vmx.c 113 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. * Copyright 2010 Red Hat, Inc. and/or its affilates.
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. *
  14. * This work is licensed under the terms of the GNU GPL, version 2. See
  15. * the COPYING file in the top-level directory.
  16. *
  17. */
  18. #include "irq.h"
  19. #include "mmu.h"
  20. #include <linux/kvm_host.h>
  21. #include <linux/module.h>
  22. #include <linux/kernel.h>
  23. #include <linux/mm.h>
  24. #include <linux/highmem.h>
  25. #include <linux/sched.h>
  26. #include <linux/moduleparam.h>
  27. #include <linux/ftrace_event.h>
  28. #include <linux/slab.h>
  29. #include <linux/tboot.h>
  30. #include "kvm_cache_regs.h"
  31. #include "x86.h"
  32. #include <asm/io.h>
  33. #include <asm/desc.h>
  34. #include <asm/vmx.h>
  35. #include <asm/virtext.h>
  36. #include <asm/mce.h>
  37. #include <asm/i387.h>
  38. #include <asm/xcr.h>
  39. #include "trace.h"
  40. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  41. MODULE_AUTHOR("Qumranet");
  42. MODULE_LICENSE("GPL");
  43. static int __read_mostly bypass_guest_pf = 1;
  44. module_param(bypass_guest_pf, bool, S_IRUGO);
  45. static int __read_mostly enable_vpid = 1;
  46. module_param_named(vpid, enable_vpid, bool, 0444);
  47. static int __read_mostly flexpriority_enabled = 1;
  48. module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
  49. static int __read_mostly enable_ept = 1;
  50. module_param_named(ept, enable_ept, bool, S_IRUGO);
  51. static int __read_mostly enable_unrestricted_guest = 1;
  52. module_param_named(unrestricted_guest,
  53. enable_unrestricted_guest, bool, S_IRUGO);
  54. static int __read_mostly emulate_invalid_guest_state = 0;
  55. module_param(emulate_invalid_guest_state, bool, S_IRUGO);
  56. static int __read_mostly vmm_exclusive = 1;
  57. module_param(vmm_exclusive, bool, S_IRUGO);
  58. #define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST \
  59. (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
  60. #define KVM_GUEST_CR0_MASK \
  61. (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
  62. #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST \
  63. (X86_CR0_WP | X86_CR0_NE)
  64. #define KVM_VM_CR0_ALWAYS_ON \
  65. (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
  66. #define KVM_CR4_GUEST_OWNED_BITS \
  67. (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
  68. | X86_CR4_OSXMMEXCPT)
  69. #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
  70. #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
  71. #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
  72. /*
  73. * These 2 parameters are used to config the controls for Pause-Loop Exiting:
  74. * ple_gap: upper bound on the amount of time between two successive
  75. * executions of PAUSE in a loop. Also indicate if ple enabled.
  76. * According to test, this time is usually small than 41 cycles.
  77. * ple_window: upper bound on the amount of time a guest is allowed to execute
  78. * in a PAUSE loop. Tests indicate that most spinlocks are held for
  79. * less than 2^12 cycles
  80. * Time is measured based on a counter that runs at the same rate as the TSC,
  81. * refer SDM volume 3b section 21.6.13 & 22.1.3.
  82. */
  83. #define KVM_VMX_DEFAULT_PLE_GAP 41
  84. #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
  85. static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
  86. module_param(ple_gap, int, S_IRUGO);
  87. static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
  88. module_param(ple_window, int, S_IRUGO);
  89. #define NR_AUTOLOAD_MSRS 1
  90. struct vmcs {
  91. u32 revision_id;
  92. u32 abort;
  93. char data[0];
  94. };
  95. struct shared_msr_entry {
  96. unsigned index;
  97. u64 data;
  98. u64 mask;
  99. };
  100. struct vcpu_vmx {
  101. struct kvm_vcpu vcpu;
  102. struct list_head local_vcpus_link;
  103. unsigned long host_rsp;
  104. int launched;
  105. u8 fail;
  106. u32 idt_vectoring_info;
  107. struct shared_msr_entry *guest_msrs;
  108. int nmsrs;
  109. int save_nmsrs;
  110. #ifdef CONFIG_X86_64
  111. u64 msr_host_kernel_gs_base;
  112. u64 msr_guest_kernel_gs_base;
  113. #endif
  114. struct vmcs *vmcs;
  115. struct msr_autoload {
  116. unsigned nr;
  117. struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
  118. struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
  119. } msr_autoload;
  120. struct {
  121. int loaded;
  122. u16 fs_sel, gs_sel, ldt_sel;
  123. int gs_ldt_reload_needed;
  124. int fs_reload_needed;
  125. } host_state;
  126. struct {
  127. int vm86_active;
  128. ulong save_rflags;
  129. struct kvm_save_segment {
  130. u16 selector;
  131. unsigned long base;
  132. u32 limit;
  133. u32 ar;
  134. } tr, es, ds, fs, gs;
  135. struct {
  136. bool pending;
  137. u8 vector;
  138. unsigned rip;
  139. } irq;
  140. } rmode;
  141. int vpid;
  142. bool emulation_required;
  143. /* Support for vnmi-less CPUs */
  144. int soft_vnmi_blocked;
  145. ktime_t entry_time;
  146. s64 vnmi_blocked_time;
  147. u32 exit_reason;
  148. bool rdtscp_enabled;
  149. };
  150. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  151. {
  152. return container_of(vcpu, struct vcpu_vmx, vcpu);
  153. }
  154. static int init_rmode(struct kvm *kvm);
  155. static u64 construct_eptp(unsigned long root_hpa);
  156. static void kvm_cpu_vmxon(u64 addr);
  157. static void kvm_cpu_vmxoff(void);
  158. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  159. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  160. static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
  161. static unsigned long *vmx_io_bitmap_a;
  162. static unsigned long *vmx_io_bitmap_b;
  163. static unsigned long *vmx_msr_bitmap_legacy;
  164. static unsigned long *vmx_msr_bitmap_longmode;
  165. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  166. static DEFINE_SPINLOCK(vmx_vpid_lock);
  167. static struct vmcs_config {
  168. int size;
  169. int order;
  170. u32 revision_id;
  171. u32 pin_based_exec_ctrl;
  172. u32 cpu_based_exec_ctrl;
  173. u32 cpu_based_2nd_exec_ctrl;
  174. u32 vmexit_ctrl;
  175. u32 vmentry_ctrl;
  176. } vmcs_config;
  177. static struct vmx_capability {
  178. u32 ept;
  179. u32 vpid;
  180. } vmx_capability;
  181. #define VMX_SEGMENT_FIELD(seg) \
  182. [VCPU_SREG_##seg] = { \
  183. .selector = GUEST_##seg##_SELECTOR, \
  184. .base = GUEST_##seg##_BASE, \
  185. .limit = GUEST_##seg##_LIMIT, \
  186. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  187. }
  188. static struct kvm_vmx_segment_field {
  189. unsigned selector;
  190. unsigned base;
  191. unsigned limit;
  192. unsigned ar_bytes;
  193. } kvm_vmx_segment_fields[] = {
  194. VMX_SEGMENT_FIELD(CS),
  195. VMX_SEGMENT_FIELD(DS),
  196. VMX_SEGMENT_FIELD(ES),
  197. VMX_SEGMENT_FIELD(FS),
  198. VMX_SEGMENT_FIELD(GS),
  199. VMX_SEGMENT_FIELD(SS),
  200. VMX_SEGMENT_FIELD(TR),
  201. VMX_SEGMENT_FIELD(LDTR),
  202. };
  203. static u64 host_efer;
  204. static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
  205. /*
  206. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  207. * away by decrementing the array size.
  208. */
  209. static const u32 vmx_msr_index[] = {
  210. #ifdef CONFIG_X86_64
  211. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
  212. #endif
  213. MSR_EFER, MSR_TSC_AUX, MSR_K6_STAR,
  214. };
  215. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  216. static inline bool is_page_fault(u32 intr_info)
  217. {
  218. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  219. INTR_INFO_VALID_MASK)) ==
  220. (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  221. }
  222. static inline bool is_no_device(u32 intr_info)
  223. {
  224. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  225. INTR_INFO_VALID_MASK)) ==
  226. (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  227. }
  228. static inline bool is_invalid_opcode(u32 intr_info)
  229. {
  230. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  231. INTR_INFO_VALID_MASK)) ==
  232. (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  233. }
  234. static inline bool is_external_interrupt(u32 intr_info)
  235. {
  236. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  237. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  238. }
  239. static inline bool is_machine_check(u32 intr_info)
  240. {
  241. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  242. INTR_INFO_VALID_MASK)) ==
  243. (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
  244. }
  245. static inline bool cpu_has_vmx_msr_bitmap(void)
  246. {
  247. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
  248. }
  249. static inline bool cpu_has_vmx_tpr_shadow(void)
  250. {
  251. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
  252. }
  253. static inline bool vm_need_tpr_shadow(struct kvm *kvm)
  254. {
  255. return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
  256. }
  257. static inline bool cpu_has_secondary_exec_ctrls(void)
  258. {
  259. return vmcs_config.cpu_based_exec_ctrl &
  260. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  261. }
  262. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  263. {
  264. return vmcs_config.cpu_based_2nd_exec_ctrl &
  265. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  266. }
  267. static inline bool cpu_has_vmx_flexpriority(void)
  268. {
  269. return cpu_has_vmx_tpr_shadow() &&
  270. cpu_has_vmx_virtualize_apic_accesses();
  271. }
  272. static inline bool cpu_has_vmx_ept_execute_only(void)
  273. {
  274. return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
  275. }
  276. static inline bool cpu_has_vmx_eptp_uncacheable(void)
  277. {
  278. return vmx_capability.ept & VMX_EPTP_UC_BIT;
  279. }
  280. static inline bool cpu_has_vmx_eptp_writeback(void)
  281. {
  282. return vmx_capability.ept & VMX_EPTP_WB_BIT;
  283. }
  284. static inline bool cpu_has_vmx_ept_2m_page(void)
  285. {
  286. return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
  287. }
  288. static inline bool cpu_has_vmx_ept_1g_page(void)
  289. {
  290. return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
  291. }
  292. static inline bool cpu_has_vmx_ept_4levels(void)
  293. {
  294. return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
  295. }
  296. static inline bool cpu_has_vmx_invept_individual_addr(void)
  297. {
  298. return vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT;
  299. }
  300. static inline bool cpu_has_vmx_invept_context(void)
  301. {
  302. return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
  303. }
  304. static inline bool cpu_has_vmx_invept_global(void)
  305. {
  306. return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
  307. }
  308. static inline bool cpu_has_vmx_invvpid_single(void)
  309. {
  310. return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
  311. }
  312. static inline bool cpu_has_vmx_invvpid_global(void)
  313. {
  314. return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
  315. }
  316. static inline bool cpu_has_vmx_ept(void)
  317. {
  318. return vmcs_config.cpu_based_2nd_exec_ctrl &
  319. SECONDARY_EXEC_ENABLE_EPT;
  320. }
  321. static inline bool cpu_has_vmx_unrestricted_guest(void)
  322. {
  323. return vmcs_config.cpu_based_2nd_exec_ctrl &
  324. SECONDARY_EXEC_UNRESTRICTED_GUEST;
  325. }
  326. static inline bool cpu_has_vmx_ple(void)
  327. {
  328. return vmcs_config.cpu_based_2nd_exec_ctrl &
  329. SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  330. }
  331. static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
  332. {
  333. return flexpriority_enabled && irqchip_in_kernel(kvm);
  334. }
  335. static inline bool cpu_has_vmx_vpid(void)
  336. {
  337. return vmcs_config.cpu_based_2nd_exec_ctrl &
  338. SECONDARY_EXEC_ENABLE_VPID;
  339. }
  340. static inline bool cpu_has_vmx_rdtscp(void)
  341. {
  342. return vmcs_config.cpu_based_2nd_exec_ctrl &
  343. SECONDARY_EXEC_RDTSCP;
  344. }
  345. static inline bool cpu_has_virtual_nmis(void)
  346. {
  347. return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
  348. }
  349. static inline bool report_flexpriority(void)
  350. {
  351. return flexpriority_enabled;
  352. }
  353. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  354. {
  355. int i;
  356. for (i = 0; i < vmx->nmsrs; ++i)
  357. if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
  358. return i;
  359. return -1;
  360. }
  361. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  362. {
  363. struct {
  364. u64 vpid : 16;
  365. u64 rsvd : 48;
  366. u64 gva;
  367. } operand = { vpid, 0, gva };
  368. asm volatile (__ex(ASM_VMX_INVVPID)
  369. /* CF==1 or ZF==1 --> rc = -1 */
  370. "; ja 1f ; ud2 ; 1:"
  371. : : "a"(&operand), "c"(ext) : "cc", "memory");
  372. }
  373. static inline void __invept(int ext, u64 eptp, gpa_t gpa)
  374. {
  375. struct {
  376. u64 eptp, gpa;
  377. } operand = {eptp, gpa};
  378. asm volatile (__ex(ASM_VMX_INVEPT)
  379. /* CF==1 or ZF==1 --> rc = -1 */
  380. "; ja 1f ; ud2 ; 1:\n"
  381. : : "a" (&operand), "c" (ext) : "cc", "memory");
  382. }
  383. static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  384. {
  385. int i;
  386. i = __find_msr_index(vmx, msr);
  387. if (i >= 0)
  388. return &vmx->guest_msrs[i];
  389. return NULL;
  390. }
  391. static void vmcs_clear(struct vmcs *vmcs)
  392. {
  393. u64 phys_addr = __pa(vmcs);
  394. u8 error;
  395. asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
  396. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  397. : "cc", "memory");
  398. if (error)
  399. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  400. vmcs, phys_addr);
  401. }
  402. static void vmcs_load(struct vmcs *vmcs)
  403. {
  404. u64 phys_addr = __pa(vmcs);
  405. u8 error;
  406. asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
  407. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  408. : "cc", "memory");
  409. if (error)
  410. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  411. vmcs, phys_addr);
  412. }
  413. static void __vcpu_clear(void *arg)
  414. {
  415. struct vcpu_vmx *vmx = arg;
  416. int cpu = raw_smp_processor_id();
  417. if (vmx->vcpu.cpu == cpu)
  418. vmcs_clear(vmx->vmcs);
  419. if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
  420. per_cpu(current_vmcs, cpu) = NULL;
  421. rdtscll(vmx->vcpu.arch.host_tsc);
  422. list_del(&vmx->local_vcpus_link);
  423. vmx->vcpu.cpu = -1;
  424. vmx->launched = 0;
  425. }
  426. static void vcpu_clear(struct vcpu_vmx *vmx)
  427. {
  428. if (vmx->vcpu.cpu == -1)
  429. return;
  430. smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
  431. }
  432. static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
  433. {
  434. if (vmx->vpid == 0)
  435. return;
  436. if (cpu_has_vmx_invvpid_single())
  437. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  438. }
  439. static inline void vpid_sync_vcpu_global(void)
  440. {
  441. if (cpu_has_vmx_invvpid_global())
  442. __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
  443. }
  444. static inline void vpid_sync_context(struct vcpu_vmx *vmx)
  445. {
  446. if (cpu_has_vmx_invvpid_single())
  447. vpid_sync_vcpu_single(vmx);
  448. else
  449. vpid_sync_vcpu_global();
  450. }
  451. static inline void ept_sync_global(void)
  452. {
  453. if (cpu_has_vmx_invept_global())
  454. __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
  455. }
  456. static inline void ept_sync_context(u64 eptp)
  457. {
  458. if (enable_ept) {
  459. if (cpu_has_vmx_invept_context())
  460. __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
  461. else
  462. ept_sync_global();
  463. }
  464. }
  465. static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
  466. {
  467. if (enable_ept) {
  468. if (cpu_has_vmx_invept_individual_addr())
  469. __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
  470. eptp, gpa);
  471. else
  472. ept_sync_context(eptp);
  473. }
  474. }
  475. static unsigned long vmcs_readl(unsigned long field)
  476. {
  477. unsigned long value;
  478. asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
  479. : "=a"(value) : "d"(field) : "cc");
  480. return value;
  481. }
  482. static u16 vmcs_read16(unsigned long field)
  483. {
  484. return vmcs_readl(field);
  485. }
  486. static u32 vmcs_read32(unsigned long field)
  487. {
  488. return vmcs_readl(field);
  489. }
  490. static u64 vmcs_read64(unsigned long field)
  491. {
  492. #ifdef CONFIG_X86_64
  493. return vmcs_readl(field);
  494. #else
  495. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  496. #endif
  497. }
  498. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  499. {
  500. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  501. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  502. dump_stack();
  503. }
  504. static void vmcs_writel(unsigned long field, unsigned long value)
  505. {
  506. u8 error;
  507. asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
  508. : "=q"(error) : "a"(value), "d"(field) : "cc");
  509. if (unlikely(error))
  510. vmwrite_error(field, value);
  511. }
  512. static void vmcs_write16(unsigned long field, u16 value)
  513. {
  514. vmcs_writel(field, value);
  515. }
  516. static void vmcs_write32(unsigned long field, u32 value)
  517. {
  518. vmcs_writel(field, value);
  519. }
  520. static void vmcs_write64(unsigned long field, u64 value)
  521. {
  522. vmcs_writel(field, value);
  523. #ifndef CONFIG_X86_64
  524. asm volatile ("");
  525. vmcs_writel(field+1, value >> 32);
  526. #endif
  527. }
  528. static void vmcs_clear_bits(unsigned long field, u32 mask)
  529. {
  530. vmcs_writel(field, vmcs_readl(field) & ~mask);
  531. }
  532. static void vmcs_set_bits(unsigned long field, u32 mask)
  533. {
  534. vmcs_writel(field, vmcs_readl(field) | mask);
  535. }
  536. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  537. {
  538. u32 eb;
  539. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
  540. (1u << NM_VECTOR) | (1u << DB_VECTOR);
  541. if ((vcpu->guest_debug &
  542. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
  543. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
  544. eb |= 1u << BP_VECTOR;
  545. if (to_vmx(vcpu)->rmode.vm86_active)
  546. eb = ~0;
  547. if (enable_ept)
  548. eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
  549. if (vcpu->fpu_active)
  550. eb &= ~(1u << NM_VECTOR);
  551. vmcs_write32(EXCEPTION_BITMAP, eb);
  552. }
  553. static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
  554. {
  555. unsigned i;
  556. struct msr_autoload *m = &vmx->msr_autoload;
  557. for (i = 0; i < m->nr; ++i)
  558. if (m->guest[i].index == msr)
  559. break;
  560. if (i == m->nr)
  561. return;
  562. --m->nr;
  563. m->guest[i] = m->guest[m->nr];
  564. m->host[i] = m->host[m->nr];
  565. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
  566. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
  567. }
  568. static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
  569. u64 guest_val, u64 host_val)
  570. {
  571. unsigned i;
  572. struct msr_autoload *m = &vmx->msr_autoload;
  573. for (i = 0; i < m->nr; ++i)
  574. if (m->guest[i].index == msr)
  575. break;
  576. if (i == m->nr) {
  577. ++m->nr;
  578. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
  579. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
  580. }
  581. m->guest[i].index = msr;
  582. m->guest[i].value = guest_val;
  583. m->host[i].index = msr;
  584. m->host[i].value = host_val;
  585. }
  586. static void reload_tss(void)
  587. {
  588. /*
  589. * VT restores TR but not its size. Useless.
  590. */
  591. struct desc_ptr gdt;
  592. struct desc_struct *descs;
  593. native_store_gdt(&gdt);
  594. descs = (void *)gdt.address;
  595. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  596. load_TR_desc();
  597. }
  598. static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
  599. {
  600. u64 guest_efer;
  601. u64 ignore_bits;
  602. guest_efer = vmx->vcpu.arch.efer;
  603. /*
  604. * NX is emulated; LMA and LME handled by hardware; SCE meaninless
  605. * outside long mode
  606. */
  607. ignore_bits = EFER_NX | EFER_SCE;
  608. #ifdef CONFIG_X86_64
  609. ignore_bits |= EFER_LMA | EFER_LME;
  610. /* SCE is meaningful only in long mode on Intel */
  611. if (guest_efer & EFER_LMA)
  612. ignore_bits &= ~(u64)EFER_SCE;
  613. #endif
  614. guest_efer &= ~ignore_bits;
  615. guest_efer |= host_efer & ignore_bits;
  616. vmx->guest_msrs[efer_offset].data = guest_efer;
  617. vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
  618. clear_atomic_switch_msr(vmx, MSR_EFER);
  619. /* On ept, can't emulate nx, and must switch nx atomically */
  620. if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
  621. guest_efer = vmx->vcpu.arch.efer;
  622. if (!(guest_efer & EFER_LMA))
  623. guest_efer &= ~EFER_LME;
  624. add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
  625. return false;
  626. }
  627. return true;
  628. }
  629. static unsigned long segment_base(u16 selector)
  630. {
  631. struct desc_ptr gdt;
  632. struct desc_struct *d;
  633. unsigned long table_base;
  634. unsigned long v;
  635. if (!(selector & ~3))
  636. return 0;
  637. native_store_gdt(&gdt);
  638. table_base = gdt.address;
  639. if (selector & 4) { /* from ldt */
  640. u16 ldt_selector = kvm_read_ldt();
  641. if (!(ldt_selector & ~3))
  642. return 0;
  643. table_base = segment_base(ldt_selector);
  644. }
  645. d = (struct desc_struct *)(table_base + (selector & ~7));
  646. v = get_desc_base(d);
  647. #ifdef CONFIG_X86_64
  648. if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  649. v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
  650. #endif
  651. return v;
  652. }
  653. static inline unsigned long kvm_read_tr_base(void)
  654. {
  655. u16 tr;
  656. asm("str %0" : "=g"(tr));
  657. return segment_base(tr);
  658. }
  659. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  660. {
  661. struct vcpu_vmx *vmx = to_vmx(vcpu);
  662. int i;
  663. if (vmx->host_state.loaded)
  664. return;
  665. vmx->host_state.loaded = 1;
  666. /*
  667. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  668. * allow segment selectors with cpl > 0 or ti == 1.
  669. */
  670. vmx->host_state.ldt_sel = kvm_read_ldt();
  671. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  672. vmx->host_state.fs_sel = kvm_read_fs();
  673. if (!(vmx->host_state.fs_sel & 7)) {
  674. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  675. vmx->host_state.fs_reload_needed = 0;
  676. } else {
  677. vmcs_write16(HOST_FS_SELECTOR, 0);
  678. vmx->host_state.fs_reload_needed = 1;
  679. }
  680. vmx->host_state.gs_sel = kvm_read_gs();
  681. if (!(vmx->host_state.gs_sel & 7))
  682. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  683. else {
  684. vmcs_write16(HOST_GS_SELECTOR, 0);
  685. vmx->host_state.gs_ldt_reload_needed = 1;
  686. }
  687. #ifdef CONFIG_X86_64
  688. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  689. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  690. #else
  691. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  692. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  693. #endif
  694. #ifdef CONFIG_X86_64
  695. if (is_long_mode(&vmx->vcpu)) {
  696. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  697. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  698. }
  699. #endif
  700. for (i = 0; i < vmx->save_nmsrs; ++i)
  701. kvm_set_shared_msr(vmx->guest_msrs[i].index,
  702. vmx->guest_msrs[i].data,
  703. vmx->guest_msrs[i].mask);
  704. }
  705. static void __vmx_load_host_state(struct vcpu_vmx *vmx)
  706. {
  707. unsigned long flags;
  708. if (!vmx->host_state.loaded)
  709. return;
  710. ++vmx->vcpu.stat.host_state_reload;
  711. vmx->host_state.loaded = 0;
  712. if (vmx->host_state.fs_reload_needed)
  713. kvm_load_fs(vmx->host_state.fs_sel);
  714. if (vmx->host_state.gs_ldt_reload_needed) {
  715. kvm_load_ldt(vmx->host_state.ldt_sel);
  716. /*
  717. * If we have to reload gs, we must take care to
  718. * preserve our gs base.
  719. */
  720. local_irq_save(flags);
  721. kvm_load_gs(vmx->host_state.gs_sel);
  722. #ifdef CONFIG_X86_64
  723. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  724. #endif
  725. local_irq_restore(flags);
  726. }
  727. reload_tss();
  728. #ifdef CONFIG_X86_64
  729. if (is_long_mode(&vmx->vcpu)) {
  730. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  731. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  732. }
  733. #endif
  734. if (current_thread_info()->status & TS_USEDFPU)
  735. clts();
  736. }
  737. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  738. {
  739. preempt_disable();
  740. __vmx_load_host_state(vmx);
  741. preempt_enable();
  742. }
  743. /*
  744. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  745. * vcpu mutex is already taken.
  746. */
  747. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  748. {
  749. struct vcpu_vmx *vmx = to_vmx(vcpu);
  750. u64 tsc_this, delta, new_offset;
  751. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  752. if (!vmm_exclusive)
  753. kvm_cpu_vmxon(phys_addr);
  754. else if (vcpu->cpu != cpu)
  755. vcpu_clear(vmx);
  756. if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
  757. per_cpu(current_vmcs, cpu) = vmx->vmcs;
  758. vmcs_load(vmx->vmcs);
  759. }
  760. if (vcpu->cpu != cpu) {
  761. struct desc_ptr dt;
  762. unsigned long sysenter_esp;
  763. kvm_migrate_timers(vcpu);
  764. set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
  765. local_irq_disable();
  766. list_add(&vmx->local_vcpus_link,
  767. &per_cpu(vcpus_on_cpu, cpu));
  768. local_irq_enable();
  769. vcpu->cpu = cpu;
  770. /*
  771. * Linux uses per-cpu TSS and GDT, so set these when switching
  772. * processors.
  773. */
  774. vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
  775. native_store_gdt(&dt);
  776. vmcs_writel(HOST_GDTR_BASE, dt.address); /* 22.2.4 */
  777. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  778. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  779. /*
  780. * Make sure the time stamp counter is monotonous.
  781. */
  782. rdtscll(tsc_this);
  783. if (tsc_this < vcpu->arch.host_tsc) {
  784. delta = vcpu->arch.host_tsc - tsc_this;
  785. new_offset = vmcs_read64(TSC_OFFSET) + delta;
  786. vmcs_write64(TSC_OFFSET, new_offset);
  787. }
  788. }
  789. }
  790. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  791. {
  792. __vmx_load_host_state(to_vmx(vcpu));
  793. if (!vmm_exclusive) {
  794. __vcpu_clear(to_vmx(vcpu));
  795. kvm_cpu_vmxoff();
  796. }
  797. }
  798. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  799. {
  800. ulong cr0;
  801. if (vcpu->fpu_active)
  802. return;
  803. vcpu->fpu_active = 1;
  804. cr0 = vmcs_readl(GUEST_CR0);
  805. cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
  806. cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
  807. vmcs_writel(GUEST_CR0, cr0);
  808. update_exception_bitmap(vcpu);
  809. vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
  810. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  811. }
  812. static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
  813. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  814. {
  815. vmx_decache_cr0_guest_bits(vcpu);
  816. vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
  817. update_exception_bitmap(vcpu);
  818. vcpu->arch.cr0_guest_owned_bits = 0;
  819. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  820. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  821. }
  822. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  823. {
  824. unsigned long rflags, save_rflags;
  825. rflags = vmcs_readl(GUEST_RFLAGS);
  826. if (to_vmx(vcpu)->rmode.vm86_active) {
  827. rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
  828. save_rflags = to_vmx(vcpu)->rmode.save_rflags;
  829. rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
  830. }
  831. return rflags;
  832. }
  833. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  834. {
  835. if (to_vmx(vcpu)->rmode.vm86_active) {
  836. to_vmx(vcpu)->rmode.save_rflags = rflags;
  837. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  838. }
  839. vmcs_writel(GUEST_RFLAGS, rflags);
  840. }
  841. static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  842. {
  843. u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  844. int ret = 0;
  845. if (interruptibility & GUEST_INTR_STATE_STI)
  846. ret |= KVM_X86_SHADOW_INT_STI;
  847. if (interruptibility & GUEST_INTR_STATE_MOV_SS)
  848. ret |= KVM_X86_SHADOW_INT_MOV_SS;
  849. return ret & mask;
  850. }
  851. static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  852. {
  853. u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  854. u32 interruptibility = interruptibility_old;
  855. interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
  856. if (mask & KVM_X86_SHADOW_INT_MOV_SS)
  857. interruptibility |= GUEST_INTR_STATE_MOV_SS;
  858. else if (mask & KVM_X86_SHADOW_INT_STI)
  859. interruptibility |= GUEST_INTR_STATE_STI;
  860. if ((interruptibility != interruptibility_old))
  861. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
  862. }
  863. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  864. {
  865. unsigned long rip;
  866. rip = kvm_rip_read(vcpu);
  867. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  868. kvm_rip_write(vcpu, rip);
  869. /* skipping an emulated instruction also counts */
  870. vmx_set_interrupt_shadow(vcpu, 0);
  871. }
  872. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  873. bool has_error_code, u32 error_code,
  874. bool reinject)
  875. {
  876. struct vcpu_vmx *vmx = to_vmx(vcpu);
  877. u32 intr_info = nr | INTR_INFO_VALID_MASK;
  878. if (has_error_code) {
  879. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  880. intr_info |= INTR_INFO_DELIVER_CODE_MASK;
  881. }
  882. if (vmx->rmode.vm86_active) {
  883. vmx->rmode.irq.pending = true;
  884. vmx->rmode.irq.vector = nr;
  885. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  886. if (kvm_exception_is_soft(nr))
  887. vmx->rmode.irq.rip +=
  888. vmx->vcpu.arch.event_exit_inst_len;
  889. intr_info |= INTR_TYPE_SOFT_INTR;
  890. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  891. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  892. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  893. return;
  894. }
  895. if (kvm_exception_is_soft(nr)) {
  896. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  897. vmx->vcpu.arch.event_exit_inst_len);
  898. intr_info |= INTR_TYPE_SOFT_EXCEPTION;
  899. } else
  900. intr_info |= INTR_TYPE_HARD_EXCEPTION;
  901. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  902. }
  903. static bool vmx_rdtscp_supported(void)
  904. {
  905. return cpu_has_vmx_rdtscp();
  906. }
  907. /*
  908. * Swap MSR entry in host/guest MSR entry array.
  909. */
  910. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  911. {
  912. struct shared_msr_entry tmp;
  913. tmp = vmx->guest_msrs[to];
  914. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  915. vmx->guest_msrs[from] = tmp;
  916. }
  917. /*
  918. * Set up the vmcs to automatically save and restore system
  919. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  920. * mode, as fiddling with msrs is very expensive.
  921. */
  922. static void setup_msrs(struct vcpu_vmx *vmx)
  923. {
  924. int save_nmsrs, index;
  925. unsigned long *msr_bitmap;
  926. vmx_load_host_state(vmx);
  927. save_nmsrs = 0;
  928. #ifdef CONFIG_X86_64
  929. if (is_long_mode(&vmx->vcpu)) {
  930. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  931. if (index >= 0)
  932. move_msr_up(vmx, index, save_nmsrs++);
  933. index = __find_msr_index(vmx, MSR_LSTAR);
  934. if (index >= 0)
  935. move_msr_up(vmx, index, save_nmsrs++);
  936. index = __find_msr_index(vmx, MSR_CSTAR);
  937. if (index >= 0)
  938. move_msr_up(vmx, index, save_nmsrs++);
  939. index = __find_msr_index(vmx, MSR_TSC_AUX);
  940. if (index >= 0 && vmx->rdtscp_enabled)
  941. move_msr_up(vmx, index, save_nmsrs++);
  942. /*
  943. * MSR_K6_STAR is only needed on long mode guests, and only
  944. * if efer.sce is enabled.
  945. */
  946. index = __find_msr_index(vmx, MSR_K6_STAR);
  947. if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
  948. move_msr_up(vmx, index, save_nmsrs++);
  949. }
  950. #endif
  951. index = __find_msr_index(vmx, MSR_EFER);
  952. if (index >= 0 && update_transition_efer(vmx, index))
  953. move_msr_up(vmx, index, save_nmsrs++);
  954. vmx->save_nmsrs = save_nmsrs;
  955. if (cpu_has_vmx_msr_bitmap()) {
  956. if (is_long_mode(&vmx->vcpu))
  957. msr_bitmap = vmx_msr_bitmap_longmode;
  958. else
  959. msr_bitmap = vmx_msr_bitmap_legacy;
  960. vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
  961. }
  962. }
  963. /*
  964. * reads and returns guest's timestamp counter "register"
  965. * guest_tsc = host_tsc + tsc_offset -- 21.3
  966. */
  967. static u64 guest_read_tsc(void)
  968. {
  969. u64 host_tsc, tsc_offset;
  970. rdtscll(host_tsc);
  971. tsc_offset = vmcs_read64(TSC_OFFSET);
  972. return host_tsc + tsc_offset;
  973. }
  974. /*
  975. * writes 'guest_tsc' into guest's timestamp counter "register"
  976. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  977. */
  978. static void guest_write_tsc(u64 guest_tsc, u64 host_tsc)
  979. {
  980. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  981. }
  982. /*
  983. * Reads an msr value (of 'msr_index') into 'pdata'.
  984. * Returns 0 on success, non-0 otherwise.
  985. * Assumes vcpu_load() was already called.
  986. */
  987. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  988. {
  989. u64 data;
  990. struct shared_msr_entry *msr;
  991. if (!pdata) {
  992. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  993. return -EINVAL;
  994. }
  995. switch (msr_index) {
  996. #ifdef CONFIG_X86_64
  997. case MSR_FS_BASE:
  998. data = vmcs_readl(GUEST_FS_BASE);
  999. break;
  1000. case MSR_GS_BASE:
  1001. data = vmcs_readl(GUEST_GS_BASE);
  1002. break;
  1003. case MSR_KERNEL_GS_BASE:
  1004. vmx_load_host_state(to_vmx(vcpu));
  1005. data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
  1006. break;
  1007. #endif
  1008. case MSR_EFER:
  1009. return kvm_get_msr_common(vcpu, msr_index, pdata);
  1010. case MSR_IA32_TSC:
  1011. data = guest_read_tsc();
  1012. break;
  1013. case MSR_IA32_SYSENTER_CS:
  1014. data = vmcs_read32(GUEST_SYSENTER_CS);
  1015. break;
  1016. case MSR_IA32_SYSENTER_EIP:
  1017. data = vmcs_readl(GUEST_SYSENTER_EIP);
  1018. break;
  1019. case MSR_IA32_SYSENTER_ESP:
  1020. data = vmcs_readl(GUEST_SYSENTER_ESP);
  1021. break;
  1022. case MSR_TSC_AUX:
  1023. if (!to_vmx(vcpu)->rdtscp_enabled)
  1024. return 1;
  1025. /* Otherwise falls through */
  1026. default:
  1027. vmx_load_host_state(to_vmx(vcpu));
  1028. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  1029. if (msr) {
  1030. vmx_load_host_state(to_vmx(vcpu));
  1031. data = msr->data;
  1032. break;
  1033. }
  1034. return kvm_get_msr_common(vcpu, msr_index, pdata);
  1035. }
  1036. *pdata = data;
  1037. return 0;
  1038. }
  1039. /*
  1040. * Writes msr value into into the appropriate "register".
  1041. * Returns 0 on success, non-0 otherwise.
  1042. * Assumes vcpu_load() was already called.
  1043. */
  1044. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1045. {
  1046. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1047. struct shared_msr_entry *msr;
  1048. u64 host_tsc;
  1049. int ret = 0;
  1050. switch (msr_index) {
  1051. case MSR_EFER:
  1052. vmx_load_host_state(vmx);
  1053. ret = kvm_set_msr_common(vcpu, msr_index, data);
  1054. break;
  1055. #ifdef CONFIG_X86_64
  1056. case MSR_FS_BASE:
  1057. vmcs_writel(GUEST_FS_BASE, data);
  1058. break;
  1059. case MSR_GS_BASE:
  1060. vmcs_writel(GUEST_GS_BASE, data);
  1061. break;
  1062. case MSR_KERNEL_GS_BASE:
  1063. vmx_load_host_state(vmx);
  1064. vmx->msr_guest_kernel_gs_base = data;
  1065. break;
  1066. #endif
  1067. case MSR_IA32_SYSENTER_CS:
  1068. vmcs_write32(GUEST_SYSENTER_CS, data);
  1069. break;
  1070. case MSR_IA32_SYSENTER_EIP:
  1071. vmcs_writel(GUEST_SYSENTER_EIP, data);
  1072. break;
  1073. case MSR_IA32_SYSENTER_ESP:
  1074. vmcs_writel(GUEST_SYSENTER_ESP, data);
  1075. break;
  1076. case MSR_IA32_TSC:
  1077. rdtscll(host_tsc);
  1078. guest_write_tsc(data, host_tsc);
  1079. break;
  1080. case MSR_IA32_CR_PAT:
  1081. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  1082. vmcs_write64(GUEST_IA32_PAT, data);
  1083. vcpu->arch.pat = data;
  1084. break;
  1085. }
  1086. ret = kvm_set_msr_common(vcpu, msr_index, data);
  1087. break;
  1088. case MSR_TSC_AUX:
  1089. if (!vmx->rdtscp_enabled)
  1090. return 1;
  1091. /* Check reserved bit, higher 32 bits should be zero */
  1092. if ((data >> 32) != 0)
  1093. return 1;
  1094. /* Otherwise falls through */
  1095. default:
  1096. msr = find_msr_entry(vmx, msr_index);
  1097. if (msr) {
  1098. vmx_load_host_state(vmx);
  1099. msr->data = data;
  1100. break;
  1101. }
  1102. ret = kvm_set_msr_common(vcpu, msr_index, data);
  1103. }
  1104. return ret;
  1105. }
  1106. static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
  1107. {
  1108. __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
  1109. switch (reg) {
  1110. case VCPU_REGS_RSP:
  1111. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  1112. break;
  1113. case VCPU_REGS_RIP:
  1114. vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
  1115. break;
  1116. case VCPU_EXREG_PDPTR:
  1117. if (enable_ept)
  1118. ept_save_pdptrs(vcpu);
  1119. break;
  1120. default:
  1121. break;
  1122. }
  1123. }
  1124. static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
  1125. {
  1126. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
  1127. vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
  1128. else
  1129. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  1130. update_exception_bitmap(vcpu);
  1131. }
  1132. static __init int cpu_has_kvm_support(void)
  1133. {
  1134. return cpu_has_vmx();
  1135. }
  1136. static __init int vmx_disabled_by_bios(void)
  1137. {
  1138. u64 msr;
  1139. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  1140. if (msr & FEATURE_CONTROL_LOCKED) {
  1141. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
  1142. && tboot_enabled())
  1143. return 1;
  1144. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
  1145. && !tboot_enabled())
  1146. return 1;
  1147. }
  1148. return 0;
  1149. /* locked but not enabled */
  1150. }
  1151. static void kvm_cpu_vmxon(u64 addr)
  1152. {
  1153. asm volatile (ASM_VMX_VMXON_RAX
  1154. : : "a"(&addr), "m"(addr)
  1155. : "memory", "cc");
  1156. }
  1157. static int hardware_enable(void *garbage)
  1158. {
  1159. int cpu = raw_smp_processor_id();
  1160. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  1161. u64 old, test_bits;
  1162. if (read_cr4() & X86_CR4_VMXE)
  1163. return -EBUSY;
  1164. INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
  1165. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  1166. test_bits = FEATURE_CONTROL_LOCKED;
  1167. test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
  1168. if (tboot_enabled())
  1169. test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
  1170. if ((old & test_bits) != test_bits) {
  1171. /* enable and lock */
  1172. wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
  1173. }
  1174. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  1175. if (vmm_exclusive) {
  1176. kvm_cpu_vmxon(phys_addr);
  1177. ept_sync_global();
  1178. }
  1179. return 0;
  1180. }
  1181. static void vmclear_local_vcpus(void)
  1182. {
  1183. int cpu = raw_smp_processor_id();
  1184. struct vcpu_vmx *vmx, *n;
  1185. list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
  1186. local_vcpus_link)
  1187. __vcpu_clear(vmx);
  1188. }
  1189. /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
  1190. * tricks.
  1191. */
  1192. static void kvm_cpu_vmxoff(void)
  1193. {
  1194. asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
  1195. }
  1196. static void hardware_disable(void *garbage)
  1197. {
  1198. if (vmm_exclusive) {
  1199. vmclear_local_vcpus();
  1200. kvm_cpu_vmxoff();
  1201. }
  1202. write_cr4(read_cr4() & ~X86_CR4_VMXE);
  1203. }
  1204. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  1205. u32 msr, u32 *result)
  1206. {
  1207. u32 vmx_msr_low, vmx_msr_high;
  1208. u32 ctl = ctl_min | ctl_opt;
  1209. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  1210. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  1211. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  1212. /* Ensure minimum (required) set of control bits are supported. */
  1213. if (ctl_min & ~ctl)
  1214. return -EIO;
  1215. *result = ctl;
  1216. return 0;
  1217. }
  1218. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  1219. {
  1220. u32 vmx_msr_low, vmx_msr_high;
  1221. u32 min, opt, min2, opt2;
  1222. u32 _pin_based_exec_control = 0;
  1223. u32 _cpu_based_exec_control = 0;
  1224. u32 _cpu_based_2nd_exec_control = 0;
  1225. u32 _vmexit_control = 0;
  1226. u32 _vmentry_control = 0;
  1227. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  1228. opt = PIN_BASED_VIRTUAL_NMIS;
  1229. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  1230. &_pin_based_exec_control) < 0)
  1231. return -EIO;
  1232. min = CPU_BASED_HLT_EXITING |
  1233. #ifdef CONFIG_X86_64
  1234. CPU_BASED_CR8_LOAD_EXITING |
  1235. CPU_BASED_CR8_STORE_EXITING |
  1236. #endif
  1237. CPU_BASED_CR3_LOAD_EXITING |
  1238. CPU_BASED_CR3_STORE_EXITING |
  1239. CPU_BASED_USE_IO_BITMAPS |
  1240. CPU_BASED_MOV_DR_EXITING |
  1241. CPU_BASED_USE_TSC_OFFSETING |
  1242. CPU_BASED_MWAIT_EXITING |
  1243. CPU_BASED_MONITOR_EXITING |
  1244. CPU_BASED_INVLPG_EXITING;
  1245. opt = CPU_BASED_TPR_SHADOW |
  1246. CPU_BASED_USE_MSR_BITMAPS |
  1247. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  1248. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  1249. &_cpu_based_exec_control) < 0)
  1250. return -EIO;
  1251. #ifdef CONFIG_X86_64
  1252. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  1253. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  1254. ~CPU_BASED_CR8_STORE_EXITING;
  1255. #endif
  1256. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  1257. min2 = 0;
  1258. opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  1259. SECONDARY_EXEC_WBINVD_EXITING |
  1260. SECONDARY_EXEC_ENABLE_VPID |
  1261. SECONDARY_EXEC_ENABLE_EPT |
  1262. SECONDARY_EXEC_UNRESTRICTED_GUEST |
  1263. SECONDARY_EXEC_PAUSE_LOOP_EXITING |
  1264. SECONDARY_EXEC_RDTSCP;
  1265. if (adjust_vmx_controls(min2, opt2,
  1266. MSR_IA32_VMX_PROCBASED_CTLS2,
  1267. &_cpu_based_2nd_exec_control) < 0)
  1268. return -EIO;
  1269. }
  1270. #ifndef CONFIG_X86_64
  1271. if (!(_cpu_based_2nd_exec_control &
  1272. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  1273. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  1274. #endif
  1275. if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
  1276. /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
  1277. enabled */
  1278. _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
  1279. CPU_BASED_CR3_STORE_EXITING |
  1280. CPU_BASED_INVLPG_EXITING);
  1281. rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
  1282. vmx_capability.ept, vmx_capability.vpid);
  1283. }
  1284. min = 0;
  1285. #ifdef CONFIG_X86_64
  1286. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  1287. #endif
  1288. opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
  1289. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  1290. &_vmexit_control) < 0)
  1291. return -EIO;
  1292. min = 0;
  1293. opt = VM_ENTRY_LOAD_IA32_PAT;
  1294. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  1295. &_vmentry_control) < 0)
  1296. return -EIO;
  1297. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  1298. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  1299. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  1300. return -EIO;
  1301. #ifdef CONFIG_X86_64
  1302. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  1303. if (vmx_msr_high & (1u<<16))
  1304. return -EIO;
  1305. #endif
  1306. /* Require Write-Back (WB) memory type for VMCS accesses. */
  1307. if (((vmx_msr_high >> 18) & 15) != 6)
  1308. return -EIO;
  1309. vmcs_conf->size = vmx_msr_high & 0x1fff;
  1310. vmcs_conf->order = get_order(vmcs_config.size);
  1311. vmcs_conf->revision_id = vmx_msr_low;
  1312. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  1313. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  1314. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  1315. vmcs_conf->vmexit_ctrl = _vmexit_control;
  1316. vmcs_conf->vmentry_ctrl = _vmentry_control;
  1317. return 0;
  1318. }
  1319. static struct vmcs *alloc_vmcs_cpu(int cpu)
  1320. {
  1321. int node = cpu_to_node(cpu);
  1322. struct page *pages;
  1323. struct vmcs *vmcs;
  1324. pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
  1325. if (!pages)
  1326. return NULL;
  1327. vmcs = page_address(pages);
  1328. memset(vmcs, 0, vmcs_config.size);
  1329. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  1330. return vmcs;
  1331. }
  1332. static struct vmcs *alloc_vmcs(void)
  1333. {
  1334. return alloc_vmcs_cpu(raw_smp_processor_id());
  1335. }
  1336. static void free_vmcs(struct vmcs *vmcs)
  1337. {
  1338. free_pages((unsigned long)vmcs, vmcs_config.order);
  1339. }
  1340. static void free_kvm_area(void)
  1341. {
  1342. int cpu;
  1343. for_each_possible_cpu(cpu) {
  1344. free_vmcs(per_cpu(vmxarea, cpu));
  1345. per_cpu(vmxarea, cpu) = NULL;
  1346. }
  1347. }
  1348. static __init int alloc_kvm_area(void)
  1349. {
  1350. int cpu;
  1351. for_each_possible_cpu(cpu) {
  1352. struct vmcs *vmcs;
  1353. vmcs = alloc_vmcs_cpu(cpu);
  1354. if (!vmcs) {
  1355. free_kvm_area();
  1356. return -ENOMEM;
  1357. }
  1358. per_cpu(vmxarea, cpu) = vmcs;
  1359. }
  1360. return 0;
  1361. }
  1362. static __init int hardware_setup(void)
  1363. {
  1364. if (setup_vmcs_config(&vmcs_config) < 0)
  1365. return -EIO;
  1366. if (boot_cpu_has(X86_FEATURE_NX))
  1367. kvm_enable_efer_bits(EFER_NX);
  1368. if (!cpu_has_vmx_vpid())
  1369. enable_vpid = 0;
  1370. if (!cpu_has_vmx_ept() ||
  1371. !cpu_has_vmx_ept_4levels()) {
  1372. enable_ept = 0;
  1373. enable_unrestricted_guest = 0;
  1374. }
  1375. if (!cpu_has_vmx_unrestricted_guest())
  1376. enable_unrestricted_guest = 0;
  1377. if (!cpu_has_vmx_flexpriority())
  1378. flexpriority_enabled = 0;
  1379. if (!cpu_has_vmx_tpr_shadow())
  1380. kvm_x86_ops->update_cr8_intercept = NULL;
  1381. if (enable_ept && !cpu_has_vmx_ept_2m_page())
  1382. kvm_disable_largepages();
  1383. if (!cpu_has_vmx_ple())
  1384. ple_gap = 0;
  1385. return alloc_kvm_area();
  1386. }
  1387. static __exit void hardware_unsetup(void)
  1388. {
  1389. free_kvm_area();
  1390. }
  1391. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  1392. {
  1393. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1394. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  1395. vmcs_write16(sf->selector, save->selector);
  1396. vmcs_writel(sf->base, save->base);
  1397. vmcs_write32(sf->limit, save->limit);
  1398. vmcs_write32(sf->ar_bytes, save->ar);
  1399. } else {
  1400. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  1401. << AR_DPL_SHIFT;
  1402. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  1403. }
  1404. }
  1405. static void enter_pmode(struct kvm_vcpu *vcpu)
  1406. {
  1407. unsigned long flags;
  1408. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1409. vmx->emulation_required = 1;
  1410. vmx->rmode.vm86_active = 0;
  1411. vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
  1412. vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
  1413. vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
  1414. flags = vmcs_readl(GUEST_RFLAGS);
  1415. flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
  1416. flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
  1417. vmcs_writel(GUEST_RFLAGS, flags);
  1418. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  1419. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  1420. update_exception_bitmap(vcpu);
  1421. if (emulate_invalid_guest_state)
  1422. return;
  1423. fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
  1424. fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
  1425. fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
  1426. fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
  1427. vmcs_write16(GUEST_SS_SELECTOR, 0);
  1428. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  1429. vmcs_write16(GUEST_CS_SELECTOR,
  1430. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  1431. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1432. }
  1433. static gva_t rmode_tss_base(struct kvm *kvm)
  1434. {
  1435. if (!kvm->arch.tss_addr) {
  1436. struct kvm_memslots *slots;
  1437. gfn_t base_gfn;
  1438. slots = kvm_memslots(kvm);
  1439. base_gfn = slots->memslots[0].base_gfn +
  1440. kvm->memslots->memslots[0].npages - 3;
  1441. return base_gfn << PAGE_SHIFT;
  1442. }
  1443. return kvm->arch.tss_addr;
  1444. }
  1445. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  1446. {
  1447. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1448. save->selector = vmcs_read16(sf->selector);
  1449. save->base = vmcs_readl(sf->base);
  1450. save->limit = vmcs_read32(sf->limit);
  1451. save->ar = vmcs_read32(sf->ar_bytes);
  1452. vmcs_write16(sf->selector, save->base >> 4);
  1453. vmcs_write32(sf->base, save->base & 0xfffff);
  1454. vmcs_write32(sf->limit, 0xffff);
  1455. vmcs_write32(sf->ar_bytes, 0xf3);
  1456. }
  1457. static void enter_rmode(struct kvm_vcpu *vcpu)
  1458. {
  1459. unsigned long flags;
  1460. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1461. if (enable_unrestricted_guest)
  1462. return;
  1463. vmx->emulation_required = 1;
  1464. vmx->rmode.vm86_active = 1;
  1465. vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  1466. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  1467. vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  1468. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  1469. vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1470. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1471. flags = vmcs_readl(GUEST_RFLAGS);
  1472. vmx->rmode.save_rflags = flags;
  1473. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1474. vmcs_writel(GUEST_RFLAGS, flags);
  1475. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  1476. update_exception_bitmap(vcpu);
  1477. if (emulate_invalid_guest_state)
  1478. goto continue_rmode;
  1479. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  1480. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  1481. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  1482. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  1483. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1484. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  1485. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  1486. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  1487. fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
  1488. fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
  1489. fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
  1490. fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
  1491. continue_rmode:
  1492. kvm_mmu_reset_context(vcpu);
  1493. init_rmode(vcpu->kvm);
  1494. }
  1495. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1496. {
  1497. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1498. struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  1499. if (!msr)
  1500. return;
  1501. /*
  1502. * Force kernel_gs_base reloading before EFER changes, as control
  1503. * of this msr depends on is_long_mode().
  1504. */
  1505. vmx_load_host_state(to_vmx(vcpu));
  1506. vcpu->arch.efer = efer;
  1507. if (efer & EFER_LMA) {
  1508. vmcs_write32(VM_ENTRY_CONTROLS,
  1509. vmcs_read32(VM_ENTRY_CONTROLS) |
  1510. VM_ENTRY_IA32E_MODE);
  1511. msr->data = efer;
  1512. } else {
  1513. vmcs_write32(VM_ENTRY_CONTROLS,
  1514. vmcs_read32(VM_ENTRY_CONTROLS) &
  1515. ~VM_ENTRY_IA32E_MODE);
  1516. msr->data = efer & ~EFER_LME;
  1517. }
  1518. setup_msrs(vmx);
  1519. }
  1520. #ifdef CONFIG_X86_64
  1521. static void enter_lmode(struct kvm_vcpu *vcpu)
  1522. {
  1523. u32 guest_tr_ar;
  1524. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1525. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  1526. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  1527. __func__);
  1528. vmcs_write32(GUEST_TR_AR_BYTES,
  1529. (guest_tr_ar & ~AR_TYPE_MASK)
  1530. | AR_TYPE_BUSY_64_TSS);
  1531. }
  1532. vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
  1533. }
  1534. static void exit_lmode(struct kvm_vcpu *vcpu)
  1535. {
  1536. vmcs_write32(VM_ENTRY_CONTROLS,
  1537. vmcs_read32(VM_ENTRY_CONTROLS)
  1538. & ~VM_ENTRY_IA32E_MODE);
  1539. vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
  1540. }
  1541. #endif
  1542. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1543. {
  1544. vpid_sync_context(to_vmx(vcpu));
  1545. if (enable_ept)
  1546. ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
  1547. }
  1548. static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
  1549. {
  1550. ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
  1551. vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
  1552. vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
  1553. }
  1554. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  1555. {
  1556. ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
  1557. vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
  1558. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
  1559. }
  1560. static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
  1561. {
  1562. if (!test_bit(VCPU_EXREG_PDPTR,
  1563. (unsigned long *)&vcpu->arch.regs_dirty))
  1564. return;
  1565. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1566. vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
  1567. vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
  1568. vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
  1569. vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
  1570. }
  1571. }
  1572. static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
  1573. {
  1574. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1575. vcpu->arch.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
  1576. vcpu->arch.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
  1577. vcpu->arch.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
  1578. vcpu->arch.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
  1579. }
  1580. __set_bit(VCPU_EXREG_PDPTR,
  1581. (unsigned long *)&vcpu->arch.regs_avail);
  1582. __set_bit(VCPU_EXREG_PDPTR,
  1583. (unsigned long *)&vcpu->arch.regs_dirty);
  1584. }
  1585. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
  1586. static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
  1587. unsigned long cr0,
  1588. struct kvm_vcpu *vcpu)
  1589. {
  1590. if (!(cr0 & X86_CR0_PG)) {
  1591. /* From paging/starting to nonpaging */
  1592. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1593. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
  1594. (CPU_BASED_CR3_LOAD_EXITING |
  1595. CPU_BASED_CR3_STORE_EXITING));
  1596. vcpu->arch.cr0 = cr0;
  1597. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  1598. } else if (!is_paging(vcpu)) {
  1599. /* From nonpaging to paging */
  1600. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1601. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
  1602. ~(CPU_BASED_CR3_LOAD_EXITING |
  1603. CPU_BASED_CR3_STORE_EXITING));
  1604. vcpu->arch.cr0 = cr0;
  1605. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  1606. }
  1607. if (!(cr0 & X86_CR0_WP))
  1608. *hw_cr0 &= ~X86_CR0_WP;
  1609. }
  1610. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  1611. {
  1612. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1613. unsigned long hw_cr0;
  1614. if (enable_unrestricted_guest)
  1615. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
  1616. | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
  1617. else
  1618. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
  1619. if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
  1620. enter_pmode(vcpu);
  1621. if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
  1622. enter_rmode(vcpu);
  1623. #ifdef CONFIG_X86_64
  1624. if (vcpu->arch.efer & EFER_LME) {
  1625. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  1626. enter_lmode(vcpu);
  1627. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  1628. exit_lmode(vcpu);
  1629. }
  1630. #endif
  1631. if (enable_ept)
  1632. ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
  1633. if (!vcpu->fpu_active)
  1634. hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
  1635. vmcs_writel(CR0_READ_SHADOW, cr0);
  1636. vmcs_writel(GUEST_CR0, hw_cr0);
  1637. vcpu->arch.cr0 = cr0;
  1638. }
  1639. static u64 construct_eptp(unsigned long root_hpa)
  1640. {
  1641. u64 eptp;
  1642. /* TODO write the value reading from MSR */
  1643. eptp = VMX_EPT_DEFAULT_MT |
  1644. VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
  1645. eptp |= (root_hpa & PAGE_MASK);
  1646. return eptp;
  1647. }
  1648. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  1649. {
  1650. unsigned long guest_cr3;
  1651. u64 eptp;
  1652. guest_cr3 = cr3;
  1653. if (enable_ept) {
  1654. eptp = construct_eptp(cr3);
  1655. vmcs_write64(EPT_POINTER, eptp);
  1656. guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
  1657. vcpu->kvm->arch.ept_identity_map_addr;
  1658. ept_load_pdptrs(vcpu);
  1659. }
  1660. vmx_flush_tlb(vcpu);
  1661. vmcs_writel(GUEST_CR3, guest_cr3);
  1662. }
  1663. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  1664. {
  1665. unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
  1666. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
  1667. vcpu->arch.cr4 = cr4;
  1668. if (enable_ept) {
  1669. if (!is_paging(vcpu)) {
  1670. hw_cr4 &= ~X86_CR4_PAE;
  1671. hw_cr4 |= X86_CR4_PSE;
  1672. } else if (!(cr4 & X86_CR4_PAE)) {
  1673. hw_cr4 &= ~X86_CR4_PAE;
  1674. }
  1675. }
  1676. vmcs_writel(CR4_READ_SHADOW, cr4);
  1677. vmcs_writel(GUEST_CR4, hw_cr4);
  1678. }
  1679. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1680. {
  1681. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1682. return vmcs_readl(sf->base);
  1683. }
  1684. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  1685. struct kvm_segment *var, int seg)
  1686. {
  1687. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1688. u32 ar;
  1689. var->base = vmcs_readl(sf->base);
  1690. var->limit = vmcs_read32(sf->limit);
  1691. var->selector = vmcs_read16(sf->selector);
  1692. ar = vmcs_read32(sf->ar_bytes);
  1693. if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
  1694. ar = 0;
  1695. var->type = ar & 15;
  1696. var->s = (ar >> 4) & 1;
  1697. var->dpl = (ar >> 5) & 3;
  1698. var->present = (ar >> 7) & 1;
  1699. var->avl = (ar >> 12) & 1;
  1700. var->l = (ar >> 13) & 1;
  1701. var->db = (ar >> 14) & 1;
  1702. var->g = (ar >> 15) & 1;
  1703. var->unusable = (ar >> 16) & 1;
  1704. }
  1705. static int vmx_get_cpl(struct kvm_vcpu *vcpu)
  1706. {
  1707. if (!is_protmode(vcpu))
  1708. return 0;
  1709. if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
  1710. return 3;
  1711. return vmcs_read16(GUEST_CS_SELECTOR) & 3;
  1712. }
  1713. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  1714. {
  1715. u32 ar;
  1716. if (var->unusable)
  1717. ar = 1 << 16;
  1718. else {
  1719. ar = var->type & 15;
  1720. ar |= (var->s & 1) << 4;
  1721. ar |= (var->dpl & 3) << 5;
  1722. ar |= (var->present & 1) << 7;
  1723. ar |= (var->avl & 1) << 12;
  1724. ar |= (var->l & 1) << 13;
  1725. ar |= (var->db & 1) << 14;
  1726. ar |= (var->g & 1) << 15;
  1727. }
  1728. if (ar == 0) /* a 0 value means unusable */
  1729. ar = AR_UNUSABLE_MASK;
  1730. return ar;
  1731. }
  1732. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  1733. struct kvm_segment *var, int seg)
  1734. {
  1735. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1736. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1737. u32 ar;
  1738. if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
  1739. vmx->rmode.tr.selector = var->selector;
  1740. vmx->rmode.tr.base = var->base;
  1741. vmx->rmode.tr.limit = var->limit;
  1742. vmx->rmode.tr.ar = vmx_segment_access_rights(var);
  1743. return;
  1744. }
  1745. vmcs_writel(sf->base, var->base);
  1746. vmcs_write32(sf->limit, var->limit);
  1747. vmcs_write16(sf->selector, var->selector);
  1748. if (vmx->rmode.vm86_active && var->s) {
  1749. /*
  1750. * Hack real-mode segments into vm86 compatibility.
  1751. */
  1752. if (var->base == 0xffff0000 && var->selector == 0xf000)
  1753. vmcs_writel(sf->base, 0xf0000);
  1754. ar = 0xf3;
  1755. } else
  1756. ar = vmx_segment_access_rights(var);
  1757. /*
  1758. * Fix the "Accessed" bit in AR field of segment registers for older
  1759. * qemu binaries.
  1760. * IA32 arch specifies that at the time of processor reset the
  1761. * "Accessed" bit in the AR field of segment registers is 1. And qemu
  1762. * is setting it to 0 in the usedland code. This causes invalid guest
  1763. * state vmexit when "unrestricted guest" mode is turned on.
  1764. * Fix for this setup issue in cpu_reset is being pushed in the qemu
  1765. * tree. Newer qemu binaries with that qemu fix would not need this
  1766. * kvm hack.
  1767. */
  1768. if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
  1769. ar |= 0x1; /* Accessed */
  1770. vmcs_write32(sf->ar_bytes, ar);
  1771. }
  1772. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1773. {
  1774. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1775. *db = (ar >> 14) & 1;
  1776. *l = (ar >> 13) & 1;
  1777. }
  1778. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  1779. {
  1780. dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
  1781. dt->address = vmcs_readl(GUEST_IDTR_BASE);
  1782. }
  1783. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  1784. {
  1785. vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
  1786. vmcs_writel(GUEST_IDTR_BASE, dt->address);
  1787. }
  1788. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  1789. {
  1790. dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
  1791. dt->address = vmcs_readl(GUEST_GDTR_BASE);
  1792. }
  1793. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  1794. {
  1795. vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
  1796. vmcs_writel(GUEST_GDTR_BASE, dt->address);
  1797. }
  1798. static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1799. {
  1800. struct kvm_segment var;
  1801. u32 ar;
  1802. vmx_get_segment(vcpu, &var, seg);
  1803. ar = vmx_segment_access_rights(&var);
  1804. if (var.base != (var.selector << 4))
  1805. return false;
  1806. if (var.limit != 0xffff)
  1807. return false;
  1808. if (ar != 0xf3)
  1809. return false;
  1810. return true;
  1811. }
  1812. static bool code_segment_valid(struct kvm_vcpu *vcpu)
  1813. {
  1814. struct kvm_segment cs;
  1815. unsigned int cs_rpl;
  1816. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1817. cs_rpl = cs.selector & SELECTOR_RPL_MASK;
  1818. if (cs.unusable)
  1819. return false;
  1820. if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
  1821. return false;
  1822. if (!cs.s)
  1823. return false;
  1824. if (cs.type & AR_TYPE_WRITEABLE_MASK) {
  1825. if (cs.dpl > cs_rpl)
  1826. return false;
  1827. } else {
  1828. if (cs.dpl != cs_rpl)
  1829. return false;
  1830. }
  1831. if (!cs.present)
  1832. return false;
  1833. /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
  1834. return true;
  1835. }
  1836. static bool stack_segment_valid(struct kvm_vcpu *vcpu)
  1837. {
  1838. struct kvm_segment ss;
  1839. unsigned int ss_rpl;
  1840. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1841. ss_rpl = ss.selector & SELECTOR_RPL_MASK;
  1842. if (ss.unusable)
  1843. return true;
  1844. if (ss.type != 3 && ss.type != 7)
  1845. return false;
  1846. if (!ss.s)
  1847. return false;
  1848. if (ss.dpl != ss_rpl) /* DPL != RPL */
  1849. return false;
  1850. if (!ss.present)
  1851. return false;
  1852. return true;
  1853. }
  1854. static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1855. {
  1856. struct kvm_segment var;
  1857. unsigned int rpl;
  1858. vmx_get_segment(vcpu, &var, seg);
  1859. rpl = var.selector & SELECTOR_RPL_MASK;
  1860. if (var.unusable)
  1861. return true;
  1862. if (!var.s)
  1863. return false;
  1864. if (!var.present)
  1865. return false;
  1866. if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
  1867. if (var.dpl < rpl) /* DPL < RPL */
  1868. return false;
  1869. }
  1870. /* TODO: Add other members to kvm_segment_field to allow checking for other access
  1871. * rights flags
  1872. */
  1873. return true;
  1874. }
  1875. static bool tr_valid(struct kvm_vcpu *vcpu)
  1876. {
  1877. struct kvm_segment tr;
  1878. vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
  1879. if (tr.unusable)
  1880. return false;
  1881. if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1882. return false;
  1883. if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
  1884. return false;
  1885. if (!tr.present)
  1886. return false;
  1887. return true;
  1888. }
  1889. static bool ldtr_valid(struct kvm_vcpu *vcpu)
  1890. {
  1891. struct kvm_segment ldtr;
  1892. vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
  1893. if (ldtr.unusable)
  1894. return true;
  1895. if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1896. return false;
  1897. if (ldtr.type != 2)
  1898. return false;
  1899. if (!ldtr.present)
  1900. return false;
  1901. return true;
  1902. }
  1903. static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
  1904. {
  1905. struct kvm_segment cs, ss;
  1906. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1907. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1908. return ((cs.selector & SELECTOR_RPL_MASK) ==
  1909. (ss.selector & SELECTOR_RPL_MASK));
  1910. }
  1911. /*
  1912. * Check if guest state is valid. Returns true if valid, false if
  1913. * not.
  1914. * We assume that registers are always usable
  1915. */
  1916. static bool guest_state_valid(struct kvm_vcpu *vcpu)
  1917. {
  1918. /* real mode guest state checks */
  1919. if (!is_protmode(vcpu)) {
  1920. if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
  1921. return false;
  1922. if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
  1923. return false;
  1924. if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
  1925. return false;
  1926. if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
  1927. return false;
  1928. if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
  1929. return false;
  1930. if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
  1931. return false;
  1932. } else {
  1933. /* protected mode guest state checks */
  1934. if (!cs_ss_rpl_check(vcpu))
  1935. return false;
  1936. if (!code_segment_valid(vcpu))
  1937. return false;
  1938. if (!stack_segment_valid(vcpu))
  1939. return false;
  1940. if (!data_segment_valid(vcpu, VCPU_SREG_DS))
  1941. return false;
  1942. if (!data_segment_valid(vcpu, VCPU_SREG_ES))
  1943. return false;
  1944. if (!data_segment_valid(vcpu, VCPU_SREG_FS))
  1945. return false;
  1946. if (!data_segment_valid(vcpu, VCPU_SREG_GS))
  1947. return false;
  1948. if (!tr_valid(vcpu))
  1949. return false;
  1950. if (!ldtr_valid(vcpu))
  1951. return false;
  1952. }
  1953. /* TODO:
  1954. * - Add checks on RIP
  1955. * - Add checks on RFLAGS
  1956. */
  1957. return true;
  1958. }
  1959. static int init_rmode_tss(struct kvm *kvm)
  1960. {
  1961. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  1962. u16 data = 0;
  1963. int ret = 0;
  1964. int r;
  1965. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1966. if (r < 0)
  1967. goto out;
  1968. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  1969. r = kvm_write_guest_page(kvm, fn++, &data,
  1970. TSS_IOPB_BASE_OFFSET, sizeof(u16));
  1971. if (r < 0)
  1972. goto out;
  1973. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  1974. if (r < 0)
  1975. goto out;
  1976. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1977. if (r < 0)
  1978. goto out;
  1979. data = ~0;
  1980. r = kvm_write_guest_page(kvm, fn, &data,
  1981. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  1982. sizeof(u8));
  1983. if (r < 0)
  1984. goto out;
  1985. ret = 1;
  1986. out:
  1987. return ret;
  1988. }
  1989. static int init_rmode_identity_map(struct kvm *kvm)
  1990. {
  1991. int i, r, ret;
  1992. pfn_t identity_map_pfn;
  1993. u32 tmp;
  1994. if (!enable_ept)
  1995. return 1;
  1996. if (unlikely(!kvm->arch.ept_identity_pagetable)) {
  1997. printk(KERN_ERR "EPT: identity-mapping pagetable "
  1998. "haven't been allocated!\n");
  1999. return 0;
  2000. }
  2001. if (likely(kvm->arch.ept_identity_pagetable_done))
  2002. return 1;
  2003. ret = 0;
  2004. identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
  2005. r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
  2006. if (r < 0)
  2007. goto out;
  2008. /* Set up identity-mapping pagetable for EPT in real mode */
  2009. for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
  2010. tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
  2011. _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
  2012. r = kvm_write_guest_page(kvm, identity_map_pfn,
  2013. &tmp, i * sizeof(tmp), sizeof(tmp));
  2014. if (r < 0)
  2015. goto out;
  2016. }
  2017. kvm->arch.ept_identity_pagetable_done = true;
  2018. ret = 1;
  2019. out:
  2020. return ret;
  2021. }
  2022. static void seg_setup(int seg)
  2023. {
  2024. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  2025. unsigned int ar;
  2026. vmcs_write16(sf->selector, 0);
  2027. vmcs_writel(sf->base, 0);
  2028. vmcs_write32(sf->limit, 0xffff);
  2029. if (enable_unrestricted_guest) {
  2030. ar = 0x93;
  2031. if (seg == VCPU_SREG_CS)
  2032. ar |= 0x08; /* code segment */
  2033. } else
  2034. ar = 0xf3;
  2035. vmcs_write32(sf->ar_bytes, ar);
  2036. }
  2037. static int alloc_apic_access_page(struct kvm *kvm)
  2038. {
  2039. struct kvm_userspace_memory_region kvm_userspace_mem;
  2040. int r = 0;
  2041. mutex_lock(&kvm->slots_lock);
  2042. if (kvm->arch.apic_access_page)
  2043. goto out;
  2044. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  2045. kvm_userspace_mem.flags = 0;
  2046. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  2047. kvm_userspace_mem.memory_size = PAGE_SIZE;
  2048. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  2049. if (r)
  2050. goto out;
  2051. kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
  2052. out:
  2053. mutex_unlock(&kvm->slots_lock);
  2054. return r;
  2055. }
  2056. static int alloc_identity_pagetable(struct kvm *kvm)
  2057. {
  2058. struct kvm_userspace_memory_region kvm_userspace_mem;
  2059. int r = 0;
  2060. mutex_lock(&kvm->slots_lock);
  2061. if (kvm->arch.ept_identity_pagetable)
  2062. goto out;
  2063. kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
  2064. kvm_userspace_mem.flags = 0;
  2065. kvm_userspace_mem.guest_phys_addr =
  2066. kvm->arch.ept_identity_map_addr;
  2067. kvm_userspace_mem.memory_size = PAGE_SIZE;
  2068. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  2069. if (r)
  2070. goto out;
  2071. kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
  2072. kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
  2073. out:
  2074. mutex_unlock(&kvm->slots_lock);
  2075. return r;
  2076. }
  2077. static void allocate_vpid(struct vcpu_vmx *vmx)
  2078. {
  2079. int vpid;
  2080. vmx->vpid = 0;
  2081. if (!enable_vpid)
  2082. return;
  2083. spin_lock(&vmx_vpid_lock);
  2084. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  2085. if (vpid < VMX_NR_VPIDS) {
  2086. vmx->vpid = vpid;
  2087. __set_bit(vpid, vmx_vpid_bitmap);
  2088. }
  2089. spin_unlock(&vmx_vpid_lock);
  2090. }
  2091. static void free_vpid(struct vcpu_vmx *vmx)
  2092. {
  2093. if (!enable_vpid)
  2094. return;
  2095. spin_lock(&vmx_vpid_lock);
  2096. if (vmx->vpid != 0)
  2097. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  2098. spin_unlock(&vmx_vpid_lock);
  2099. }
  2100. static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
  2101. {
  2102. int f = sizeof(unsigned long);
  2103. if (!cpu_has_vmx_msr_bitmap())
  2104. return;
  2105. /*
  2106. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  2107. * have the write-low and read-high bitmap offsets the wrong way round.
  2108. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  2109. */
  2110. if (msr <= 0x1fff) {
  2111. __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
  2112. __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
  2113. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  2114. msr &= 0x1fff;
  2115. __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
  2116. __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
  2117. }
  2118. }
  2119. static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
  2120. {
  2121. if (!longmode_only)
  2122. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
  2123. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
  2124. }
  2125. /*
  2126. * Sets up the vmcs for emulated real mode.
  2127. */
  2128. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  2129. {
  2130. u32 host_sysenter_cs, msr_low, msr_high;
  2131. u32 junk;
  2132. u64 host_pat, tsc_this, tsc_base;
  2133. unsigned long a;
  2134. struct desc_ptr dt;
  2135. int i;
  2136. unsigned long kvm_vmx_return;
  2137. u32 exec_control;
  2138. /* I/O */
  2139. vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
  2140. vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
  2141. if (cpu_has_vmx_msr_bitmap())
  2142. vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
  2143. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  2144. /* Control */
  2145. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  2146. vmcs_config.pin_based_exec_ctrl);
  2147. exec_control = vmcs_config.cpu_based_exec_ctrl;
  2148. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  2149. exec_control &= ~CPU_BASED_TPR_SHADOW;
  2150. #ifdef CONFIG_X86_64
  2151. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  2152. CPU_BASED_CR8_LOAD_EXITING;
  2153. #endif
  2154. }
  2155. if (!enable_ept)
  2156. exec_control |= CPU_BASED_CR3_STORE_EXITING |
  2157. CPU_BASED_CR3_LOAD_EXITING |
  2158. CPU_BASED_INVLPG_EXITING;
  2159. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  2160. if (cpu_has_secondary_exec_ctrls()) {
  2161. exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  2162. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  2163. exec_control &=
  2164. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  2165. if (vmx->vpid == 0)
  2166. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  2167. if (!enable_ept) {
  2168. exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
  2169. enable_unrestricted_guest = 0;
  2170. }
  2171. if (!enable_unrestricted_guest)
  2172. exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
  2173. if (!ple_gap)
  2174. exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  2175. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  2176. }
  2177. if (ple_gap) {
  2178. vmcs_write32(PLE_GAP, ple_gap);
  2179. vmcs_write32(PLE_WINDOW, ple_window);
  2180. }
  2181. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
  2182. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
  2183. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  2184. vmcs_writel(HOST_CR0, read_cr0() | X86_CR0_TS); /* 22.2.3 */
  2185. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  2186. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  2187. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  2188. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  2189. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  2190. vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs()); /* 22.2.4 */
  2191. vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs()); /* 22.2.4 */
  2192. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  2193. #ifdef CONFIG_X86_64
  2194. rdmsrl(MSR_FS_BASE, a);
  2195. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  2196. rdmsrl(MSR_GS_BASE, a);
  2197. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  2198. #else
  2199. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  2200. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  2201. #endif
  2202. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  2203. native_store_idt(&dt);
  2204. vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
  2205. asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
  2206. vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
  2207. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  2208. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  2209. vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
  2210. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  2211. vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
  2212. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  2213. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  2214. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  2215. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  2216. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  2217. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  2218. if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
  2219. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  2220. host_pat = msr_low | ((u64) msr_high << 32);
  2221. vmcs_write64(HOST_IA32_PAT, host_pat);
  2222. }
  2223. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  2224. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  2225. host_pat = msr_low | ((u64) msr_high << 32);
  2226. /* Write the default value follow host pat */
  2227. vmcs_write64(GUEST_IA32_PAT, host_pat);
  2228. /* Keep arch.pat sync with GUEST_IA32_PAT */
  2229. vmx->vcpu.arch.pat = host_pat;
  2230. }
  2231. for (i = 0; i < NR_VMX_MSR; ++i) {
  2232. u32 index = vmx_msr_index[i];
  2233. u32 data_low, data_high;
  2234. int j = vmx->nmsrs;
  2235. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  2236. continue;
  2237. if (wrmsr_safe(index, data_low, data_high) < 0)
  2238. continue;
  2239. vmx->guest_msrs[j].index = i;
  2240. vmx->guest_msrs[j].data = 0;
  2241. vmx->guest_msrs[j].mask = -1ull;
  2242. ++vmx->nmsrs;
  2243. }
  2244. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  2245. /* 22.2.1, 20.8.1 */
  2246. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  2247. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  2248. vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
  2249. if (enable_ept)
  2250. vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
  2251. vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
  2252. tsc_base = vmx->vcpu.kvm->arch.vm_init_tsc;
  2253. rdtscll(tsc_this);
  2254. if (tsc_this < vmx->vcpu.kvm->arch.vm_init_tsc)
  2255. tsc_base = tsc_this;
  2256. guest_write_tsc(0, tsc_base);
  2257. return 0;
  2258. }
  2259. static int init_rmode(struct kvm *kvm)
  2260. {
  2261. int idx, ret = 0;
  2262. idx = srcu_read_lock(&kvm->srcu);
  2263. if (!init_rmode_tss(kvm))
  2264. goto exit;
  2265. if (!init_rmode_identity_map(kvm))
  2266. goto exit;
  2267. ret = 1;
  2268. exit:
  2269. srcu_read_unlock(&kvm->srcu, idx);
  2270. return ret;
  2271. }
  2272. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  2273. {
  2274. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2275. u64 msr;
  2276. int ret;
  2277. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  2278. if (!init_rmode(vmx->vcpu.kvm)) {
  2279. ret = -ENOMEM;
  2280. goto out;
  2281. }
  2282. vmx->rmode.vm86_active = 0;
  2283. vmx->soft_vnmi_blocked = 0;
  2284. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  2285. kvm_set_cr8(&vmx->vcpu, 0);
  2286. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  2287. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  2288. msr |= MSR_IA32_APICBASE_BSP;
  2289. kvm_set_apic_base(&vmx->vcpu, msr);
  2290. ret = fx_init(&vmx->vcpu);
  2291. if (ret != 0)
  2292. goto out;
  2293. seg_setup(VCPU_SREG_CS);
  2294. /*
  2295. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  2296. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  2297. */
  2298. if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
  2299. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  2300. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  2301. } else {
  2302. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
  2303. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
  2304. }
  2305. seg_setup(VCPU_SREG_DS);
  2306. seg_setup(VCPU_SREG_ES);
  2307. seg_setup(VCPU_SREG_FS);
  2308. seg_setup(VCPU_SREG_GS);
  2309. seg_setup(VCPU_SREG_SS);
  2310. vmcs_write16(GUEST_TR_SELECTOR, 0);
  2311. vmcs_writel(GUEST_TR_BASE, 0);
  2312. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  2313. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  2314. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  2315. vmcs_writel(GUEST_LDTR_BASE, 0);
  2316. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  2317. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  2318. vmcs_write32(GUEST_SYSENTER_CS, 0);
  2319. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  2320. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  2321. vmcs_writel(GUEST_RFLAGS, 0x02);
  2322. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  2323. kvm_rip_write(vcpu, 0xfff0);
  2324. else
  2325. kvm_rip_write(vcpu, 0);
  2326. kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
  2327. vmcs_writel(GUEST_DR7, 0x400);
  2328. vmcs_writel(GUEST_GDTR_BASE, 0);
  2329. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  2330. vmcs_writel(GUEST_IDTR_BASE, 0);
  2331. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  2332. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  2333. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  2334. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  2335. /* Special registers */
  2336. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  2337. setup_msrs(vmx);
  2338. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  2339. if (cpu_has_vmx_tpr_shadow()) {
  2340. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  2341. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  2342. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  2343. page_to_phys(vmx->vcpu.arch.apic->regs_page));
  2344. vmcs_write32(TPR_THRESHOLD, 0);
  2345. }
  2346. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  2347. vmcs_write64(APIC_ACCESS_ADDR,
  2348. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  2349. if (vmx->vpid != 0)
  2350. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  2351. vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
  2352. vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
  2353. vmx_set_cr4(&vmx->vcpu, 0);
  2354. vmx_set_efer(&vmx->vcpu, 0);
  2355. vmx_fpu_activate(&vmx->vcpu);
  2356. update_exception_bitmap(&vmx->vcpu);
  2357. vpid_sync_context(vmx);
  2358. ret = 0;
  2359. /* HACK: Don't enable emulation on guest boot/reset */
  2360. vmx->emulation_required = 0;
  2361. out:
  2362. return ret;
  2363. }
  2364. static void enable_irq_window(struct kvm_vcpu *vcpu)
  2365. {
  2366. u32 cpu_based_vm_exec_control;
  2367. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2368. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  2369. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2370. }
  2371. static void enable_nmi_window(struct kvm_vcpu *vcpu)
  2372. {
  2373. u32 cpu_based_vm_exec_control;
  2374. if (!cpu_has_virtual_nmis()) {
  2375. enable_irq_window(vcpu);
  2376. return;
  2377. }
  2378. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2379. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
  2380. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2381. }
  2382. static void vmx_inject_irq(struct kvm_vcpu *vcpu)
  2383. {
  2384. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2385. uint32_t intr;
  2386. int irq = vcpu->arch.interrupt.nr;
  2387. trace_kvm_inj_virq(irq);
  2388. ++vcpu->stat.irq_injections;
  2389. if (vmx->rmode.vm86_active) {
  2390. vmx->rmode.irq.pending = true;
  2391. vmx->rmode.irq.vector = irq;
  2392. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  2393. if (vcpu->arch.interrupt.soft)
  2394. vmx->rmode.irq.rip +=
  2395. vmx->vcpu.arch.event_exit_inst_len;
  2396. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2397. irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
  2398. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  2399. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  2400. return;
  2401. }
  2402. intr = irq | INTR_INFO_VALID_MASK;
  2403. if (vcpu->arch.interrupt.soft) {
  2404. intr |= INTR_TYPE_SOFT_INTR;
  2405. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  2406. vmx->vcpu.arch.event_exit_inst_len);
  2407. } else
  2408. intr |= INTR_TYPE_EXT_INTR;
  2409. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
  2410. }
  2411. static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
  2412. {
  2413. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2414. if (!cpu_has_virtual_nmis()) {
  2415. /*
  2416. * Tracking the NMI-blocked state in software is built upon
  2417. * finding the next open IRQ window. This, in turn, depends on
  2418. * well-behaving guests: They have to keep IRQs disabled at
  2419. * least as long as the NMI handler runs. Otherwise we may
  2420. * cause NMI nesting, maybe breaking the guest. But as this is
  2421. * highly unlikely, we can live with the residual risk.
  2422. */
  2423. vmx->soft_vnmi_blocked = 1;
  2424. vmx->vnmi_blocked_time = 0;
  2425. }
  2426. ++vcpu->stat.nmi_injections;
  2427. if (vmx->rmode.vm86_active) {
  2428. vmx->rmode.irq.pending = true;
  2429. vmx->rmode.irq.vector = NMI_VECTOR;
  2430. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  2431. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2432. NMI_VECTOR | INTR_TYPE_SOFT_INTR |
  2433. INTR_INFO_VALID_MASK);
  2434. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  2435. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  2436. return;
  2437. }
  2438. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2439. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
  2440. }
  2441. static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
  2442. {
  2443. if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
  2444. return 0;
  2445. return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2446. (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_NMI));
  2447. }
  2448. static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
  2449. {
  2450. if (!cpu_has_virtual_nmis())
  2451. return to_vmx(vcpu)->soft_vnmi_blocked;
  2452. return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
  2453. }
  2454. static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
  2455. {
  2456. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2457. if (!cpu_has_virtual_nmis()) {
  2458. if (vmx->soft_vnmi_blocked != masked) {
  2459. vmx->soft_vnmi_blocked = masked;
  2460. vmx->vnmi_blocked_time = 0;
  2461. }
  2462. } else {
  2463. if (masked)
  2464. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2465. GUEST_INTR_STATE_NMI);
  2466. else
  2467. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  2468. GUEST_INTR_STATE_NMI);
  2469. }
  2470. }
  2471. static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
  2472. {
  2473. return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  2474. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2475. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
  2476. }
  2477. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  2478. {
  2479. int ret;
  2480. struct kvm_userspace_memory_region tss_mem = {
  2481. .slot = TSS_PRIVATE_MEMSLOT,
  2482. .guest_phys_addr = addr,
  2483. .memory_size = PAGE_SIZE * 3,
  2484. .flags = 0,
  2485. };
  2486. ret = kvm_set_memory_region(kvm, &tss_mem, 0);
  2487. if (ret)
  2488. return ret;
  2489. kvm->arch.tss_addr = addr;
  2490. return 0;
  2491. }
  2492. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  2493. int vec, u32 err_code)
  2494. {
  2495. /*
  2496. * Instruction with address size override prefix opcode 0x67
  2497. * Cause the #SS fault with 0 error code in VM86 mode.
  2498. */
  2499. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  2500. if (emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DONE)
  2501. return 1;
  2502. /*
  2503. * Forward all other exceptions that are valid in real mode.
  2504. * FIXME: Breaks guest debugging in real mode, needs to be fixed with
  2505. * the required debugging infrastructure rework.
  2506. */
  2507. switch (vec) {
  2508. case DB_VECTOR:
  2509. if (vcpu->guest_debug &
  2510. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  2511. return 0;
  2512. kvm_queue_exception(vcpu, vec);
  2513. return 1;
  2514. case BP_VECTOR:
  2515. /*
  2516. * Update instruction length as we may reinject the exception
  2517. * from user space while in guest debugging mode.
  2518. */
  2519. to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
  2520. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  2521. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  2522. return 0;
  2523. /* fall through */
  2524. case DE_VECTOR:
  2525. case OF_VECTOR:
  2526. case BR_VECTOR:
  2527. case UD_VECTOR:
  2528. case DF_VECTOR:
  2529. case SS_VECTOR:
  2530. case GP_VECTOR:
  2531. case MF_VECTOR:
  2532. kvm_queue_exception(vcpu, vec);
  2533. return 1;
  2534. }
  2535. return 0;
  2536. }
  2537. /*
  2538. * Trigger machine check on the host. We assume all the MSRs are already set up
  2539. * by the CPU and that we still run on the same CPU as the MCE occurred on.
  2540. * We pass a fake environment to the machine check handler because we want
  2541. * the guest to be always treated like user space, no matter what context
  2542. * it used internally.
  2543. */
  2544. static void kvm_machine_check(void)
  2545. {
  2546. #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
  2547. struct pt_regs regs = {
  2548. .cs = 3, /* Fake ring 3 no matter what the guest ran on */
  2549. .flags = X86_EFLAGS_IF,
  2550. };
  2551. do_machine_check(&regs, 0);
  2552. #endif
  2553. }
  2554. static int handle_machine_check(struct kvm_vcpu *vcpu)
  2555. {
  2556. /* already handled by vcpu_run */
  2557. return 1;
  2558. }
  2559. static int handle_exception(struct kvm_vcpu *vcpu)
  2560. {
  2561. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2562. struct kvm_run *kvm_run = vcpu->run;
  2563. u32 intr_info, ex_no, error_code;
  2564. unsigned long cr2, rip, dr6;
  2565. u32 vect_info;
  2566. enum emulation_result er;
  2567. vect_info = vmx->idt_vectoring_info;
  2568. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2569. if (is_machine_check(intr_info))
  2570. return handle_machine_check(vcpu);
  2571. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  2572. !is_page_fault(intr_info)) {
  2573. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  2574. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
  2575. vcpu->run->internal.ndata = 2;
  2576. vcpu->run->internal.data[0] = vect_info;
  2577. vcpu->run->internal.data[1] = intr_info;
  2578. return 0;
  2579. }
  2580. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
  2581. return 1; /* already handled by vmx_vcpu_run() */
  2582. if (is_no_device(intr_info)) {
  2583. vmx_fpu_activate(vcpu);
  2584. return 1;
  2585. }
  2586. if (is_invalid_opcode(intr_info)) {
  2587. er = emulate_instruction(vcpu, 0, 0, EMULTYPE_TRAP_UD);
  2588. if (er != EMULATE_DONE)
  2589. kvm_queue_exception(vcpu, UD_VECTOR);
  2590. return 1;
  2591. }
  2592. error_code = 0;
  2593. rip = kvm_rip_read(vcpu);
  2594. if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
  2595. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  2596. if (is_page_fault(intr_info)) {
  2597. /* EPT won't cause page fault directly */
  2598. if (enable_ept)
  2599. BUG();
  2600. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  2601. trace_kvm_page_fault(cr2, error_code);
  2602. if (kvm_event_needs_reinjection(vcpu))
  2603. kvm_mmu_unprotect_page_virt(vcpu, cr2);
  2604. return kvm_mmu_page_fault(vcpu, cr2, error_code);
  2605. }
  2606. if (vmx->rmode.vm86_active &&
  2607. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  2608. error_code)) {
  2609. if (vcpu->arch.halt_request) {
  2610. vcpu->arch.halt_request = 0;
  2611. return kvm_emulate_halt(vcpu);
  2612. }
  2613. return 1;
  2614. }
  2615. ex_no = intr_info & INTR_INFO_VECTOR_MASK;
  2616. switch (ex_no) {
  2617. case DB_VECTOR:
  2618. dr6 = vmcs_readl(EXIT_QUALIFICATION);
  2619. if (!(vcpu->guest_debug &
  2620. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
  2621. vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
  2622. kvm_queue_exception(vcpu, DB_VECTOR);
  2623. return 1;
  2624. }
  2625. kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
  2626. kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
  2627. /* fall through */
  2628. case BP_VECTOR:
  2629. /*
  2630. * Update instruction length as we may reinject #BP from
  2631. * user space while in guest debugging mode. Reading it for
  2632. * #DB as well causes no harm, it is not used in that case.
  2633. */
  2634. vmx->vcpu.arch.event_exit_inst_len =
  2635. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  2636. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  2637. kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
  2638. kvm_run->debug.arch.exception = ex_no;
  2639. break;
  2640. default:
  2641. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  2642. kvm_run->ex.exception = ex_no;
  2643. kvm_run->ex.error_code = error_code;
  2644. break;
  2645. }
  2646. return 0;
  2647. }
  2648. static int handle_external_interrupt(struct kvm_vcpu *vcpu)
  2649. {
  2650. ++vcpu->stat.irq_exits;
  2651. return 1;
  2652. }
  2653. static int handle_triple_fault(struct kvm_vcpu *vcpu)
  2654. {
  2655. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  2656. return 0;
  2657. }
  2658. static int handle_io(struct kvm_vcpu *vcpu)
  2659. {
  2660. unsigned long exit_qualification;
  2661. int size, in, string;
  2662. unsigned port;
  2663. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2664. string = (exit_qualification & 16) != 0;
  2665. in = (exit_qualification & 8) != 0;
  2666. ++vcpu->stat.io_exits;
  2667. if (string || in)
  2668. return emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DONE;
  2669. port = exit_qualification >> 16;
  2670. size = (exit_qualification & 7) + 1;
  2671. skip_emulated_instruction(vcpu);
  2672. return kvm_fast_pio_out(vcpu, size, port);
  2673. }
  2674. static void
  2675. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  2676. {
  2677. /*
  2678. * Patch in the VMCALL instruction:
  2679. */
  2680. hypercall[0] = 0x0f;
  2681. hypercall[1] = 0x01;
  2682. hypercall[2] = 0xc1;
  2683. }
  2684. static int handle_cr(struct kvm_vcpu *vcpu)
  2685. {
  2686. unsigned long exit_qualification, val;
  2687. int cr;
  2688. int reg;
  2689. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2690. cr = exit_qualification & 15;
  2691. reg = (exit_qualification >> 8) & 15;
  2692. switch ((exit_qualification >> 4) & 3) {
  2693. case 0: /* mov to cr */
  2694. val = kvm_register_read(vcpu, reg);
  2695. trace_kvm_cr_write(cr, val);
  2696. switch (cr) {
  2697. case 0:
  2698. kvm_set_cr0(vcpu, val);
  2699. skip_emulated_instruction(vcpu);
  2700. return 1;
  2701. case 3:
  2702. kvm_set_cr3(vcpu, val);
  2703. skip_emulated_instruction(vcpu);
  2704. return 1;
  2705. case 4:
  2706. kvm_set_cr4(vcpu, val);
  2707. skip_emulated_instruction(vcpu);
  2708. return 1;
  2709. case 8: {
  2710. u8 cr8_prev = kvm_get_cr8(vcpu);
  2711. u8 cr8 = kvm_register_read(vcpu, reg);
  2712. kvm_set_cr8(vcpu, cr8);
  2713. skip_emulated_instruction(vcpu);
  2714. if (irqchip_in_kernel(vcpu->kvm))
  2715. return 1;
  2716. if (cr8_prev <= cr8)
  2717. return 1;
  2718. vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
  2719. return 0;
  2720. }
  2721. };
  2722. break;
  2723. case 2: /* clts */
  2724. vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
  2725. trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
  2726. skip_emulated_instruction(vcpu);
  2727. vmx_fpu_activate(vcpu);
  2728. return 1;
  2729. case 1: /*mov from cr*/
  2730. switch (cr) {
  2731. case 3:
  2732. kvm_register_write(vcpu, reg, vcpu->arch.cr3);
  2733. trace_kvm_cr_read(cr, vcpu->arch.cr3);
  2734. skip_emulated_instruction(vcpu);
  2735. return 1;
  2736. case 8:
  2737. val = kvm_get_cr8(vcpu);
  2738. kvm_register_write(vcpu, reg, val);
  2739. trace_kvm_cr_read(cr, val);
  2740. skip_emulated_instruction(vcpu);
  2741. return 1;
  2742. }
  2743. break;
  2744. case 3: /* lmsw */
  2745. val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
  2746. trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
  2747. kvm_lmsw(vcpu, val);
  2748. skip_emulated_instruction(vcpu);
  2749. return 1;
  2750. default:
  2751. break;
  2752. }
  2753. vcpu->run->exit_reason = 0;
  2754. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  2755. (int)(exit_qualification >> 4) & 3, cr);
  2756. return 0;
  2757. }
  2758. static int handle_dr(struct kvm_vcpu *vcpu)
  2759. {
  2760. unsigned long exit_qualification;
  2761. int dr, reg;
  2762. /* Do not handle if the CPL > 0, will trigger GP on re-entry */
  2763. if (!kvm_require_cpl(vcpu, 0))
  2764. return 1;
  2765. dr = vmcs_readl(GUEST_DR7);
  2766. if (dr & DR7_GD) {
  2767. /*
  2768. * As the vm-exit takes precedence over the debug trap, we
  2769. * need to emulate the latter, either for the host or the
  2770. * guest debugging itself.
  2771. */
  2772. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  2773. vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
  2774. vcpu->run->debug.arch.dr7 = dr;
  2775. vcpu->run->debug.arch.pc =
  2776. vmcs_readl(GUEST_CS_BASE) +
  2777. vmcs_readl(GUEST_RIP);
  2778. vcpu->run->debug.arch.exception = DB_VECTOR;
  2779. vcpu->run->exit_reason = KVM_EXIT_DEBUG;
  2780. return 0;
  2781. } else {
  2782. vcpu->arch.dr7 &= ~DR7_GD;
  2783. vcpu->arch.dr6 |= DR6_BD;
  2784. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  2785. kvm_queue_exception(vcpu, DB_VECTOR);
  2786. return 1;
  2787. }
  2788. }
  2789. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2790. dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
  2791. reg = DEBUG_REG_ACCESS_REG(exit_qualification);
  2792. if (exit_qualification & TYPE_MOV_FROM_DR) {
  2793. unsigned long val;
  2794. if (!kvm_get_dr(vcpu, dr, &val))
  2795. kvm_register_write(vcpu, reg, val);
  2796. } else
  2797. kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
  2798. skip_emulated_instruction(vcpu);
  2799. return 1;
  2800. }
  2801. static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
  2802. {
  2803. vmcs_writel(GUEST_DR7, val);
  2804. }
  2805. static int handle_cpuid(struct kvm_vcpu *vcpu)
  2806. {
  2807. kvm_emulate_cpuid(vcpu);
  2808. return 1;
  2809. }
  2810. static int handle_rdmsr(struct kvm_vcpu *vcpu)
  2811. {
  2812. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2813. u64 data;
  2814. if (vmx_get_msr(vcpu, ecx, &data)) {
  2815. trace_kvm_msr_read_ex(ecx);
  2816. kvm_inject_gp(vcpu, 0);
  2817. return 1;
  2818. }
  2819. trace_kvm_msr_read(ecx, data);
  2820. /* FIXME: handling of bits 32:63 of rax, rdx */
  2821. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  2822. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  2823. skip_emulated_instruction(vcpu);
  2824. return 1;
  2825. }
  2826. static int handle_wrmsr(struct kvm_vcpu *vcpu)
  2827. {
  2828. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2829. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  2830. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  2831. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  2832. trace_kvm_msr_write_ex(ecx, data);
  2833. kvm_inject_gp(vcpu, 0);
  2834. return 1;
  2835. }
  2836. trace_kvm_msr_write(ecx, data);
  2837. skip_emulated_instruction(vcpu);
  2838. return 1;
  2839. }
  2840. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
  2841. {
  2842. return 1;
  2843. }
  2844. static int handle_interrupt_window(struct kvm_vcpu *vcpu)
  2845. {
  2846. u32 cpu_based_vm_exec_control;
  2847. /* clear pending irq */
  2848. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2849. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  2850. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2851. ++vcpu->stat.irq_window_exits;
  2852. /*
  2853. * If the user space waits to inject interrupts, exit as soon as
  2854. * possible
  2855. */
  2856. if (!irqchip_in_kernel(vcpu->kvm) &&
  2857. vcpu->run->request_interrupt_window &&
  2858. !kvm_cpu_has_interrupt(vcpu)) {
  2859. vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  2860. return 0;
  2861. }
  2862. return 1;
  2863. }
  2864. static int handle_halt(struct kvm_vcpu *vcpu)
  2865. {
  2866. skip_emulated_instruction(vcpu);
  2867. return kvm_emulate_halt(vcpu);
  2868. }
  2869. static int handle_vmcall(struct kvm_vcpu *vcpu)
  2870. {
  2871. skip_emulated_instruction(vcpu);
  2872. kvm_emulate_hypercall(vcpu);
  2873. return 1;
  2874. }
  2875. static int handle_vmx_insn(struct kvm_vcpu *vcpu)
  2876. {
  2877. kvm_queue_exception(vcpu, UD_VECTOR);
  2878. return 1;
  2879. }
  2880. static int handle_invlpg(struct kvm_vcpu *vcpu)
  2881. {
  2882. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2883. kvm_mmu_invlpg(vcpu, exit_qualification);
  2884. skip_emulated_instruction(vcpu);
  2885. return 1;
  2886. }
  2887. static int handle_wbinvd(struct kvm_vcpu *vcpu)
  2888. {
  2889. skip_emulated_instruction(vcpu);
  2890. /* TODO: Add support for VT-d/pass-through device */
  2891. return 1;
  2892. }
  2893. static int handle_xsetbv(struct kvm_vcpu *vcpu)
  2894. {
  2895. u64 new_bv = kvm_read_edx_eax(vcpu);
  2896. u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2897. if (kvm_set_xcr(vcpu, index, new_bv) == 0)
  2898. skip_emulated_instruction(vcpu);
  2899. return 1;
  2900. }
  2901. static int handle_apic_access(struct kvm_vcpu *vcpu)
  2902. {
  2903. return emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DONE;
  2904. }
  2905. static int handle_task_switch(struct kvm_vcpu *vcpu)
  2906. {
  2907. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2908. unsigned long exit_qualification;
  2909. bool has_error_code = false;
  2910. u32 error_code = 0;
  2911. u16 tss_selector;
  2912. int reason, type, idt_v;
  2913. idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
  2914. type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
  2915. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2916. reason = (u32)exit_qualification >> 30;
  2917. if (reason == TASK_SWITCH_GATE && idt_v) {
  2918. switch (type) {
  2919. case INTR_TYPE_NMI_INTR:
  2920. vcpu->arch.nmi_injected = false;
  2921. if (cpu_has_virtual_nmis())
  2922. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2923. GUEST_INTR_STATE_NMI);
  2924. break;
  2925. case INTR_TYPE_EXT_INTR:
  2926. case INTR_TYPE_SOFT_INTR:
  2927. kvm_clear_interrupt_queue(vcpu);
  2928. break;
  2929. case INTR_TYPE_HARD_EXCEPTION:
  2930. if (vmx->idt_vectoring_info &
  2931. VECTORING_INFO_DELIVER_CODE_MASK) {
  2932. has_error_code = true;
  2933. error_code =
  2934. vmcs_read32(IDT_VECTORING_ERROR_CODE);
  2935. }
  2936. /* fall through */
  2937. case INTR_TYPE_SOFT_EXCEPTION:
  2938. kvm_clear_exception_queue(vcpu);
  2939. break;
  2940. default:
  2941. break;
  2942. }
  2943. }
  2944. tss_selector = exit_qualification;
  2945. if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
  2946. type != INTR_TYPE_EXT_INTR &&
  2947. type != INTR_TYPE_NMI_INTR))
  2948. skip_emulated_instruction(vcpu);
  2949. if (kvm_task_switch(vcpu, tss_selector, reason,
  2950. has_error_code, error_code) == EMULATE_FAIL) {
  2951. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  2952. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  2953. vcpu->run->internal.ndata = 0;
  2954. return 0;
  2955. }
  2956. /* clear all local breakpoint enable flags */
  2957. vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
  2958. /*
  2959. * TODO: What about debug traps on tss switch?
  2960. * Are we supposed to inject them and update dr6?
  2961. */
  2962. return 1;
  2963. }
  2964. static int handle_ept_violation(struct kvm_vcpu *vcpu)
  2965. {
  2966. unsigned long exit_qualification;
  2967. gpa_t gpa;
  2968. int gla_validity;
  2969. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2970. if (exit_qualification & (1 << 6)) {
  2971. printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
  2972. return -EINVAL;
  2973. }
  2974. gla_validity = (exit_qualification >> 7) & 0x3;
  2975. if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
  2976. printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
  2977. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  2978. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  2979. vmcs_readl(GUEST_LINEAR_ADDRESS));
  2980. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  2981. (long unsigned int)exit_qualification);
  2982. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  2983. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
  2984. return 0;
  2985. }
  2986. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  2987. trace_kvm_page_fault(gpa, exit_qualification);
  2988. return kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
  2989. }
  2990. static u64 ept_rsvd_mask(u64 spte, int level)
  2991. {
  2992. int i;
  2993. u64 mask = 0;
  2994. for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
  2995. mask |= (1ULL << i);
  2996. if (level > 2)
  2997. /* bits 7:3 reserved */
  2998. mask |= 0xf8;
  2999. else if (level == 2) {
  3000. if (spte & (1ULL << 7))
  3001. /* 2MB ref, bits 20:12 reserved */
  3002. mask |= 0x1ff000;
  3003. else
  3004. /* bits 6:3 reserved */
  3005. mask |= 0x78;
  3006. }
  3007. return mask;
  3008. }
  3009. static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
  3010. int level)
  3011. {
  3012. printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
  3013. /* 010b (write-only) */
  3014. WARN_ON((spte & 0x7) == 0x2);
  3015. /* 110b (write/execute) */
  3016. WARN_ON((spte & 0x7) == 0x6);
  3017. /* 100b (execute-only) and value not supported by logical processor */
  3018. if (!cpu_has_vmx_ept_execute_only())
  3019. WARN_ON((spte & 0x7) == 0x4);
  3020. /* not 000b */
  3021. if ((spte & 0x7)) {
  3022. u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
  3023. if (rsvd_bits != 0) {
  3024. printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
  3025. __func__, rsvd_bits);
  3026. WARN_ON(1);
  3027. }
  3028. if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
  3029. u64 ept_mem_type = (spte & 0x38) >> 3;
  3030. if (ept_mem_type == 2 || ept_mem_type == 3 ||
  3031. ept_mem_type == 7) {
  3032. printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
  3033. __func__, ept_mem_type);
  3034. WARN_ON(1);
  3035. }
  3036. }
  3037. }
  3038. }
  3039. static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
  3040. {
  3041. u64 sptes[4];
  3042. int nr_sptes, i;
  3043. gpa_t gpa;
  3044. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  3045. printk(KERN_ERR "EPT: Misconfiguration.\n");
  3046. printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
  3047. nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
  3048. for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
  3049. ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
  3050. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  3051. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
  3052. return 0;
  3053. }
  3054. static int handle_nmi_window(struct kvm_vcpu *vcpu)
  3055. {
  3056. u32 cpu_based_vm_exec_control;
  3057. /* clear pending NMI */
  3058. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  3059. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  3060. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  3061. ++vcpu->stat.nmi_window_exits;
  3062. return 1;
  3063. }
  3064. static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
  3065. {
  3066. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3067. enum emulation_result err = EMULATE_DONE;
  3068. int ret = 1;
  3069. while (!guest_state_valid(vcpu)) {
  3070. err = emulate_instruction(vcpu, 0, 0, 0);
  3071. if (err == EMULATE_DO_MMIO) {
  3072. ret = 0;
  3073. goto out;
  3074. }
  3075. if (err != EMULATE_DONE)
  3076. return 0;
  3077. if (signal_pending(current))
  3078. goto out;
  3079. if (need_resched())
  3080. schedule();
  3081. }
  3082. vmx->emulation_required = 0;
  3083. out:
  3084. return ret;
  3085. }
  3086. /*
  3087. * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
  3088. * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
  3089. */
  3090. static int handle_pause(struct kvm_vcpu *vcpu)
  3091. {
  3092. skip_emulated_instruction(vcpu);
  3093. kvm_vcpu_on_spin(vcpu);
  3094. return 1;
  3095. }
  3096. static int handle_invalid_op(struct kvm_vcpu *vcpu)
  3097. {
  3098. kvm_queue_exception(vcpu, UD_VECTOR);
  3099. return 1;
  3100. }
  3101. /*
  3102. * The exit handlers return 1 if the exit was handled fully and guest execution
  3103. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  3104. * to be done to userspace and return 0.
  3105. */
  3106. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
  3107. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  3108. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  3109. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  3110. [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
  3111. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  3112. [EXIT_REASON_CR_ACCESS] = handle_cr,
  3113. [EXIT_REASON_DR_ACCESS] = handle_dr,
  3114. [EXIT_REASON_CPUID] = handle_cpuid,
  3115. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  3116. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  3117. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  3118. [EXIT_REASON_HLT] = handle_halt,
  3119. [EXIT_REASON_INVLPG] = handle_invlpg,
  3120. [EXIT_REASON_VMCALL] = handle_vmcall,
  3121. [EXIT_REASON_VMCLEAR] = handle_vmx_insn,
  3122. [EXIT_REASON_VMLAUNCH] = handle_vmx_insn,
  3123. [EXIT_REASON_VMPTRLD] = handle_vmx_insn,
  3124. [EXIT_REASON_VMPTRST] = handle_vmx_insn,
  3125. [EXIT_REASON_VMREAD] = handle_vmx_insn,
  3126. [EXIT_REASON_VMRESUME] = handle_vmx_insn,
  3127. [EXIT_REASON_VMWRITE] = handle_vmx_insn,
  3128. [EXIT_REASON_VMOFF] = handle_vmx_insn,
  3129. [EXIT_REASON_VMON] = handle_vmx_insn,
  3130. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  3131. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  3132. [EXIT_REASON_WBINVD] = handle_wbinvd,
  3133. [EXIT_REASON_XSETBV] = handle_xsetbv,
  3134. [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
  3135. [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
  3136. [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
  3137. [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
  3138. [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
  3139. [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
  3140. [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
  3141. };
  3142. static const int kvm_vmx_max_exit_handlers =
  3143. ARRAY_SIZE(kvm_vmx_exit_handlers);
  3144. /*
  3145. * The guest has exited. See if we can fix it or if we need userspace
  3146. * assistance.
  3147. */
  3148. static int vmx_handle_exit(struct kvm_vcpu *vcpu)
  3149. {
  3150. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3151. u32 exit_reason = vmx->exit_reason;
  3152. u32 vectoring_info = vmx->idt_vectoring_info;
  3153. trace_kvm_exit(exit_reason, vcpu);
  3154. /* If guest state is invalid, start emulating */
  3155. if (vmx->emulation_required && emulate_invalid_guest_state)
  3156. return handle_invalid_guest_state(vcpu);
  3157. /* Access CR3 don't cause VMExit in paging mode, so we need
  3158. * to sync with guest real CR3. */
  3159. if (enable_ept && is_paging(vcpu))
  3160. vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
  3161. if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
  3162. vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  3163. vcpu->run->fail_entry.hardware_entry_failure_reason
  3164. = exit_reason;
  3165. return 0;
  3166. }
  3167. if (unlikely(vmx->fail)) {
  3168. vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  3169. vcpu->run->fail_entry.hardware_entry_failure_reason
  3170. = vmcs_read32(VM_INSTRUCTION_ERROR);
  3171. return 0;
  3172. }
  3173. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  3174. (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
  3175. exit_reason != EXIT_REASON_EPT_VIOLATION &&
  3176. exit_reason != EXIT_REASON_TASK_SWITCH))
  3177. printk(KERN_WARNING "%s: unexpected, valid vectoring info "
  3178. "(0x%x) and exit reason is 0x%x\n",
  3179. __func__, vectoring_info, exit_reason);
  3180. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
  3181. if (vmx_interrupt_allowed(vcpu)) {
  3182. vmx->soft_vnmi_blocked = 0;
  3183. } else if (vmx->vnmi_blocked_time > 1000000000LL &&
  3184. vcpu->arch.nmi_pending) {
  3185. /*
  3186. * This CPU don't support us in finding the end of an
  3187. * NMI-blocked window if the guest runs with IRQs
  3188. * disabled. So we pull the trigger after 1 s of
  3189. * futile waiting, but inform the user about this.
  3190. */
  3191. printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
  3192. "state on VCPU %d after 1 s timeout\n",
  3193. __func__, vcpu->vcpu_id);
  3194. vmx->soft_vnmi_blocked = 0;
  3195. }
  3196. }
  3197. if (exit_reason < kvm_vmx_max_exit_handlers
  3198. && kvm_vmx_exit_handlers[exit_reason])
  3199. return kvm_vmx_exit_handlers[exit_reason](vcpu);
  3200. else {
  3201. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  3202. vcpu->run->hw.hardware_exit_reason = exit_reason;
  3203. }
  3204. return 0;
  3205. }
  3206. static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
  3207. {
  3208. if (irr == -1 || tpr < irr) {
  3209. vmcs_write32(TPR_THRESHOLD, 0);
  3210. return;
  3211. }
  3212. vmcs_write32(TPR_THRESHOLD, irr);
  3213. }
  3214. static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
  3215. {
  3216. u32 exit_intr_info;
  3217. u32 idt_vectoring_info = vmx->idt_vectoring_info;
  3218. bool unblock_nmi;
  3219. u8 vector;
  3220. int type;
  3221. bool idtv_info_valid;
  3222. exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  3223. vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
  3224. /* Handle machine checks before interrupts are enabled */
  3225. if ((vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
  3226. || (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI
  3227. && is_machine_check(exit_intr_info)))
  3228. kvm_machine_check();
  3229. /* We need to handle NMIs before interrupts are enabled */
  3230. if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
  3231. (exit_intr_info & INTR_INFO_VALID_MASK)) {
  3232. kvm_before_handle_nmi(&vmx->vcpu);
  3233. asm("int $2");
  3234. kvm_after_handle_nmi(&vmx->vcpu);
  3235. }
  3236. idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  3237. if (cpu_has_virtual_nmis()) {
  3238. unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
  3239. vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
  3240. /*
  3241. * SDM 3: 27.7.1.2 (September 2008)
  3242. * Re-set bit "block by NMI" before VM entry if vmexit caused by
  3243. * a guest IRET fault.
  3244. * SDM 3: 23.2.2 (September 2008)
  3245. * Bit 12 is undefined in any of the following cases:
  3246. * If the VM exit sets the valid bit in the IDT-vectoring
  3247. * information field.
  3248. * If the VM exit is due to a double fault.
  3249. */
  3250. if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
  3251. vector != DF_VECTOR && !idtv_info_valid)
  3252. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  3253. GUEST_INTR_STATE_NMI);
  3254. } else if (unlikely(vmx->soft_vnmi_blocked))
  3255. vmx->vnmi_blocked_time +=
  3256. ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
  3257. vmx->vcpu.arch.nmi_injected = false;
  3258. kvm_clear_exception_queue(&vmx->vcpu);
  3259. kvm_clear_interrupt_queue(&vmx->vcpu);
  3260. if (!idtv_info_valid)
  3261. return;
  3262. vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
  3263. type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
  3264. switch (type) {
  3265. case INTR_TYPE_NMI_INTR:
  3266. vmx->vcpu.arch.nmi_injected = true;
  3267. /*
  3268. * SDM 3: 27.7.1.2 (September 2008)
  3269. * Clear bit "block by NMI" before VM entry if a NMI
  3270. * delivery faulted.
  3271. */
  3272. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  3273. GUEST_INTR_STATE_NMI);
  3274. break;
  3275. case INTR_TYPE_SOFT_EXCEPTION:
  3276. vmx->vcpu.arch.event_exit_inst_len =
  3277. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3278. /* fall through */
  3279. case INTR_TYPE_HARD_EXCEPTION:
  3280. if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
  3281. u32 err = vmcs_read32(IDT_VECTORING_ERROR_CODE);
  3282. kvm_queue_exception_e(&vmx->vcpu, vector, err);
  3283. } else
  3284. kvm_queue_exception(&vmx->vcpu, vector);
  3285. break;
  3286. case INTR_TYPE_SOFT_INTR:
  3287. vmx->vcpu.arch.event_exit_inst_len =
  3288. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3289. /* fall through */
  3290. case INTR_TYPE_EXT_INTR:
  3291. kvm_queue_interrupt(&vmx->vcpu, vector,
  3292. type == INTR_TYPE_SOFT_INTR);
  3293. break;
  3294. default:
  3295. break;
  3296. }
  3297. }
  3298. /*
  3299. * Failure to inject an interrupt should give us the information
  3300. * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
  3301. * when fetching the interrupt redirection bitmap in the real-mode
  3302. * tss, this doesn't happen. So we do it ourselves.
  3303. */
  3304. static void fixup_rmode_irq(struct vcpu_vmx *vmx)
  3305. {
  3306. vmx->rmode.irq.pending = 0;
  3307. if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
  3308. return;
  3309. kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
  3310. if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
  3311. vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
  3312. vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
  3313. return;
  3314. }
  3315. vmx->idt_vectoring_info =
  3316. VECTORING_INFO_VALID_MASK
  3317. | INTR_TYPE_EXT_INTR
  3318. | vmx->rmode.irq.vector;
  3319. }
  3320. #ifdef CONFIG_X86_64
  3321. #define R "r"
  3322. #define Q "q"
  3323. #else
  3324. #define R "e"
  3325. #define Q "l"
  3326. #endif
  3327. static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
  3328. {
  3329. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3330. /* Record the guest's net vcpu time for enforced NMI injections. */
  3331. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
  3332. vmx->entry_time = ktime_get();
  3333. /* Don't enter VMX if guest state is invalid, let the exit handler
  3334. start emulation until we arrive back to a valid state */
  3335. if (vmx->emulation_required && emulate_invalid_guest_state)
  3336. return;
  3337. if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
  3338. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  3339. if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
  3340. vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
  3341. /* When single-stepping over STI and MOV SS, we must clear the
  3342. * corresponding interruptibility bits in the guest state. Otherwise
  3343. * vmentry fails as it then expects bit 14 (BS) in pending debug
  3344. * exceptions being set, but that's not correct for the guest debugging
  3345. * case. */
  3346. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  3347. vmx_set_interrupt_shadow(vcpu, 0);
  3348. asm(
  3349. /* Store host registers */
  3350. "push %%"R"dx; push %%"R"bp;"
  3351. "push %%"R"cx \n\t"
  3352. "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
  3353. "je 1f \n\t"
  3354. "mov %%"R"sp, %c[host_rsp](%0) \n\t"
  3355. __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
  3356. "1: \n\t"
  3357. /* Reload cr2 if changed */
  3358. "mov %c[cr2](%0), %%"R"ax \n\t"
  3359. "mov %%cr2, %%"R"dx \n\t"
  3360. "cmp %%"R"ax, %%"R"dx \n\t"
  3361. "je 2f \n\t"
  3362. "mov %%"R"ax, %%cr2 \n\t"
  3363. "2: \n\t"
  3364. /* Check if vmlaunch of vmresume is needed */
  3365. "cmpl $0, %c[launched](%0) \n\t"
  3366. /* Load guest registers. Don't clobber flags. */
  3367. "mov %c[rax](%0), %%"R"ax \n\t"
  3368. "mov %c[rbx](%0), %%"R"bx \n\t"
  3369. "mov %c[rdx](%0), %%"R"dx \n\t"
  3370. "mov %c[rsi](%0), %%"R"si \n\t"
  3371. "mov %c[rdi](%0), %%"R"di \n\t"
  3372. "mov %c[rbp](%0), %%"R"bp \n\t"
  3373. #ifdef CONFIG_X86_64
  3374. "mov %c[r8](%0), %%r8 \n\t"
  3375. "mov %c[r9](%0), %%r9 \n\t"
  3376. "mov %c[r10](%0), %%r10 \n\t"
  3377. "mov %c[r11](%0), %%r11 \n\t"
  3378. "mov %c[r12](%0), %%r12 \n\t"
  3379. "mov %c[r13](%0), %%r13 \n\t"
  3380. "mov %c[r14](%0), %%r14 \n\t"
  3381. "mov %c[r15](%0), %%r15 \n\t"
  3382. #endif
  3383. "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
  3384. /* Enter guest mode */
  3385. "jne .Llaunched \n\t"
  3386. __ex(ASM_VMX_VMLAUNCH) "\n\t"
  3387. "jmp .Lkvm_vmx_return \n\t"
  3388. ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
  3389. ".Lkvm_vmx_return: "
  3390. /* Save guest registers, load host registers, keep flags */
  3391. "xchg %0, (%%"R"sp) \n\t"
  3392. "mov %%"R"ax, %c[rax](%0) \n\t"
  3393. "mov %%"R"bx, %c[rbx](%0) \n\t"
  3394. "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
  3395. "mov %%"R"dx, %c[rdx](%0) \n\t"
  3396. "mov %%"R"si, %c[rsi](%0) \n\t"
  3397. "mov %%"R"di, %c[rdi](%0) \n\t"
  3398. "mov %%"R"bp, %c[rbp](%0) \n\t"
  3399. #ifdef CONFIG_X86_64
  3400. "mov %%r8, %c[r8](%0) \n\t"
  3401. "mov %%r9, %c[r9](%0) \n\t"
  3402. "mov %%r10, %c[r10](%0) \n\t"
  3403. "mov %%r11, %c[r11](%0) \n\t"
  3404. "mov %%r12, %c[r12](%0) \n\t"
  3405. "mov %%r13, %c[r13](%0) \n\t"
  3406. "mov %%r14, %c[r14](%0) \n\t"
  3407. "mov %%r15, %c[r15](%0) \n\t"
  3408. #endif
  3409. "mov %%cr2, %%"R"ax \n\t"
  3410. "mov %%"R"ax, %c[cr2](%0) \n\t"
  3411. "pop %%"R"bp; pop %%"R"bp; pop %%"R"dx \n\t"
  3412. "setbe %c[fail](%0) \n\t"
  3413. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  3414. [launched]"i"(offsetof(struct vcpu_vmx, launched)),
  3415. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  3416. [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
  3417. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  3418. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  3419. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  3420. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  3421. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  3422. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  3423. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  3424. #ifdef CONFIG_X86_64
  3425. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  3426. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  3427. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  3428. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  3429. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  3430. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  3431. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  3432. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  3433. #endif
  3434. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
  3435. : "cc", "memory"
  3436. , R"bx", R"di", R"si"
  3437. #ifdef CONFIG_X86_64
  3438. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  3439. #endif
  3440. );
  3441. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
  3442. | (1 << VCPU_EXREG_PDPTR));
  3443. vcpu->arch.regs_dirty = 0;
  3444. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  3445. if (vmx->rmode.irq.pending)
  3446. fixup_rmode_irq(vmx);
  3447. asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  3448. vmx->launched = 1;
  3449. vmx_complete_interrupts(vmx);
  3450. }
  3451. #undef R
  3452. #undef Q
  3453. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  3454. {
  3455. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3456. if (vmx->vmcs) {
  3457. vcpu_clear(vmx);
  3458. free_vmcs(vmx->vmcs);
  3459. vmx->vmcs = NULL;
  3460. }
  3461. }
  3462. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  3463. {
  3464. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3465. free_vpid(vmx);
  3466. vmx_free_vmcs(vcpu);
  3467. kfree(vmx->guest_msrs);
  3468. kvm_vcpu_uninit(vcpu);
  3469. kmem_cache_free(kvm_vcpu_cache, vmx);
  3470. }
  3471. static inline void vmcs_init(struct vmcs *vmcs)
  3472. {
  3473. u64 phys_addr = __pa(per_cpu(vmxarea, raw_smp_processor_id()));
  3474. if (!vmm_exclusive)
  3475. kvm_cpu_vmxon(phys_addr);
  3476. vmcs_clear(vmcs);
  3477. if (!vmm_exclusive)
  3478. kvm_cpu_vmxoff();
  3479. }
  3480. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  3481. {
  3482. int err;
  3483. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  3484. int cpu;
  3485. if (!vmx)
  3486. return ERR_PTR(-ENOMEM);
  3487. allocate_vpid(vmx);
  3488. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  3489. if (err)
  3490. goto free_vcpu;
  3491. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  3492. if (!vmx->guest_msrs) {
  3493. err = -ENOMEM;
  3494. goto uninit_vcpu;
  3495. }
  3496. vmx->vmcs = alloc_vmcs();
  3497. if (!vmx->vmcs)
  3498. goto free_msrs;
  3499. vmcs_init(vmx->vmcs);
  3500. cpu = get_cpu();
  3501. vmx_vcpu_load(&vmx->vcpu, cpu);
  3502. err = vmx_vcpu_setup(vmx);
  3503. vmx_vcpu_put(&vmx->vcpu);
  3504. put_cpu();
  3505. if (err)
  3506. goto free_vmcs;
  3507. if (vm_need_virtualize_apic_accesses(kvm))
  3508. if (alloc_apic_access_page(kvm) != 0)
  3509. goto free_vmcs;
  3510. if (enable_ept) {
  3511. if (!kvm->arch.ept_identity_map_addr)
  3512. kvm->arch.ept_identity_map_addr =
  3513. VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  3514. if (alloc_identity_pagetable(kvm) != 0)
  3515. goto free_vmcs;
  3516. }
  3517. return &vmx->vcpu;
  3518. free_vmcs:
  3519. free_vmcs(vmx->vmcs);
  3520. free_msrs:
  3521. kfree(vmx->guest_msrs);
  3522. uninit_vcpu:
  3523. kvm_vcpu_uninit(&vmx->vcpu);
  3524. free_vcpu:
  3525. free_vpid(vmx);
  3526. kmem_cache_free(kvm_vcpu_cache, vmx);
  3527. return ERR_PTR(err);
  3528. }
  3529. static void __init vmx_check_processor_compat(void *rtn)
  3530. {
  3531. struct vmcs_config vmcs_conf;
  3532. *(int *)rtn = 0;
  3533. if (setup_vmcs_config(&vmcs_conf) < 0)
  3534. *(int *)rtn = -EIO;
  3535. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  3536. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  3537. smp_processor_id());
  3538. *(int *)rtn = -EIO;
  3539. }
  3540. }
  3541. static int get_ept_level(void)
  3542. {
  3543. return VMX_EPT_DEFAULT_GAW + 1;
  3544. }
  3545. static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
  3546. {
  3547. u64 ret;
  3548. /* For VT-d and EPT combination
  3549. * 1. MMIO: always map as UC
  3550. * 2. EPT with VT-d:
  3551. * a. VT-d without snooping control feature: can't guarantee the
  3552. * result, try to trust guest.
  3553. * b. VT-d with snooping control feature: snooping control feature of
  3554. * VT-d engine can guarantee the cache correctness. Just set it
  3555. * to WB to keep consistent with host. So the same as item 3.
  3556. * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
  3557. * consistent with host MTRR
  3558. */
  3559. if (is_mmio)
  3560. ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
  3561. else if (vcpu->kvm->arch.iommu_domain &&
  3562. !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
  3563. ret = kvm_get_guest_memory_type(vcpu, gfn) <<
  3564. VMX_EPT_MT_EPTE_SHIFT;
  3565. else
  3566. ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
  3567. | VMX_EPT_IPAT_BIT;
  3568. return ret;
  3569. }
  3570. #define _ER(x) { EXIT_REASON_##x, #x }
  3571. static const struct trace_print_flags vmx_exit_reasons_str[] = {
  3572. _ER(EXCEPTION_NMI),
  3573. _ER(EXTERNAL_INTERRUPT),
  3574. _ER(TRIPLE_FAULT),
  3575. _ER(PENDING_INTERRUPT),
  3576. _ER(NMI_WINDOW),
  3577. _ER(TASK_SWITCH),
  3578. _ER(CPUID),
  3579. _ER(HLT),
  3580. _ER(INVLPG),
  3581. _ER(RDPMC),
  3582. _ER(RDTSC),
  3583. _ER(VMCALL),
  3584. _ER(VMCLEAR),
  3585. _ER(VMLAUNCH),
  3586. _ER(VMPTRLD),
  3587. _ER(VMPTRST),
  3588. _ER(VMREAD),
  3589. _ER(VMRESUME),
  3590. _ER(VMWRITE),
  3591. _ER(VMOFF),
  3592. _ER(VMON),
  3593. _ER(CR_ACCESS),
  3594. _ER(DR_ACCESS),
  3595. _ER(IO_INSTRUCTION),
  3596. _ER(MSR_READ),
  3597. _ER(MSR_WRITE),
  3598. _ER(MWAIT_INSTRUCTION),
  3599. _ER(MONITOR_INSTRUCTION),
  3600. _ER(PAUSE_INSTRUCTION),
  3601. _ER(MCE_DURING_VMENTRY),
  3602. _ER(TPR_BELOW_THRESHOLD),
  3603. _ER(APIC_ACCESS),
  3604. _ER(EPT_VIOLATION),
  3605. _ER(EPT_MISCONFIG),
  3606. _ER(WBINVD),
  3607. { -1, NULL }
  3608. };
  3609. #undef _ER
  3610. static int vmx_get_lpage_level(void)
  3611. {
  3612. if (enable_ept && !cpu_has_vmx_ept_1g_page())
  3613. return PT_DIRECTORY_LEVEL;
  3614. else
  3615. /* For shadow and EPT supported 1GB page */
  3616. return PT_PDPE_LEVEL;
  3617. }
  3618. static inline u32 bit(int bitno)
  3619. {
  3620. return 1 << (bitno & 31);
  3621. }
  3622. static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
  3623. {
  3624. struct kvm_cpuid_entry2 *best;
  3625. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3626. u32 exec_control;
  3627. vmx->rdtscp_enabled = false;
  3628. if (vmx_rdtscp_supported()) {
  3629. exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
  3630. if (exec_control & SECONDARY_EXEC_RDTSCP) {
  3631. best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  3632. if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
  3633. vmx->rdtscp_enabled = true;
  3634. else {
  3635. exec_control &= ~SECONDARY_EXEC_RDTSCP;
  3636. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  3637. exec_control);
  3638. }
  3639. }
  3640. }
  3641. }
  3642. static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
  3643. {
  3644. }
  3645. static struct kvm_x86_ops vmx_x86_ops = {
  3646. .cpu_has_kvm_support = cpu_has_kvm_support,
  3647. .disabled_by_bios = vmx_disabled_by_bios,
  3648. .hardware_setup = hardware_setup,
  3649. .hardware_unsetup = hardware_unsetup,
  3650. .check_processor_compatibility = vmx_check_processor_compat,
  3651. .hardware_enable = hardware_enable,
  3652. .hardware_disable = hardware_disable,
  3653. .cpu_has_accelerated_tpr = report_flexpriority,
  3654. .vcpu_create = vmx_create_vcpu,
  3655. .vcpu_free = vmx_free_vcpu,
  3656. .vcpu_reset = vmx_vcpu_reset,
  3657. .prepare_guest_switch = vmx_save_host_state,
  3658. .vcpu_load = vmx_vcpu_load,
  3659. .vcpu_put = vmx_vcpu_put,
  3660. .set_guest_debug = set_guest_debug,
  3661. .get_msr = vmx_get_msr,
  3662. .set_msr = vmx_set_msr,
  3663. .get_segment_base = vmx_get_segment_base,
  3664. .get_segment = vmx_get_segment,
  3665. .set_segment = vmx_set_segment,
  3666. .get_cpl = vmx_get_cpl,
  3667. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  3668. .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
  3669. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  3670. .set_cr0 = vmx_set_cr0,
  3671. .set_cr3 = vmx_set_cr3,
  3672. .set_cr4 = vmx_set_cr4,
  3673. .set_efer = vmx_set_efer,
  3674. .get_idt = vmx_get_idt,
  3675. .set_idt = vmx_set_idt,
  3676. .get_gdt = vmx_get_gdt,
  3677. .set_gdt = vmx_set_gdt,
  3678. .set_dr7 = vmx_set_dr7,
  3679. .cache_reg = vmx_cache_reg,
  3680. .get_rflags = vmx_get_rflags,
  3681. .set_rflags = vmx_set_rflags,
  3682. .fpu_activate = vmx_fpu_activate,
  3683. .fpu_deactivate = vmx_fpu_deactivate,
  3684. .tlb_flush = vmx_flush_tlb,
  3685. .run = vmx_vcpu_run,
  3686. .handle_exit = vmx_handle_exit,
  3687. .skip_emulated_instruction = skip_emulated_instruction,
  3688. .set_interrupt_shadow = vmx_set_interrupt_shadow,
  3689. .get_interrupt_shadow = vmx_get_interrupt_shadow,
  3690. .patch_hypercall = vmx_patch_hypercall,
  3691. .set_irq = vmx_inject_irq,
  3692. .set_nmi = vmx_inject_nmi,
  3693. .queue_exception = vmx_queue_exception,
  3694. .interrupt_allowed = vmx_interrupt_allowed,
  3695. .nmi_allowed = vmx_nmi_allowed,
  3696. .get_nmi_mask = vmx_get_nmi_mask,
  3697. .set_nmi_mask = vmx_set_nmi_mask,
  3698. .enable_nmi_window = enable_nmi_window,
  3699. .enable_irq_window = enable_irq_window,
  3700. .update_cr8_intercept = update_cr8_intercept,
  3701. .set_tss_addr = vmx_set_tss_addr,
  3702. .get_tdp_level = get_ept_level,
  3703. .get_mt_mask = vmx_get_mt_mask,
  3704. .exit_reasons_str = vmx_exit_reasons_str,
  3705. .get_lpage_level = vmx_get_lpage_level,
  3706. .cpuid_update = vmx_cpuid_update,
  3707. .rdtscp_supported = vmx_rdtscp_supported,
  3708. .set_supported_cpuid = vmx_set_supported_cpuid,
  3709. };
  3710. static int __init vmx_init(void)
  3711. {
  3712. int r, i;
  3713. rdmsrl_safe(MSR_EFER, &host_efer);
  3714. for (i = 0; i < NR_VMX_MSR; ++i)
  3715. kvm_define_shared_msr(i, vmx_msr_index[i]);
  3716. vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
  3717. if (!vmx_io_bitmap_a)
  3718. return -ENOMEM;
  3719. vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
  3720. if (!vmx_io_bitmap_b) {
  3721. r = -ENOMEM;
  3722. goto out;
  3723. }
  3724. vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
  3725. if (!vmx_msr_bitmap_legacy) {
  3726. r = -ENOMEM;
  3727. goto out1;
  3728. }
  3729. vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
  3730. if (!vmx_msr_bitmap_longmode) {
  3731. r = -ENOMEM;
  3732. goto out2;
  3733. }
  3734. /*
  3735. * Allow direct access to the PC debug port (it is often used for I/O
  3736. * delays, but the vmexits simply slow things down).
  3737. */
  3738. memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
  3739. clear_bit(0x80, vmx_io_bitmap_a);
  3740. memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
  3741. memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
  3742. memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
  3743. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  3744. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
  3745. __alignof__(struct vcpu_vmx), THIS_MODULE);
  3746. if (r)
  3747. goto out3;
  3748. vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
  3749. vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
  3750. vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
  3751. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
  3752. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
  3753. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
  3754. if (enable_ept) {
  3755. bypass_guest_pf = 0;
  3756. kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
  3757. VMX_EPT_WRITABLE_MASK);
  3758. kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
  3759. VMX_EPT_EXECUTABLE_MASK);
  3760. kvm_enable_tdp();
  3761. } else
  3762. kvm_disable_tdp();
  3763. if (bypass_guest_pf)
  3764. kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
  3765. return 0;
  3766. out3:
  3767. free_page((unsigned long)vmx_msr_bitmap_longmode);
  3768. out2:
  3769. free_page((unsigned long)vmx_msr_bitmap_legacy);
  3770. out1:
  3771. free_page((unsigned long)vmx_io_bitmap_b);
  3772. out:
  3773. free_page((unsigned long)vmx_io_bitmap_a);
  3774. return r;
  3775. }
  3776. static void __exit vmx_exit(void)
  3777. {
  3778. free_page((unsigned long)vmx_msr_bitmap_legacy);
  3779. free_page((unsigned long)vmx_msr_bitmap_longmode);
  3780. free_page((unsigned long)vmx_io_bitmap_b);
  3781. free_page((unsigned long)vmx_io_bitmap_a);
  3782. kvm_exit();
  3783. }
  3784. module_init(vmx_init)
  3785. module_exit(vmx_exit)