dw_dmac.c 41 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629
  1. /*
  2. * Driver for the Synopsys DesignWare DMA Controller (aka DMACA on
  3. * AVR32 systems.)
  4. *
  5. * Copyright (C) 2007-2008 Atmel Corporation
  6. * Copyright (C) 2010-2011 ST Microelectronics
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. */
  12. #include <linux/bitops.h>
  13. #include <linux/clk.h>
  14. #include <linux/delay.h>
  15. #include <linux/dmaengine.h>
  16. #include <linux/dma-mapping.h>
  17. #include <linux/init.h>
  18. #include <linux/interrupt.h>
  19. #include <linux/io.h>
  20. #include <linux/of.h>
  21. #include <linux/mm.h>
  22. #include <linux/module.h>
  23. #include <linux/platform_device.h>
  24. #include <linux/slab.h>
  25. #include "dw_dmac_regs.h"
  26. #include "dmaengine.h"
  27. /*
  28. * This supports the Synopsys "DesignWare AHB Central DMA Controller",
  29. * (DW_ahb_dmac) which is used with various AMBA 2.0 systems (not all
  30. * of which use ARM any more). See the "Databook" from Synopsys for
  31. * information beyond what licensees probably provide.
  32. *
  33. * The driver has currently been tested only with the Atmel AT32AP7000,
  34. * which does not support descriptor writeback.
  35. */
  36. #define DWC_DEFAULT_CTLLO(_chan) ({ \
  37. struct dw_dma_slave *__slave = (_chan->private); \
  38. struct dw_dma_chan *_dwc = to_dw_dma_chan(_chan); \
  39. struct dma_slave_config *_sconfig = &_dwc->dma_sconfig; \
  40. int _dms = __slave ? __slave->dst_master : 0; \
  41. int _sms = __slave ? __slave->src_master : 1; \
  42. u8 _smsize = __slave ? _sconfig->src_maxburst : \
  43. DW_DMA_MSIZE_16; \
  44. u8 _dmsize = __slave ? _sconfig->dst_maxburst : \
  45. DW_DMA_MSIZE_16; \
  46. \
  47. (DWC_CTLL_DST_MSIZE(_dmsize) \
  48. | DWC_CTLL_SRC_MSIZE(_smsize) \
  49. | DWC_CTLL_LLP_D_EN \
  50. | DWC_CTLL_LLP_S_EN \
  51. | DWC_CTLL_DMS(_dms) \
  52. | DWC_CTLL_SMS(_sms)); \
  53. })
  54. /*
  55. * This is configuration-dependent and usually a funny size like 4095.
  56. *
  57. * Note that this is a transfer count, i.e. if we transfer 32-bit
  58. * words, we can do 16380 bytes per descriptor.
  59. *
  60. * This parameter is also system-specific.
  61. */
  62. #define DWC_MAX_COUNT 4095U
  63. /*
  64. * Number of descriptors to allocate for each channel. This should be
  65. * made configurable somehow; preferably, the clients (at least the
  66. * ones using slave transfers) should be able to give us a hint.
  67. */
  68. #define NR_DESCS_PER_CHANNEL 64
  69. /*----------------------------------------------------------------------*/
  70. /*
  71. * Because we're not relying on writeback from the controller (it may not
  72. * even be configured into the core!) we don't need to use dma_pool. These
  73. * descriptors -- and associated data -- are cacheable. We do need to make
  74. * sure their dcache entries are written back before handing them off to
  75. * the controller, though.
  76. */
  77. static struct device *chan2dev(struct dma_chan *chan)
  78. {
  79. return &chan->dev->device;
  80. }
  81. static struct device *chan2parent(struct dma_chan *chan)
  82. {
  83. return chan->dev->device.parent;
  84. }
  85. static struct dw_desc *dwc_first_active(struct dw_dma_chan *dwc)
  86. {
  87. return list_entry(dwc->active_list.next, struct dw_desc, desc_node);
  88. }
  89. static struct dw_desc *dwc_desc_get(struct dw_dma_chan *dwc)
  90. {
  91. struct dw_desc *desc, *_desc;
  92. struct dw_desc *ret = NULL;
  93. unsigned int i = 0;
  94. unsigned long flags;
  95. spin_lock_irqsave(&dwc->lock, flags);
  96. list_for_each_entry_safe(desc, _desc, &dwc->free_list, desc_node) {
  97. i++;
  98. if (async_tx_test_ack(&desc->txd)) {
  99. list_del(&desc->desc_node);
  100. ret = desc;
  101. break;
  102. }
  103. dev_dbg(chan2dev(&dwc->chan), "desc %p not ACKed\n", desc);
  104. }
  105. spin_unlock_irqrestore(&dwc->lock, flags);
  106. dev_vdbg(chan2dev(&dwc->chan), "scanned %u descriptors on freelist\n", i);
  107. return ret;
  108. }
  109. static void dwc_sync_desc_for_cpu(struct dw_dma_chan *dwc, struct dw_desc *desc)
  110. {
  111. struct dw_desc *child;
  112. list_for_each_entry(child, &desc->tx_list, desc_node)
  113. dma_sync_single_for_cpu(chan2parent(&dwc->chan),
  114. child->txd.phys, sizeof(child->lli),
  115. DMA_TO_DEVICE);
  116. dma_sync_single_for_cpu(chan2parent(&dwc->chan),
  117. desc->txd.phys, sizeof(desc->lli),
  118. DMA_TO_DEVICE);
  119. }
  120. /*
  121. * Move a descriptor, including any children, to the free list.
  122. * `desc' must not be on any lists.
  123. */
  124. static void dwc_desc_put(struct dw_dma_chan *dwc, struct dw_desc *desc)
  125. {
  126. unsigned long flags;
  127. if (desc) {
  128. struct dw_desc *child;
  129. dwc_sync_desc_for_cpu(dwc, desc);
  130. spin_lock_irqsave(&dwc->lock, flags);
  131. list_for_each_entry(child, &desc->tx_list, desc_node)
  132. dev_vdbg(chan2dev(&dwc->chan),
  133. "moving child desc %p to freelist\n",
  134. child);
  135. list_splice_init(&desc->tx_list, &dwc->free_list);
  136. dev_vdbg(chan2dev(&dwc->chan), "moving desc %p to freelist\n", desc);
  137. list_add(&desc->desc_node, &dwc->free_list);
  138. spin_unlock_irqrestore(&dwc->lock, flags);
  139. }
  140. }
  141. static void dwc_initialize(struct dw_dma_chan *dwc)
  142. {
  143. struct dw_dma *dw = to_dw_dma(dwc->chan.device);
  144. struct dw_dma_slave *dws = dwc->chan.private;
  145. u32 cfghi = DWC_CFGH_FIFO_MODE;
  146. u32 cfglo = DWC_CFGL_CH_PRIOR(dwc->priority);
  147. if (dwc->initialized == true)
  148. return;
  149. if (dws) {
  150. /*
  151. * We need controller-specific data to set up slave
  152. * transfers.
  153. */
  154. BUG_ON(!dws->dma_dev || dws->dma_dev != dw->dma.dev);
  155. cfghi = dws->cfg_hi;
  156. cfglo |= dws->cfg_lo & ~DWC_CFGL_CH_PRIOR_MASK;
  157. }
  158. channel_writel(dwc, CFG_LO, cfglo);
  159. channel_writel(dwc, CFG_HI, cfghi);
  160. /* Enable interrupts */
  161. channel_set_bit(dw, MASK.XFER, dwc->mask);
  162. channel_set_bit(dw, MASK.ERROR, dwc->mask);
  163. dwc->initialized = true;
  164. }
  165. /*----------------------------------------------------------------------*/
  166. static void dwc_dump_chan_regs(struct dw_dma_chan *dwc)
  167. {
  168. dev_err(chan2dev(&dwc->chan),
  169. " SAR: 0x%x DAR: 0x%x LLP: 0x%x CTL: 0x%x:%08x\n",
  170. channel_readl(dwc, SAR),
  171. channel_readl(dwc, DAR),
  172. channel_readl(dwc, LLP),
  173. channel_readl(dwc, CTL_HI),
  174. channel_readl(dwc, CTL_LO));
  175. }
  176. /*----------------------------------------------------------------------*/
  177. /* Called with dwc->lock held and bh disabled */
  178. static void dwc_dostart(struct dw_dma_chan *dwc, struct dw_desc *first)
  179. {
  180. struct dw_dma *dw = to_dw_dma(dwc->chan.device);
  181. /* ASSERT: channel is idle */
  182. if (dma_readl(dw, CH_EN) & dwc->mask) {
  183. dev_err(chan2dev(&dwc->chan),
  184. "BUG: Attempted to start non-idle channel\n");
  185. dwc_dump_chan_regs(dwc);
  186. /* The tasklet will hopefully advance the queue... */
  187. return;
  188. }
  189. dwc_initialize(dwc);
  190. channel_writel(dwc, LLP, first->txd.phys);
  191. channel_writel(dwc, CTL_LO,
  192. DWC_CTLL_LLP_D_EN | DWC_CTLL_LLP_S_EN);
  193. channel_writel(dwc, CTL_HI, 0);
  194. channel_set_bit(dw, CH_EN, dwc->mask);
  195. }
  196. /*----------------------------------------------------------------------*/
  197. static void
  198. dwc_descriptor_complete(struct dw_dma_chan *dwc, struct dw_desc *desc,
  199. bool callback_required)
  200. {
  201. dma_async_tx_callback callback = NULL;
  202. void *param = NULL;
  203. struct dma_async_tx_descriptor *txd = &desc->txd;
  204. struct dw_desc *child;
  205. unsigned long flags;
  206. dev_vdbg(chan2dev(&dwc->chan), "descriptor %u complete\n", txd->cookie);
  207. spin_lock_irqsave(&dwc->lock, flags);
  208. dma_cookie_complete(txd);
  209. if (callback_required) {
  210. callback = txd->callback;
  211. param = txd->callback_param;
  212. }
  213. dwc_sync_desc_for_cpu(dwc, desc);
  214. /* async_tx_ack */
  215. list_for_each_entry(child, &desc->tx_list, desc_node)
  216. async_tx_ack(&child->txd);
  217. async_tx_ack(&desc->txd);
  218. list_splice_init(&desc->tx_list, &dwc->free_list);
  219. list_move(&desc->desc_node, &dwc->free_list);
  220. if (!dwc->chan.private) {
  221. struct device *parent = chan2parent(&dwc->chan);
  222. if (!(txd->flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
  223. if (txd->flags & DMA_COMPL_DEST_UNMAP_SINGLE)
  224. dma_unmap_single(parent, desc->lli.dar,
  225. desc->len, DMA_FROM_DEVICE);
  226. else
  227. dma_unmap_page(parent, desc->lli.dar,
  228. desc->len, DMA_FROM_DEVICE);
  229. }
  230. if (!(txd->flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
  231. if (txd->flags & DMA_COMPL_SRC_UNMAP_SINGLE)
  232. dma_unmap_single(parent, desc->lli.sar,
  233. desc->len, DMA_TO_DEVICE);
  234. else
  235. dma_unmap_page(parent, desc->lli.sar,
  236. desc->len, DMA_TO_DEVICE);
  237. }
  238. }
  239. spin_unlock_irqrestore(&dwc->lock, flags);
  240. if (callback_required && callback)
  241. callback(param);
  242. }
  243. static void dwc_complete_all(struct dw_dma *dw, struct dw_dma_chan *dwc)
  244. {
  245. struct dw_desc *desc, *_desc;
  246. LIST_HEAD(list);
  247. unsigned long flags;
  248. spin_lock_irqsave(&dwc->lock, flags);
  249. if (dma_readl(dw, CH_EN) & dwc->mask) {
  250. dev_err(chan2dev(&dwc->chan),
  251. "BUG: XFER bit set, but channel not idle!\n");
  252. /* Try to continue after resetting the channel... */
  253. channel_clear_bit(dw, CH_EN, dwc->mask);
  254. while (dma_readl(dw, CH_EN) & dwc->mask)
  255. cpu_relax();
  256. }
  257. /*
  258. * Submit queued descriptors ASAP, i.e. before we go through
  259. * the completed ones.
  260. */
  261. list_splice_init(&dwc->active_list, &list);
  262. if (!list_empty(&dwc->queue)) {
  263. list_move(dwc->queue.next, &dwc->active_list);
  264. dwc_dostart(dwc, dwc_first_active(dwc));
  265. }
  266. spin_unlock_irqrestore(&dwc->lock, flags);
  267. list_for_each_entry_safe(desc, _desc, &list, desc_node)
  268. dwc_descriptor_complete(dwc, desc, true);
  269. }
  270. static void dwc_scan_descriptors(struct dw_dma *dw, struct dw_dma_chan *dwc)
  271. {
  272. dma_addr_t llp;
  273. struct dw_desc *desc, *_desc;
  274. struct dw_desc *child;
  275. u32 status_xfer;
  276. unsigned long flags;
  277. spin_lock_irqsave(&dwc->lock, flags);
  278. llp = channel_readl(dwc, LLP);
  279. status_xfer = dma_readl(dw, RAW.XFER);
  280. if (status_xfer & dwc->mask) {
  281. /* Everything we've submitted is done */
  282. dma_writel(dw, CLEAR.XFER, dwc->mask);
  283. spin_unlock_irqrestore(&dwc->lock, flags);
  284. dwc_complete_all(dw, dwc);
  285. return;
  286. }
  287. if (list_empty(&dwc->active_list)) {
  288. spin_unlock_irqrestore(&dwc->lock, flags);
  289. return;
  290. }
  291. dev_vdbg(chan2dev(&dwc->chan), "scan_descriptors: llp=0x%llx\n",
  292. (unsigned long long)llp);
  293. list_for_each_entry_safe(desc, _desc, &dwc->active_list, desc_node) {
  294. /* check first descriptors addr */
  295. if (desc->txd.phys == llp) {
  296. spin_unlock_irqrestore(&dwc->lock, flags);
  297. return;
  298. }
  299. /* check first descriptors llp */
  300. if (desc->lli.llp == llp) {
  301. /* This one is currently in progress */
  302. spin_unlock_irqrestore(&dwc->lock, flags);
  303. return;
  304. }
  305. list_for_each_entry(child, &desc->tx_list, desc_node)
  306. if (child->lli.llp == llp) {
  307. /* Currently in progress */
  308. spin_unlock_irqrestore(&dwc->lock, flags);
  309. return;
  310. }
  311. /*
  312. * No descriptors so far seem to be in progress, i.e.
  313. * this one must be done.
  314. */
  315. spin_unlock_irqrestore(&dwc->lock, flags);
  316. dwc_descriptor_complete(dwc, desc, true);
  317. spin_lock_irqsave(&dwc->lock, flags);
  318. }
  319. dev_err(chan2dev(&dwc->chan),
  320. "BUG: All descriptors done, but channel not idle!\n");
  321. /* Try to continue after resetting the channel... */
  322. channel_clear_bit(dw, CH_EN, dwc->mask);
  323. while (dma_readl(dw, CH_EN) & dwc->mask)
  324. cpu_relax();
  325. if (!list_empty(&dwc->queue)) {
  326. list_move(dwc->queue.next, &dwc->active_list);
  327. dwc_dostart(dwc, dwc_first_active(dwc));
  328. }
  329. spin_unlock_irqrestore(&dwc->lock, flags);
  330. }
  331. static void dwc_dump_lli(struct dw_dma_chan *dwc, struct dw_lli *lli)
  332. {
  333. dev_printk(KERN_CRIT, chan2dev(&dwc->chan),
  334. " desc: s0x%llx d0x%llx l0x%llx c0x%x:%x\n",
  335. (unsigned long long)lli->sar,
  336. (unsigned long long)lli->dar,
  337. (unsigned long long)lli->llp,
  338. lli->ctlhi, lli->ctllo);
  339. }
  340. static void dwc_handle_error(struct dw_dma *dw, struct dw_dma_chan *dwc)
  341. {
  342. struct dw_desc *bad_desc;
  343. struct dw_desc *child;
  344. unsigned long flags;
  345. dwc_scan_descriptors(dw, dwc);
  346. spin_lock_irqsave(&dwc->lock, flags);
  347. /*
  348. * The descriptor currently at the head of the active list is
  349. * borked. Since we don't have any way to report errors, we'll
  350. * just have to scream loudly and try to carry on.
  351. */
  352. bad_desc = dwc_first_active(dwc);
  353. list_del_init(&bad_desc->desc_node);
  354. list_move(dwc->queue.next, dwc->active_list.prev);
  355. /* Clear the error flag and try to restart the controller */
  356. dma_writel(dw, CLEAR.ERROR, dwc->mask);
  357. if (!list_empty(&dwc->active_list))
  358. dwc_dostart(dwc, dwc_first_active(dwc));
  359. /*
  360. * KERN_CRITICAL may seem harsh, but since this only happens
  361. * when someone submits a bad physical address in a
  362. * descriptor, we should consider ourselves lucky that the
  363. * controller flagged an error instead of scribbling over
  364. * random memory locations.
  365. */
  366. dev_printk(KERN_CRIT, chan2dev(&dwc->chan),
  367. "Bad descriptor submitted for DMA!\n");
  368. dev_printk(KERN_CRIT, chan2dev(&dwc->chan),
  369. " cookie: %d\n", bad_desc->txd.cookie);
  370. dwc_dump_lli(dwc, &bad_desc->lli);
  371. list_for_each_entry(child, &bad_desc->tx_list, desc_node)
  372. dwc_dump_lli(dwc, &child->lli);
  373. spin_unlock_irqrestore(&dwc->lock, flags);
  374. /* Pretend the descriptor completed successfully */
  375. dwc_descriptor_complete(dwc, bad_desc, true);
  376. }
  377. /* --------------------- Cyclic DMA API extensions -------------------- */
  378. inline dma_addr_t dw_dma_get_src_addr(struct dma_chan *chan)
  379. {
  380. struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
  381. return channel_readl(dwc, SAR);
  382. }
  383. EXPORT_SYMBOL(dw_dma_get_src_addr);
  384. inline dma_addr_t dw_dma_get_dst_addr(struct dma_chan *chan)
  385. {
  386. struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
  387. return channel_readl(dwc, DAR);
  388. }
  389. EXPORT_SYMBOL(dw_dma_get_dst_addr);
  390. /* called with dwc->lock held and all DMAC interrupts disabled */
  391. static void dwc_handle_cyclic(struct dw_dma *dw, struct dw_dma_chan *dwc,
  392. u32 status_err, u32 status_xfer)
  393. {
  394. unsigned long flags;
  395. if (dwc->mask) {
  396. void (*callback)(void *param);
  397. void *callback_param;
  398. dev_vdbg(chan2dev(&dwc->chan), "new cyclic period llp 0x%08x\n",
  399. channel_readl(dwc, LLP));
  400. callback = dwc->cdesc->period_callback;
  401. callback_param = dwc->cdesc->period_callback_param;
  402. if (callback)
  403. callback(callback_param);
  404. }
  405. /*
  406. * Error and transfer complete are highly unlikely, and will most
  407. * likely be due to a configuration error by the user.
  408. */
  409. if (unlikely(status_err & dwc->mask) ||
  410. unlikely(status_xfer & dwc->mask)) {
  411. int i;
  412. dev_err(chan2dev(&dwc->chan), "cyclic DMA unexpected %s "
  413. "interrupt, stopping DMA transfer\n",
  414. status_xfer ? "xfer" : "error");
  415. spin_lock_irqsave(&dwc->lock, flags);
  416. dwc_dump_chan_regs(dwc);
  417. channel_clear_bit(dw, CH_EN, dwc->mask);
  418. while (dma_readl(dw, CH_EN) & dwc->mask)
  419. cpu_relax();
  420. /* make sure DMA does not restart by loading a new list */
  421. channel_writel(dwc, LLP, 0);
  422. channel_writel(dwc, CTL_LO, 0);
  423. channel_writel(dwc, CTL_HI, 0);
  424. dma_writel(dw, CLEAR.ERROR, dwc->mask);
  425. dma_writel(dw, CLEAR.XFER, dwc->mask);
  426. for (i = 0; i < dwc->cdesc->periods; i++)
  427. dwc_dump_lli(dwc, &dwc->cdesc->desc[i]->lli);
  428. spin_unlock_irqrestore(&dwc->lock, flags);
  429. }
  430. }
  431. /* ------------------------------------------------------------------------- */
  432. static void dw_dma_tasklet(unsigned long data)
  433. {
  434. struct dw_dma *dw = (struct dw_dma *)data;
  435. struct dw_dma_chan *dwc;
  436. u32 status_xfer;
  437. u32 status_err;
  438. int i;
  439. status_xfer = dma_readl(dw, RAW.XFER);
  440. status_err = dma_readl(dw, RAW.ERROR);
  441. dev_vdbg(dw->dma.dev, "tasklet: status_err=%x\n", status_err);
  442. for (i = 0; i < dw->dma.chancnt; i++) {
  443. dwc = &dw->chan[i];
  444. if (test_bit(DW_DMA_IS_CYCLIC, &dwc->flags))
  445. dwc_handle_cyclic(dw, dwc, status_err, status_xfer);
  446. else if (status_err & (1 << i))
  447. dwc_handle_error(dw, dwc);
  448. else if (status_xfer & (1 << i))
  449. dwc_scan_descriptors(dw, dwc);
  450. }
  451. /*
  452. * Re-enable interrupts.
  453. */
  454. channel_set_bit(dw, MASK.XFER, dw->all_chan_mask);
  455. channel_set_bit(dw, MASK.ERROR, dw->all_chan_mask);
  456. }
  457. static irqreturn_t dw_dma_interrupt(int irq, void *dev_id)
  458. {
  459. struct dw_dma *dw = dev_id;
  460. u32 status;
  461. dev_vdbg(dw->dma.dev, "interrupt: status=0x%x\n",
  462. dma_readl(dw, STATUS_INT));
  463. /*
  464. * Just disable the interrupts. We'll turn them back on in the
  465. * softirq handler.
  466. */
  467. channel_clear_bit(dw, MASK.XFER, dw->all_chan_mask);
  468. channel_clear_bit(dw, MASK.ERROR, dw->all_chan_mask);
  469. status = dma_readl(dw, STATUS_INT);
  470. if (status) {
  471. dev_err(dw->dma.dev,
  472. "BUG: Unexpected interrupts pending: 0x%x\n",
  473. status);
  474. /* Try to recover */
  475. channel_clear_bit(dw, MASK.XFER, (1 << 8) - 1);
  476. channel_clear_bit(dw, MASK.SRC_TRAN, (1 << 8) - 1);
  477. channel_clear_bit(dw, MASK.DST_TRAN, (1 << 8) - 1);
  478. channel_clear_bit(dw, MASK.ERROR, (1 << 8) - 1);
  479. }
  480. tasklet_schedule(&dw->tasklet);
  481. return IRQ_HANDLED;
  482. }
  483. /*----------------------------------------------------------------------*/
  484. static dma_cookie_t dwc_tx_submit(struct dma_async_tx_descriptor *tx)
  485. {
  486. struct dw_desc *desc = txd_to_dw_desc(tx);
  487. struct dw_dma_chan *dwc = to_dw_dma_chan(tx->chan);
  488. dma_cookie_t cookie;
  489. unsigned long flags;
  490. spin_lock_irqsave(&dwc->lock, flags);
  491. cookie = dma_cookie_assign(tx);
  492. /*
  493. * REVISIT: We should attempt to chain as many descriptors as
  494. * possible, perhaps even appending to those already submitted
  495. * for DMA. But this is hard to do in a race-free manner.
  496. */
  497. if (list_empty(&dwc->active_list)) {
  498. dev_vdbg(chan2dev(tx->chan), "tx_submit: started %u\n",
  499. desc->txd.cookie);
  500. list_add_tail(&desc->desc_node, &dwc->active_list);
  501. dwc_dostart(dwc, dwc_first_active(dwc));
  502. } else {
  503. dev_vdbg(chan2dev(tx->chan), "tx_submit: queued %u\n",
  504. desc->txd.cookie);
  505. list_add_tail(&desc->desc_node, &dwc->queue);
  506. }
  507. spin_unlock_irqrestore(&dwc->lock, flags);
  508. return cookie;
  509. }
  510. static struct dma_async_tx_descriptor *
  511. dwc_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
  512. size_t len, unsigned long flags)
  513. {
  514. struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
  515. struct dw_desc *desc;
  516. struct dw_desc *first;
  517. struct dw_desc *prev;
  518. size_t xfer_count;
  519. size_t offset;
  520. unsigned int src_width;
  521. unsigned int dst_width;
  522. u32 ctllo;
  523. dev_vdbg(chan2dev(chan),
  524. "prep_dma_memcpy d0x%llx s0x%llx l0x%zx f0x%lx\n",
  525. (unsigned long long)dest, (unsigned long long)src,
  526. len, flags);
  527. if (unlikely(!len)) {
  528. dev_dbg(chan2dev(chan), "prep_dma_memcpy: length is zero!\n");
  529. return NULL;
  530. }
  531. /*
  532. * We can be a lot more clever here, but this should take care
  533. * of the most common optimization.
  534. */
  535. if (!((src | dest | len) & 7))
  536. src_width = dst_width = 3;
  537. else if (!((src | dest | len) & 3))
  538. src_width = dst_width = 2;
  539. else if (!((src | dest | len) & 1))
  540. src_width = dst_width = 1;
  541. else
  542. src_width = dst_width = 0;
  543. ctllo = DWC_DEFAULT_CTLLO(chan)
  544. | DWC_CTLL_DST_WIDTH(dst_width)
  545. | DWC_CTLL_SRC_WIDTH(src_width)
  546. | DWC_CTLL_DST_INC
  547. | DWC_CTLL_SRC_INC
  548. | DWC_CTLL_FC_M2M;
  549. prev = first = NULL;
  550. for (offset = 0; offset < len; offset += xfer_count << src_width) {
  551. xfer_count = min_t(size_t, (len - offset) >> src_width,
  552. DWC_MAX_COUNT);
  553. desc = dwc_desc_get(dwc);
  554. if (!desc)
  555. goto err_desc_get;
  556. desc->lli.sar = src + offset;
  557. desc->lli.dar = dest + offset;
  558. desc->lli.ctllo = ctllo;
  559. desc->lli.ctlhi = xfer_count;
  560. if (!first) {
  561. first = desc;
  562. } else {
  563. prev->lli.llp = desc->txd.phys;
  564. dma_sync_single_for_device(chan2parent(chan),
  565. prev->txd.phys, sizeof(prev->lli),
  566. DMA_TO_DEVICE);
  567. list_add_tail(&desc->desc_node,
  568. &first->tx_list);
  569. }
  570. prev = desc;
  571. }
  572. if (flags & DMA_PREP_INTERRUPT)
  573. /* Trigger interrupt after last block */
  574. prev->lli.ctllo |= DWC_CTLL_INT_EN;
  575. prev->lli.llp = 0;
  576. dma_sync_single_for_device(chan2parent(chan),
  577. prev->txd.phys, sizeof(prev->lli),
  578. DMA_TO_DEVICE);
  579. first->txd.flags = flags;
  580. first->len = len;
  581. return &first->txd;
  582. err_desc_get:
  583. dwc_desc_put(dwc, first);
  584. return NULL;
  585. }
  586. static struct dma_async_tx_descriptor *
  587. dwc_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
  588. unsigned int sg_len, enum dma_transfer_direction direction,
  589. unsigned long flags, void *context)
  590. {
  591. struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
  592. struct dw_dma_slave *dws = chan->private;
  593. struct dma_slave_config *sconfig = &dwc->dma_sconfig;
  594. struct dw_desc *prev;
  595. struct dw_desc *first;
  596. u32 ctllo;
  597. dma_addr_t reg;
  598. unsigned int reg_width;
  599. unsigned int mem_width;
  600. unsigned int i;
  601. struct scatterlist *sg;
  602. size_t total_len = 0;
  603. dev_vdbg(chan2dev(chan), "prep_dma_slave\n");
  604. if (unlikely(!dws || !sg_len))
  605. return NULL;
  606. prev = first = NULL;
  607. switch (direction) {
  608. case DMA_MEM_TO_DEV:
  609. reg_width = __fls(sconfig->dst_addr_width);
  610. reg = sconfig->dst_addr;
  611. ctllo = (DWC_DEFAULT_CTLLO(chan)
  612. | DWC_CTLL_DST_WIDTH(reg_width)
  613. | DWC_CTLL_DST_FIX
  614. | DWC_CTLL_SRC_INC);
  615. ctllo |= sconfig->device_fc ? DWC_CTLL_FC(DW_DMA_FC_P_M2P) :
  616. DWC_CTLL_FC(DW_DMA_FC_D_M2P);
  617. for_each_sg(sgl, sg, sg_len, i) {
  618. struct dw_desc *desc;
  619. u32 len, dlen, mem;
  620. mem = sg_dma_address(sg);
  621. len = sg_dma_len(sg);
  622. if (!((mem | len) & 7))
  623. mem_width = 3;
  624. else if (!((mem | len) & 3))
  625. mem_width = 2;
  626. else if (!((mem | len) & 1))
  627. mem_width = 1;
  628. else
  629. mem_width = 0;
  630. slave_sg_todev_fill_desc:
  631. desc = dwc_desc_get(dwc);
  632. if (!desc) {
  633. dev_err(chan2dev(chan),
  634. "not enough descriptors available\n");
  635. goto err_desc_get;
  636. }
  637. desc->lli.sar = mem;
  638. desc->lli.dar = reg;
  639. desc->lli.ctllo = ctllo | DWC_CTLL_SRC_WIDTH(mem_width);
  640. if ((len >> mem_width) > DWC_MAX_COUNT) {
  641. dlen = DWC_MAX_COUNT << mem_width;
  642. mem += dlen;
  643. len -= dlen;
  644. } else {
  645. dlen = len;
  646. len = 0;
  647. }
  648. desc->lli.ctlhi = dlen >> mem_width;
  649. if (!first) {
  650. first = desc;
  651. } else {
  652. prev->lli.llp = desc->txd.phys;
  653. dma_sync_single_for_device(chan2parent(chan),
  654. prev->txd.phys,
  655. sizeof(prev->lli),
  656. DMA_TO_DEVICE);
  657. list_add_tail(&desc->desc_node,
  658. &first->tx_list);
  659. }
  660. prev = desc;
  661. total_len += dlen;
  662. if (len)
  663. goto slave_sg_todev_fill_desc;
  664. }
  665. break;
  666. case DMA_DEV_TO_MEM:
  667. reg_width = __fls(sconfig->src_addr_width);
  668. reg = sconfig->src_addr;
  669. ctllo = (DWC_DEFAULT_CTLLO(chan)
  670. | DWC_CTLL_SRC_WIDTH(reg_width)
  671. | DWC_CTLL_DST_INC
  672. | DWC_CTLL_SRC_FIX);
  673. ctllo |= sconfig->device_fc ? DWC_CTLL_FC(DW_DMA_FC_P_P2M) :
  674. DWC_CTLL_FC(DW_DMA_FC_D_P2M);
  675. for_each_sg(sgl, sg, sg_len, i) {
  676. struct dw_desc *desc;
  677. u32 len, dlen, mem;
  678. mem = sg_dma_address(sg);
  679. len = sg_dma_len(sg);
  680. if (!((mem | len) & 7))
  681. mem_width = 3;
  682. else if (!((mem | len) & 3))
  683. mem_width = 2;
  684. else if (!((mem | len) & 1))
  685. mem_width = 1;
  686. else
  687. mem_width = 0;
  688. slave_sg_fromdev_fill_desc:
  689. desc = dwc_desc_get(dwc);
  690. if (!desc) {
  691. dev_err(chan2dev(chan),
  692. "not enough descriptors available\n");
  693. goto err_desc_get;
  694. }
  695. desc->lli.sar = reg;
  696. desc->lli.dar = mem;
  697. desc->lli.ctllo = ctllo | DWC_CTLL_DST_WIDTH(mem_width);
  698. if ((len >> reg_width) > DWC_MAX_COUNT) {
  699. dlen = DWC_MAX_COUNT << reg_width;
  700. mem += dlen;
  701. len -= dlen;
  702. } else {
  703. dlen = len;
  704. len = 0;
  705. }
  706. desc->lli.ctlhi = dlen >> reg_width;
  707. if (!first) {
  708. first = desc;
  709. } else {
  710. prev->lli.llp = desc->txd.phys;
  711. dma_sync_single_for_device(chan2parent(chan),
  712. prev->txd.phys,
  713. sizeof(prev->lli),
  714. DMA_TO_DEVICE);
  715. list_add_tail(&desc->desc_node,
  716. &first->tx_list);
  717. }
  718. prev = desc;
  719. total_len += dlen;
  720. if (len)
  721. goto slave_sg_fromdev_fill_desc;
  722. }
  723. break;
  724. default:
  725. return NULL;
  726. }
  727. if (flags & DMA_PREP_INTERRUPT)
  728. /* Trigger interrupt after last block */
  729. prev->lli.ctllo |= DWC_CTLL_INT_EN;
  730. prev->lli.llp = 0;
  731. dma_sync_single_for_device(chan2parent(chan),
  732. prev->txd.phys, sizeof(prev->lli),
  733. DMA_TO_DEVICE);
  734. first->len = total_len;
  735. return &first->txd;
  736. err_desc_get:
  737. dwc_desc_put(dwc, first);
  738. return NULL;
  739. }
  740. /*
  741. * Fix sconfig's burst size according to dw_dmac. We need to convert them as:
  742. * 1 -> 0, 4 -> 1, 8 -> 2, 16 -> 3.
  743. *
  744. * NOTE: burst size 2 is not supported by controller.
  745. *
  746. * This can be done by finding least significant bit set: n & (n - 1)
  747. */
  748. static inline void convert_burst(u32 *maxburst)
  749. {
  750. if (*maxburst > 1)
  751. *maxburst = fls(*maxburst) - 2;
  752. else
  753. *maxburst = 0;
  754. }
  755. static int
  756. set_runtime_config(struct dma_chan *chan, struct dma_slave_config *sconfig)
  757. {
  758. struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
  759. /* Check if it is chan is configured for slave transfers */
  760. if (!chan->private)
  761. return -EINVAL;
  762. memcpy(&dwc->dma_sconfig, sconfig, sizeof(*sconfig));
  763. convert_burst(&dwc->dma_sconfig.src_maxburst);
  764. convert_burst(&dwc->dma_sconfig.dst_maxburst);
  765. return 0;
  766. }
  767. static int dwc_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
  768. unsigned long arg)
  769. {
  770. struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
  771. struct dw_dma *dw = to_dw_dma(chan->device);
  772. struct dw_desc *desc, *_desc;
  773. unsigned long flags;
  774. u32 cfglo;
  775. LIST_HEAD(list);
  776. if (cmd == DMA_PAUSE) {
  777. spin_lock_irqsave(&dwc->lock, flags);
  778. cfglo = channel_readl(dwc, CFG_LO);
  779. channel_writel(dwc, CFG_LO, cfglo | DWC_CFGL_CH_SUSP);
  780. while (!(channel_readl(dwc, CFG_LO) & DWC_CFGL_FIFO_EMPTY))
  781. cpu_relax();
  782. dwc->paused = true;
  783. spin_unlock_irqrestore(&dwc->lock, flags);
  784. } else if (cmd == DMA_RESUME) {
  785. if (!dwc->paused)
  786. return 0;
  787. spin_lock_irqsave(&dwc->lock, flags);
  788. cfglo = channel_readl(dwc, CFG_LO);
  789. channel_writel(dwc, CFG_LO, cfglo & ~DWC_CFGL_CH_SUSP);
  790. dwc->paused = false;
  791. spin_unlock_irqrestore(&dwc->lock, flags);
  792. } else if (cmd == DMA_TERMINATE_ALL) {
  793. spin_lock_irqsave(&dwc->lock, flags);
  794. channel_clear_bit(dw, CH_EN, dwc->mask);
  795. while (dma_readl(dw, CH_EN) & dwc->mask)
  796. cpu_relax();
  797. dwc->paused = false;
  798. /* active_list entries will end up before queued entries */
  799. list_splice_init(&dwc->queue, &list);
  800. list_splice_init(&dwc->active_list, &list);
  801. spin_unlock_irqrestore(&dwc->lock, flags);
  802. /* Flush all pending and queued descriptors */
  803. list_for_each_entry_safe(desc, _desc, &list, desc_node)
  804. dwc_descriptor_complete(dwc, desc, false);
  805. } else if (cmd == DMA_SLAVE_CONFIG) {
  806. return set_runtime_config(chan, (struct dma_slave_config *)arg);
  807. } else {
  808. return -ENXIO;
  809. }
  810. return 0;
  811. }
  812. static enum dma_status
  813. dwc_tx_status(struct dma_chan *chan,
  814. dma_cookie_t cookie,
  815. struct dma_tx_state *txstate)
  816. {
  817. struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
  818. enum dma_status ret;
  819. ret = dma_cookie_status(chan, cookie, txstate);
  820. if (ret != DMA_SUCCESS) {
  821. dwc_scan_descriptors(to_dw_dma(chan->device), dwc);
  822. ret = dma_cookie_status(chan, cookie, txstate);
  823. }
  824. if (ret != DMA_SUCCESS)
  825. dma_set_residue(txstate, dwc_first_active(dwc)->len);
  826. if (dwc->paused)
  827. return DMA_PAUSED;
  828. return ret;
  829. }
  830. static void dwc_issue_pending(struct dma_chan *chan)
  831. {
  832. struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
  833. if (!list_empty(&dwc->queue))
  834. dwc_scan_descriptors(to_dw_dma(chan->device), dwc);
  835. }
  836. static int dwc_alloc_chan_resources(struct dma_chan *chan)
  837. {
  838. struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
  839. struct dw_dma *dw = to_dw_dma(chan->device);
  840. struct dw_desc *desc;
  841. int i;
  842. unsigned long flags;
  843. dev_vdbg(chan2dev(chan), "alloc_chan_resources\n");
  844. /* ASSERT: channel is idle */
  845. if (dma_readl(dw, CH_EN) & dwc->mask) {
  846. dev_dbg(chan2dev(chan), "DMA channel not idle?\n");
  847. return -EIO;
  848. }
  849. dma_cookie_init(chan);
  850. /*
  851. * NOTE: some controllers may have additional features that we
  852. * need to initialize here, like "scatter-gather" (which
  853. * doesn't mean what you think it means), and status writeback.
  854. */
  855. spin_lock_irqsave(&dwc->lock, flags);
  856. i = dwc->descs_allocated;
  857. while (dwc->descs_allocated < NR_DESCS_PER_CHANNEL) {
  858. spin_unlock_irqrestore(&dwc->lock, flags);
  859. desc = kzalloc(sizeof(struct dw_desc), GFP_KERNEL);
  860. if (!desc) {
  861. dev_info(chan2dev(chan),
  862. "only allocated %d descriptors\n", i);
  863. spin_lock_irqsave(&dwc->lock, flags);
  864. break;
  865. }
  866. INIT_LIST_HEAD(&desc->tx_list);
  867. dma_async_tx_descriptor_init(&desc->txd, chan);
  868. desc->txd.tx_submit = dwc_tx_submit;
  869. desc->txd.flags = DMA_CTRL_ACK;
  870. desc->txd.phys = dma_map_single(chan2parent(chan), &desc->lli,
  871. sizeof(desc->lli), DMA_TO_DEVICE);
  872. dwc_desc_put(dwc, desc);
  873. spin_lock_irqsave(&dwc->lock, flags);
  874. i = ++dwc->descs_allocated;
  875. }
  876. spin_unlock_irqrestore(&dwc->lock, flags);
  877. dev_dbg(chan2dev(chan),
  878. "alloc_chan_resources allocated %d descriptors\n", i);
  879. return i;
  880. }
  881. static void dwc_free_chan_resources(struct dma_chan *chan)
  882. {
  883. struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
  884. struct dw_dma *dw = to_dw_dma(chan->device);
  885. struct dw_desc *desc, *_desc;
  886. unsigned long flags;
  887. LIST_HEAD(list);
  888. dev_dbg(chan2dev(chan), "free_chan_resources (descs allocated=%u)\n",
  889. dwc->descs_allocated);
  890. /* ASSERT: channel is idle */
  891. BUG_ON(!list_empty(&dwc->active_list));
  892. BUG_ON(!list_empty(&dwc->queue));
  893. BUG_ON(dma_readl(to_dw_dma(chan->device), CH_EN) & dwc->mask);
  894. spin_lock_irqsave(&dwc->lock, flags);
  895. list_splice_init(&dwc->free_list, &list);
  896. dwc->descs_allocated = 0;
  897. dwc->initialized = false;
  898. /* Disable interrupts */
  899. channel_clear_bit(dw, MASK.XFER, dwc->mask);
  900. channel_clear_bit(dw, MASK.ERROR, dwc->mask);
  901. spin_unlock_irqrestore(&dwc->lock, flags);
  902. list_for_each_entry_safe(desc, _desc, &list, desc_node) {
  903. dev_vdbg(chan2dev(chan), " freeing descriptor %p\n", desc);
  904. dma_unmap_single(chan2parent(chan), desc->txd.phys,
  905. sizeof(desc->lli), DMA_TO_DEVICE);
  906. kfree(desc);
  907. }
  908. dev_vdbg(chan2dev(chan), "free_chan_resources done\n");
  909. }
  910. /* --------------------- Cyclic DMA API extensions -------------------- */
  911. /**
  912. * dw_dma_cyclic_start - start the cyclic DMA transfer
  913. * @chan: the DMA channel to start
  914. *
  915. * Must be called with soft interrupts disabled. Returns zero on success or
  916. * -errno on failure.
  917. */
  918. int dw_dma_cyclic_start(struct dma_chan *chan)
  919. {
  920. struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
  921. struct dw_dma *dw = to_dw_dma(dwc->chan.device);
  922. unsigned long flags;
  923. if (!test_bit(DW_DMA_IS_CYCLIC, &dwc->flags)) {
  924. dev_err(chan2dev(&dwc->chan), "missing prep for cyclic DMA\n");
  925. return -ENODEV;
  926. }
  927. spin_lock_irqsave(&dwc->lock, flags);
  928. /* assert channel is idle */
  929. if (dma_readl(dw, CH_EN) & dwc->mask) {
  930. dev_err(chan2dev(&dwc->chan),
  931. "BUG: Attempted to start non-idle channel\n");
  932. dwc_dump_chan_regs(dwc);
  933. spin_unlock_irqrestore(&dwc->lock, flags);
  934. return -EBUSY;
  935. }
  936. dma_writel(dw, CLEAR.ERROR, dwc->mask);
  937. dma_writel(dw, CLEAR.XFER, dwc->mask);
  938. /* setup DMAC channel registers */
  939. channel_writel(dwc, LLP, dwc->cdesc->desc[0]->txd.phys);
  940. channel_writel(dwc, CTL_LO, DWC_CTLL_LLP_D_EN | DWC_CTLL_LLP_S_EN);
  941. channel_writel(dwc, CTL_HI, 0);
  942. channel_set_bit(dw, CH_EN, dwc->mask);
  943. spin_unlock_irqrestore(&dwc->lock, flags);
  944. return 0;
  945. }
  946. EXPORT_SYMBOL(dw_dma_cyclic_start);
  947. /**
  948. * dw_dma_cyclic_stop - stop the cyclic DMA transfer
  949. * @chan: the DMA channel to stop
  950. *
  951. * Must be called with soft interrupts disabled.
  952. */
  953. void dw_dma_cyclic_stop(struct dma_chan *chan)
  954. {
  955. struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
  956. struct dw_dma *dw = to_dw_dma(dwc->chan.device);
  957. unsigned long flags;
  958. spin_lock_irqsave(&dwc->lock, flags);
  959. channel_clear_bit(dw, CH_EN, dwc->mask);
  960. while (dma_readl(dw, CH_EN) & dwc->mask)
  961. cpu_relax();
  962. spin_unlock_irqrestore(&dwc->lock, flags);
  963. }
  964. EXPORT_SYMBOL(dw_dma_cyclic_stop);
  965. /**
  966. * dw_dma_cyclic_prep - prepare the cyclic DMA transfer
  967. * @chan: the DMA channel to prepare
  968. * @buf_addr: physical DMA address where the buffer starts
  969. * @buf_len: total number of bytes for the entire buffer
  970. * @period_len: number of bytes for each period
  971. * @direction: transfer direction, to or from device
  972. *
  973. * Must be called before trying to start the transfer. Returns a valid struct
  974. * dw_cyclic_desc if successful or an ERR_PTR(-errno) if not successful.
  975. */
  976. struct dw_cyclic_desc *dw_dma_cyclic_prep(struct dma_chan *chan,
  977. dma_addr_t buf_addr, size_t buf_len, size_t period_len,
  978. enum dma_transfer_direction direction)
  979. {
  980. struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
  981. struct dma_slave_config *sconfig = &dwc->dma_sconfig;
  982. struct dw_cyclic_desc *cdesc;
  983. struct dw_cyclic_desc *retval = NULL;
  984. struct dw_desc *desc;
  985. struct dw_desc *last = NULL;
  986. unsigned long was_cyclic;
  987. unsigned int reg_width;
  988. unsigned int periods;
  989. unsigned int i;
  990. unsigned long flags;
  991. spin_lock_irqsave(&dwc->lock, flags);
  992. if (!list_empty(&dwc->queue) || !list_empty(&dwc->active_list)) {
  993. spin_unlock_irqrestore(&dwc->lock, flags);
  994. dev_dbg(chan2dev(&dwc->chan),
  995. "queue and/or active list are not empty\n");
  996. return ERR_PTR(-EBUSY);
  997. }
  998. was_cyclic = test_and_set_bit(DW_DMA_IS_CYCLIC, &dwc->flags);
  999. spin_unlock_irqrestore(&dwc->lock, flags);
  1000. if (was_cyclic) {
  1001. dev_dbg(chan2dev(&dwc->chan),
  1002. "channel already prepared for cyclic DMA\n");
  1003. return ERR_PTR(-EBUSY);
  1004. }
  1005. retval = ERR_PTR(-EINVAL);
  1006. if (direction == DMA_MEM_TO_DEV)
  1007. reg_width = __ffs(sconfig->dst_addr_width);
  1008. else
  1009. reg_width = __ffs(sconfig->src_addr_width);
  1010. periods = buf_len / period_len;
  1011. /* Check for too big/unaligned periods and unaligned DMA buffer. */
  1012. if (period_len > (DWC_MAX_COUNT << reg_width))
  1013. goto out_err;
  1014. if (unlikely(period_len & ((1 << reg_width) - 1)))
  1015. goto out_err;
  1016. if (unlikely(buf_addr & ((1 << reg_width) - 1)))
  1017. goto out_err;
  1018. if (unlikely(!(direction & (DMA_MEM_TO_DEV | DMA_DEV_TO_MEM))))
  1019. goto out_err;
  1020. retval = ERR_PTR(-ENOMEM);
  1021. if (periods > NR_DESCS_PER_CHANNEL)
  1022. goto out_err;
  1023. cdesc = kzalloc(sizeof(struct dw_cyclic_desc), GFP_KERNEL);
  1024. if (!cdesc)
  1025. goto out_err;
  1026. cdesc->desc = kzalloc(sizeof(struct dw_desc *) * periods, GFP_KERNEL);
  1027. if (!cdesc->desc)
  1028. goto out_err_alloc;
  1029. for (i = 0; i < periods; i++) {
  1030. desc = dwc_desc_get(dwc);
  1031. if (!desc)
  1032. goto out_err_desc_get;
  1033. switch (direction) {
  1034. case DMA_MEM_TO_DEV:
  1035. desc->lli.dar = sconfig->dst_addr;
  1036. desc->lli.sar = buf_addr + (period_len * i);
  1037. desc->lli.ctllo = (DWC_DEFAULT_CTLLO(chan)
  1038. | DWC_CTLL_DST_WIDTH(reg_width)
  1039. | DWC_CTLL_SRC_WIDTH(reg_width)
  1040. | DWC_CTLL_DST_FIX
  1041. | DWC_CTLL_SRC_INC
  1042. | DWC_CTLL_INT_EN);
  1043. desc->lli.ctllo |= sconfig->device_fc ?
  1044. DWC_CTLL_FC(DW_DMA_FC_P_M2P) :
  1045. DWC_CTLL_FC(DW_DMA_FC_D_M2P);
  1046. break;
  1047. case DMA_DEV_TO_MEM:
  1048. desc->lli.dar = buf_addr + (period_len * i);
  1049. desc->lli.sar = sconfig->src_addr;
  1050. desc->lli.ctllo = (DWC_DEFAULT_CTLLO(chan)
  1051. | DWC_CTLL_SRC_WIDTH(reg_width)
  1052. | DWC_CTLL_DST_WIDTH(reg_width)
  1053. | DWC_CTLL_DST_INC
  1054. | DWC_CTLL_SRC_FIX
  1055. | DWC_CTLL_INT_EN);
  1056. desc->lli.ctllo |= sconfig->device_fc ?
  1057. DWC_CTLL_FC(DW_DMA_FC_P_P2M) :
  1058. DWC_CTLL_FC(DW_DMA_FC_D_P2M);
  1059. break;
  1060. default:
  1061. break;
  1062. }
  1063. desc->lli.ctlhi = (period_len >> reg_width);
  1064. cdesc->desc[i] = desc;
  1065. if (last) {
  1066. last->lli.llp = desc->txd.phys;
  1067. dma_sync_single_for_device(chan2parent(chan),
  1068. last->txd.phys, sizeof(last->lli),
  1069. DMA_TO_DEVICE);
  1070. }
  1071. last = desc;
  1072. }
  1073. /* lets make a cyclic list */
  1074. last->lli.llp = cdesc->desc[0]->txd.phys;
  1075. dma_sync_single_for_device(chan2parent(chan), last->txd.phys,
  1076. sizeof(last->lli), DMA_TO_DEVICE);
  1077. dev_dbg(chan2dev(&dwc->chan), "cyclic prepared buf 0x%llx len %zu "
  1078. "period %zu periods %d\n", (unsigned long long)buf_addr,
  1079. buf_len, period_len, periods);
  1080. cdesc->periods = periods;
  1081. dwc->cdesc = cdesc;
  1082. return cdesc;
  1083. out_err_desc_get:
  1084. while (i--)
  1085. dwc_desc_put(dwc, cdesc->desc[i]);
  1086. out_err_alloc:
  1087. kfree(cdesc);
  1088. out_err:
  1089. clear_bit(DW_DMA_IS_CYCLIC, &dwc->flags);
  1090. return (struct dw_cyclic_desc *)retval;
  1091. }
  1092. EXPORT_SYMBOL(dw_dma_cyclic_prep);
  1093. /**
  1094. * dw_dma_cyclic_free - free a prepared cyclic DMA transfer
  1095. * @chan: the DMA channel to free
  1096. */
  1097. void dw_dma_cyclic_free(struct dma_chan *chan)
  1098. {
  1099. struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
  1100. struct dw_dma *dw = to_dw_dma(dwc->chan.device);
  1101. struct dw_cyclic_desc *cdesc = dwc->cdesc;
  1102. int i;
  1103. unsigned long flags;
  1104. dev_dbg(chan2dev(&dwc->chan), "cyclic free\n");
  1105. if (!cdesc)
  1106. return;
  1107. spin_lock_irqsave(&dwc->lock, flags);
  1108. channel_clear_bit(dw, CH_EN, dwc->mask);
  1109. while (dma_readl(dw, CH_EN) & dwc->mask)
  1110. cpu_relax();
  1111. dma_writel(dw, CLEAR.ERROR, dwc->mask);
  1112. dma_writel(dw, CLEAR.XFER, dwc->mask);
  1113. spin_unlock_irqrestore(&dwc->lock, flags);
  1114. for (i = 0; i < cdesc->periods; i++)
  1115. dwc_desc_put(dwc, cdesc->desc[i]);
  1116. kfree(cdesc->desc);
  1117. kfree(cdesc);
  1118. clear_bit(DW_DMA_IS_CYCLIC, &dwc->flags);
  1119. }
  1120. EXPORT_SYMBOL(dw_dma_cyclic_free);
  1121. /*----------------------------------------------------------------------*/
  1122. static void dw_dma_off(struct dw_dma *dw)
  1123. {
  1124. int i;
  1125. dma_writel(dw, CFG, 0);
  1126. channel_clear_bit(dw, MASK.XFER, dw->all_chan_mask);
  1127. channel_clear_bit(dw, MASK.SRC_TRAN, dw->all_chan_mask);
  1128. channel_clear_bit(dw, MASK.DST_TRAN, dw->all_chan_mask);
  1129. channel_clear_bit(dw, MASK.ERROR, dw->all_chan_mask);
  1130. while (dma_readl(dw, CFG) & DW_CFG_DMA_EN)
  1131. cpu_relax();
  1132. for (i = 0; i < dw->dma.chancnt; i++)
  1133. dw->chan[i].initialized = false;
  1134. }
  1135. static int __init dw_probe(struct platform_device *pdev)
  1136. {
  1137. struct dw_dma_platform_data *pdata;
  1138. struct resource *io;
  1139. struct dw_dma *dw;
  1140. size_t size;
  1141. int irq;
  1142. int err;
  1143. int i;
  1144. pdata = dev_get_platdata(&pdev->dev);
  1145. if (!pdata || pdata->nr_channels > DW_DMA_MAX_NR_CHANNELS)
  1146. return -EINVAL;
  1147. io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1148. if (!io)
  1149. return -EINVAL;
  1150. irq = platform_get_irq(pdev, 0);
  1151. if (irq < 0)
  1152. return irq;
  1153. size = sizeof(struct dw_dma);
  1154. size += pdata->nr_channels * sizeof(struct dw_dma_chan);
  1155. dw = kzalloc(size, GFP_KERNEL);
  1156. if (!dw)
  1157. return -ENOMEM;
  1158. if (!request_mem_region(io->start, DW_REGLEN, pdev->dev.driver->name)) {
  1159. err = -EBUSY;
  1160. goto err_kfree;
  1161. }
  1162. dw->regs = ioremap(io->start, DW_REGLEN);
  1163. if (!dw->regs) {
  1164. err = -ENOMEM;
  1165. goto err_release_r;
  1166. }
  1167. dw->clk = clk_get(&pdev->dev, "hclk");
  1168. if (IS_ERR(dw->clk)) {
  1169. err = PTR_ERR(dw->clk);
  1170. goto err_clk;
  1171. }
  1172. clk_prepare_enable(dw->clk);
  1173. /* force dma off, just in case */
  1174. dw_dma_off(dw);
  1175. err = request_irq(irq, dw_dma_interrupt, 0, "dw_dmac", dw);
  1176. if (err)
  1177. goto err_irq;
  1178. platform_set_drvdata(pdev, dw);
  1179. tasklet_init(&dw->tasklet, dw_dma_tasklet, (unsigned long)dw);
  1180. dw->all_chan_mask = (1 << pdata->nr_channels) - 1;
  1181. INIT_LIST_HEAD(&dw->dma.channels);
  1182. for (i = 0; i < pdata->nr_channels; i++) {
  1183. struct dw_dma_chan *dwc = &dw->chan[i];
  1184. dwc->chan.device = &dw->dma;
  1185. dma_cookie_init(&dwc->chan);
  1186. if (pdata->chan_allocation_order == CHAN_ALLOCATION_ASCENDING)
  1187. list_add_tail(&dwc->chan.device_node,
  1188. &dw->dma.channels);
  1189. else
  1190. list_add(&dwc->chan.device_node, &dw->dma.channels);
  1191. /* 7 is highest priority & 0 is lowest. */
  1192. if (pdata->chan_priority == CHAN_PRIORITY_ASCENDING)
  1193. dwc->priority = pdata->nr_channels - i - 1;
  1194. else
  1195. dwc->priority = i;
  1196. dwc->ch_regs = &__dw_regs(dw)->CHAN[i];
  1197. spin_lock_init(&dwc->lock);
  1198. dwc->mask = 1 << i;
  1199. INIT_LIST_HEAD(&dwc->active_list);
  1200. INIT_LIST_HEAD(&dwc->queue);
  1201. INIT_LIST_HEAD(&dwc->free_list);
  1202. channel_clear_bit(dw, CH_EN, dwc->mask);
  1203. }
  1204. /* Clear/disable all interrupts on all channels. */
  1205. dma_writel(dw, CLEAR.XFER, dw->all_chan_mask);
  1206. dma_writel(dw, CLEAR.SRC_TRAN, dw->all_chan_mask);
  1207. dma_writel(dw, CLEAR.DST_TRAN, dw->all_chan_mask);
  1208. dma_writel(dw, CLEAR.ERROR, dw->all_chan_mask);
  1209. channel_clear_bit(dw, MASK.XFER, dw->all_chan_mask);
  1210. channel_clear_bit(dw, MASK.SRC_TRAN, dw->all_chan_mask);
  1211. channel_clear_bit(dw, MASK.DST_TRAN, dw->all_chan_mask);
  1212. channel_clear_bit(dw, MASK.ERROR, dw->all_chan_mask);
  1213. dma_cap_set(DMA_MEMCPY, dw->dma.cap_mask);
  1214. dma_cap_set(DMA_SLAVE, dw->dma.cap_mask);
  1215. if (pdata->is_private)
  1216. dma_cap_set(DMA_PRIVATE, dw->dma.cap_mask);
  1217. dw->dma.dev = &pdev->dev;
  1218. dw->dma.device_alloc_chan_resources = dwc_alloc_chan_resources;
  1219. dw->dma.device_free_chan_resources = dwc_free_chan_resources;
  1220. dw->dma.device_prep_dma_memcpy = dwc_prep_dma_memcpy;
  1221. dw->dma.device_prep_slave_sg = dwc_prep_slave_sg;
  1222. dw->dma.device_control = dwc_control;
  1223. dw->dma.device_tx_status = dwc_tx_status;
  1224. dw->dma.device_issue_pending = dwc_issue_pending;
  1225. dma_writel(dw, CFG, DW_CFG_DMA_EN);
  1226. printk(KERN_INFO "%s: DesignWare DMA Controller, %d channels\n",
  1227. dev_name(&pdev->dev), pdata->nr_channels);
  1228. dma_async_device_register(&dw->dma);
  1229. return 0;
  1230. err_irq:
  1231. clk_disable_unprepare(dw->clk);
  1232. clk_put(dw->clk);
  1233. err_clk:
  1234. iounmap(dw->regs);
  1235. dw->regs = NULL;
  1236. err_release_r:
  1237. release_resource(io);
  1238. err_kfree:
  1239. kfree(dw);
  1240. return err;
  1241. }
  1242. static int __exit dw_remove(struct platform_device *pdev)
  1243. {
  1244. struct dw_dma *dw = platform_get_drvdata(pdev);
  1245. struct dw_dma_chan *dwc, *_dwc;
  1246. struct resource *io;
  1247. dw_dma_off(dw);
  1248. dma_async_device_unregister(&dw->dma);
  1249. free_irq(platform_get_irq(pdev, 0), dw);
  1250. tasklet_kill(&dw->tasklet);
  1251. list_for_each_entry_safe(dwc, _dwc, &dw->dma.channels,
  1252. chan.device_node) {
  1253. list_del(&dwc->chan.device_node);
  1254. channel_clear_bit(dw, CH_EN, dwc->mask);
  1255. }
  1256. clk_disable_unprepare(dw->clk);
  1257. clk_put(dw->clk);
  1258. iounmap(dw->regs);
  1259. dw->regs = NULL;
  1260. io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1261. release_mem_region(io->start, DW_REGLEN);
  1262. kfree(dw);
  1263. return 0;
  1264. }
  1265. static void dw_shutdown(struct platform_device *pdev)
  1266. {
  1267. struct dw_dma *dw = platform_get_drvdata(pdev);
  1268. dw_dma_off(platform_get_drvdata(pdev));
  1269. clk_disable_unprepare(dw->clk);
  1270. }
  1271. static int dw_suspend_noirq(struct device *dev)
  1272. {
  1273. struct platform_device *pdev = to_platform_device(dev);
  1274. struct dw_dma *dw = platform_get_drvdata(pdev);
  1275. dw_dma_off(platform_get_drvdata(pdev));
  1276. clk_disable_unprepare(dw->clk);
  1277. return 0;
  1278. }
  1279. static int dw_resume_noirq(struct device *dev)
  1280. {
  1281. struct platform_device *pdev = to_platform_device(dev);
  1282. struct dw_dma *dw = platform_get_drvdata(pdev);
  1283. clk_prepare_enable(dw->clk);
  1284. dma_writel(dw, CFG, DW_CFG_DMA_EN);
  1285. return 0;
  1286. }
  1287. static const struct dev_pm_ops dw_dev_pm_ops = {
  1288. .suspend_noirq = dw_suspend_noirq,
  1289. .resume_noirq = dw_resume_noirq,
  1290. .freeze_noirq = dw_suspend_noirq,
  1291. .thaw_noirq = dw_resume_noirq,
  1292. .restore_noirq = dw_resume_noirq,
  1293. .poweroff_noirq = dw_suspend_noirq,
  1294. };
  1295. #ifdef CONFIG_OF
  1296. static const struct of_device_id dw_dma_id_table[] = {
  1297. { .compatible = "snps,dma-spear1340" },
  1298. {}
  1299. };
  1300. MODULE_DEVICE_TABLE(of, dw_dma_id_table);
  1301. #endif
  1302. static struct platform_driver dw_driver = {
  1303. .remove = __exit_p(dw_remove),
  1304. .shutdown = dw_shutdown,
  1305. .driver = {
  1306. .name = "dw_dmac",
  1307. .pm = &dw_dev_pm_ops,
  1308. .of_match_table = of_match_ptr(dw_dma_id_table),
  1309. },
  1310. };
  1311. static int __init dw_init(void)
  1312. {
  1313. return platform_driver_probe(&dw_driver, dw_probe);
  1314. }
  1315. subsys_initcall(dw_init);
  1316. static void __exit dw_exit(void)
  1317. {
  1318. platform_driver_unregister(&dw_driver);
  1319. }
  1320. module_exit(dw_exit);
  1321. MODULE_LICENSE("GPL v2");
  1322. MODULE_DESCRIPTION("Synopsys DesignWare DMA Controller driver");
  1323. MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
  1324. MODULE_AUTHOR("Viresh Kumar <viresh.kumar@st.com>");