }
  2310. /* need: count + 2 desc gap to keep tail from touching
  2311. * head, otherwise try next time */
  2312. if (unlikely(E1000_DESC_UNUSED(tx_ring) < count + 2)) {
  2313. netif_stop_queue(netdev);
  2314. spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
  2315. return NETDEV_TX_BUSY;
  2316. }
  2317. if(unlikely(adapter->hw.mac_type == e1000_82547)) {
  2318. if(unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
  2319. netif_stop_queue(netdev);
  2320. mod_timer(&adapter->tx_fifo_stall_timer, jiffies);
  2321. spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
  2322. return NETDEV_TX_BUSY;
  2323. }
  2324. }
  2325. if(unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
  2326. tx_flags |= E1000_TX_FLAGS_VLAN;
  2327. tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
  2328. }
  2329. first = tx_ring->next_to_use;
  2330. tso = e1000_tso(adapter, tx_ring, skb);
  2331. if (tso < 0) {
  2332. dev_kfree_skb_any(skb);
  2333. spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
  2334. return NETDEV_TX_OK;
  2335. }
  2336. if (likely(tso))
  2337. tx_flags |= E1000_TX_FLAGS_TSO;
  2338. else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
  2339. tx_flags |= E1000_TX_FLAGS_CSUM;
  2340. /* Old method was to assume IPv4 packet by default if TSO was enabled.
  2341. * 82571 hardware supports TSO capabilities for IPv6 as well...
  2342. * no longer assume, we must. */
  2343. if (likely(skb->protocol == ntohs(ETH_P_IP)))
  2344. tx_flags |= E1000_TX_FLAGS_IPV4;
  2345. e1000_tx_queue(adapter, tx_ring, tx_flags,
  2346. e1000_tx_map(adapter, tx_ring, skb, first,
  2347. max_per_txd, nr_frags, mss));
  2348. netdev->trans_start = jiffies;
  2349. /* Make sure there is space in the ring for the next send. */
  2350. if (unlikely(E1000_DESC_UNUSED(tx_ring) < MAX_SKB_FRAGS + 2))
  2351. netif_stop_queue(netdev);
  2352. spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
  2353. return NETDEV_TX_OK;
  2354. }
  2355. /**
  2356. * e1000_tx_timeout - Respond to a Tx Hang
  2357. * @netdev: network interface device structure
  2358. **/
  2359. static void
  2360. e1000_tx_timeout(struct net_device *netdev)
  2361. {
  2362. struct e1000_adapter *adapter = netdev_priv(netdev);
  2363. /* Do the reset outside of interrupt context */
  2364. schedule_work(&adapter->tx_timeout_task);
  2365. }
  2366. static void
  2367. e1000_tx_timeout_task(struct net_device *netdev)
  2368. {
  2369. struct e1000_adapter *adapter = netdev_priv(netdev);
  2370. e1000_down(adapter);
  2371. e1000_up(adapter);
  2372. }
  2373. /**
  2374. * e1000_get_stats - Get System Network Statistics
  2375. * @netdev: network interface device structure
  2376. *
  2377. * Returns the address of the device statistics structure.
  2378. * The statistics are actually updated from the timer callback.
  2379. **/
  2380. static struct net_device_stats *
  2381. e1000_get_stats(struct net_device *netdev)
  2382. {
  2383. struct e1000_adapter *adapter = netdev_priv(netdev);
  2384. e1000_update_stats(adapter);
  2385. return &adapter->net_stats;
  2386. }
  2387. /**
  2388. * e1000_change_mtu - Change the Maximum Transfer Unit
  2389. * @netdev: network interface device structure
  2390. * @new_mtu: new value for maximum frame size
  2391. *
  2392. * Returns 0 on success, negative on failure
  2393. **/
  2394. static int
  2395. e1000_change_mtu(struct net_device *netdev, int new_mtu)
  2396. {
  2397. struct e1000_adapter *adapter = netdev_priv(netdev);
  2398. int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
  2399. if((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
  2400. (max_frame > MAX_JUMBO_FRAME_SIZE)) {
  2401. DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
  2402. return -EINVAL;
  2403. }
  2404. #define MAX_STD_JUMBO_FRAME_SIZE 9234
  2405. /* might want this to be bigger enum check... */
  2406. /* 82571 controllers limit jumbo frame size to 10500 bytes */
  2407. if ((adapter->hw.mac_type == e1000_82571 ||
  2408. adapter->hw.mac_type == e1000_82572) &&
  2409. max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
  2410. DPRINTK(PROBE, ERR, "MTU > 9216 bytes not supported "
  2411. "on 82571 and 82572 controllers.\n");
  2412. return -EINVAL;
  2413. }
  2414. if(adapter->hw.mac_type == e1000_82573 &&
  2415. max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
  2416. DPRINTK(PROBE, ERR, "Jumbo Frames not supported "
  2417. "on 82573\n");
  2418. return -EINVAL;
  2419. }
  2420. if(adapter->hw.mac_type > e1000_82547_rev_2) {
  2421. adapter->rx_buffer_len = max_frame;
  2422. E1000_ROUNDUP(adapter->rx_buffer_len, 1024);
  2423. } else {
  2424. if(unlikely((adapter->hw.mac_type < e1000_82543) &&
  2425. (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE))) {
  2426. DPRINTK(PROBE, ERR, "Jumbo Frames not supported "
  2427. "on 82542\n");
  2428. return -EINVAL;
  2429. } else {
  2430. if(max_frame <= E1000_RXBUFFER_2048) {
  2431. adapter->rx_buffer_len = E1000_RXBUFFER_2048;
  2432. } else if(max_frame <= E1000_RXBUFFER_4096) {
  2433. adapter->rx_buffer_len = E1000_RXBUFFER_4096;
  2434. } else if(max_frame <= E1000_RXBUFFER_8192) {
  2435. adapter->rx_buffer_len = E1000_RXBUFFER_8192;
  2436. } else if(max_frame <= E1000_RXBUFFER_16384) {
  2437. adapter->rx_buffer_len = E1000_RXBUFFER_16384;
  2438. }
  2439. }
  2440. }
  2441. netdev->mtu = new_mtu;
  2442. if(netif_running(netdev)) {
  2443. e1000_down(adapter);
  2444. e1000_up(adapter);
  2445. }
  2446. adapter->hw.max_frame_size = max_frame;
  2447. return 0;
  2448. }
  2449. /**
  2450. * e1000_update_stats - Update the board statistics counters
  2451. * @adapter: board private structure
  2452. **/
  2453. void
  2454. e1000_update_stats(struct e1000_adapter *adapter)
  2455. {
  2456. struct e1000_hw *hw = &adapter->hw;
  2457. unsigned long flags;
  2458. uint16_t phy_tmp;
  2459. #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
  2460. spin_lock_irqsave(&adapter->stats_lock, flags);
  2461. /* these counters are modified from e1000_adjust_tbi_stats,
  2462. * called from the interrupt context, so they must only
  2463. * be written while holding adapter->stats_lock
  2464. */
  2465. adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
  2466. adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
  2467. adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
  2468. adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
  2469. adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
  2470. adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
  2471. adapter->stats.roc += E1000_READ_REG(hw, ROC);
  2472. adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
  2473. adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
  2474. adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
  2475. adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
  2476. adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
  2477. adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
  2478. adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
  2479. adapter->stats.mpc += E1000_READ_REG(hw, MPC);
  2480. adapter->stats.scc += E1000_READ_REG(hw, SCC);
  2481. adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
  2482. adapter->stats.mcc += E1000_READ_REG(hw, MCC);
  2483. adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
  2484. adapter->stats.dc += E1000_READ_REG(hw, DC);
  2485. adapter->stats.sec += E1000_READ_REG(hw, SEC);
  2486. adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
  2487. adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
  2488. adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
  2489. adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
  2490. adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
  2491. adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
  2492. adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
  2493. adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
  2494. adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
  2495. adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
  2496. adapter->stats.ruc += E1000_READ_REG(hw, RUC);
  2497. adapter->stats.rfc += E1000_READ_REG(hw, RFC);
  2498. adapter->stats.rjc += E1000_READ_REG(hw, RJC);
  2499. adapter->stats.torl += E1000_READ_REG(hw, TORL);
  2500. adapter->stats.torh += E1000_READ_REG(hw, TORH);
  2501. adapter->stats.totl += E1000_READ_REG(hw, TOTL);
  2502. adapter->stats.toth += E1000_READ_REG(hw, TOTH);
  2503. adapter->stats.tpr += E1000_READ_REG(hw, TPR);
  2504. adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
  2505. adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
  2506. adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
  2507. adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
  2508. adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
  2509. adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
  2510. adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
  2511. adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
  2512. /* used for adaptive IFS */
  2513. hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
  2514. adapter->stats.tpt += hw->tx_packet_delta;
  2515. hw->collision_delta = E1000_READ_REG(hw, COLC);
  2516. adapter->stats.colc += hw->collision_delta;
  2517. if(hw->mac_type >= e1000_82543) {
  2518. adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
  2519. adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
  2520. adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
  2521. adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
  2522. adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
  2523. adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
  2524. }
  2525. if(hw->mac_type > e1000_82547_rev_2) {
  2526. adapter->stats.iac += E1000_READ_REG(hw, IAC);
  2527. adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
  2528. adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
  2529. adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
  2530. adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
  2531. adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
  2532. adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
  2533. adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
  2534. adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
  2535. }
  2536. /* Fill out the OS statistics structure */
  2537. adapter->net_stats.rx_packets = adapter->stats.gprc;
  2538. adapter->net_stats.tx_packets = adapter->stats.gptc;
  2539. adapter->net_stats.rx_bytes = adapter->stats.gorcl;
  2540. adapter->net_stats.tx_bytes = adapter->stats.gotcl;
  2541. adapter->net_stats.multicast = adapter->stats.mprc;
  2542. adapter->net_stats.collisions = adapter->stats.colc;
  2543. /* Rx Errors */
  2544. adapter->net_stats.rx_errors = adapter->stats.rxerrc +
  2545. adapter->stats.crcerrs + adapter->stats.algnerrc +
  2546. adapter->stats.rlec + adapter->stats.mpc +
  2547. adapter->stats.cexterr;
  2548. adapter->net_stats.rx_length_errors = adapter->stats.rlec;
  2549. adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
  2550. adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
  2551. adapter->net_stats.rx_fifo_errors = adapter->stats.mpc;
  2552. adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
  2553. /* Tx Errors */
  2554. adapter->net_stats.tx_errors = adapter->stats.ecol +
  2555. adapter->stats.latecol;
  2556. adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
  2557. adapter->net_stats.tx_window_errors = adapter->stats.latecol;
  2558. adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
  2559. /* Tx Dropped needs to be maintained elsewhere */
  2560. /* Phy Stats */
  2561. if(hw->media_type == e1000_media_type_copper) {
  2562. if((adapter->link_speed == SPEED_1000) &&
  2563. (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
  2564. phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
  2565. adapter->phy_stats.idle_errors += phy_tmp;
  2566. }
  2567. if((hw->mac_type <= e1000_82546) &&
  2568. (hw->phy_type == e1000_phy_m88) &&
  2569. !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
  2570. adapter->phy_stats.receive_errors += phy_tmp;
  2571. }
  2572. spin_unlock_irqrestore(&adapter->stats_lock, flags);
  2573. }
  2574. #ifdef CONFIG_E1000_MQ
  2575. void
  2576. e1000_rx_schedule(void *data)
  2577. {
  2578. struct net_device *poll_dev, *netdev = data;
  2579. struct e1000_adapter *adapter = netdev->priv;
  2580. int this_cpu = get_cpu();
  2581. poll_dev = *per_cpu_ptr(adapter->cpu_netdev, this_cpu);
  2582. if (poll_dev == NULL) {
  2583. put_cpu();
  2584. return;
  2585. }
  2586. if (likely(netif_rx_schedule_prep(poll_dev)))
  2587. __netif_rx_schedule(poll_dev);
  2588. else
  2589. e1000_irq_enable(adapter);
  2590. put_cpu();
  2591. }
  2592. #endif
  2593. /**
  2594. * e1000_intr - Interrupt Handler
  2595. * @irq: interrupt number
  2596. * @data: pointer to a network interface device structure
  2597. * @pt_regs: CPU registers structure
  2598. **/
  2599. static irqreturn_t
  2600. e1000_intr(int irq, void *data, struct pt_regs *regs)
  2601. {
  2602. struct net_device *netdev = data;
  2603. struct e1000_adapter *adapter = netdev_priv(netdev);
  2604. struct e1000_hw *hw = &adapter->hw;
  2605. uint32_t icr = E1000_READ_REG(hw, ICR);
  2606. int i;
  2607. if(unlikely(!icr))
  2608. return IRQ_NONE; /* Not our interrupt */
  2609. if(unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
  2610. hw->get_link_status = 1;
  2611. mod_timer(&adapter->watchdog_timer, jiffies);
  2612. }
  2613. #ifdef CONFIG_E1000_NAPI
  2614. atomic_inc(&adapter->irq_sem);
  2615. E1000_WRITE_REG(hw, IMC, ~0);
  2616. E1000_WRITE_FLUSH(hw);
  2617. #ifdef CONFIG_E1000_MQ
  2618. if (atomic_read(&adapter->rx_sched_call_data.count) == 0) {
  2619. cpu_set(adapter->cpu_for_queue[0],
  2620. adapter->rx_sched_call_data.cpumask);
  2621. for (i = 1; i < adapter->num_queues; i++) {
  2622. cpu_set(adapter->cpu_for_queue[i],
  2623. adapter->rx_sched_call_data.cpumask);
  2624. atomic_inc(&adapter->irq_sem);
  2625. }
  2626. atomic_set(&adapter->rx_sched_call_data.count, i);
  2627. smp_call_async_mask(&adapter->rx_sched_call_data);
  2628. } else {
  2629. printk("call_data.count == %u\n", atomic_read(&adapter->rx_sched_call_data.count));
  2630. }
  2631. #else
  2632. if (likely(netif_rx_schedule_prep(&adapter->polling_netdev[0])))
  2633. __netif_rx_schedule(&adapter->polling_netdev[0]);
  2634. else
  2635. e1000_irq_enable(adapter);
  2636. #endif
  2637. #else
  2638. /* Writing IMC and IMS is needed for 82547.
  2639. Due to Hub Link bus being occupied, an interrupt
  2640. de-assertion message is not able to be sent.
  2641. When an interrupt assertion message is generated later,
  2642. two messages are re-ordered and sent out.
  2643. That causes APIC to think 82547 is in de-assertion
  2644. state, while 82547 is in assertion state, resulting
  2645. in dead lock. Writing IMC forces 82547 into
  2646. de-assertion state.
  2647. */
  2648. if(hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2){
  2649. atomic_inc(&adapter->irq_sem);
  2650. E1000_WRITE_REG(hw, IMC, ~0);
  2651. }
  2652. for(i = 0; i < E1000_MAX_INTR; i++)
  2653. if(unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
  2654. !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
  2655. break;
  2656. if(hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
  2657. e1000_irq_enable(adapter);
  2658. #endif
  2659. return IRQ_HANDLED;
  2660. }
  2661. #ifdef CONFIG_E1000_NAPI
  2662. /**
  2663. * e1000_clean - NAPI Rx polling callback
  2664. * @adapter: board private structure
  2665. **/
  2666. static int
  2667. e1000_clean(struct net_device *poll_dev, int *budget)
  2668. {
  2669. struct e1000_adapter *adapter;
  2670. int work_to_do = min(*budget, poll_dev->quota);
  2671. int tx_cleaned, i = 0, work_done = 0;
  2672. /* Must NOT use netdev_priv macro here. */
  2673. adapter = poll_dev->priv;
  2674. /* Keep link state information with original netdev */
  2675. if (!netif_carrier_ok(adapter->netdev))
  2676. goto quit_polling;
  2677. while (poll_dev != &adapter->polling_netdev[i]) {
  2678. i++;
  2679. if (unlikely(i == adapter->num_queues))
  2680. BUG();
  2681. }
  2682. tx_cleaned = e1000_clean_tx_irq(adapter, &adapter->tx_ring[i]);
  2683. adapter->clean_rx(adapter, &adapter->rx_ring[i],
  2684. &work_done, work_to_do);
  2685. *budget -= work_done;
  2686. poll_dev->quota -= work_done;
  2687. /* If no Tx and not enough Rx work done, exit the polling mode */
  2688. if((!tx_cleaned && (work_done == 0)) ||
  2689. !netif_running(adapter->netdev)) {
  2690. quit_polling:
  2691. netif_rx_complete(poll_dev);
  2692. e1000_irq_enable(adapter);
  2693. return 0;
  2694. }
  2695. return 1;
  2696. }
  2697. #endif
  2698. /**
  2699. * e1000_clean_tx_irq - Reclaim resources after transmit completes
  2700. * @adapter: board private structure
  2701. **/
  2702. static boolean_t
  2703. e1000_clean_tx_irq(struct e1000_adapter *adapter,
  2704. struct e1000_tx_ring *tx_ring)
  2705. {
  2706. struct net_device *netdev = adapter->netdev;
  2707. struct e1000_tx_desc *tx_desc, *eop_desc;
  2708. struct e1000_buffer *buffer_info;
  2709. unsigned int i, eop;
  2710. boolean_t cleaned = FALSE;
  2711. i = tx_ring->next_to_clean;
  2712. eop = tx_ring->buffer_info[i].next_to_watch;
  2713. eop_desc = E1000_TX_DESC(*tx_ring, eop);
  2714. while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
  2715. /* Premature writeback of Tx descriptors clear (free buffers
  2716. * and unmap pci_mapping) previous_buffer_info */
  2717. if (likely(tx_ring->previous_buffer_info.skb != NULL)) {
  2718. e1000_unmap_and_free_tx_resource(adapter,
  2719. &tx_ring->previous_buffer_info);
  2720. }
  2721. for(cleaned = FALSE; !cleaned; ) {
  2722. tx_desc = E1000_TX_DESC(*tx_ring, i);
  2723. buffer_info = &tx_ring->buffer_info[i];
  2724. cleaned = (i == eop);
  2725. #ifdef NETIF_F_TSO
  2726. if (!(netdev->features & NETIF_F_TSO)) {
  2727. #endif
  2728. e1000_unmap_and_free_tx_resource(adapter,
  2729. buffer_info);
  2730. #ifdef NETIF_F_TSO
  2731. } else {
  2732. if (cleaned) {
  2733. memcpy(&tx_ring->previous_buffer_info,
  2734. buffer_info,
  2735. sizeof(struct e1000_buffer));
  2736. memset(buffer_info, 0,
  2737. sizeof(struct e1000_buffer));
  2738. } else {
  2739. e1000_unmap_and_free_tx_resource(
  2740. adapter, buffer_info);
  2741. }
  2742. }
  2743. #endif
  2744. tx_desc->buffer_addr = 0;
  2745. tx_desc->lower.data = 0;
  2746. tx_desc->upper.data = 0;
  2747. if(unlikely(++i == tx_ring->count)) i = 0;
  2748. }
  2749. tx_ring->pkt++;
  2750. eop = tx_ring->buffer_info[i].next_to_watch;
  2751. eop_desc = E1000_TX_DESC(*tx_ring, eop);
  2752. }
  2753. tx_ring->next_to_clean = i;
  2754. spin_lock(&tx_ring->tx_lock);
  2755. if(unlikely(cleaned && netif_queue_stopped(netdev) &&
  2756. netif_carrier_ok(netdev)))
  2757. netif_wake_queue(netdev);
  2758. spin_unlock(&tx_ring->tx_lock);
  2759. if (adapter->detect_tx_hung) {
  2760. /* Detect a transmit hang in hardware, this serializes the
  2761. * check with the clearing of time_stamp and movement of i */
  2762. adapter->detect_tx_hung = FALSE;
  2763. if (tx_ring->buffer_info[i].dma &&
  2764. time_after(jiffies, tx_ring->buffer_info[i].time_stamp + HZ)
  2765. && !(E1000_READ_REG(&adapter->hw, STATUS) &
  2766. E1000_STATUS_TXOFF)) {
  2767. /* detected Tx unit hang */
  2768. i = tx_ring->next_to_clean;
  2769. eop = tx_ring->buffer_info[i].next_to_watch;
  2770. eop_desc = E1000_TX_DESC(*tx_ring, eop);
  2771. DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
  2772. " TDH <%x>\n"
  2773. " TDT <%x>\n"
  2774. " next_to_use <%x>\n"
  2775. " next_to_clean <%x>\n"
  2776. "buffer_info[next_to_clean]\n"
  2777. " dma <%llx>\n"
  2778. " time_stamp <%lx>\n"
  2779. " next_to_watch <%x>\n"
  2780. " jiffies <%lx>\n"
  2781. " next_to_watch.status <%x>\n",
  2782. readl(adapter->hw.hw_addr + tx_ring->tdh),
  2783. readl(adapter->hw.hw_addr + tx_ring->tdt),
  2784. tx_ring->next_to_use,
  2785. i,
  2786. (unsigned long long)tx_ring->buffer_info[i].dma,
  2787. tx_ring->buffer_info[i].time_stamp,
  2788. eop,
  2789. jiffies,
  2790. eop_desc->upper.fields.status);
  2791. netif_stop_queue(netdev);
  2792. }
  2793. }
  2794. #ifdef NETIF_F_TSO
  2795. if (unlikely(!(eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
  2796. time_after(jiffies, tx_ring->previous_buffer_info.time_stamp + HZ)))
  2797. e1000_unmap_and_free_tx_resource(
  2798. adapter, &tx_ring->previous_buffer_info);
  2799. #endif
  2800. return cleaned;
  2801. }
  2802. /**
  2803. * e1000_rx_checksum - Receive Checksum Offload for 82543
  2804. * @adapter: board private structure
  2805. * @status_err: receive descriptor status and error fields
  2806. * @csum: receive descriptor csum field
  2807. * @sk_buff: socket buffer with received data
  2808. **/
  2809. static inline void
  2810. e1000_rx_checksum(struct e1000_adapter *adapter,
  2811. uint32_t status_err, uint32_t csum,
  2812. struct sk_buff *skb)
  2813. {
  2814. uint16_t status = (uint16_t)status_err;
  2815. uint8_t errors = (uint8_t)(status_err >> 24);
  2816. skb->ip_summed = CHECKSUM_NONE;
  2817. /* 82543 or newer only */
  2818. if(unlikely(adapter->hw.mac_type < e1000_82543)) return;
  2819. /* Ignore Checksum bit is set */
  2820. if(unlikely(status & E1000_RXD_STAT_IXSM)) return;
  2821. /* TCP/UDP checksum error bit is set */
  2822. if(unlikely(errors & E1000_RXD_ERR_TCPE)) {
  2823. /* let the stack verify checksum errors */
  2824. adapter->hw_csum_err++;
  2825. return;
  2826. }
  2827. /* TCP/UDP Checksum has not been calculated */
  2828. if(adapter->hw.mac_type <= e1000_82547_rev_2) {
  2829. if(!(status & E1000_RXD_STAT_TCPCS))
  2830. return;
  2831. } else {
  2832. if(!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
  2833. return;
  2834. }
  2835. /* It must be a TCP or UDP packet with a valid checksum */
  2836. if (likely(status & E1000_RXD_STAT_TCPCS)) {
  2837. /* TCP checksum is good */
  2838. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2839. } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
  2840. /* IP fragment with UDP payload */
  2841. /* Hardware complements the payload checksum, so we undo it
  2842. * and then put the value in host order for further stack use.
  2843. */
  2844. csum = ntohl(csum ^ 0xFFFF);
  2845. skb->csum = csum;
  2846. skb->ip_summed = CHECKSUM_HW;
  2847. }
  2848. adapter->hw_csum_good++;
  2849. }
  2850. /**
  2851. * e1000_clean_rx_irq - Send received data up the network stack; legacy
  2852. * @adapter: board private structure
  2853. **/
  2854. static boolean_t
  2855. #ifdef CONFIG_E1000_NAPI
  2856. e1000_clean_rx_irq(struct e1000_adapter *adapter,
  2857. struct e1000_rx_ring *rx_ring,
  2858. int *work_done, int work_to_do)
  2859. #else
  2860. e1000_clean_rx_irq(struct e1000_adapter *adapter,
  2861. struct e1000_rx_ring *rx_ring)
  2862. #endif
  2863. {
  2864. struct net_device *netdev = adapter->netdev;
  2865. struct pci_dev *pdev = adapter->pdev;
  2866. struct e1000_rx_desc *rx_desc;
  2867. struct e1000_buffer *buffer_info;
  2868. struct sk_buff *skb;
  2869. unsigned long flags;
  2870. uint32_t length;
  2871. uint8_t last_byte;
  2872. unsigned int i;
  2873. boolean_t cleaned = FALSE;
  2874. i = rx_ring->next_to_clean;
  2875. rx_desc = E1000_RX_DESC(*rx_ring, i);
  2876. while(rx_desc->status & E1000_RXD_STAT_DD) {
  2877. buffer_info = &rx_ring->buffer_info[i];
  2878. #ifdef CONFIG_E1000_NAPI
  2879. if(*work_done >= work_to_do)
  2880. break;
  2881. (*work_done)++;
  2882. #endif
  2883. cleaned = TRUE;
  2884. pci_unmap_single(pdev,
  2885. buffer_info->dma,
  2886. buffer_info->length,
  2887. PCI_DMA_FROMDEVICE);
  2888. skb = buffer_info->skb;
  2889. length = le16_to_cpu(rx_desc->length);
  2890. if(unlikely(!(rx_desc->status & E1000_RXD_STAT_EOP))) {
  2891. /* All receives must fit into a single buffer */
  2892. E1000_DBG("%s: Receive packet consumed multiple"
  2893. " buffers\n", netdev->name);
  2894. dev_kfree_skb_irq(skb);
  2895. goto next_desc;
  2896. }
  2897. if(unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
  2898. last_byte = *(skb->data + length - 1);
  2899. if(TBI_ACCEPT(&adapter->hw, rx_desc->status,
  2900. rx_desc->errors, length, last_byte)) {
  2901. spin_lock_irqsave(&adapter->stats_lock, flags);
  2902. e1000_tbi_adjust_stats(&adapter->hw,
  2903. &adapter->stats,
  2904. length, skb->data);
  2905. spin_unlock_irqrestore(&adapter->stats_lock,
  2906. flags);
  2907. length--;
  2908. } else {
  2909. dev_kfree_skb_irq(skb);
  2910. goto next_desc;
  2911. }
  2912. }
  2913. /* Good Receive */
  2914. skb_put(skb, length - ETHERNET_FCS_SIZE);
  2915. /* Receive Checksum Offload */
  2916. e1000_rx_checksum(adapter,
  2917. (uint32_t)(rx_desc->status) |
  2918. ((uint32_t)(rx_desc->errors) << 24),
  2919. rx_desc->csum, skb);
  2920. skb->protocol = eth_type_trans(skb, netdev);
  2921. #ifdef CONFIG_E1000_NAPI
  2922. if(unlikely(adapter->vlgrp &&
  2923. (rx_desc->status & E1000_RXD_STAT_VP))) {
  2924. vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
  2925. le16_to_cpu(rx_desc->special) &
  2926. E1000_RXD_SPC_VLAN_MASK);
  2927. } else {
  2928. netif_receive_skb(skb);
  2929. }
  2930. #else /* CONFIG_E1000_NAPI */
  2931. if(unlikely(adapter->vlgrp &&
  2932. (rx_desc->status & E1000_RXD_STAT_VP))) {
  2933. vlan_hwaccel_rx(skb, adapter->vlgrp,
  2934. le16_to_cpu(rx_desc->special) &
  2935. E1000_RXD_SPC_VLAN_MASK);
  2936. } else {
  2937. netif_rx(skb);
  2938. }
  2939. #endif /* CONFIG_E1000_NAPI */
  2940. netdev->last_rx = jiffies;
  2941. rx_ring->pkt++;
  2942. next_desc:
  2943. rx_desc->status = 0;
  2944. buffer_info->skb = NULL;
  2945. if(unlikely(++i == rx_ring->count)) i = 0;
  2946. rx_desc = E1000_RX_DESC(*rx_ring, i);
  2947. }
  2948. rx_ring->next_to_clean = i;
  2949. adapter->alloc_rx_buf(adapter, rx_ring);
  2950. return cleaned;
  2951. }
  2952. /**
  2953. * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
  2954. * @adapter: board private structure
  2955. **/
  2956. static boolean_t
  2957. #ifdef CONFIG_E1000_NAPI
  2958. e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
  2959. struct e1000_rx_ring *rx_ring,
  2960. int *work_done, int work_to_do)
  2961. #else
  2962. e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
  2963. struct e1000_rx_ring *rx_ring)
  2964. #endif
  2965. {
  2966. union e1000_rx_desc_packet_split *rx_desc;
  2967. struct net_device *netdev = adapter->netdev;
  2968. struct pci_dev *pdev = adapter->pdev;
  2969. struct e1000_buffer *buffer_info;
  2970. struct e1000_ps_page *ps_page;
  2971. struct e1000_ps_page_dma *ps_page_dma;
  2972. struct sk_buff *skb;
  2973. unsigned int i, j;
  2974. uint32_t length, staterr;
  2975. boolean_t cleaned = FALSE;
  2976. i = rx_ring->next_to_clean;
  2977. rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
  2978. staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
  2979. while(staterr & E1000_RXD_STAT_DD) {
  2980. buffer_info = &rx_ring->buffer_info[i];
  2981. ps_page = &rx_ring->ps_page[i];
  2982. ps_page_dma = &rx_ring->ps_page_dma[i];
  2983. #ifdef CONFIG_E1000_NAPI
  2984. if(unlikely(*work_done >= work_to_do))
  2985. break;
  2986. (*work_done)++;
  2987. #endif
  2988. cleaned = TRUE;
  2989. pci_unmap_single(pdev, buffer_info->dma,
  2990. buffer_info->length,
  2991. PCI_DMA_FROMDEVICE);
  2992. skb = buffer_info->skb;
  2993. if(unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
  2994. E1000_DBG("%s: Packet Split buffers didn't pick up"
  2995. " the full packet\n", netdev->name);
  2996. dev_kfree_skb_irq(skb);
  2997. goto next_desc;
  2998. }
  2999. if(unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
  3000. dev_kfree_skb_irq(skb);
  3001. goto next_desc;
  3002. }
  3003. length = le16_to_cpu(rx_desc->wb.middle.length0);
  3004. if(unlikely(!length)) {
  3005. E1000_DBG("%s: Last part of the packet spanning"
  3006. " multiple descriptors\n", netdev->name);
  3007. dev_kfree_skb_irq(skb);
  3008. goto next_desc;
  3009. }
  3010. /* Good Receive */
  3011. skb_put(skb, length);
  3012. for(j = 0; j < PS_PAGE_BUFFERS; j++) {
  3013. if(!(length = le16_to_cpu(rx_desc->wb.upper.length[j])))
  3014. break;
  3015. pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
  3016. PAGE_SIZE, PCI_DMA_FROMDEVICE);
  3017. ps_page_dma->ps_page_dma[j] = 0;
  3018. skb_shinfo(skb)->frags[j].page =
  3019. ps_page->ps_page[j];
  3020. ps_page->ps_page[j] = NULL;
  3021. skb_shinfo(skb)->frags[j].page_offset = 0;
  3022. skb_shinfo(skb)->frags[j].size = length;
  3023. skb_shinfo(skb)->nr_frags++;
  3024. skb->len += length;
  3025. skb->data_len += length;
  3026. }
  3027. e1000_rx_checksum(adapter, staterr,
  3028. rx_desc->wb.lower.hi_dword.csum_ip.csum, skb);
  3029. skb->protocol = eth_type_trans(skb, netdev);
  3030. #ifdef HAVE_RX_ZERO_COPY
  3031. if(likely(rx_desc->wb.upper.header_status &
  3032. E1000_RXDPS_HDRSTAT_HDRSP))
  3033. skb_shinfo(skb)->zero_copy = TRUE;
  3034. #endif
  3035. #ifdef CONFIG_E1000_NAPI
  3036. if(unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
  3037. vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
  3038. le16_to_cpu(rx_desc->wb.middle.vlan) &
  3039. E1000_RXD_SPC_VLAN_MASK);
  3040. } else {
  3041. netif_receive_skb(skb);
  3042. }
  3043. #else /* CONFIG_E1000_NAPI */
  3044. if(unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
  3045. vlan_hwaccel_rx(skb, adapter->vlgrp,
  3046. le16_to_cpu(rx_desc->wb.middle.vlan) &
  3047. E1000_RXD_SPC_VLAN_MASK);
  3048. } else {
  3049. netif_rx(skb);
  3050. }
  3051. #endif /* CONFIG_E1000_NAPI */
  3052. netdev->last_rx = jiffies;
  3053. rx_ring->pkt++;
  3054. next_desc:
  3055. rx_desc->wb.middle.status_error &= ~0xFF;
  3056. buffer_info->skb = NULL;
  3057. if(unlikely(++i == rx_ring->count)) i = 0;
  3058. rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
  3059. staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
  3060. }
  3061. rx_ring->next_to_clean = i;
  3062. adapter->alloc_rx_buf(adapter, rx_ring);
  3063. return cleaned;
  3064. }
  3065. /**
  3066. * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
  3067. * @adapter: address of board private structure
  3068. **/
  3069. static void
  3070. e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
  3071. struct e1000_rx_ring *rx_ring)
  3072. {
  3073. struct net_device *netdev = adapter->netdev;
  3074. struct pci_dev *pdev = adapter->pdev;
  3075. struct e1000_rx_desc *rx_desc;
  3076. struct e1000_buffer *buffer_info;
  3077. struct sk_buff *skb;
  3078. unsigned int i;
  3079. unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
  3080. i = rx_ring->next_to_use;
  3081. buffer_info = &rx_ring->buffer_info[i];
  3082. while(!buffer_info->skb) {
  3083. skb = dev_alloc_skb(bufsz);
  3084. if(unlikely(!skb)) {
  3085. /* Better luck next round */
  3086. break;
  3087. }
  3088. /* Fix for errata 23, can't cross 64kB boundary */
  3089. if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
  3090. struct sk_buff *oldskb = skb;
  3091. DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
  3092. "at %p\n", bufsz, skb->data);
  3093. /* Try again, without freeing the previous */
  3094. skb = dev_alloc_skb(bufsz);
  3095. /* Failed allocation, critical failure */
  3096. if (!skb) {
  3097. dev_kfree_skb(oldskb);
  3098. break;
  3099. }
  3100. if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
  3101. /* give up */
  3102. dev_kfree_skb(skb);
  3103. dev_kfree_skb(oldskb);
  3104. break; /* while !buffer_info->skb */
  3105. } else {
  3106. /* Use new allocation */
  3107. dev_kfree_skb(oldskb);
  3108. }
  3109. }
  3110. /* Make buffer alignment 2 beyond a 16 byte boundary
  3111. * this will result in a 16 byte aligned IP header after
  3112. * the 14 byte MAC header is removed
  3113. */
  3114. skb_reserve(skb, NET_IP_ALIGN);
  3115. skb->dev = netdev;
  3116. buffer_info->skb = skb;
  3117. buffer_info->length = adapter->rx_buffer_len;
  3118. buffer_info->dma = pci_map_single(pdev,
  3119. skb->data,
  3120. adapter->rx_buffer_len,
  3121. PCI_DMA_FROMDEVICE);
  3122. /* Fix for errata 23, can't cross 64kB boundary */
  3123. if (!e1000_check_64k_bound(adapter,
  3124. (void *)(unsigned long)buffer_info->dma,
  3125. adapter->rx_buffer_len)) {
  3126. DPRINTK(RX_ERR, ERR,
  3127. "dma align check failed: %u bytes at %p\n",
  3128. adapter->rx_buffer_len,
  3129. (void *)(unsigned long)buffer_info->dma);
  3130. dev_kfree_skb(skb);
  3131. buffer_info->skb = NULL;
  3132. pci_unmap_single(pdev, buffer_info->dma,
  3133. adapter->rx_buffer_len,
  3134. PCI_DMA_FROMDEVICE);
  3135. break; /* while !buffer_info->skb */
  3136. }
  3137. rx_desc = E1000_RX_DESC(*rx_ring, i);
  3138. rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
  3139. if(unlikely((i & ~(E1000_RX_BUFFER_WRITE - 1)) == i)) {
  3140. /* Force memory writes to complete before letting h/w
  3141. * know there are new descriptors to fetch. (Only
  3142. * applicable for weak-ordered memory model archs,
  3143. * such as IA-64). */
  3144. wmb();
  3145. writel(i, adapter->hw.hw_addr + rx_ring->rdt);
  3146. }
  3147. if(unlikely(++i == rx_ring->count)) i = 0;
  3148. buffer_info = &rx_ring->buffer_info[i];
  3149. }
  3150. rx_ring->next_to_use = i;
  3151. }
  3152. /**
  3153. * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
  3154. * @adapter: address of board private structure
  3155. **/
  3156. static void
  3157. e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
  3158. struct e1000_rx_ring *rx_ring)
  3159. {
  3160. struct net_device *netdev = adapter->netdev;
  3161. struct pci_dev *pdev = adapter->pdev;
  3162. union e1000_rx_desc_packet_split *rx_desc;
  3163. struct e1000_buffer *buffer_info;
  3164. struct e1000_ps_page *ps_page;
  3165. struct e1000_ps_page_dma *ps_page_dma;
  3166. struct sk_buff *skb;
  3167. unsigned int i, j;
  3168. i = rx_ring->next_to_use;
  3169. buffer_info = &rx_ring->buffer_info[i];
  3170. ps_page = &rx_ring->ps_page[i];
  3171. ps_page_dma = &rx_ring->ps_page_dma[i];
  3172. while(!buffer_info->skb) {
  3173. rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
  3174. for(j = 0; j < PS_PAGE_BUFFERS; j++) {
  3175. if(unlikely(!ps_page->ps_page[j])) {
  3176. ps_page->ps_page[j] =
  3177. alloc_page(GFP_ATOMIC);
  3178. if(unlikely(!ps_page->ps_page[j]))
  3179. goto no_buffers;
  3180. ps_page_dma->ps_page_dma[j] =
  3181. pci_map_page(pdev,
  3182. ps_page->ps_page[j],
  3183. 0, PAGE_SIZE,
  3184. PCI_DMA_FROMDEVICE);
  3185. }
  3186. /* Refresh the desc even if buffer_addrs didn't
  3187. * change because each write-back erases this info.
  3188. */
  3189. rx_desc->read.buffer_addr[j+1] =
  3190. cpu_to_le64(ps_page_dma->ps_page_dma[j]);
  3191. }
  3192. skb = dev_alloc_skb(adapter->rx_ps_bsize0 + NET_IP_ALIGN);
  3193. if(unlikely(!skb))
  3194. break;
  3195. /* Make buffer alignment 2 beyond a 16 byte boundary
  3196. * this will result in a 16 byte aligned IP header after
  3197. * the 14 byte MAC header is removed
  3198. */
  3199. skb_reserve(skb, NET_IP_ALIGN);
  3200. skb->dev = netdev;
  3201. buffer_info->skb = skb;
  3202. buffer_info->length = adapter->rx_ps_bsize0;
  3203. buffer_info->dma = pci_map_single(pdev, skb->data,
  3204. adapter->rx_ps_bsize0,
  3205. PCI_DMA_FROMDEVICE);
  3206. rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
  3207. if(unlikely((i & ~(E1000_RX_BUFFER_WRITE - 1)) == i)) {
  3208. /* Force memory writes to complete before letting h/w
  3209. * know there are new descriptors to fetch. (Only
  3210. * applicable for weak-ordered memory model archs,
  3211. * such as IA-64). */
  3212. wmb();
  3213. /* Hardware increments by 16 bytes, but packet split
  3214. * descriptors are 32 bytes...so we increment tail
  3215. * twice as much.
  3216. */
  3217. writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
  3218. }
  3219. if(unlikely(++i == rx_ring->count)) i = 0;
  3220. buffer_info = &rx_ring->buffer_info[i];
  3221. ps_page = &rx_ring->ps_page[i];
  3222. ps_page_dma = &rx_ring->ps_page_dma[i];
  3223. }
  3224. no_buffers:
  3225. rx_ring->next_to_use = i;
  3226. }
  3227. /**
  3228. * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
  3229. * @adapter:
  3230. **/
  3231. static void
  3232. e1000_smartspeed(struct e1000_adapter *adapter)
  3233. {
  3234. uint16_t phy_status;
  3235. uint16_t phy_ctrl;
  3236. if((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
  3237. !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
  3238. return;
  3239. if(adapter->smartspeed == 0) {
  3240. /* If Master/Slave config fault is asserted twice,
  3241. * we assume back-to-back */
  3242. e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
  3243. if(!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
  3244. e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
  3245. if(!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
  3246. e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
  3247. if(phy_ctrl & CR_1000T_MS_ENABLE) {
  3248. phy_ctrl &= ~CR_1000T_MS_ENABLE;
  3249. e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
  3250. phy_ctrl);
  3251. adapter->smartspeed++;
  3252. if(!e1000_phy_setup_autoneg(&adapter->hw) &&
  3253. !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
  3254. &phy_ctrl)) {
  3255. phy_ctrl |= (MII_CR_AUTO_NEG_EN |
  3256. MII_CR_RESTART_AUTO_NEG);
  3257. e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
  3258. phy_ctrl);
  3259. }
  3260. }
  3261. return;
  3262. } else if(adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
  3263. /* If still no link, perhaps using 2/3 pair cable */
  3264. e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
  3265. phy_ctrl |= CR_1000T_MS_ENABLE;
  3266. e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
  3267. if(!e1000_phy_setup_autoneg(&adapter->hw) &&
  3268. !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
  3269. phy_ctrl |= (MII_CR_AUTO_NEG_EN |
  3270. MII_CR_RESTART_AUTO_NEG);
  3271. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
  3272. }
  3273. }
  3274. /* Restart process after E1000_SMARTSPEED_MAX iterations */
  3275. if(adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
  3276. adapter->smartspeed = 0;
  3277. }
  3278. /**
  3279. * e1000_ioctl -
  3280. * @netdev:
  3281. * @ifreq:
  3282. * @cmd:
  3283. **/
  3284. static int
  3285. e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
  3286. {
  3287. switch (cmd) {
  3288. case SIOCGMIIPHY:
  3289. case SIOCGMIIREG:
  3290. case SIOCSMIIREG:
  3291. return e1000_mii_ioctl(netdev, ifr, cmd);
  3292. default:
  3293. return -EOPNOTSUPP;
  3294. }
  3295. }
  3296. /**
  3297. * e1000_mii_ioctl -
  3298. * @netdev:
  3299. * @ifreq:
  3300. * @cmd:
  3301. **/
  3302. static int
  3303. e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
  3304. {
  3305. struct e1000_adapter *adapter = netdev_priv(netdev);
  3306. struct mii_ioctl_data *data = if_mii(ifr);
  3307. int retval;
  3308. uint16_t mii_reg;
  3309. uint16_t spddplx;
  3310. unsigned long flags;
  3311. if(adapter->hw.media_type != e1000_media_type_copper)
  3312. return -EOPNOTSUPP;
  3313. switch (cmd) {
  3314. case SIOCGMIIPHY:
  3315. data->phy_id = adapter->hw.phy_addr;
  3316. break;
  3317. case SIOCGMIIREG:
  3318. if(!capable(CAP_NET_ADMIN))
  3319. return -EPERM;
  3320. spin_lock_irqsave(&adapter->stats_lock, flags);
  3321. if(e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
  3322. &data->val_out)) {
  3323. spin_unlock_irqrestore(&adapter->stats_lock, flags);
  3324. return -EIO;
  3325. }
  3326. spin_unlock_irqrestore(&adapter->stats_lock, flags);
  3327. break;
  3328. case SIOCSMIIREG:
  3329. if(!capable(CAP_NET_ADMIN))
  3330. return -EPERM;
  3331. if(data->reg_num & ~(0x1F))
  3332. return -EFAULT;
  3333. mii_reg = data->val_in;
  3334. spin_lock_irqsave(&adapter->stats_lock, flags);
  3335. if(e1000_write_phy_reg(&adapter->hw, data->reg_num,
  3336. mii_reg)) {
  3337. spin_unlock_irqrestore(&adapter->stats_lock, flags);
  3338. return -EIO;
  3339. }
  3340. if(adapter->hw.phy_type == e1000_phy_m88) {
  3341. switch (data->reg_num) {
  3342. case PHY_CTRL:
  3343. if(mii_reg & MII_CR_POWER_DOWN)
  3344. break;
  3345. if(mii_reg & MII_CR_AUTO_NEG_EN) {
  3346. adapter->hw.autoneg = 1;
  3347. adapter->hw.autoneg_advertised = 0x2F;
  3348. } else {
  3349. if (mii_reg & 0x40)
  3350. spddplx = SPEED_1000;
  3351. else if (mii_reg & 0x2000)
  3352. spddplx = SPEED_100;
  3353. else
  3354. spddplx = SPEED_10;
  3355. spddplx += (mii_reg & 0x100)
  3356. ? FULL_DUPLEX :
  3357. HALF_DUPLEX;
  3358. retval = e1000_set_spd_dplx(adapter,
  3359. spddplx);
  3360. if(retval) {
  3361. spin_unlock_irqrestore(
  3362. &adapter->stats_lock,
  3363. flags);
  3364. return retval;
  3365. }
  3366. }
  3367. if(netif_running(adapter->netdev)) {
  3368. e1000_down(adapter);
  3369. e1000_up(adapter);
  3370. } else
  3371. e1000_reset(adapter);
  3372. break;
  3373. case M88E1000_PHY_SPEC_CTRL:
  3374. case M88E1000_EXT_PHY_SPEC_CTRL:
  3375. if(e1000_phy_reset(&adapter->hw)) {
  3376. spin_unlock_irqrestore(
  3377. &adapter->stats_lock, flags);
  3378. return -EIO;
  3379. }
  3380. break;
  3381. }
  3382. } else {
  3383. switch (data->reg_num) {
  3384. case PHY_CTRL:
  3385. if(mii_reg & MII_CR_POWER_DOWN)
  3386. break;
  3387. if(netif_running(adapter->netdev)) {
  3388. e1000_down(adapter);
  3389. e1000_up(adapter);
  3390. } else
  3391. e1000_reset(adapter);
  3392. break;
  3393. }
  3394. }
  3395. spin_unlock_irqrestore(&adapter->stats_lock, flags);
  3396. break;
  3397. default:
  3398. return -EOPNOTSUPP;
  3399. }
  3400. return E1000_SUCCESS;
  3401. }
  3402. void
  3403. e1000_pci_set_mwi(struct e1000_hw *hw)
  3404. {
  3405. struct e1000_adapter *adapter = hw->back;
  3406. int ret_val = pci_set_mwi(adapter->pdev);
  3407. if(ret_val)
  3408. DPRINTK(PROBE, ERR, "Error in setting MWI\n");
  3409. }
  3410. void
  3411. e1000_pci_clear_mwi(struct e1000_hw *hw)
  3412. {
  3413. struct e1000_adapter *adapter = hw->back;
  3414. pci_clear_mwi(adapter->pdev);
  3415. }
  3416. void
  3417. e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
  3418. {
  3419. struct e1000_adapter *adapter = hw->back;
  3420. pci_read_config_word(adapter->pdev, reg, value);
  3421. }
  3422. void
  3423. e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
  3424. {
  3425. struct e1000_adapter *adapter = hw->back;
  3426. pci_write_config_word(adapter->pdev, reg, *value);
  3427. }
  3428. uint32_t
  3429. e1000_io_read(struct e1000_hw *hw, unsigned long port)
  3430. {
  3431. return inl(port);
  3432. }
  3433. void
  3434. e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
  3435. {
  3436. outl(value, port);
  3437. }
  3438. static void
  3439. e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
  3440. {
  3441. struct e1000_adapter *adapter = netdev_priv(netdev);
  3442. uint32_t ctrl, rctl;
  3443. e1000_irq_disable(adapter);
  3444. adapter->vlgrp = grp;
  3445. if(grp) {
  3446. /* enable VLAN tag insert/strip */
  3447. ctrl = E1000_READ_REG(&adapter->hw, CTRL);
  3448. ctrl |= E1000_CTRL_VME;
  3449. E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
  3450. /* enable VLAN receive filtering */
  3451. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  3452. rctl |= E1000_RCTL_VFE;
  3453. rctl &= ~E1000_RCTL_CFIEN;
  3454. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  3455. e1000_update_mng_vlan(adapter);
  3456. } else {
  3457. /* disable VLAN tag insert/strip */
  3458. ctrl = E1000_READ_REG(&adapter->hw, CTRL);
  3459. ctrl &= ~E1000_CTRL_VME;
  3460. E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
  3461. /* disable VLAN filtering */
  3462. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  3463. rctl &= ~E1000_RCTL_VFE;
  3464. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  3465. if(adapter->mng_vlan_id != (uint16_t)E1000_MNG_VLAN_NONE) {
  3466. e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
  3467. adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
  3468. }
  3469. }
  3470. e1000_irq_enable(adapter);
  3471. }
  3472. static void
  3473. e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
  3474. {
  3475. struct e1000_adapter *adapter = netdev_priv(netdev);
  3476. uint32_t vfta, index;
  3477. if((adapter->hw.mng_cookie.status &
  3478. E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
  3479. (vid == adapter->mng_vlan_id))
  3480. return;
  3481. /* add VID to filter table */
  3482. index = (vid >> 5) & 0x7F;
  3483. vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
  3484. vfta |= (1 << (vid & 0x1F));
  3485. e1000_write_vfta(&adapter->hw, index, vfta);
  3486. }
  3487. static void
  3488. e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
  3489. {
  3490. struct e1000_adapter *adapter = netdev_priv(netdev);
  3491. uint32_t vfta, index;
  3492. e1000_irq_disable(adapter);
  3493. if(adapter->vlgrp)
  3494. adapter->vlgrp->vlan_devices[vid] = NULL;
  3495. e1000_irq_enable(adapter);
  3496. if((adapter->hw.mng_cookie.status &
  3497. E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
  3498. (vid == adapter->mng_vlan_id))
  3499. return;
  3500. /* remove VID from filter table */
  3501. index = (vid >> 5) & 0x7F;
  3502. vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
  3503. vfta &= ~(1 << (vid & 0x1F));
  3504. e1000_write_vfta(&adapter->hw, index, vfta);
  3505. }
  3506. static void
  3507. e1000_restore_vlan(struct e1000_adapter *adapter)
  3508. {
  3509. e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
  3510. if(adapter->vlgrp) {
  3511. uint16_t vid;
  3512. for(vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
  3513. if(!adapter->vlgrp->vlan_devices[vid])
  3514. continue;
  3515. e1000_vlan_rx_add_vid(adapter->netdev, vid);
  3516. }
  3517. }
  3518. }
  3519. int
  3520. e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
  3521. {
  3522. adapter->hw.autoneg = 0;
  3523. /* Fiber NICs only allow 1000 gbps Full duplex */
  3524. if((adapter->hw.media_type == e1000_media_type_fiber) &&
  3525. spddplx != (SPEED_1000 + DUPLEX_FULL)) {
  3526. DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
  3527. return -EINVAL;
  3528. }
  3529. switch(spddplx) {
  3530. case SPEED_10 + DUPLEX_HALF:
  3531. adapter->hw.forced_speed_duplex = e1000_10_half;
  3532. break;
  3533. case SPEED_10 + DUPLEX_FULL:
  3534. adapter->hw.forced_speed_duplex = e1000_10_full;
  3535. break;
  3536. case SPEED_100 + DUPLEX_HALF:
  3537. adapter->hw.forced_speed_duplex = e1000_100_half;
  3538. break;
  3539. case SPEED_100 + DUPLEX_FULL:
  3540. adapter->hw.forced_speed_duplex = e1000_100_full;
  3541. break;
  3542. case SPEED_1000 + DUPLEX_FULL:
  3543. adapter->hw.autoneg = 1;
  3544. adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
  3545. break;
  3546. case SPEED_1000 + DUPLEX_HALF: /* not supported */
  3547. default:
  3548. DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
  3549. return -EINVAL;
  3550. }
  3551. return 0;
  3552. }
  3553. static int
  3554. e1000_suspend(struct pci_dev *pdev, pm_message_t state)
  3555. {
  3556. struct net_device *netdev = pci_get_drvdata(pdev);
  3557. struct e1000_adapter *adapter = netdev_priv(netdev);
  3558. uint32_t ctrl, ctrl_ext, rctl, manc, status, swsm;
  3559. uint32_t wufc = adapter->wol;
  3560. netif_device_detach(netdev);
  3561. if(netif_running(netdev))
  3562. e1000_down(adapter);
  3563. status = E1000_READ_REG(&adapter->hw, STATUS);
  3564. if(status & E1000_STATUS_LU)
  3565. wufc &= ~E1000_WUFC_LNKC;
  3566. if(wufc) {
  3567. e1000_setup_rctl(adapter);
  3568. e1000_set_multi(netdev);
  3569. /* turn on all-multi mode if wake on multicast is enabled */
  3570. if(adapter->wol & E1000_WUFC_MC) {
  3571. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  3572. rctl |= E1000_RCTL_MPE;
  3573. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  3574. }
  3575. if(adapter->hw.mac_type >= e1000_82540) {
  3576. ctrl = E1000_READ_REG(&adapter->hw, CTRL);
  3577. /* advertise wake from D3Cold */
  3578. #define E1000_CTRL_ADVD3WUC 0x00100000
  3579. /* phy power management enable */
  3580. #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
  3581. ctrl |= E1000_CTRL_ADVD3WUC |
  3582. E1000_CTRL_EN_PHY_PWR_MGMT;
  3583. E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
  3584. }
  3585. if(adapter->hw.media_type == e1000_media_type_fiber ||
  3586. adapter->hw.media_type == e1000_media_type_internal_serdes) {
  3587. /* keep the laser running in D3 */
  3588. ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
  3589. ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
  3590. E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
  3591. }
  3592. /* Allow time for pending master requests to run */
  3593. e1000_disable_pciex_master(&adapter->hw);
  3594. E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
  3595. E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
  3596. pci_enable_wake(pdev, 3, 1);
  3597. pci_enable_wake(pdev, 4, 1); /* 4 == D3 cold */
  3598. } else {
  3599. E1000_WRITE_REG(&adapter->hw, WUC, 0);
  3600. E1000_WRITE_REG(&adapter->hw, WUFC, 0);
  3601. pci_enable_wake(pdev, 3, 0);
  3602. pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */
  3603. }
  3604. pci_save_state(pdev);
  3605. if(adapter->hw.mac_type >= e1000_82540 &&
  3606. adapter->hw.media_type == e1000_media_type_copper) {
  3607. manc = E1000_READ_REG(&adapter->hw, MANC);
  3608. if(manc & E1000_MANC_SMBUS_EN) {
  3609. manc |= E1000_MANC_ARP_EN;
  3610. E1000_WRITE_REG(&adapter->hw, MANC, manc);
  3611. pci_enable_wake(pdev, 3, 1);
  3612. pci_enable_wake(pdev, 4, 1); /* 4 == D3 cold */
  3613. }
  3614. }
  3615. switch(adapter->hw.mac_type) {
  3616. case e1000_82571:
  3617. case e1000_82572:
  3618. ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
  3619. E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
  3620. ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
  3621. break;
  3622. case e1000_82573:
  3623. swsm = E1000_READ_REG(&adapter->hw, SWSM);
  3624. E1000_WRITE_REG(&adapter->hw, SWSM,
  3625. swsm & ~E1000_SWSM_DRV_LOAD);
  3626. break;
  3627. default:
  3628. break;
  3629. }
  3630. pci_disable_device(pdev);
  3631. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  3632. return 0;
  3633. }
  3634. #ifdef CONFIG_PM
  3635. static int
  3636. e1000_resume(struct pci_dev *pdev)
  3637. {
  3638. struct net_device *netdev = pci_get_drvdata(pdev);
  3639. struct e1000_adapter *adapter = netdev_priv(netdev);
  3640. uint32_t manc, ret_val, swsm;
  3641. uint32_t ctrl_ext;
  3642. pci_set_power_state(pdev, PCI_D0);
  3643. pci_restore_state(pdev);
  3644. ret_val = pci_enable_device(pdev);
  3645. pci_set_master(pdev);
  3646. pci_enable_wake(pdev, PCI_D3hot, 0);
  3647. pci_enable_wake(pdev, PCI_D3cold, 0);
  3648. e1000_reset(adapter);
  3649. E1000_WRITE_REG(&adapter->hw, WUS, ~0);
  3650. if(netif_running(netdev))
  3651. e1000_up(adapter);
  3652. netif_device_attach(netdev);
  3653. if(adapter->hw.mac_type >= e1000_82540 &&
  3654. adapter->hw.media_type == e1000_media_type_copper) {
  3655. manc = E1000_READ_REG(&adapter->hw, MANC);
  3656. manc &= ~(E1000_MANC_ARP_EN);
  3657. E1000_WRITE_REG(&adapter->hw, MANC, manc);
  3658. }
  3659. switch(adapter->hw.mac_type) {
  3660. case e1000_82571:
  3661. case e1000_82572:
  3662. ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
  3663. E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
  3664. ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
  3665. break;
  3666. case e1000_82573:
  3667. swsm = E1000_READ_REG(&adapter->hw, SWSM);
  3668. E1000_WRITE_REG(&adapter->hw, SWSM,
  3669. swsm | E1000_SWSM_DRV_LOAD);
  3670. break;
  3671. default:
  3672. break;
  3673. }
  3674. return 0;
  3675. }
  3676. #endif
  3677. #ifdef CONFIG_NET_POLL_CONTROLLER
  3678. /*
  3679. * Polling 'interrupt' - used by things like netconsole to send skbs
  3680. * without having to re-enable interrupts. It's not called while
  3681. * the interrupt routine is executing.
  3682. */
  3683. static void
  3684. e1000_netpoll(struct net_device *netdev)
  3685. {
  3686. struct e1000_adapter *adapter = netdev_priv(netdev);
  3687. disable_irq(adapter->pdev->irq);
  3688. e1000_intr(adapter->pdev->irq, netdev, NULL);
  3689. e1000_clean_tx_irq(adapter);
  3690. enable_irq(adapter->pdev->irq);
  3691. }
  3692. #endif
  3693. /* e1000_main.c */