ioctl.c 46 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/kernel.h>
  19. #include <linux/bio.h>
  20. #include <linux/buffer_head.h>
  21. #include <linux/file.h>
  22. #include <linux/fs.h>
  23. #include <linux/fsnotify.h>
  24. #include <linux/pagemap.h>
  25. #include <linux/highmem.h>
  26. #include <linux/time.h>
  27. #include <linux/init.h>
  28. #include <linux/string.h>
  29. #include <linux/backing-dev.h>
  30. #include <linux/mount.h>
  31. #include <linux/mpage.h>
  32. #include <linux/namei.h>
  33. #include <linux/swap.h>
  34. #include <linux/writeback.h>
  35. #include <linux/statfs.h>
  36. #include <linux/compat.h>
  37. #include <linux/bit_spinlock.h>
  38. #include <linux/security.h>
  39. #include <linux/xattr.h>
  40. #include <linux/vmalloc.h>
  41. #include "compat.h"
  42. #include "ctree.h"
  43. #include "disk-io.h"
  44. #include "transaction.h"
  45. #include "btrfs_inode.h"
  46. #include "ioctl.h"
  47. #include "print-tree.h"
  48. #include "volumes.h"
  49. #include "locking.h"
  50. #include "ctree.h"
  51. /* Mask out flags that are inappropriate for the given type of inode. */
  52. static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
  53. {
  54. if (S_ISDIR(mode))
  55. return flags;
  56. else if (S_ISREG(mode))
  57. return flags & ~FS_DIRSYNC_FL;
  58. else
  59. return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
  60. }
  61. /*
  62. * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
  63. */
  64. static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
  65. {
  66. unsigned int iflags = 0;
  67. if (flags & BTRFS_INODE_SYNC)
  68. iflags |= FS_SYNC_FL;
  69. if (flags & BTRFS_INODE_IMMUTABLE)
  70. iflags |= FS_IMMUTABLE_FL;
  71. if (flags & BTRFS_INODE_APPEND)
  72. iflags |= FS_APPEND_FL;
  73. if (flags & BTRFS_INODE_NODUMP)
  74. iflags |= FS_NODUMP_FL;
  75. if (flags & BTRFS_INODE_NOATIME)
  76. iflags |= FS_NOATIME_FL;
  77. if (flags & BTRFS_INODE_DIRSYNC)
  78. iflags |= FS_DIRSYNC_FL;
  79. return iflags;
  80. }
  81. /*
  82. * Update inode->i_flags based on the btrfs internal flags.
  83. */
  84. void btrfs_update_iflags(struct inode *inode)
  85. {
  86. struct btrfs_inode *ip = BTRFS_I(inode);
  87. inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
  88. if (ip->flags & BTRFS_INODE_SYNC)
  89. inode->i_flags |= S_SYNC;
  90. if (ip->flags & BTRFS_INODE_IMMUTABLE)
  91. inode->i_flags |= S_IMMUTABLE;
  92. if (ip->flags & BTRFS_INODE_APPEND)
  93. inode->i_flags |= S_APPEND;
  94. if (ip->flags & BTRFS_INODE_NOATIME)
  95. inode->i_flags |= S_NOATIME;
  96. if (ip->flags & BTRFS_INODE_DIRSYNC)
  97. inode->i_flags |= S_DIRSYNC;
  98. }
  99. /*
  100. * Inherit flags from the parent inode.
  101. *
  102. * Unlike extN we don't have any flags we don't want to inherit currently.
  103. */
  104. void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
  105. {
  106. unsigned int flags;
  107. if (!dir)
  108. return;
  109. flags = BTRFS_I(dir)->flags;
  110. if (S_ISREG(inode->i_mode))
  111. flags &= ~BTRFS_INODE_DIRSYNC;
  112. else if (!S_ISDIR(inode->i_mode))
  113. flags &= (BTRFS_INODE_NODUMP | BTRFS_INODE_NOATIME);
  114. BTRFS_I(inode)->flags = flags;
  115. btrfs_update_iflags(inode);
  116. }
  117. static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
  118. {
  119. struct btrfs_inode *ip = BTRFS_I(file->f_path.dentry->d_inode);
  120. unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
  121. if (copy_to_user(arg, &flags, sizeof(flags)))
  122. return -EFAULT;
  123. return 0;
  124. }
  125. static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
  126. {
  127. struct inode *inode = file->f_path.dentry->d_inode;
  128. struct btrfs_inode *ip = BTRFS_I(inode);
  129. struct btrfs_root *root = ip->root;
  130. struct btrfs_trans_handle *trans;
  131. unsigned int flags, oldflags;
  132. int ret;
  133. if (copy_from_user(&flags, arg, sizeof(flags)))
  134. return -EFAULT;
  135. if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
  136. FS_NOATIME_FL | FS_NODUMP_FL | \
  137. FS_SYNC_FL | FS_DIRSYNC_FL))
  138. return -EOPNOTSUPP;
  139. if (!is_owner_or_cap(inode))
  140. return -EACCES;
  141. mutex_lock(&inode->i_mutex);
  142. flags = btrfs_mask_flags(inode->i_mode, flags);
  143. oldflags = btrfs_flags_to_ioctl(ip->flags);
  144. if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
  145. if (!capable(CAP_LINUX_IMMUTABLE)) {
  146. ret = -EPERM;
  147. goto out_unlock;
  148. }
  149. }
  150. ret = mnt_want_write(file->f_path.mnt);
  151. if (ret)
  152. goto out_unlock;
  153. if (flags & FS_SYNC_FL)
  154. ip->flags |= BTRFS_INODE_SYNC;
  155. else
  156. ip->flags &= ~BTRFS_INODE_SYNC;
  157. if (flags & FS_IMMUTABLE_FL)
  158. ip->flags |= BTRFS_INODE_IMMUTABLE;
  159. else
  160. ip->flags &= ~BTRFS_INODE_IMMUTABLE;
  161. if (flags & FS_APPEND_FL)
  162. ip->flags |= BTRFS_INODE_APPEND;
  163. else
  164. ip->flags &= ~BTRFS_INODE_APPEND;
  165. if (flags & FS_NODUMP_FL)
  166. ip->flags |= BTRFS_INODE_NODUMP;
  167. else
  168. ip->flags &= ~BTRFS_INODE_NODUMP;
  169. if (flags & FS_NOATIME_FL)
  170. ip->flags |= BTRFS_INODE_NOATIME;
  171. else
  172. ip->flags &= ~BTRFS_INODE_NOATIME;
  173. if (flags & FS_DIRSYNC_FL)
  174. ip->flags |= BTRFS_INODE_DIRSYNC;
  175. else
  176. ip->flags &= ~BTRFS_INODE_DIRSYNC;
  177. trans = btrfs_join_transaction(root, 1);
  178. BUG_ON(!trans);
  179. ret = btrfs_update_inode(trans, root, inode);
  180. BUG_ON(ret);
  181. btrfs_update_iflags(inode);
  182. inode->i_ctime = CURRENT_TIME;
  183. btrfs_end_transaction(trans, root);
  184. mnt_drop_write(file->f_path.mnt);
  185. out_unlock:
  186. mutex_unlock(&inode->i_mutex);
  187. return 0;
  188. }
  189. static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
  190. {
  191. struct inode *inode = file->f_path.dentry->d_inode;
  192. return put_user(inode->i_generation, arg);
  193. }
  194. static noinline int create_subvol(struct btrfs_root *root,
  195. struct dentry *dentry,
  196. char *name, int namelen)
  197. {
  198. struct btrfs_trans_handle *trans;
  199. struct btrfs_key key;
  200. struct btrfs_root_item root_item;
  201. struct btrfs_inode_item *inode_item;
  202. struct extent_buffer *leaf;
  203. struct btrfs_root *new_root;
  204. struct inode *dir = dentry->d_parent->d_inode;
  205. int ret;
  206. int err;
  207. u64 objectid;
  208. u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
  209. u64 index = 0;
  210. /*
  211. * 1 - inode item
  212. * 2 - refs
  213. * 1 - root item
  214. * 2 - dir items
  215. */
  216. ret = btrfs_reserve_metadata_space(root, 6);
  217. if (ret)
  218. return ret;
  219. trans = btrfs_start_transaction(root, 1);
  220. BUG_ON(!trans);
  221. ret = btrfs_find_free_objectid(trans, root->fs_info->tree_root,
  222. 0, &objectid);
  223. if (ret)
  224. goto fail;
  225. leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
  226. 0, objectid, NULL, 0, 0, 0);
  227. if (IS_ERR(leaf)) {
  228. ret = PTR_ERR(leaf);
  229. goto fail;
  230. }
  231. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  232. btrfs_set_header_bytenr(leaf, leaf->start);
  233. btrfs_set_header_generation(leaf, trans->transid);
  234. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  235. btrfs_set_header_owner(leaf, objectid);
  236. write_extent_buffer(leaf, root->fs_info->fsid,
  237. (unsigned long)btrfs_header_fsid(leaf),
  238. BTRFS_FSID_SIZE);
  239. write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
  240. (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
  241. BTRFS_UUID_SIZE);
  242. btrfs_mark_buffer_dirty(leaf);
  243. inode_item = &root_item.inode;
  244. memset(inode_item, 0, sizeof(*inode_item));
  245. inode_item->generation = cpu_to_le64(1);
  246. inode_item->size = cpu_to_le64(3);
  247. inode_item->nlink = cpu_to_le32(1);
  248. inode_item->nbytes = cpu_to_le64(root->leafsize);
  249. inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
  250. btrfs_set_root_bytenr(&root_item, leaf->start);
  251. btrfs_set_root_generation(&root_item, trans->transid);
  252. btrfs_set_root_level(&root_item, 0);
  253. btrfs_set_root_refs(&root_item, 1);
  254. btrfs_set_root_used(&root_item, leaf->len);
  255. btrfs_set_root_last_snapshot(&root_item, 0);
  256. memset(&root_item.drop_progress, 0, sizeof(root_item.drop_progress));
  257. root_item.drop_level = 0;
  258. btrfs_tree_unlock(leaf);
  259. free_extent_buffer(leaf);
  260. leaf = NULL;
  261. btrfs_set_root_dirid(&root_item, new_dirid);
  262. key.objectid = objectid;
  263. key.offset = 0;
  264. btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
  265. ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
  266. &root_item);
  267. if (ret)
  268. goto fail;
  269. key.offset = (u64)-1;
  270. new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
  271. BUG_ON(IS_ERR(new_root));
  272. btrfs_record_root_in_trans(trans, new_root);
  273. ret = btrfs_create_subvol_root(trans, new_root, new_dirid,
  274. BTRFS_I(dir)->block_group);
  275. /*
  276. * insert the directory item
  277. */
  278. ret = btrfs_set_inode_index(dir, &index);
  279. BUG_ON(ret);
  280. ret = btrfs_insert_dir_item(trans, root,
  281. name, namelen, dir->i_ino, &key,
  282. BTRFS_FT_DIR, index);
  283. if (ret)
  284. goto fail;
  285. btrfs_i_size_write(dir, dir->i_size + namelen * 2);
  286. ret = btrfs_update_inode(trans, root, dir);
  287. BUG_ON(ret);
  288. ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
  289. objectid, root->root_key.objectid,
  290. dir->i_ino, index, name, namelen);
  291. BUG_ON(ret);
  292. d_instantiate(dentry, btrfs_lookup_dentry(dir, dentry));
  293. fail:
  294. err = btrfs_commit_transaction(trans, root);
  295. if (err && !ret)
  296. ret = err;
  297. btrfs_unreserve_metadata_space(root, 6);
  298. return ret;
  299. }
  300. static int create_snapshot(struct btrfs_root *root, struct dentry *dentry,
  301. char *name, int namelen)
  302. {
  303. struct inode *inode;
  304. struct btrfs_pending_snapshot *pending_snapshot;
  305. struct btrfs_trans_handle *trans;
  306. int ret;
  307. if (!root->ref_cows)
  308. return -EINVAL;
  309. /*
  310. * 1 - inode item
  311. * 2 - refs
  312. * 1 - root item
  313. * 2 - dir items
  314. */
  315. ret = btrfs_reserve_metadata_space(root, 6);
  316. if (ret)
  317. goto fail;
  318. pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
  319. if (!pending_snapshot) {
  320. ret = -ENOMEM;
  321. btrfs_unreserve_metadata_space(root, 6);
  322. goto fail;
  323. }
  324. pending_snapshot->name = kmalloc(namelen + 1, GFP_NOFS);
  325. if (!pending_snapshot->name) {
  326. ret = -ENOMEM;
  327. kfree(pending_snapshot);
  328. btrfs_unreserve_metadata_space(root, 6);
  329. goto fail;
  330. }
  331. memcpy(pending_snapshot->name, name, namelen);
  332. pending_snapshot->name[namelen] = '\0';
  333. pending_snapshot->dentry = dentry;
  334. trans = btrfs_start_transaction(root, 1);
  335. BUG_ON(!trans);
  336. pending_snapshot->root = root;
  337. list_add(&pending_snapshot->list,
  338. &trans->transaction->pending_snapshots);
  339. ret = btrfs_commit_transaction(trans, root);
  340. BUG_ON(ret);
  341. btrfs_unreserve_metadata_space(root, 6);
  342. inode = btrfs_lookup_dentry(dentry->d_parent->d_inode, dentry);
  343. if (IS_ERR(inode)) {
  344. ret = PTR_ERR(inode);
  345. goto fail;
  346. }
  347. BUG_ON(!inode);
  348. d_instantiate(dentry, inode);
  349. ret = 0;
  350. fail:
  351. return ret;
  352. }
  353. /* copy of may_create in fs/namei.c() */
  354. static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
  355. {
  356. if (child->d_inode)
  357. return -EEXIST;
  358. if (IS_DEADDIR(dir))
  359. return -ENOENT;
  360. return inode_permission(dir, MAY_WRITE | MAY_EXEC);
  361. }
  362. /*
  363. * Create a new subvolume below @parent. This is largely modeled after
  364. * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
  365. * inside this filesystem so it's quite a bit simpler.
  366. */
  367. static noinline int btrfs_mksubvol(struct path *parent,
  368. char *name, int namelen,
  369. struct btrfs_root *snap_src)
  370. {
  371. struct inode *dir = parent->dentry->d_inode;
  372. struct dentry *dentry;
  373. int error;
  374. mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
  375. dentry = lookup_one_len(name, parent->dentry, namelen);
  376. error = PTR_ERR(dentry);
  377. if (IS_ERR(dentry))
  378. goto out_unlock;
  379. error = -EEXIST;
  380. if (dentry->d_inode)
  381. goto out_dput;
  382. error = mnt_want_write(parent->mnt);
  383. if (error)
  384. goto out_dput;
  385. error = btrfs_may_create(dir, dentry);
  386. if (error)
  387. goto out_drop_write;
  388. down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
  389. if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
  390. goto out_up_read;
  391. if (snap_src) {
  392. error = create_snapshot(snap_src, dentry,
  393. name, namelen);
  394. } else {
  395. error = create_subvol(BTRFS_I(dir)->root, dentry,
  396. name, namelen);
  397. }
  398. if (!error)
  399. fsnotify_mkdir(dir, dentry);
  400. out_up_read:
  401. up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
  402. out_drop_write:
  403. mnt_drop_write(parent->mnt);
  404. out_dput:
  405. dput(dentry);
  406. out_unlock:
  407. mutex_unlock(&dir->i_mutex);
  408. return error;
  409. }
  410. static int should_defrag_range(struct inode *inode, u64 start, u64 len,
  411. int thresh, u64 *last_len, u64 *skip,
  412. u64 *defrag_end)
  413. {
  414. struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
  415. struct extent_map *em = NULL;
  416. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  417. int ret = 1;
  418. if (thresh == 0)
  419. thresh = 256 * 1024;
  420. /*
  421. * make sure that once we start defragging and extent, we keep on
  422. * defragging it
  423. */
  424. if (start < *defrag_end)
  425. return 1;
  426. *skip = 0;
  427. /*
  428. * hopefully we have this extent in the tree already, try without
  429. * the full extent lock
  430. */
  431. read_lock(&em_tree->lock);
  432. em = lookup_extent_mapping(em_tree, start, len);
  433. read_unlock(&em_tree->lock);
  434. if (!em) {
  435. /* get the big lock and read metadata off disk */
  436. lock_extent(io_tree, start, start + len - 1, GFP_NOFS);
  437. em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
  438. unlock_extent(io_tree, start, start + len - 1, GFP_NOFS);
  439. if (!em)
  440. return 0;
  441. }
  442. /* this will cover holes, and inline extents */
  443. if (em->block_start >= EXTENT_MAP_LAST_BYTE)
  444. ret = 0;
  445. /*
  446. * we hit a real extent, if it is big don't bother defragging it again
  447. */
  448. if ((*last_len == 0 || *last_len >= thresh) && em->len >= thresh)
  449. ret = 0;
  450. /*
  451. * last_len ends up being a counter of how many bytes we've defragged.
  452. * every time we choose not to defrag an extent, we reset *last_len
  453. * so that the next tiny extent will force a defrag.
  454. *
  455. * The end result of this is that tiny extents before a single big
  456. * extent will force at least part of that big extent to be defragged.
  457. */
  458. if (ret) {
  459. *last_len += len;
  460. *defrag_end = extent_map_end(em);
  461. } else {
  462. *last_len = 0;
  463. *skip = extent_map_end(em);
  464. *defrag_end = 0;
  465. }
  466. free_extent_map(em);
  467. return ret;
  468. }
  469. static int btrfs_defrag_file(struct file *file,
  470. struct btrfs_ioctl_defrag_range_args *range)
  471. {
  472. struct inode *inode = fdentry(file)->d_inode;
  473. struct btrfs_root *root = BTRFS_I(inode)->root;
  474. struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
  475. struct btrfs_ordered_extent *ordered;
  476. struct page *page;
  477. unsigned long last_index;
  478. unsigned long ra_pages = root->fs_info->bdi.ra_pages;
  479. unsigned long total_read = 0;
  480. u64 page_start;
  481. u64 page_end;
  482. u64 last_len = 0;
  483. u64 skip = 0;
  484. u64 defrag_end = 0;
  485. unsigned long i;
  486. int ret;
  487. if (inode->i_size == 0)
  488. return 0;
  489. if (range->start + range->len > range->start) {
  490. last_index = min_t(u64, inode->i_size - 1,
  491. range->start + range->len - 1) >> PAGE_CACHE_SHIFT;
  492. } else {
  493. last_index = (inode->i_size - 1) >> PAGE_CACHE_SHIFT;
  494. }
  495. i = range->start >> PAGE_CACHE_SHIFT;
  496. while (i <= last_index) {
  497. if (!should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT,
  498. PAGE_CACHE_SIZE,
  499. range->extent_thresh,
  500. &last_len, &skip,
  501. &defrag_end)) {
  502. unsigned long next;
  503. /*
  504. * the should_defrag function tells us how much to skip
  505. * bump our counter by the suggested amount
  506. */
  507. next = (skip + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
  508. i = max(i + 1, next);
  509. continue;
  510. }
  511. if (total_read % ra_pages == 0) {
  512. btrfs_force_ra(inode->i_mapping, &file->f_ra, file, i,
  513. min(last_index, i + ra_pages - 1));
  514. }
  515. total_read++;
  516. mutex_lock(&inode->i_mutex);
  517. if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
  518. BTRFS_I(inode)->force_compress = 1;
  519. ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
  520. if (ret) {
  521. ret = -ENOSPC;
  522. break;
  523. }
  524. ret = btrfs_reserve_metadata_for_delalloc(root, inode, 1);
  525. if (ret) {
  526. btrfs_free_reserved_data_space(root, inode,
  527. PAGE_CACHE_SIZE);
  528. ret = -ENOSPC;
  529. break;
  530. }
  531. again:
  532. if (inode->i_size == 0 ||
  533. i > ((inode->i_size - 1) >> PAGE_CACHE_SHIFT)) {
  534. ret = 0;
  535. goto err_reservations;
  536. }
  537. page = grab_cache_page(inode->i_mapping, i);
  538. if (!page)
  539. goto err_reservations;
  540. if (!PageUptodate(page)) {
  541. btrfs_readpage(NULL, page);
  542. lock_page(page);
  543. if (!PageUptodate(page)) {
  544. unlock_page(page);
  545. page_cache_release(page);
  546. goto err_reservations;
  547. }
  548. }
  549. if (page->mapping != inode->i_mapping) {
  550. unlock_page(page);
  551. page_cache_release(page);
  552. goto again;
  553. }
  554. wait_on_page_writeback(page);
  555. if (PageDirty(page)) {
  556. btrfs_free_reserved_data_space(root, inode,
  557. PAGE_CACHE_SIZE);
  558. goto loop_unlock;
  559. }
  560. page_start = (u64)page->index << PAGE_CACHE_SHIFT;
  561. page_end = page_start + PAGE_CACHE_SIZE - 1;
  562. lock_extent(io_tree, page_start, page_end, GFP_NOFS);
  563. ordered = btrfs_lookup_ordered_extent(inode, page_start);
  564. if (ordered) {
  565. unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
  566. unlock_page(page);
  567. page_cache_release(page);
  568. btrfs_start_ordered_extent(inode, ordered, 1);
  569. btrfs_put_ordered_extent(ordered);
  570. goto again;
  571. }
  572. set_page_extent_mapped(page);
  573. /*
  574. * this makes sure page_mkwrite is called on the
  575. * page if it is dirtied again later
  576. */
  577. clear_page_dirty_for_io(page);
  578. clear_extent_bits(&BTRFS_I(inode)->io_tree, page_start,
  579. page_end, EXTENT_DIRTY | EXTENT_DELALLOC |
  580. EXTENT_DO_ACCOUNTING, GFP_NOFS);
  581. btrfs_set_extent_delalloc(inode, page_start, page_end, NULL);
  582. ClearPageChecked(page);
  583. set_page_dirty(page);
  584. unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
  585. loop_unlock:
  586. unlock_page(page);
  587. page_cache_release(page);
  588. mutex_unlock(&inode->i_mutex);
  589. btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
  590. balance_dirty_pages_ratelimited_nr(inode->i_mapping, 1);
  591. i++;
  592. }
  593. if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO))
  594. filemap_flush(inode->i_mapping);
  595. if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
  596. /* the filemap_flush will queue IO into the worker threads, but
  597. * we have to make sure the IO is actually started and that
  598. * ordered extents get created before we return
  599. */
  600. atomic_inc(&root->fs_info->async_submit_draining);
  601. while (atomic_read(&root->fs_info->nr_async_submits) ||
  602. atomic_read(&root->fs_info->async_delalloc_pages)) {
  603. wait_event(root->fs_info->async_submit_wait,
  604. (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
  605. atomic_read(&root->fs_info->async_delalloc_pages) == 0));
  606. }
  607. atomic_dec(&root->fs_info->async_submit_draining);
  608. mutex_lock(&inode->i_mutex);
  609. BTRFS_I(inode)->force_compress = 0;
  610. mutex_unlock(&inode->i_mutex);
  611. }
  612. return 0;
  613. err_reservations:
  614. mutex_unlock(&inode->i_mutex);
  615. btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
  616. btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
  617. return ret;
  618. }
  619. static noinline int btrfs_ioctl_resize(struct btrfs_root *root,
  620. void __user *arg)
  621. {
  622. u64 new_size;
  623. u64 old_size;
  624. u64 devid = 1;
  625. struct btrfs_ioctl_vol_args *vol_args;
  626. struct btrfs_trans_handle *trans;
  627. struct btrfs_device *device = NULL;
  628. char *sizestr;
  629. char *devstr = NULL;
  630. int ret = 0;
  631. int namelen;
  632. int mod = 0;
  633. if (root->fs_info->sb->s_flags & MS_RDONLY)
  634. return -EROFS;
  635. if (!capable(CAP_SYS_ADMIN))
  636. return -EPERM;
  637. vol_args = memdup_user(arg, sizeof(*vol_args));
  638. if (IS_ERR(vol_args))
  639. return PTR_ERR(vol_args);
  640. vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
  641. namelen = strlen(vol_args->name);
  642. mutex_lock(&root->fs_info->volume_mutex);
  643. sizestr = vol_args->name;
  644. devstr = strchr(sizestr, ':');
  645. if (devstr) {
  646. char *end;
  647. sizestr = devstr + 1;
  648. *devstr = '\0';
  649. devstr = vol_args->name;
  650. devid = simple_strtoull(devstr, &end, 10);
  651. printk(KERN_INFO "resizing devid %llu\n",
  652. (unsigned long long)devid);
  653. }
  654. device = btrfs_find_device(root, devid, NULL, NULL);
  655. if (!device) {
  656. printk(KERN_INFO "resizer unable to find device %llu\n",
  657. (unsigned long long)devid);
  658. ret = -EINVAL;
  659. goto out_unlock;
  660. }
  661. if (!strcmp(sizestr, "max"))
  662. new_size = device->bdev->bd_inode->i_size;
  663. else {
  664. if (sizestr[0] == '-') {
  665. mod = -1;
  666. sizestr++;
  667. } else if (sizestr[0] == '+') {
  668. mod = 1;
  669. sizestr++;
  670. }
  671. new_size = btrfs_parse_size(sizestr);
  672. if (new_size == 0) {
  673. ret = -EINVAL;
  674. goto out_unlock;
  675. }
  676. }
  677. old_size = device->total_bytes;
  678. if (mod < 0) {
  679. if (new_size > old_size) {
  680. ret = -EINVAL;
  681. goto out_unlock;
  682. }
  683. new_size = old_size - new_size;
  684. } else if (mod > 0) {
  685. new_size = old_size + new_size;
  686. }
  687. if (new_size < 256 * 1024 * 1024) {
  688. ret = -EINVAL;
  689. goto out_unlock;
  690. }
  691. if (new_size > device->bdev->bd_inode->i_size) {
  692. ret = -EFBIG;
  693. goto out_unlock;
  694. }
  695. do_div(new_size, root->sectorsize);
  696. new_size *= root->sectorsize;
  697. printk(KERN_INFO "new size for %s is %llu\n",
  698. device->name, (unsigned long long)new_size);
  699. if (new_size > old_size) {
  700. trans = btrfs_start_transaction(root, 1);
  701. ret = btrfs_grow_device(trans, device, new_size);
  702. btrfs_commit_transaction(trans, root);
  703. } else {
  704. ret = btrfs_shrink_device(device, new_size);
  705. }
  706. out_unlock:
  707. mutex_unlock(&root->fs_info->volume_mutex);
  708. kfree(vol_args);
  709. return ret;
  710. }
  711. static noinline int btrfs_ioctl_snap_create(struct file *file,
  712. void __user *arg, int subvol)
  713. {
  714. struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
  715. struct btrfs_ioctl_vol_args *vol_args;
  716. struct file *src_file;
  717. int namelen;
  718. int ret = 0;
  719. if (root->fs_info->sb->s_flags & MS_RDONLY)
  720. return -EROFS;
  721. vol_args = memdup_user(arg, sizeof(*vol_args));
  722. if (IS_ERR(vol_args))
  723. return PTR_ERR(vol_args);
  724. vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
  725. namelen = strlen(vol_args->name);
  726. if (strchr(vol_args->name, '/')) {
  727. ret = -EINVAL;
  728. goto out;
  729. }
  730. if (subvol) {
  731. ret = btrfs_mksubvol(&file->f_path, vol_args->name, namelen,
  732. NULL);
  733. } else {
  734. struct inode *src_inode;
  735. src_file = fget(vol_args->fd);
  736. if (!src_file) {
  737. ret = -EINVAL;
  738. goto out;
  739. }
  740. src_inode = src_file->f_path.dentry->d_inode;
  741. if (src_inode->i_sb != file->f_path.dentry->d_inode->i_sb) {
  742. printk(KERN_INFO "btrfs: Snapshot src from "
  743. "another FS\n");
  744. ret = -EINVAL;
  745. fput(src_file);
  746. goto out;
  747. }
  748. ret = btrfs_mksubvol(&file->f_path, vol_args->name, namelen,
  749. BTRFS_I(src_inode)->root);
  750. fput(src_file);
  751. }
  752. out:
  753. kfree(vol_args);
  754. return ret;
  755. }
  756. /*
  757. * helper to check if the subvolume references other subvolumes
  758. */
  759. static noinline int may_destroy_subvol(struct btrfs_root *root)
  760. {
  761. struct btrfs_path *path;
  762. struct btrfs_key key;
  763. int ret;
  764. path = btrfs_alloc_path();
  765. if (!path)
  766. return -ENOMEM;
  767. key.objectid = root->root_key.objectid;
  768. key.type = BTRFS_ROOT_REF_KEY;
  769. key.offset = (u64)-1;
  770. ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
  771. &key, path, 0, 0);
  772. if (ret < 0)
  773. goto out;
  774. BUG_ON(ret == 0);
  775. ret = 0;
  776. if (path->slots[0] > 0) {
  777. path->slots[0]--;
  778. btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
  779. if (key.objectid == root->root_key.objectid &&
  780. key.type == BTRFS_ROOT_REF_KEY)
  781. ret = -ENOTEMPTY;
  782. }
  783. out:
  784. btrfs_free_path(path);
  785. return ret;
  786. }
  787. static noinline int key_in_sk(struct btrfs_key *key,
  788. struct btrfs_ioctl_search_key *sk)
  789. {
  790. if (key->objectid < sk->min_objectid)
  791. return 0;
  792. if (key->offset < sk->min_offset)
  793. return 0;
  794. if (key->type < sk->min_type)
  795. return 0;
  796. if (key->objectid > sk->max_objectid)
  797. return 0;
  798. if (key->type > sk->max_type)
  799. return 0;
  800. if (key->offset > sk->max_offset)
  801. return 0;
  802. return 1;
  803. }
  804. static noinline int copy_to_sk(struct btrfs_root *root,
  805. struct btrfs_path *path,
  806. struct btrfs_key *key,
  807. struct btrfs_ioctl_search_key *sk,
  808. char *buf,
  809. unsigned long *sk_offset,
  810. int *num_found)
  811. {
  812. u64 found_transid;
  813. struct extent_buffer *leaf;
  814. struct btrfs_ioctl_search_header sh;
  815. unsigned long item_off;
  816. unsigned long item_len;
  817. int nritems;
  818. int i;
  819. int slot;
  820. int found = 0;
  821. int ret = 0;
  822. leaf = path->nodes[0];
  823. slot = path->slots[0];
  824. nritems = btrfs_header_nritems(leaf);
  825. if (btrfs_header_generation(leaf) > sk->max_transid) {
  826. i = nritems;
  827. goto advance_key;
  828. }
  829. found_transid = btrfs_header_generation(leaf);
  830. for (i = slot; i < nritems; i++) {
  831. item_off = btrfs_item_ptr_offset(leaf, i);
  832. item_len = btrfs_item_size_nr(leaf, i);
  833. if (item_len > BTRFS_SEARCH_ARGS_BUFSIZE)
  834. item_len = 0;
  835. if (sizeof(sh) + item_len + *sk_offset >
  836. BTRFS_SEARCH_ARGS_BUFSIZE) {
  837. ret = 1;
  838. goto overflow;
  839. }
  840. btrfs_item_key_to_cpu(leaf, key, i);
  841. if (!key_in_sk(key, sk))
  842. continue;
  843. sh.objectid = key->objectid;
  844. sh.offset = key->offset;
  845. sh.type = key->type;
  846. sh.len = item_len;
  847. sh.transid = found_transid;
  848. /* copy search result header */
  849. memcpy(buf + *sk_offset, &sh, sizeof(sh));
  850. *sk_offset += sizeof(sh);
  851. if (item_len) {
  852. char *p = buf + *sk_offset;
  853. /* copy the item */
  854. read_extent_buffer(leaf, p,
  855. item_off, item_len);
  856. *sk_offset += item_len;
  857. found++;
  858. }
  859. if (*num_found >= sk->nr_items)
  860. break;
  861. }
  862. advance_key:
  863. if (key->offset < (u64)-1)
  864. key->offset++;
  865. else if (key->type < (u64)-1)
  866. key->type++;
  867. else if (key->objectid < (u64)-1)
  868. key->objectid++;
  869. ret = 0;
  870. overflow:
  871. *num_found += found;
  872. return ret;
  873. }
  874. static noinline int search_ioctl(struct inode *inode,
  875. struct btrfs_ioctl_search_args *args)
  876. {
  877. struct btrfs_root *root;
  878. struct btrfs_key key;
  879. struct btrfs_key max_key;
  880. struct btrfs_path *path;
  881. struct btrfs_ioctl_search_key *sk = &args->key;
  882. struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
  883. int ret;
  884. int num_found = 0;
  885. unsigned long sk_offset = 0;
  886. path = btrfs_alloc_path();
  887. if (!path)
  888. return -ENOMEM;
  889. if (sk->tree_id == 0) {
  890. /* search the root of the inode that was passed */
  891. root = BTRFS_I(inode)->root;
  892. } else {
  893. key.objectid = sk->tree_id;
  894. key.type = BTRFS_ROOT_ITEM_KEY;
  895. key.offset = (u64)-1;
  896. root = btrfs_read_fs_root_no_name(info, &key);
  897. if (IS_ERR(root)) {
  898. printk(KERN_ERR "could not find root %llu\n",
  899. sk->tree_id);
  900. btrfs_free_path(path);
  901. return -ENOENT;
  902. }
  903. }
  904. key.objectid = sk->min_objectid;
  905. key.type = sk->min_type;
  906. key.offset = sk->min_offset;
  907. max_key.objectid = sk->max_objectid;
  908. max_key.type = sk->max_type;
  909. max_key.offset = sk->max_offset;
  910. path->keep_locks = 1;
  911. while(1) {
  912. ret = btrfs_search_forward(root, &key, &max_key, path, 0,
  913. sk->min_transid);
  914. if (ret != 0) {
  915. if (ret > 0)
  916. ret = 0;
  917. goto err;
  918. }
  919. ret = copy_to_sk(root, path, &key, sk, args->buf,
  920. &sk_offset, &num_found);
  921. btrfs_release_path(root, path);
  922. if (ret || num_found >= sk->nr_items)
  923. break;
  924. }
  925. ret = 0;
  926. err:
  927. sk->nr_items = num_found;
  928. btrfs_free_path(path);
  929. return ret;
  930. }
  931. static noinline int btrfs_ioctl_tree_search(struct file *file,
  932. void __user *argp)
  933. {
  934. struct btrfs_ioctl_search_args *args;
  935. struct inode *inode;
  936. int ret;
  937. if (!capable(CAP_SYS_ADMIN))
  938. return -EPERM;
  939. args = kmalloc(sizeof(*args), GFP_KERNEL);
  940. if (!args)
  941. return -ENOMEM;
  942. if (copy_from_user(args, argp, sizeof(*args))) {
  943. kfree(args);
  944. return -EFAULT;
  945. }
  946. inode = fdentry(file)->d_inode;
  947. ret = search_ioctl(inode, args);
  948. if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
  949. ret = -EFAULT;
  950. kfree(args);
  951. return ret;
  952. }
  953. /*
  954. * Search INODE_REFs to identify path name of 'dirid' directory
  955. * in a 'tree_id' tree. and sets path name to 'name'.
  956. */
  957. static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
  958. u64 tree_id, u64 dirid, char *name)
  959. {
  960. struct btrfs_root *root;
  961. struct btrfs_key key;
  962. char *ptr;
  963. int ret = -1;
  964. int slot;
  965. int len;
  966. int total_len = 0;
  967. struct btrfs_inode_ref *iref;
  968. struct extent_buffer *l;
  969. struct btrfs_path *path;
  970. if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
  971. name[0]='\0';
  972. return 0;
  973. }
  974. path = btrfs_alloc_path();
  975. if (!path)
  976. return -ENOMEM;
  977. ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
  978. key.objectid = tree_id;
  979. key.type = BTRFS_ROOT_ITEM_KEY;
  980. key.offset = (u64)-1;
  981. root = btrfs_read_fs_root_no_name(info, &key);
  982. if (IS_ERR(root)) {
  983. printk(KERN_ERR "could not find root %llu\n", tree_id);
  984. return -ENOENT;
  985. }
  986. key.objectid = dirid;
  987. key.type = BTRFS_INODE_REF_KEY;
  988. key.offset = 0;
  989. while(1) {
  990. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  991. if (ret < 0)
  992. goto out;
  993. l = path->nodes[0];
  994. slot = path->slots[0];
  995. btrfs_item_key_to_cpu(l, &key, slot);
  996. if (ret > 0 && (key.objectid != dirid ||
  997. key.type != BTRFS_INODE_REF_KEY)) {
  998. ret = -ENOENT;
  999. goto out;
  1000. }
  1001. iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
  1002. len = btrfs_inode_ref_name_len(l, iref);
  1003. ptr -= len + 1;
  1004. total_len += len + 1;
  1005. if (ptr < name)
  1006. goto out;
  1007. *(ptr + len) = '/';
  1008. read_extent_buffer(l, ptr,(unsigned long)(iref + 1), len);
  1009. if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
  1010. break;
  1011. btrfs_release_path(root, path);
  1012. key.objectid = key.offset;
  1013. key.offset = 0;
  1014. dirid = key.objectid;
  1015. }
  1016. if (ptr < name)
  1017. goto out;
  1018. memcpy(name, ptr, total_len);
  1019. name[total_len]='\0';
  1020. ret = 0;
  1021. out:
  1022. btrfs_free_path(path);
  1023. return ret;
  1024. }
  1025. static noinline int btrfs_ioctl_ino_lookup(struct file *file,
  1026. void __user *argp)
  1027. {
  1028. struct btrfs_ioctl_ino_lookup_args *args;
  1029. struct inode *inode;
  1030. int ret;
  1031. if (!capable(CAP_SYS_ADMIN))
  1032. return -EPERM;
  1033. args = kmalloc(sizeof(*args), GFP_KERNEL);
  1034. if (copy_from_user(args, argp, sizeof(*args))) {
  1035. kfree(args);
  1036. return -EFAULT;
  1037. }
  1038. inode = fdentry(file)->d_inode;
  1039. ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
  1040. args->treeid, args->objectid,
  1041. args->name);
  1042. if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
  1043. ret = -EFAULT;
  1044. kfree(args);
  1045. return ret;
  1046. }
  1047. static noinline int btrfs_ioctl_snap_destroy(struct file *file,
  1048. void __user *arg)
  1049. {
  1050. struct dentry *parent = fdentry(file);
  1051. struct dentry *dentry;
  1052. struct inode *dir = parent->d_inode;
  1053. struct inode *inode;
  1054. struct btrfs_root *root = BTRFS_I(dir)->root;
  1055. struct btrfs_root *dest = NULL;
  1056. struct btrfs_ioctl_vol_args *vol_args;
  1057. struct btrfs_trans_handle *trans;
  1058. int namelen;
  1059. int ret;
  1060. int err = 0;
  1061. if (!capable(CAP_SYS_ADMIN))
  1062. return -EPERM;
  1063. vol_args = memdup_user(arg, sizeof(*vol_args));
  1064. if (IS_ERR(vol_args))
  1065. return PTR_ERR(vol_args);
  1066. vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
  1067. namelen = strlen(vol_args->name);
  1068. if (strchr(vol_args->name, '/') ||
  1069. strncmp(vol_args->name, "..", namelen) == 0) {
  1070. err = -EINVAL;
  1071. goto out;
  1072. }
  1073. err = mnt_want_write(file->f_path.mnt);
  1074. if (err)
  1075. goto out;
  1076. mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
  1077. dentry = lookup_one_len(vol_args->name, parent, namelen);
  1078. if (IS_ERR(dentry)) {
  1079. err = PTR_ERR(dentry);
  1080. goto out_unlock_dir;
  1081. }
  1082. if (!dentry->d_inode) {
  1083. err = -ENOENT;
  1084. goto out_dput;
  1085. }
  1086. inode = dentry->d_inode;
  1087. if (inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
  1088. err = -EINVAL;
  1089. goto out_dput;
  1090. }
  1091. dest = BTRFS_I(inode)->root;
  1092. mutex_lock(&inode->i_mutex);
  1093. err = d_invalidate(dentry);
  1094. if (err)
  1095. goto out_unlock;
  1096. down_write(&root->fs_info->subvol_sem);
  1097. err = may_destroy_subvol(dest);
  1098. if (err)
  1099. goto out_up_write;
  1100. trans = btrfs_start_transaction(root, 1);
  1101. ret = btrfs_unlink_subvol(trans, root, dir,
  1102. dest->root_key.objectid,
  1103. dentry->d_name.name,
  1104. dentry->d_name.len);
  1105. BUG_ON(ret);
  1106. btrfs_record_root_in_trans(trans, dest);
  1107. memset(&dest->root_item.drop_progress, 0,
  1108. sizeof(dest->root_item.drop_progress));
  1109. dest->root_item.drop_level = 0;
  1110. btrfs_set_root_refs(&dest->root_item, 0);
  1111. ret = btrfs_insert_orphan_item(trans,
  1112. root->fs_info->tree_root,
  1113. dest->root_key.objectid);
  1114. BUG_ON(ret);
  1115. ret = btrfs_commit_transaction(trans, root);
  1116. BUG_ON(ret);
  1117. inode->i_flags |= S_DEAD;
  1118. out_up_write:
  1119. up_write(&root->fs_info->subvol_sem);
  1120. out_unlock:
  1121. mutex_unlock(&inode->i_mutex);
  1122. if (!err) {
  1123. shrink_dcache_sb(root->fs_info->sb);
  1124. btrfs_invalidate_inodes(dest);
  1125. d_delete(dentry);
  1126. }
  1127. out_dput:
  1128. dput(dentry);
  1129. out_unlock_dir:
  1130. mutex_unlock(&dir->i_mutex);
  1131. mnt_drop_write(file->f_path.mnt);
  1132. out:
  1133. kfree(vol_args);
  1134. return err;
  1135. }
  1136. static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
  1137. {
  1138. struct inode *inode = fdentry(file)->d_inode;
  1139. struct btrfs_root *root = BTRFS_I(inode)->root;
  1140. struct btrfs_ioctl_defrag_range_args *range;
  1141. int ret;
  1142. ret = mnt_want_write(file->f_path.mnt);
  1143. if (ret)
  1144. return ret;
  1145. switch (inode->i_mode & S_IFMT) {
  1146. case S_IFDIR:
  1147. if (!capable(CAP_SYS_ADMIN)) {
  1148. ret = -EPERM;
  1149. goto out;
  1150. }
  1151. btrfs_defrag_root(root, 0);
  1152. btrfs_defrag_root(root->fs_info->extent_root, 0);
  1153. break;
  1154. case S_IFREG:
  1155. if (!(file->f_mode & FMODE_WRITE)) {
  1156. ret = -EINVAL;
  1157. goto out;
  1158. }
  1159. range = kzalloc(sizeof(*range), GFP_KERNEL);
  1160. if (!range) {
  1161. ret = -ENOMEM;
  1162. goto out;
  1163. }
  1164. if (argp) {
  1165. if (copy_from_user(range, argp,
  1166. sizeof(*range))) {
  1167. ret = -EFAULT;
  1168. kfree(range);
  1169. }
  1170. /* compression requires us to start the IO */
  1171. if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
  1172. range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
  1173. range->extent_thresh = (u32)-1;
  1174. }
  1175. } else {
  1176. /* the rest are all set to zero by kzalloc */
  1177. range->len = (u64)-1;
  1178. }
  1179. btrfs_defrag_file(file, range);
  1180. kfree(range);
  1181. break;
  1182. }
  1183. out:
  1184. mnt_drop_write(file->f_path.mnt);
  1185. return ret;
  1186. }
  1187. static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
  1188. {
  1189. struct btrfs_ioctl_vol_args *vol_args;
  1190. int ret;
  1191. if (!capable(CAP_SYS_ADMIN))
  1192. return -EPERM;
  1193. vol_args = memdup_user(arg, sizeof(*vol_args));
  1194. if (IS_ERR(vol_args))
  1195. return PTR_ERR(vol_args);
  1196. vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
  1197. ret = btrfs_init_new_device(root, vol_args->name);
  1198. kfree(vol_args);
  1199. return ret;
  1200. }
  1201. static long btrfs_ioctl_rm_dev(struct btrfs_root *root, void __user *arg)
  1202. {
  1203. struct btrfs_ioctl_vol_args *vol_args;
  1204. int ret;
  1205. if (!capable(CAP_SYS_ADMIN))
  1206. return -EPERM;
  1207. if (root->fs_info->sb->s_flags & MS_RDONLY)
  1208. return -EROFS;
  1209. vol_args = memdup_user(arg, sizeof(*vol_args));
  1210. if (IS_ERR(vol_args))
  1211. return PTR_ERR(vol_args);
  1212. vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
  1213. ret = btrfs_rm_device(root, vol_args->name);
  1214. kfree(vol_args);
  1215. return ret;
  1216. }
  1217. static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd,
  1218. u64 off, u64 olen, u64 destoff)
  1219. {
  1220. struct inode *inode = fdentry(file)->d_inode;
  1221. struct btrfs_root *root = BTRFS_I(inode)->root;
  1222. struct file *src_file;
  1223. struct inode *src;
  1224. struct btrfs_trans_handle *trans;
  1225. struct btrfs_path *path;
  1226. struct extent_buffer *leaf;
  1227. char *buf;
  1228. struct btrfs_key key;
  1229. u32 nritems;
  1230. int slot;
  1231. int ret;
  1232. u64 len = olen;
  1233. u64 bs = root->fs_info->sb->s_blocksize;
  1234. u64 hint_byte;
  1235. /*
  1236. * TODO:
  1237. * - split compressed inline extents. annoying: we need to
  1238. * decompress into destination's address_space (the file offset
  1239. * may change, so source mapping won't do), then recompress (or
  1240. * otherwise reinsert) a subrange.
  1241. * - allow ranges within the same file to be cloned (provided
  1242. * they don't overlap)?
  1243. */
  1244. /* the destination must be opened for writing */
  1245. if (!(file->f_mode & FMODE_WRITE))
  1246. return -EINVAL;
  1247. ret = mnt_want_write(file->f_path.mnt);
  1248. if (ret)
  1249. return ret;
  1250. src_file = fget(srcfd);
  1251. if (!src_file) {
  1252. ret = -EBADF;
  1253. goto out_drop_write;
  1254. }
  1255. src = src_file->f_dentry->d_inode;
  1256. ret = -EINVAL;
  1257. if (src == inode)
  1258. goto out_fput;
  1259. ret = -EISDIR;
  1260. if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
  1261. goto out_fput;
  1262. ret = -EXDEV;
  1263. if (src->i_sb != inode->i_sb || BTRFS_I(src)->root != root)
  1264. goto out_fput;
  1265. ret = -ENOMEM;
  1266. buf = vmalloc(btrfs_level_size(root, 0));
  1267. if (!buf)
  1268. goto out_fput;
  1269. path = btrfs_alloc_path();
  1270. if (!path) {
  1271. vfree(buf);
  1272. goto out_fput;
  1273. }
  1274. path->reada = 2;
  1275. if (inode < src) {
  1276. mutex_lock(&inode->i_mutex);
  1277. mutex_lock(&src->i_mutex);
  1278. } else {
  1279. mutex_lock(&src->i_mutex);
  1280. mutex_lock(&inode->i_mutex);
  1281. }
  1282. /* determine range to clone */
  1283. ret = -EINVAL;
  1284. if (off >= src->i_size || off + len > src->i_size)
  1285. goto out_unlock;
  1286. if (len == 0)
  1287. olen = len = src->i_size - off;
  1288. /* if we extend to eof, continue to block boundary */
  1289. if (off + len == src->i_size)
  1290. len = ((src->i_size + bs-1) & ~(bs-1))
  1291. - off;
  1292. /* verify the end result is block aligned */
  1293. if ((off & (bs-1)) ||
  1294. ((off + len) & (bs-1)))
  1295. goto out_unlock;
  1296. /* do any pending delalloc/csum calc on src, one way or
  1297. another, and lock file content */
  1298. while (1) {
  1299. struct btrfs_ordered_extent *ordered;
  1300. lock_extent(&BTRFS_I(src)->io_tree, off, off+len, GFP_NOFS);
  1301. ordered = btrfs_lookup_first_ordered_extent(inode, off+len);
  1302. if (BTRFS_I(src)->delalloc_bytes == 0 && !ordered)
  1303. break;
  1304. unlock_extent(&BTRFS_I(src)->io_tree, off, off+len, GFP_NOFS);
  1305. if (ordered)
  1306. btrfs_put_ordered_extent(ordered);
  1307. btrfs_wait_ordered_range(src, off, off+len);
  1308. }
  1309. trans = btrfs_start_transaction(root, 1);
  1310. BUG_ON(!trans);
  1311. /* punch hole in destination first */
  1312. btrfs_drop_extents(trans, inode, off, off + len, &hint_byte, 1);
  1313. /* clone data */
  1314. key.objectid = src->i_ino;
  1315. key.type = BTRFS_EXTENT_DATA_KEY;
  1316. key.offset = 0;
  1317. while (1) {
  1318. /*
  1319. * note the key will change type as we walk through the
  1320. * tree.
  1321. */
  1322. ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
  1323. if (ret < 0)
  1324. goto out;
  1325. nritems = btrfs_header_nritems(path->nodes[0]);
  1326. if (path->slots[0] >= nritems) {
  1327. ret = btrfs_next_leaf(root, path);
  1328. if (ret < 0)
  1329. goto out;
  1330. if (ret > 0)
  1331. break;
  1332. nritems = btrfs_header_nritems(path->nodes[0]);
  1333. }
  1334. leaf = path->nodes[0];
  1335. slot = path->slots[0];
  1336. btrfs_item_key_to_cpu(leaf, &key, slot);
  1337. if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY ||
  1338. key.objectid != src->i_ino)
  1339. break;
  1340. if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) {
  1341. struct btrfs_file_extent_item *extent;
  1342. int type;
  1343. u32 size;
  1344. struct btrfs_key new_key;
  1345. u64 disko = 0, diskl = 0;
  1346. u64 datao = 0, datal = 0;
  1347. u8 comp;
  1348. size = btrfs_item_size_nr(leaf, slot);
  1349. read_extent_buffer(leaf, buf,
  1350. btrfs_item_ptr_offset(leaf, slot),
  1351. size);
  1352. extent = btrfs_item_ptr(leaf, slot,
  1353. struct btrfs_file_extent_item);
  1354. comp = btrfs_file_extent_compression(leaf, extent);
  1355. type = btrfs_file_extent_type(leaf, extent);
  1356. if (type == BTRFS_FILE_EXTENT_REG ||
  1357. type == BTRFS_FILE_EXTENT_PREALLOC) {
  1358. disko = btrfs_file_extent_disk_bytenr(leaf,
  1359. extent);
  1360. diskl = btrfs_file_extent_disk_num_bytes(leaf,
  1361. extent);
  1362. datao = btrfs_file_extent_offset(leaf, extent);
  1363. datal = btrfs_file_extent_num_bytes(leaf,
  1364. extent);
  1365. } else if (type == BTRFS_FILE_EXTENT_INLINE) {
  1366. /* take upper bound, may be compressed */
  1367. datal = btrfs_file_extent_ram_bytes(leaf,
  1368. extent);
  1369. }
  1370. btrfs_release_path(root, path);
  1371. if (key.offset + datal < off ||
  1372. key.offset >= off+len)
  1373. goto next;
  1374. memcpy(&new_key, &key, sizeof(new_key));
  1375. new_key.objectid = inode->i_ino;
  1376. new_key.offset = key.offset + destoff - off;
  1377. if (type == BTRFS_FILE_EXTENT_REG ||
  1378. type == BTRFS_FILE_EXTENT_PREALLOC) {
  1379. ret = btrfs_insert_empty_item(trans, root, path,
  1380. &new_key, size);
  1381. if (ret)
  1382. goto out;
  1383. leaf = path->nodes[0];
  1384. slot = path->slots[0];
  1385. write_extent_buffer(leaf, buf,
  1386. btrfs_item_ptr_offset(leaf, slot),
  1387. size);
  1388. extent = btrfs_item_ptr(leaf, slot,
  1389. struct btrfs_file_extent_item);
  1390. if (off > key.offset) {
  1391. datao += off - key.offset;
  1392. datal -= off - key.offset;
  1393. }
  1394. if (key.offset + datal > off + len)
  1395. datal = off + len - key.offset;
  1396. /* disko == 0 means it's a hole */
  1397. if (!disko)
  1398. datao = 0;
  1399. btrfs_set_file_extent_offset(leaf, extent,
  1400. datao);
  1401. btrfs_set_file_extent_num_bytes(leaf, extent,
  1402. datal);
  1403. if (disko) {
  1404. inode_add_bytes(inode, datal);
  1405. ret = btrfs_inc_extent_ref(trans, root,
  1406. disko, diskl, 0,
  1407. root->root_key.objectid,
  1408. inode->i_ino,
  1409. new_key.offset - datao);
  1410. BUG_ON(ret);
  1411. }
  1412. } else if (type == BTRFS_FILE_EXTENT_INLINE) {
  1413. u64 skip = 0;
  1414. u64 trim = 0;
  1415. if (off > key.offset) {
  1416. skip = off - key.offset;
  1417. new_key.offset += skip;
  1418. }
  1419. if (key.offset + datal > off+len)
  1420. trim = key.offset + datal - (off+len);
  1421. if (comp && (skip || trim)) {
  1422. ret = -EINVAL;
  1423. goto out;
  1424. }
  1425. size -= skip + trim;
  1426. datal -= skip + trim;
  1427. ret = btrfs_insert_empty_item(trans, root, path,
  1428. &new_key, size);
  1429. if (ret)
  1430. goto out;
  1431. if (skip) {
  1432. u32 start =
  1433. btrfs_file_extent_calc_inline_size(0);
  1434. memmove(buf+start, buf+start+skip,
  1435. datal);
  1436. }
  1437. leaf = path->nodes[0];
  1438. slot = path->slots[0];
  1439. write_extent_buffer(leaf, buf,
  1440. btrfs_item_ptr_offset(leaf, slot),
  1441. size);
  1442. inode_add_bytes(inode, datal);
  1443. }
  1444. btrfs_mark_buffer_dirty(leaf);
  1445. }
  1446. next:
  1447. btrfs_release_path(root, path);
  1448. key.offset++;
  1449. }
  1450. ret = 0;
  1451. out:
  1452. btrfs_release_path(root, path);
  1453. if (ret == 0) {
  1454. inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  1455. if (destoff + olen > inode->i_size)
  1456. btrfs_i_size_write(inode, destoff + olen);
  1457. BTRFS_I(inode)->flags = BTRFS_I(src)->flags;
  1458. ret = btrfs_update_inode(trans, root, inode);
  1459. }
  1460. btrfs_end_transaction(trans, root);
  1461. unlock_extent(&BTRFS_I(src)->io_tree, off, off+len, GFP_NOFS);
  1462. if (ret)
  1463. vmtruncate(inode, 0);
  1464. out_unlock:
  1465. mutex_unlock(&src->i_mutex);
  1466. mutex_unlock(&inode->i_mutex);
  1467. vfree(buf);
  1468. btrfs_free_path(path);
  1469. out_fput:
  1470. fput(src_file);
  1471. out_drop_write:
  1472. mnt_drop_write(file->f_path.mnt);
  1473. return ret;
  1474. }
  1475. static long btrfs_ioctl_clone_range(struct file *file, void __user *argp)
  1476. {
  1477. struct btrfs_ioctl_clone_range_args args;
  1478. if (copy_from_user(&args, argp, sizeof(args)))
  1479. return -EFAULT;
  1480. return btrfs_ioctl_clone(file, args.src_fd, args.src_offset,
  1481. args.src_length, args.dest_offset);
  1482. }
  1483. /*
  1484. * there are many ways the trans_start and trans_end ioctls can lead
  1485. * to deadlocks. They should only be used by applications that
  1486. * basically own the machine, and have a very in depth understanding
  1487. * of all the possible deadlocks and enospc problems.
  1488. */
  1489. static long btrfs_ioctl_trans_start(struct file *file)
  1490. {
  1491. struct inode *inode = fdentry(file)->d_inode;
  1492. struct btrfs_root *root = BTRFS_I(inode)->root;
  1493. struct btrfs_trans_handle *trans;
  1494. int ret;
  1495. ret = -EPERM;
  1496. if (!capable(CAP_SYS_ADMIN))
  1497. goto out;
  1498. ret = -EINPROGRESS;
  1499. if (file->private_data)
  1500. goto out;
  1501. ret = mnt_want_write(file->f_path.mnt);
  1502. if (ret)
  1503. goto out;
  1504. mutex_lock(&root->fs_info->trans_mutex);
  1505. root->fs_info->open_ioctl_trans++;
  1506. mutex_unlock(&root->fs_info->trans_mutex);
  1507. ret = -ENOMEM;
  1508. trans = btrfs_start_ioctl_transaction(root, 0);
  1509. if (!trans)
  1510. goto out_drop;
  1511. file->private_data = trans;
  1512. return 0;
  1513. out_drop:
  1514. mutex_lock(&root->fs_info->trans_mutex);
  1515. root->fs_info->open_ioctl_trans--;
  1516. mutex_unlock(&root->fs_info->trans_mutex);
  1517. mnt_drop_write(file->f_path.mnt);
  1518. out:
  1519. return ret;
  1520. }
  1521. static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
  1522. {
  1523. struct inode *inode = fdentry(file)->d_inode;
  1524. struct btrfs_root *root = BTRFS_I(inode)->root;
  1525. struct btrfs_root *new_root;
  1526. struct btrfs_dir_item *di;
  1527. struct btrfs_trans_handle *trans;
  1528. struct btrfs_path *path;
  1529. struct btrfs_key location;
  1530. struct btrfs_disk_key disk_key;
  1531. struct btrfs_super_block *disk_super;
  1532. u64 features;
  1533. u64 objectid = 0;
  1534. u64 dir_id;
  1535. if (!capable(CAP_SYS_ADMIN))
  1536. return -EPERM;
  1537. if (copy_from_user(&objectid, argp, sizeof(objectid)))
  1538. return -EFAULT;
  1539. if (!objectid)
  1540. objectid = root->root_key.objectid;
  1541. location.objectid = objectid;
  1542. location.type = BTRFS_ROOT_ITEM_KEY;
  1543. location.offset = (u64)-1;
  1544. new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
  1545. if (IS_ERR(new_root))
  1546. return PTR_ERR(new_root);
  1547. if (btrfs_root_refs(&new_root->root_item) == 0)
  1548. return -ENOENT;
  1549. path = btrfs_alloc_path();
  1550. if (!path)
  1551. return -ENOMEM;
  1552. path->leave_spinning = 1;
  1553. trans = btrfs_start_transaction(root, 1);
  1554. if (!trans) {
  1555. btrfs_free_path(path);
  1556. return -ENOMEM;
  1557. }
  1558. dir_id = btrfs_super_root_dir(&root->fs_info->super_copy);
  1559. di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
  1560. dir_id, "default", 7, 1);
  1561. if (!di) {
  1562. btrfs_free_path(path);
  1563. btrfs_end_transaction(trans, root);
  1564. printk(KERN_ERR "Umm, you don't have the default dir item, "
  1565. "this isn't going to work\n");
  1566. return -ENOENT;
  1567. }
  1568. btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
  1569. btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
  1570. btrfs_mark_buffer_dirty(path->nodes[0]);
  1571. btrfs_free_path(path);
  1572. disk_super = &root->fs_info->super_copy;
  1573. features = btrfs_super_incompat_flags(disk_super);
  1574. if (!(features & BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL)) {
  1575. features |= BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL;
  1576. btrfs_set_super_incompat_flags(disk_super, features);
  1577. }
  1578. btrfs_end_transaction(trans, root);
  1579. return 0;
  1580. }
  1581. /*
  1582. * there are many ways the trans_start and trans_end ioctls can lead
  1583. * to deadlocks. They should only be used by applications that
  1584. * basically own the machine, and have a very in depth understanding
  1585. * of all the possible deadlocks and enospc problems.
  1586. */
  1587. long btrfs_ioctl_trans_end(struct file *file)
  1588. {
  1589. struct inode *inode = fdentry(file)->d_inode;
  1590. struct btrfs_root *root = BTRFS_I(inode)->root;
  1591. struct btrfs_trans_handle *trans;
  1592. trans = file->private_data;
  1593. if (!trans)
  1594. return -EINVAL;
  1595. file->private_data = NULL;
  1596. btrfs_end_transaction(trans, root);
  1597. mutex_lock(&root->fs_info->trans_mutex);
  1598. root->fs_info->open_ioctl_trans--;
  1599. mutex_unlock(&root->fs_info->trans_mutex);
  1600. mnt_drop_write(file->f_path.mnt);
  1601. return 0;
  1602. }
  1603. long btrfs_ioctl(struct file *file, unsigned int
  1604. cmd, unsigned long arg)
  1605. {
  1606. struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
  1607. void __user *argp = (void __user *)arg;
  1608. switch (cmd) {
  1609. case FS_IOC_GETFLAGS:
  1610. return btrfs_ioctl_getflags(file, argp);
  1611. case FS_IOC_SETFLAGS:
  1612. return btrfs_ioctl_setflags(file, argp);
  1613. case FS_IOC_GETVERSION:
  1614. return btrfs_ioctl_getversion(file, argp);
  1615. case BTRFS_IOC_SNAP_CREATE:
  1616. return btrfs_ioctl_snap_create(file, argp, 0);
  1617. case BTRFS_IOC_SUBVOL_CREATE:
  1618. return btrfs_ioctl_snap_create(file, argp, 1);
  1619. case BTRFS_IOC_SNAP_DESTROY:
  1620. return btrfs_ioctl_snap_destroy(file, argp);
  1621. case BTRFS_IOC_DEFAULT_SUBVOL:
  1622. return btrfs_ioctl_default_subvol(file, argp);
  1623. case BTRFS_IOC_DEFRAG:
  1624. return btrfs_ioctl_defrag(file, NULL);
  1625. case BTRFS_IOC_DEFRAG_RANGE:
  1626. return btrfs_ioctl_defrag(file, argp);
  1627. case BTRFS_IOC_RESIZE:
  1628. return btrfs_ioctl_resize(root, argp);
  1629. case BTRFS_IOC_ADD_DEV:
  1630. return btrfs_ioctl_add_dev(root, argp);
  1631. case BTRFS_IOC_RM_DEV:
  1632. return btrfs_ioctl_rm_dev(root, argp);
  1633. case BTRFS_IOC_BALANCE:
  1634. return btrfs_balance(root->fs_info->dev_root);
  1635. case BTRFS_IOC_CLONE:
  1636. return btrfs_ioctl_clone(file, arg, 0, 0, 0);
  1637. case BTRFS_IOC_CLONE_RANGE:
  1638. return btrfs_ioctl_clone_range(file, argp);
  1639. case BTRFS_IOC_TRANS_START:
  1640. return btrfs_ioctl_trans_start(file);
  1641. case BTRFS_IOC_TRANS_END:
  1642. return btrfs_ioctl_trans_end(file);
  1643. case BTRFS_IOC_TREE_SEARCH:
  1644. return btrfs_ioctl_tree_search(file, argp);
  1645. case BTRFS_IOC_INO_LOOKUP:
  1646. return btrfs_ioctl_ino_lookup(file, argp);
  1647. case BTRFS_IOC_SYNC:
  1648. btrfs_sync_fs(file->f_dentry->d_sb, 1);
  1649. return 0;
  1650. }
  1651. return -ENOTTY;
  1652. }