extent-tree.c 215 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/sched.h>
  19. #include <linux/pagemap.h>
  20. #include <linux/writeback.h>
  21. #include <linux/blkdev.h>
  22. #include <linux/sort.h>
  23. #include <linux/rcupdate.h>
  24. #include <linux/kthread.h>
  25. #include <linux/slab.h>
  26. #include <linux/ratelimit.h>
  27. #include "compat.h"
  28. #include "hash.h"
  29. #include "ctree.h"
  30. #include "disk-io.h"
  31. #include "print-tree.h"
  32. #include "transaction.h"
  33. #include "volumes.h"
  34. #include "locking.h"
  35. #include "free-space-cache.h"
  36. #undef SCRAMBLE_DELAYED_REFS
  37. /*
  38. * control flags for do_chunk_alloc's force field
  39. * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
  40. * if we really need one.
  41. *
  42. * CHUNK_ALLOC_LIMITED means to only try and allocate one
  43. * if we have very few chunks already allocated. This is
  44. * used as part of the clustering code to help make sure
  45. * we have a good pool of storage to cluster in, without
  46. * filling the FS with empty chunks
  47. *
  48. * CHUNK_ALLOC_FORCE means it must try to allocate one
  49. *
  50. */
  51. enum {
  52. CHUNK_ALLOC_NO_FORCE = 0,
  53. CHUNK_ALLOC_LIMITED = 1,
  54. CHUNK_ALLOC_FORCE = 2,
  55. };
  56. /*
  57. * Control how reservations are dealt with.
  58. *
  59. * RESERVE_FREE - freeing a reservation.
  60. * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
  61. * ENOSPC accounting
  62. * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
  63. * bytes_may_use as the ENOSPC accounting is done elsewhere
  64. */
  65. enum {
  66. RESERVE_FREE = 0,
  67. RESERVE_ALLOC = 1,
  68. RESERVE_ALLOC_NO_ACCOUNT = 2,
  69. };
  70. static int update_block_group(struct btrfs_trans_handle *trans,
  71. struct btrfs_root *root,
  72. u64 bytenr, u64 num_bytes, int alloc);
  73. static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
  74. struct btrfs_root *root,
  75. u64 bytenr, u64 num_bytes, u64 parent,
  76. u64 root_objectid, u64 owner_objectid,
  77. u64 owner_offset, int refs_to_drop,
  78. struct btrfs_delayed_extent_op *extra_op);
  79. static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
  80. struct extent_buffer *leaf,
  81. struct btrfs_extent_item *ei);
  82. static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
  83. struct btrfs_root *root,
  84. u64 parent, u64 root_objectid,
  85. u64 flags, u64 owner, u64 offset,
  86. struct btrfs_key *ins, int ref_mod);
  87. static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
  88. struct btrfs_root *root,
  89. u64 parent, u64 root_objectid,
  90. u64 flags, struct btrfs_disk_key *key,
  91. int level, struct btrfs_key *ins);
  92. static int do_chunk_alloc(struct btrfs_trans_handle *trans,
  93. struct btrfs_root *extent_root, u64 alloc_bytes,
  94. u64 flags, int force);
  95. static int find_next_key(struct btrfs_path *path, int level,
  96. struct btrfs_key *key);
  97. static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
  98. int dump_block_groups);
  99. static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
  100. u64 num_bytes, int reserve);
  101. static noinline int
  102. block_group_cache_done(struct btrfs_block_group_cache *cache)
  103. {
  104. smp_mb();
  105. return cache->cached == BTRFS_CACHE_FINISHED;
  106. }
  107. static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
  108. {
  109. return (cache->flags & bits) == bits;
  110. }
  111. static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
  112. {
  113. atomic_inc(&cache->count);
  114. }
  115. void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
  116. {
  117. if (atomic_dec_and_test(&cache->count)) {
  118. WARN_ON(cache->pinned > 0);
  119. WARN_ON(cache->reserved > 0);
  120. kfree(cache->free_space_ctl);
  121. kfree(cache);
  122. }
  123. }
  124. /*
  125. * this adds the block group to the fs_info rb tree for the block group
  126. * cache
  127. */
  128. static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
  129. struct btrfs_block_group_cache *block_group)
  130. {
  131. struct rb_node **p;
  132. struct rb_node *parent = NULL;
  133. struct btrfs_block_group_cache *cache;
  134. spin_lock(&info->block_group_cache_lock);
  135. p = &info->block_group_cache_tree.rb_node;
  136. while (*p) {
  137. parent = *p;
  138. cache = rb_entry(parent, struct btrfs_block_group_cache,
  139. cache_node);
  140. if (block_group->key.objectid < cache->key.objectid) {
  141. p = &(*p)->rb_left;
  142. } else if (block_group->key.objectid > cache->key.objectid) {
  143. p = &(*p)->rb_right;
  144. } else {
  145. spin_unlock(&info->block_group_cache_lock);
  146. return -EEXIST;
  147. }
  148. }
  149. rb_link_node(&block_group->cache_node, parent, p);
  150. rb_insert_color(&block_group->cache_node,
  151. &info->block_group_cache_tree);
  152. spin_unlock(&info->block_group_cache_lock);
  153. return 0;
  154. }
  155. /*
  156. * This will return the block group at or after bytenr if contains is 0, else
  157. * it will return the block group that contains the bytenr
  158. */
  159. static struct btrfs_block_group_cache *
  160. block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
  161. int contains)
  162. {
  163. struct btrfs_block_group_cache *cache, *ret = NULL;
  164. struct rb_node *n;
  165. u64 end, start;
  166. spin_lock(&info->block_group_cache_lock);
  167. n = info->block_group_cache_tree.rb_node;
  168. while (n) {
  169. cache = rb_entry(n, struct btrfs_block_group_cache,
  170. cache_node);
  171. end = cache->key.objectid + cache->key.offset - 1;
  172. start = cache->key.objectid;
  173. if (bytenr < start) {
  174. if (!contains && (!ret || start < ret->key.objectid))
  175. ret = cache;
  176. n = n->rb_left;
  177. } else if (bytenr > start) {
  178. if (contains && bytenr <= end) {
  179. ret = cache;
  180. break;
  181. }
  182. n = n->rb_right;
  183. } else {
  184. ret = cache;
  185. break;
  186. }
  187. }
  188. if (ret)
  189. btrfs_get_block_group(ret);
  190. spin_unlock(&info->block_group_cache_lock);
  191. return ret;
  192. }
  193. static int add_excluded_extent(struct btrfs_root *root,
  194. u64 start, u64 num_bytes)
  195. {
  196. u64 end = start + num_bytes - 1;
  197. set_extent_bits(&root->fs_info->freed_extents[0],
  198. start, end, EXTENT_UPTODATE, GFP_NOFS);
  199. set_extent_bits(&root->fs_info->freed_extents[1],
  200. start, end, EXTENT_UPTODATE, GFP_NOFS);
  201. return 0;
  202. }
  203. static void free_excluded_extents(struct btrfs_root *root,
  204. struct btrfs_block_group_cache *cache)
  205. {
  206. u64 start, end;
  207. start = cache->key.objectid;
  208. end = start + cache->key.offset - 1;
  209. clear_extent_bits(&root->fs_info->freed_extents[0],
  210. start, end, EXTENT_UPTODATE, GFP_NOFS);
  211. clear_extent_bits(&root->fs_info->freed_extents[1],
  212. start, end, EXTENT_UPTODATE, GFP_NOFS);
  213. }
  214. static int exclude_super_stripes(struct btrfs_root *root,
  215. struct btrfs_block_group_cache *cache)
  216. {
  217. u64 bytenr;
  218. u64 *logical;
  219. int stripe_len;
  220. int i, nr, ret;
  221. if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
  222. stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
  223. cache->bytes_super += stripe_len;
  224. ret = add_excluded_extent(root, cache->key.objectid,
  225. stripe_len);
  226. BUG_ON(ret); /* -ENOMEM */
  227. }
  228. for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
  229. bytenr = btrfs_sb_offset(i);
  230. ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
  231. cache->key.objectid, bytenr,
  232. 0, &logical, &nr, &stripe_len);
  233. BUG_ON(ret); /* -ENOMEM */
  234. while (nr--) {
  235. cache->bytes_super += stripe_len;
  236. ret = add_excluded_extent(root, logical[nr],
  237. stripe_len);
  238. BUG_ON(ret); /* -ENOMEM */
  239. }
  240. kfree(logical);
  241. }
  242. return 0;
  243. }
  244. static struct btrfs_caching_control *
  245. get_caching_control(struct btrfs_block_group_cache *cache)
  246. {
  247. struct btrfs_caching_control *ctl;
  248. spin_lock(&cache->lock);
  249. if (cache->cached != BTRFS_CACHE_STARTED) {
  250. spin_unlock(&cache->lock);
  251. return NULL;
  252. }
  253. /* We're loading it the fast way, so we don't have a caching_ctl. */
  254. if (!cache->caching_ctl) {
  255. spin_unlock(&cache->lock);
  256. return NULL;
  257. }
  258. ctl = cache->caching_ctl;
  259. atomic_inc(&ctl->count);
  260. spin_unlock(&cache->lock);
  261. return ctl;
  262. }
  263. static void put_caching_control(struct btrfs_caching_control *ctl)
  264. {
  265. if (atomic_dec_and_test(&ctl->count))
  266. kfree(ctl);
  267. }
  268. /*
  269. * this is only called by cache_block_group, since we could have freed extents
  270. * we need to check the pinned_extents for any extents that can't be used yet
  271. * since their free space will be released as soon as the transaction commits.
  272. */
  273. static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
  274. struct btrfs_fs_info *info, u64 start, u64 end)
  275. {
  276. u64 extent_start, extent_end, size, total_added = 0;
  277. int ret;
  278. while (start < end) {
  279. ret = find_first_extent_bit(info->pinned_extents, start,
  280. &extent_start, &extent_end,
  281. EXTENT_DIRTY | EXTENT_UPTODATE);
  282. if (ret)
  283. break;
  284. if (extent_start <= start) {
  285. start = extent_end + 1;
  286. } else if (extent_start > start && extent_start < end) {
  287. size = extent_start - start;
  288. total_added += size;
  289. ret = btrfs_add_free_space(block_group, start,
  290. size);
  291. BUG_ON(ret); /* -ENOMEM or logic error */
  292. start = extent_end + 1;
  293. } else {
  294. break;
  295. }
  296. }
  297. if (start < end) {
  298. size = end - start;
  299. total_added += size;
  300. ret = btrfs_add_free_space(block_group, start, size);
  301. BUG_ON(ret); /* -ENOMEM or logic error */
  302. }
  303. return total_added;
  304. }
  305. static noinline void caching_thread(struct btrfs_work *work)
  306. {
  307. struct btrfs_block_group_cache *block_group;
  308. struct btrfs_fs_info *fs_info;
  309. struct btrfs_caching_control *caching_ctl;
  310. struct btrfs_root *extent_root;
  311. struct btrfs_path *path;
  312. struct extent_buffer *leaf;
  313. struct btrfs_key key;
  314. u64 total_found = 0;
  315. u64 last = 0;
  316. u32 nritems;
  317. int ret = 0;
  318. caching_ctl = container_of(work, struct btrfs_caching_control, work);
  319. block_group = caching_ctl->block_group;
  320. fs_info = block_group->fs_info;
  321. extent_root = fs_info->extent_root;
  322. path = btrfs_alloc_path();
  323. if (!path)
  324. goto out;
  325. last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
  326. /*
  327. * We don't want to deadlock with somebody trying to allocate a new
  328. * extent for the extent root while also trying to search the extent
  329. * root to add free space. So we skip locking and search the commit
  330. * root, since its read-only
  331. */
  332. path->skip_locking = 1;
  333. path->search_commit_root = 1;
  334. path->reada = 1;
  335. key.objectid = last;
  336. key.offset = 0;
  337. key.type = BTRFS_EXTENT_ITEM_KEY;
  338. again:
  339. mutex_lock(&caching_ctl->mutex);
  340. /* need to make sure the commit_root doesn't disappear */
  341. down_read(&fs_info->extent_commit_sem);
  342. ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
  343. if (ret < 0)
  344. goto err;
  345. leaf = path->nodes[0];
  346. nritems = btrfs_header_nritems(leaf);
  347. while (1) {
  348. if (btrfs_fs_closing(fs_info) > 1) {
  349. last = (u64)-1;
  350. break;
  351. }
  352. if (path->slots[0] < nritems) {
  353. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  354. } else {
  355. ret = find_next_key(path, 0, &key);
  356. if (ret)
  357. break;
  358. if (need_resched() ||
  359. btrfs_next_leaf(extent_root, path)) {
  360. caching_ctl->progress = last;
  361. btrfs_release_path(path);
  362. up_read(&fs_info->extent_commit_sem);
  363. mutex_unlock(&caching_ctl->mutex);
  364. cond_resched();
  365. goto again;
  366. }
  367. leaf = path->nodes[0];
  368. nritems = btrfs_header_nritems(leaf);
  369. continue;
  370. }
  371. if (key.objectid < block_group->key.objectid) {
  372. path->slots[0]++;
  373. continue;
  374. }
  375. if (key.objectid >= block_group->key.objectid +
  376. block_group->key.offset)
  377. break;
  378. if (key.type == BTRFS_EXTENT_ITEM_KEY) {
  379. total_found += add_new_free_space(block_group,
  380. fs_info, last,
  381. key.objectid);
  382. last = key.objectid + key.offset;
  383. if (total_found > (1024 * 1024 * 2)) {
  384. total_found = 0;
  385. wake_up(&caching_ctl->wait);
  386. }
  387. }
  388. path->slots[0]++;
  389. }
  390. ret = 0;
  391. total_found += add_new_free_space(block_group, fs_info, last,
  392. block_group->key.objectid +
  393. block_group->key.offset);
  394. caching_ctl->progress = (u64)-1;
  395. spin_lock(&block_group->lock);
  396. block_group->caching_ctl = NULL;
  397. block_group->cached = BTRFS_CACHE_FINISHED;
  398. spin_unlock(&block_group->lock);
  399. err:
  400. btrfs_free_path(path);
  401. up_read(&fs_info->extent_commit_sem);
  402. free_excluded_extents(extent_root, block_group);
  403. mutex_unlock(&caching_ctl->mutex);
  404. out:
  405. wake_up(&caching_ctl->wait);
  406. put_caching_control(caching_ctl);
  407. btrfs_put_block_group(block_group);
  408. }
  409. static int cache_block_group(struct btrfs_block_group_cache *cache,
  410. struct btrfs_trans_handle *trans,
  411. struct btrfs_root *root,
  412. int load_cache_only)
  413. {
  414. DEFINE_WAIT(wait);
  415. struct btrfs_fs_info *fs_info = cache->fs_info;
  416. struct btrfs_caching_control *caching_ctl;
  417. int ret = 0;
  418. caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
  419. if (!caching_ctl)
  420. return -ENOMEM;
  421. INIT_LIST_HEAD(&caching_ctl->list);
  422. mutex_init(&caching_ctl->mutex);
  423. init_waitqueue_head(&caching_ctl->wait);
  424. caching_ctl->block_group = cache;
  425. caching_ctl->progress = cache->key.objectid;
  426. atomic_set(&caching_ctl->count, 1);
  427. caching_ctl->work.func = caching_thread;
  428. spin_lock(&cache->lock);
  429. /*
  430. * This should be a rare occasion, but this could happen I think in the
  431. * case where one thread starts to load the space cache info, and then
  432. * some other thread starts a transaction commit which tries to do an
  433. * allocation while the other thread is still loading the space cache
  434. * info. The previous loop should have kept us from choosing this block
  435. * group, but if we've moved to the state where we will wait on caching
  436. * block groups we need to first check if we're doing a fast load here,
  437. * so we can wait for it to finish, otherwise we could end up allocating
  438. * from a block group who's cache gets evicted for one reason or
  439. * another.
  440. */
  441. while (cache->cached == BTRFS_CACHE_FAST) {
  442. struct btrfs_caching_control *ctl;
  443. ctl = cache->caching_ctl;
  444. atomic_inc(&ctl->count);
  445. prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
  446. spin_unlock(&cache->lock);
  447. schedule();
  448. finish_wait(&ctl->wait, &wait);
  449. put_caching_control(ctl);
  450. spin_lock(&cache->lock);
  451. }
  452. if (cache->cached != BTRFS_CACHE_NO) {
  453. spin_unlock(&cache->lock);
  454. kfree(caching_ctl);
  455. return 0;
  456. }
  457. WARN_ON(cache->caching_ctl);
  458. cache->caching_ctl = caching_ctl;
  459. cache->cached = BTRFS_CACHE_FAST;
  460. spin_unlock(&cache->lock);
  461. /*
  462. * We can't do the read from on-disk cache during a commit since we need
  463. * to have the normal tree locking. Also if we are currently trying to
  464. * allocate blocks for the tree root we can't do the fast caching since
  465. * we likely hold important locks.
  466. */
  467. if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
  468. ret = load_free_space_cache(fs_info, cache);
  469. spin_lock(&cache->lock);
  470. if (ret == 1) {
  471. cache->caching_ctl = NULL;
  472. cache->cached = BTRFS_CACHE_FINISHED;
  473. cache->last_byte_to_unpin = (u64)-1;
  474. } else {
  475. if (load_cache_only) {
  476. cache->caching_ctl = NULL;
  477. cache->cached = BTRFS_CACHE_NO;
  478. } else {
  479. cache->cached = BTRFS_CACHE_STARTED;
  480. }
  481. }
  482. spin_unlock(&cache->lock);
  483. wake_up(&caching_ctl->wait);
  484. if (ret == 1) {
  485. put_caching_control(caching_ctl);
  486. free_excluded_extents(fs_info->extent_root, cache);
  487. return 0;
  488. }
  489. } else {
  490. /*
  491. * We are not going to do the fast caching, set cached to the
  492. * appropriate value and wakeup any waiters.
  493. */
  494. spin_lock(&cache->lock);
  495. if (load_cache_only) {
  496. cache->caching_ctl = NULL;
  497. cache->cached = BTRFS_CACHE_NO;
  498. } else {
  499. cache->cached = BTRFS_CACHE_STARTED;
  500. }
  501. spin_unlock(&cache->lock);
  502. wake_up(&caching_ctl->wait);
  503. }
  504. if (load_cache_only) {
  505. put_caching_control(caching_ctl);
  506. return 0;
  507. }
  508. down_write(&fs_info->extent_commit_sem);
  509. atomic_inc(&caching_ctl->count);
  510. list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
  511. up_write(&fs_info->extent_commit_sem);
  512. btrfs_get_block_group(cache);
  513. btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
  514. return ret;
  515. }
  516. /*
  517. * return the block group that starts at or after bytenr
  518. */
  519. static struct btrfs_block_group_cache *
  520. btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
  521. {
  522. struct btrfs_block_group_cache *cache;
  523. cache = block_group_cache_tree_search(info, bytenr, 0);
  524. return cache;
  525. }
  526. /*
  527. * return the block group that contains the given bytenr
  528. */
  529. struct btrfs_block_group_cache *btrfs_lookup_block_group(
  530. struct btrfs_fs_info *info,
  531. u64 bytenr)
  532. {
  533. struct btrfs_block_group_cache *cache;
  534. cache = block_group_cache_tree_search(info, bytenr, 1);
  535. return cache;
  536. }
  537. static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
  538. u64 flags)
  539. {
  540. struct list_head *head = &info->space_info;
  541. struct btrfs_space_info *found;
  542. flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
  543. rcu_read_lock();
  544. list_for_each_entry_rcu(found, head, list) {
  545. if (found->flags & flags) {
  546. rcu_read_unlock();
  547. return found;
  548. }
  549. }
  550. rcu_read_unlock();
  551. return NULL;
  552. }
  553. /*
  554. * after adding space to the filesystem, we need to clear the full flags
  555. * on all the space infos.
  556. */
  557. void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
  558. {
  559. struct list_head *head = &info->space_info;
  560. struct btrfs_space_info *found;
  561. rcu_read_lock();
  562. list_for_each_entry_rcu(found, head, list)
  563. found->full = 0;
  564. rcu_read_unlock();
  565. }
  566. static u64 div_factor(u64 num, int factor)
  567. {
  568. if (factor == 10)
  569. return num;
  570. num *= factor;
  571. do_div(num, 10);
  572. return num;
  573. }
  574. static u64 div_factor_fine(u64 num, int factor)
  575. {
  576. if (factor == 100)
  577. return num;
  578. num *= factor;
  579. do_div(num, 100);
  580. return num;
  581. }
  582. u64 btrfs_find_block_group(struct btrfs_root *root,
  583. u64 search_start, u64 search_hint, int owner)
  584. {
  585. struct btrfs_block_group_cache *cache;
  586. u64 used;
  587. u64 last = max(search_hint, search_start);
  588. u64 group_start = 0;
  589. int full_search = 0;
  590. int factor = 9;
  591. int wrapped = 0;
  592. again:
  593. while (1) {
  594. cache = btrfs_lookup_first_block_group(root->fs_info, last);
  595. if (!cache)
  596. break;
  597. spin_lock(&cache->lock);
  598. last = cache->key.objectid + cache->key.offset;
  599. used = btrfs_block_group_used(&cache->item);
  600. if ((full_search || !cache->ro) &&
  601. block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
  602. if (used + cache->pinned + cache->reserved <
  603. div_factor(cache->key.offset, factor)) {
  604. group_start = cache->key.objectid;
  605. spin_unlock(&cache->lock);
  606. btrfs_put_block_group(cache);
  607. goto found;
  608. }
  609. }
  610. spin_unlock(&cache->lock);
  611. btrfs_put_block_group(cache);
  612. cond_resched();
  613. }
  614. if (!wrapped) {
  615. last = search_start;
  616. wrapped = 1;
  617. goto again;
  618. }
  619. if (!full_search && factor < 10) {
  620. last = search_start;
  621. full_search = 1;
  622. factor = 10;
  623. goto again;
  624. }
  625. found:
  626. return group_start;
  627. }
  628. /* simple helper to search for an existing extent at a given offset */
  629. int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
  630. {
  631. int ret;
  632. struct btrfs_key key;
  633. struct btrfs_path *path;
  634. path = btrfs_alloc_path();
  635. if (!path)
  636. return -ENOMEM;
  637. key.objectid = start;
  638. key.offset = len;
  639. btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
  640. ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
  641. 0, 0);
  642. btrfs_free_path(path);
  643. return ret;
  644. }
  645. /*
  646. * helper function to lookup reference count and flags of extent.
  647. *
  648. * the head node for delayed ref is used to store the sum of all the
  649. * reference count modifications queued up in the rbtree. the head
  650. * node may also store the extent flags to set. This way you can check
  651. * to see what the reference count and extent flags would be if all of
  652. * the delayed refs are not processed.
  653. */
  654. int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
  655. struct btrfs_root *root, u64 bytenr,
  656. u64 num_bytes, u64 *refs, u64 *flags)
  657. {
  658. struct btrfs_delayed_ref_head *head;
  659. struct btrfs_delayed_ref_root *delayed_refs;
  660. struct btrfs_path *path;
  661. struct btrfs_extent_item *ei;
  662. struct extent_buffer *leaf;
  663. struct btrfs_key key;
  664. u32 item_size;
  665. u64 num_refs;
  666. u64 extent_flags;
  667. int ret;
  668. path = btrfs_alloc_path();
  669. if (!path)
  670. return -ENOMEM;
  671. key.objectid = bytenr;
  672. key.type = BTRFS_EXTENT_ITEM_KEY;
  673. key.offset = num_bytes;
  674. if (!trans) {
  675. path->skip_locking = 1;
  676. path->search_commit_root = 1;
  677. }
  678. again:
  679. ret = btrfs_search_slot(trans, root->fs_info->extent_root,
  680. &key, path, 0, 0);
  681. if (ret < 0)
  682. goto out_free;
  683. if (ret == 0) {
  684. leaf = path->nodes[0];
  685. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  686. if (item_size >= sizeof(*ei)) {
  687. ei = btrfs_item_ptr(leaf, path->slots[0],
  688. struct btrfs_extent_item);
  689. num_refs = btrfs_extent_refs(leaf, ei);
  690. extent_flags = btrfs_extent_flags(leaf, ei);
  691. } else {
  692. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  693. struct btrfs_extent_item_v0 *ei0;
  694. BUG_ON(item_size != sizeof(*ei0));
  695. ei0 = btrfs_item_ptr(leaf, path->slots[0],
  696. struct btrfs_extent_item_v0);
  697. num_refs = btrfs_extent_refs_v0(leaf, ei0);
  698. /* FIXME: this isn't correct for data */
  699. extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
  700. #else
  701. BUG();
  702. #endif
  703. }
  704. BUG_ON(num_refs == 0);
  705. } else {
  706. num_refs = 0;
  707. extent_flags = 0;
  708. ret = 0;
  709. }
  710. if (!trans)
  711. goto out;
  712. delayed_refs = &trans->transaction->delayed_refs;
  713. spin_lock(&delayed_refs->lock);
  714. head = btrfs_find_delayed_ref_head(trans, bytenr);
  715. if (head) {
  716. if (!mutex_trylock(&head->mutex)) {
  717. atomic_inc(&head->node.refs);
  718. spin_unlock(&delayed_refs->lock);
  719. btrfs_release_path(path);
  720. /*
  721. * Mutex was contended, block until it's released and try
  722. * again
  723. */
  724. mutex_lock(&head->mutex);
  725. mutex_unlock(&head->mutex);
  726. btrfs_put_delayed_ref(&head->node);
  727. goto again;
  728. }
  729. if (head->extent_op && head->extent_op->update_flags)
  730. extent_flags |= head->extent_op->flags_to_set;
  731. else
  732. BUG_ON(num_refs == 0);
  733. num_refs += head->node.ref_mod;
  734. mutex_unlock(&head->mutex);
  735. }
  736. spin_unlock(&delayed_refs->lock);
  737. out:
  738. WARN_ON(num_refs == 0);
  739. if (refs)
  740. *refs = num_refs;
  741. if (flags)
  742. *flags = extent_flags;
  743. out_free:
  744. btrfs_free_path(path);
  745. return ret;
  746. }
  747. /*
  748. * Back reference rules. Back refs have three main goals:
  749. *
  750. * 1) differentiate between all holders of references to an extent so that
  751. * when a reference is dropped we can make sure it was a valid reference
  752. * before freeing the extent.
  753. *
  754. * 2) Provide enough information to quickly find the holders of an extent
  755. * if we notice a given block is corrupted or bad.
  756. *
  757. * 3) Make it easy to migrate blocks for FS shrinking or storage pool
  758. * maintenance. This is actually the same as #2, but with a slightly
  759. * different use case.
  760. *
  761. * There are two kinds of back refs. The implicit back refs is optimized
  762. * for pointers in non-shared tree blocks. For a given pointer in a block,
  763. * back refs of this kind provide information about the block's owner tree
  764. * and the pointer's key. These information allow us to find the block by
  765. * b-tree searching. The full back refs is for pointers in tree blocks not
  766. * referenced by their owner trees. The location of tree block is recorded
  767. * in the back refs. Actually the full back refs is generic, and can be
  768. * used in all cases the implicit back refs is used. The major shortcoming
  769. * of the full back refs is its overhead. Every time a tree block gets
  770. * COWed, we have to update back refs entry for all pointers in it.
  771. *
  772. * For a newly allocated tree block, we use implicit back refs for
  773. * pointers in it. This means most tree related operations only involve
  774. * implicit back refs. For a tree block created in old transaction, the
  775. * only way to drop a reference to it is COW it. So we can detect the
  776. * event that tree block loses its owner tree's reference and do the
  777. * back refs conversion.
  778. *
  779. * When a tree block is COW'd through a tree, there are four cases:
  780. *
  781. * The reference count of the block is one and the tree is the block's
  782. * owner tree. Nothing to do in this case.
  783. *
  784. * The reference count of the block is one and the tree is not the
  785. * block's owner tree. In this case, full back refs is used for pointers
  786. * in the block. Remove these full back refs, add implicit back refs for
  787. * every pointers in the new block.
  788. *
  789. * The reference count of the block is greater than one and the tree is
  790. * the block's owner tree. In this case, implicit back refs is used for
  791. * pointers in the block. Add full back refs for every pointers in the
  792. * block, increase lower level extents' reference counts. The original
  793. * implicit back refs are entailed to the new block.
  794. *
  795. * The reference count of the block is greater than one and the tree is
  796. * not the block's owner tree. Add implicit back refs for every pointer in
  797. * the new block, increase lower level extents' reference count.
  798. *
  799. * Back Reference Key composing:
  800. *
  801. * The key objectid corresponds to the first byte in the extent,
  802. * The key type is used to differentiate between types of back refs.
  803. * There are different meanings of the key offset for different types
  804. * of back refs.
  805. *
  806. * File extents can be referenced by:
  807. *
  808. * - multiple snapshots, subvolumes, or different generations in one subvol
  809. * - different files inside a single subvolume
  810. * - different offsets inside a file (bookend extents in file.c)
  811. *
  812. * The extent ref structure for the implicit back refs has fields for:
  813. *
  814. * - Objectid of the subvolume root
  815. * - objectid of the file holding the reference
  816. * - original offset in the file
  817. * - how many bookend extents
  818. *
  819. * The key offset for the implicit back refs is hash of the first
  820. * three fields.
  821. *
  822. * The extent ref structure for the full back refs has field for:
  823. *
  824. * - number of pointers in the tree leaf
  825. *
  826. * The key offset for the implicit back refs is the first byte of
  827. * the tree leaf
  828. *
  829. * When a file extent is allocated, The implicit back refs is used.
  830. * the fields are filled in:
  831. *
  832. * (root_key.objectid, inode objectid, offset in file, 1)
  833. *
  834. * When a file extent is removed file truncation, we find the
  835. * corresponding implicit back refs and check the following fields:
  836. *
  837. * (btrfs_header_owner(leaf), inode objectid, offset in file)
  838. *
  839. * Btree extents can be referenced by:
  840. *
  841. * - Different subvolumes
  842. *
  843. * Both the implicit back refs and the full back refs for tree blocks
  844. * only consist of key. The key offset for the implicit back refs is
  845. * objectid of block's owner tree. The key offset for the full back refs
  846. * is the first byte of parent block.
  847. *
  848. * When implicit back refs is used, information about the lowest key and
  849. * level of the tree block are required. These information are stored in
  850. * tree block info structure.
  851. */
  852. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  853. static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
  854. struct btrfs_root *root,
  855. struct btrfs_path *path,
  856. u64 owner, u32 extra_size)
  857. {
  858. struct btrfs_extent_item *item;
  859. struct btrfs_extent_item_v0 *ei0;
  860. struct btrfs_extent_ref_v0 *ref0;
  861. struct btrfs_tree_block_info *bi;
  862. struct extent_buffer *leaf;
  863. struct btrfs_key key;
  864. struct btrfs_key found_key;
  865. u32 new_size = sizeof(*item);
  866. u64 refs;
  867. int ret;
  868. leaf = path->nodes[0];
  869. BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
  870. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  871. ei0 = btrfs_item_ptr(leaf, path->slots[0],
  872. struct btrfs_extent_item_v0);
  873. refs = btrfs_extent_refs_v0(leaf, ei0);
  874. if (owner == (u64)-1) {
  875. while (1) {
  876. if (path->slots[0] >= btrfs_header_nritems(leaf)) {
  877. ret = btrfs_next_leaf(root, path);
  878. if (ret < 0)
  879. return ret;
  880. BUG_ON(ret > 0); /* Corruption */
  881. leaf = path->nodes[0];
  882. }
  883. btrfs_item_key_to_cpu(leaf, &found_key,
  884. path->slots[0]);
  885. BUG_ON(key.objectid != found_key.objectid);
  886. if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
  887. path->slots[0]++;
  888. continue;
  889. }
  890. ref0 = btrfs_item_ptr(leaf, path->slots[0],
  891. struct btrfs_extent_ref_v0);
  892. owner = btrfs_ref_objectid_v0(leaf, ref0);
  893. break;
  894. }
  895. }
  896. btrfs_release_path(path);
  897. if (owner < BTRFS_FIRST_FREE_OBJECTID)
  898. new_size += sizeof(*bi);
  899. new_size -= sizeof(*ei0);
  900. ret = btrfs_search_slot(trans, root, &key, path,
  901. new_size + extra_size, 1);
  902. if (ret < 0)
  903. return ret;
  904. BUG_ON(ret); /* Corruption */
  905. btrfs_extend_item(trans, root, path, new_size);
  906. leaf = path->nodes[0];
  907. item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
  908. btrfs_set_extent_refs(leaf, item, refs);
  909. /* FIXME: get real generation */
  910. btrfs_set_extent_generation(leaf, item, 0);
  911. if (owner < BTRFS_FIRST_FREE_OBJECTID) {
  912. btrfs_set_extent_flags(leaf, item,
  913. BTRFS_EXTENT_FLAG_TREE_BLOCK |
  914. BTRFS_BLOCK_FLAG_FULL_BACKREF);
  915. bi = (struct btrfs_tree_block_info *)(item + 1);
  916. /* FIXME: get first key of the block */
  917. memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
  918. btrfs_set_tree_block_level(leaf, bi, (int)owner);
  919. } else {
  920. btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
  921. }
  922. btrfs_mark_buffer_dirty(leaf);
  923. return 0;
  924. }
  925. #endif
  926. static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
  927. {
  928. u32 high_crc = ~(u32)0;
  929. u32 low_crc = ~(u32)0;
  930. __le64 lenum;
  931. lenum = cpu_to_le64(root_objectid);
  932. high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
  933. lenum = cpu_to_le64(owner);
  934. low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
  935. lenum = cpu_to_le64(offset);
  936. low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
  937. return ((u64)high_crc << 31) ^ (u64)low_crc;
  938. }
  939. static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
  940. struct btrfs_extent_data_ref *ref)
  941. {
  942. return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
  943. btrfs_extent_data_ref_objectid(leaf, ref),
  944. btrfs_extent_data_ref_offset(leaf, ref));
  945. }
  946. static int match_extent_data_ref(struct extent_buffer *leaf,
  947. struct btrfs_extent_data_ref *ref,
  948. u64 root_objectid, u64 owner, u64 offset)
  949. {
  950. if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
  951. btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
  952. btrfs_extent_data_ref_offset(leaf, ref) != offset)
  953. return 0;
  954. return 1;
  955. }
  956. static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
  957. struct btrfs_root *root,
  958. struct btrfs_path *path,
  959. u64 bytenr, u64 parent,
  960. u64 root_objectid,
  961. u64 owner, u64 offset)
  962. {
  963. struct btrfs_key key;
  964. struct btrfs_extent_data_ref *ref;
  965. struct extent_buffer *leaf;
  966. u32 nritems;
  967. int ret;
  968. int recow;
  969. int err = -ENOENT;
  970. key.objectid = bytenr;
  971. if (parent) {
  972. key.type = BTRFS_SHARED_DATA_REF_KEY;
  973. key.offset = parent;
  974. } else {
  975. key.type = BTRFS_EXTENT_DATA_REF_KEY;
  976. key.offset = hash_extent_data_ref(root_objectid,
  977. owner, offset);
  978. }
  979. again:
  980. recow = 0;
  981. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  982. if (ret < 0) {
  983. err = ret;
  984. goto fail;
  985. }
  986. if (parent) {
  987. if (!ret)
  988. return 0;
  989. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  990. key.type = BTRFS_EXTENT_REF_V0_KEY;
  991. btrfs_release_path(path);
  992. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  993. if (ret < 0) {
  994. err = ret;
  995. goto fail;
  996. }
  997. if (!ret)
  998. return 0;
  999. #endif
  1000. goto fail;
  1001. }
  1002. leaf = path->nodes[0];
  1003. nritems = btrfs_header_nritems(leaf);
  1004. while (1) {
  1005. if (path->slots[0] >= nritems) {
  1006. ret = btrfs_next_leaf(root, path);
  1007. if (ret < 0)
  1008. err = ret;
  1009. if (ret)
  1010. goto fail;
  1011. leaf = path->nodes[0];
  1012. nritems = btrfs_header_nritems(leaf);
  1013. recow = 1;
  1014. }
  1015. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  1016. if (key.objectid != bytenr ||
  1017. key.type != BTRFS_EXTENT_DATA_REF_KEY)
  1018. goto fail;
  1019. ref = btrfs_item_ptr(leaf, path->slots[0],
  1020. struct btrfs_extent_data_ref);
  1021. if (match_extent_data_ref(leaf, ref, root_objectid,
  1022. owner, offset)) {
  1023. if (recow) {
  1024. btrfs_release_path(path);
  1025. goto again;
  1026. }
  1027. err = 0;
  1028. break;
  1029. }
  1030. path->slots[0]++;
  1031. }
  1032. fail:
  1033. return err;
  1034. }
  1035. static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
  1036. struct btrfs_root *root,
  1037. struct btrfs_path *path,
  1038. u64 bytenr, u64 parent,
  1039. u64 root_objectid, u64 owner,
  1040. u64 offset, int refs_to_add)
  1041. {
  1042. struct btrfs_key key;
  1043. struct extent_buffer *leaf;
  1044. u32 size;
  1045. u32 num_refs;
  1046. int ret;
  1047. key.objectid = bytenr;
  1048. if (parent) {
  1049. key.type = BTRFS_SHARED_DATA_REF_KEY;
  1050. key.offset = parent;
  1051. size = sizeof(struct btrfs_shared_data_ref);
  1052. } else {
  1053. key.type = BTRFS_EXTENT_DATA_REF_KEY;
  1054. key.offset = hash_extent_data_ref(root_objectid,
  1055. owner, offset);
  1056. size = sizeof(struct btrfs_extent_data_ref);
  1057. }
  1058. ret = btrfs_insert_empty_item(trans, root, path, &key, size);
  1059. if (ret && ret != -EEXIST)
  1060. goto fail;
  1061. leaf = path->nodes[0];
  1062. if (parent) {
  1063. struct btrfs_shared_data_ref *ref;
  1064. ref = btrfs_item_ptr(leaf, path->slots[0],
  1065. struct btrfs_shared_data_ref);
  1066. if (ret == 0) {
  1067. btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
  1068. } else {
  1069. num_refs = btrfs_shared_data_ref_count(leaf, ref);
  1070. num_refs += refs_to_add;
  1071. btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
  1072. }
  1073. } else {
  1074. struct btrfs_extent_data_ref *ref;
  1075. while (ret == -EEXIST) {
  1076. ref = btrfs_item_ptr(leaf, path->slots[0],
  1077. struct btrfs_extent_data_ref);
  1078. if (match_extent_data_ref(leaf, ref, root_objectid,
  1079. owner, offset))
  1080. break;
  1081. btrfs_release_path(path);
  1082. key.offset++;
  1083. ret = btrfs_insert_empty_item(trans, root, path, &key,
  1084. size);
  1085. if (ret && ret != -EEXIST)
  1086. goto fail;
  1087. leaf = path->nodes[0];
  1088. }
  1089. ref = btrfs_item_ptr(leaf, path->slots[0],
  1090. struct btrfs_extent_data_ref);
  1091. if (ret == 0) {
  1092. btrfs_set_extent_data_ref_root(leaf, ref,
  1093. root_objectid);
  1094. btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
  1095. btrfs_set_extent_data_ref_offset(leaf, ref, offset);
  1096. btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
  1097. } else {
  1098. num_refs = btrfs_extent_data_ref_count(leaf, ref);
  1099. num_refs += refs_to_add;
  1100. btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
  1101. }
  1102. }
  1103. btrfs_mark_buffer_dirty(leaf);
  1104. ret = 0;
  1105. fail:
  1106. btrfs_release_path(path);
  1107. return ret;
  1108. }
  1109. static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
  1110. struct btrfs_root *root,
  1111. struct btrfs_path *path,
  1112. int refs_to_drop)
  1113. {
  1114. struct btrfs_key key;
  1115. struct btrfs_extent_data_ref *ref1 = NULL;
  1116. struct btrfs_shared_data_ref *ref2 = NULL;
  1117. struct extent_buffer *leaf;
  1118. u32 num_refs = 0;
  1119. int ret = 0;
  1120. leaf = path->nodes[0];
  1121. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  1122. if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
  1123. ref1 = btrfs_item_ptr(leaf, path->slots[0],
  1124. struct btrfs_extent_data_ref);
  1125. num_refs = btrfs_extent_data_ref_count(leaf, ref1);
  1126. } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
  1127. ref2 = btrfs_item_ptr(leaf, path->slots[0],
  1128. struct btrfs_shared_data_ref);
  1129. num_refs = btrfs_shared_data_ref_count(leaf, ref2);
  1130. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  1131. } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
  1132. struct btrfs_extent_ref_v0 *ref0;
  1133. ref0 = btrfs_item_ptr(leaf, path->slots[0],
  1134. struct btrfs_extent_ref_v0);
  1135. num_refs = btrfs_ref_count_v0(leaf, ref0);
  1136. #endif
  1137. } else {
  1138. BUG();
  1139. }
  1140. BUG_ON(num_refs < refs_to_drop);
  1141. num_refs -= refs_to_drop;
  1142. if (num_refs == 0) {
  1143. ret = btrfs_del_item(trans, root, path);
  1144. } else {
  1145. if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
  1146. btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
  1147. else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
  1148. btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
  1149. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  1150. else {
  1151. struct btrfs_extent_ref_v0 *ref0;
  1152. ref0 = btrfs_item_ptr(leaf, path->slots[0],
  1153. struct btrfs_extent_ref_v0);
  1154. btrfs_set_ref_count_v0(leaf, ref0, num_refs);
  1155. }
  1156. #endif
  1157. btrfs_mark_buffer_dirty(leaf);
  1158. }
  1159. return ret;
  1160. }
  1161. static noinline u32 extent_data_ref_count(struct btrfs_root *root,
  1162. struct btrfs_path *path,
  1163. struct btrfs_extent_inline_ref *iref)
  1164. {
  1165. struct btrfs_key key;
  1166. struct extent_buffer *leaf;
  1167. struct btrfs_extent_data_ref *ref1;
  1168. struct btrfs_shared_data_ref *ref2;
  1169. u32 num_refs = 0;
  1170. leaf = path->nodes[0];
  1171. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  1172. if (iref) {
  1173. if (btrfs_extent_inline_ref_type(leaf, iref) ==
  1174. BTRFS_EXTENT_DATA_REF_KEY) {
  1175. ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
  1176. num_refs = btrfs_extent_data_ref_count(leaf, ref1);
  1177. } else {
  1178. ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
  1179. num_refs = btrfs_shared_data_ref_count(leaf, ref2);
  1180. }
  1181. } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
  1182. ref1 = btrfs_item_ptr(leaf, path->slots[0],
  1183. struct btrfs_extent_data_ref);
  1184. num_refs = btrfs_extent_data_ref_count(leaf, ref1);
  1185. } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
  1186. ref2 = btrfs_item_ptr(leaf, path->slots[0],
  1187. struct btrfs_shared_data_ref);
  1188. num_refs = btrfs_shared_data_ref_count(leaf, ref2);
  1189. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  1190. } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
  1191. struct btrfs_extent_ref_v0 *ref0;
  1192. ref0 = btrfs_item_ptr(leaf, path->slots[0],
  1193. struct btrfs_extent_ref_v0);
  1194. num_refs = btrfs_ref_count_v0(leaf, ref0);
  1195. #endif
  1196. } else {
  1197. WARN_ON(1);
  1198. }
  1199. return num_refs;
  1200. }
  1201. static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
  1202. struct btrfs_root *root,
  1203. struct btrfs_path *path,
  1204. u64 bytenr, u64 parent,
  1205. u64 root_objectid)
  1206. {
  1207. struct btrfs_key key;
  1208. int ret;
  1209. key.objectid = bytenr;
  1210. if (parent) {
  1211. key.type = BTRFS_SHARED_BLOCK_REF_KEY;
  1212. key.offset = parent;
  1213. } else {
  1214. key.type = BTRFS_TREE_BLOCK_REF_KEY;
  1215. key.offset = root_objectid;
  1216. }
  1217. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  1218. if (ret > 0)
  1219. ret = -ENOENT;
  1220. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  1221. if (ret == -ENOENT && parent) {
  1222. btrfs_release_path(path);
  1223. key.type = BTRFS_EXTENT_REF_V0_KEY;
  1224. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  1225. if (ret > 0)
  1226. ret = -ENOENT;
  1227. }
  1228. #endif
  1229. return ret;
  1230. }
  1231. static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
  1232. struct btrfs_root *root,
  1233. struct btrfs_path *path,
  1234. u64 bytenr, u64 parent,
  1235. u64 root_objectid)
  1236. {
  1237. struct btrfs_key key;
  1238. int ret;
  1239. key.objectid = bytenr;
  1240. if (parent) {
  1241. key.type = BTRFS_SHARED_BLOCK_REF_KEY;
  1242. key.offset = parent;
  1243. } else {
  1244. key.type = BTRFS_TREE_BLOCK_REF_KEY;
  1245. key.offset = root_objectid;
  1246. }
  1247. ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
  1248. btrfs_release_path(path);
  1249. return ret;
  1250. }
  1251. static inline int extent_ref_type(u64 parent, u64 owner)
  1252. {
  1253. int type;
  1254. if (owner < BTRFS_FIRST_FREE_OBJECTID) {
  1255. if (parent > 0)
  1256. type = BTRFS_SHARED_BLOCK_REF_KEY;
  1257. else
  1258. type = BTRFS_TREE_BLOCK_REF_KEY;
  1259. } else {
  1260. if (parent > 0)
  1261. type = BTRFS_SHARED_DATA_REF_KEY;
  1262. else
  1263. type = BTRFS_EXTENT_DATA_REF_KEY;
  1264. }
  1265. return type;
  1266. }
  1267. static int find_next_key(struct btrfs_path *path, int level,
  1268. struct btrfs_key *key)
  1269. {
  1270. for (; level < BTRFS_MAX_LEVEL; level++) {
  1271. if (!path->nodes[level])
  1272. break;
  1273. if (path->slots[level] + 1 >=
  1274. btrfs_header_nritems(path->nodes[level]))
  1275. continue;
  1276. if (level == 0)
  1277. btrfs_item_key_to_cpu(path->nodes[level], key,
  1278. path->slots[level] + 1);
  1279. else
  1280. btrfs_node_key_to_cpu(path->nodes[level], key,
  1281. path->slots[level] + 1);
  1282. return 0;
  1283. }
  1284. return 1;
  1285. }
  1286. /*
  1287. * look for inline back ref. if back ref is found, *ref_ret is set
  1288. * to the address of inline back ref, and 0 is returned.
  1289. *
  1290. * if back ref isn't found, *ref_ret is set to the address where it
  1291. * should be inserted, and -ENOENT is returned.
  1292. *
  1293. * if insert is true and there are too many inline back refs, the path
  1294. * points to the extent item, and -EAGAIN is returned.
  1295. *
  1296. * NOTE: inline back refs are ordered in the same way that back ref
  1297. * items in the tree are ordered.
  1298. */
  1299. static noinline_for_stack
  1300. int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
  1301. struct btrfs_root *root,
  1302. struct btrfs_path *path,
  1303. struct btrfs_extent_inline_ref **ref_ret,
  1304. u64 bytenr, u64 num_bytes,
  1305. u64 parent, u64 root_objectid,
  1306. u64 owner, u64 offset, int insert)
  1307. {
  1308. struct btrfs_key key;
  1309. struct extent_buffer *leaf;
  1310. struct btrfs_extent_item *ei;
  1311. struct btrfs_extent_inline_ref *iref;
  1312. u64 flags;
  1313. u64 item_size;
  1314. unsigned long ptr;
  1315. unsigned long end;
  1316. int extra_size;
  1317. int type;
  1318. int want;
  1319. int ret;
  1320. int err = 0;
  1321. key.objectid = bytenr;
  1322. key.type = BTRFS_EXTENT_ITEM_KEY;
  1323. key.offset = num_bytes;
  1324. want = extent_ref_type(parent, owner);
  1325. if (insert) {
  1326. extra_size = btrfs_extent_inline_ref_size(want);
  1327. path->keep_locks = 1;
  1328. } else
  1329. extra_size = -1;
  1330. ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
  1331. if (ret < 0) {
  1332. err = ret;
  1333. goto out;
  1334. }
  1335. if (ret && !insert) {
  1336. err = -ENOENT;
  1337. goto out;
  1338. }
  1339. BUG_ON(ret); /* Corruption */
  1340. leaf = path->nodes[0];
  1341. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  1342. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  1343. if (item_size < sizeof(*ei)) {
  1344. if (!insert) {
  1345. err = -ENOENT;
  1346. goto out;
  1347. }
  1348. ret = convert_extent_item_v0(trans, root, path, owner,
  1349. extra_size);
  1350. if (ret < 0) {
  1351. err = ret;
  1352. goto out;
  1353. }
  1354. leaf = path->nodes[0];
  1355. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  1356. }
  1357. #endif
  1358. BUG_ON(item_size < sizeof(*ei));
  1359. ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
  1360. flags = btrfs_extent_flags(leaf, ei);
  1361. ptr = (unsigned long)(ei + 1);
  1362. end = (unsigned long)ei + item_size;
  1363. if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
  1364. ptr += sizeof(struct btrfs_tree_block_info);
  1365. BUG_ON(ptr > end);
  1366. } else {
  1367. BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
  1368. }
  1369. err = -ENOENT;
  1370. while (1) {
  1371. if (ptr >= end) {
  1372. WARN_ON(ptr > end);
  1373. break;
  1374. }
  1375. iref = (struct btrfs_extent_inline_ref *)ptr;
  1376. type = btrfs_extent_inline_ref_type(leaf, iref);
  1377. if (want < type)
  1378. break;
  1379. if (want > type) {
  1380. ptr += btrfs_extent_inline_ref_size(type);
  1381. continue;
  1382. }
  1383. if (type == BTRFS_EXTENT_DATA_REF_KEY) {
  1384. struct btrfs_extent_data_ref *dref;
  1385. dref = (struct btrfs_extent_data_ref *)(&iref->offset);
  1386. if (match_extent_data_ref(leaf, dref, root_objectid,
  1387. owner, offset)) {
  1388. err = 0;
  1389. break;
  1390. }
  1391. if (hash_extent_data_ref_item(leaf, dref) <
  1392. hash_extent_data_ref(root_objectid, owner, offset))
  1393. break;
  1394. } else {
  1395. u64 ref_offset;
  1396. ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
  1397. if (parent > 0) {
  1398. if (parent == ref_offset) {
  1399. err = 0;
  1400. break;
  1401. }
  1402. if (ref_offset < parent)
  1403. break;
  1404. } else {
  1405. if (root_objectid == ref_offset) {
  1406. err = 0;
  1407. break;
  1408. }
  1409. if (ref_offset < root_objectid)
  1410. break;
  1411. }
  1412. }
  1413. ptr += btrfs_extent_inline_ref_size(type);
  1414. }
  1415. if (err == -ENOENT && insert) {
  1416. if (item_size + extra_size >=
  1417. BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
  1418. err = -EAGAIN;
  1419. goto out;
  1420. }
  1421. /*
  1422. * To add new inline back ref, we have to make sure
  1423. * there is no corresponding back ref item.
  1424. * For simplicity, we just do not add new inline back
  1425. * ref if there is any kind of item for this block
  1426. */
  1427. if (find_next_key(path, 0, &key) == 0 &&
  1428. key.objectid == bytenr &&
  1429. key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
  1430. err = -EAGAIN;
  1431. goto out;
  1432. }
  1433. }
  1434. *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
  1435. out:
  1436. if (insert) {
  1437. path->keep_locks = 0;
  1438. btrfs_unlock_up_safe(path, 1);
  1439. }
  1440. return err;
  1441. }
  1442. /*
  1443. * helper to add new inline back ref
  1444. */
  1445. static noinline_for_stack
  1446. void setup_inline_extent_backref(struct btrfs_trans_handle *trans,
  1447. struct btrfs_root *root,
  1448. struct btrfs_path *path,
  1449. struct btrfs_extent_inline_ref *iref,
  1450. u64 parent, u64 root_objectid,
  1451. u64 owner, u64 offset, int refs_to_add,
  1452. struct btrfs_delayed_extent_op *extent_op)
  1453. {
  1454. struct extent_buffer *leaf;
  1455. struct btrfs_extent_item *ei;
  1456. unsigned long ptr;
  1457. unsigned long end;
  1458. unsigned long item_offset;
  1459. u64 refs;
  1460. int size;
  1461. int type;
  1462. leaf = path->nodes[0];
  1463. ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
  1464. item_offset = (unsigned long)iref - (unsigned long)ei;
  1465. type = extent_ref_type(parent, owner);
  1466. size = btrfs_extent_inline_ref_size(type);
  1467. btrfs_extend_item(trans, root, path, size);
  1468. ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
  1469. refs = btrfs_extent_refs(leaf, ei);
  1470. refs += refs_to_add;
  1471. btrfs_set_extent_refs(leaf, ei, refs);
  1472. if (extent_op)
  1473. __run_delayed_extent_op(extent_op, leaf, ei);
  1474. ptr = (unsigned long)ei + item_offset;
  1475. end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
  1476. if (ptr < end - size)
  1477. memmove_extent_buffer(leaf, ptr + size, ptr,
  1478. end - size - ptr);
  1479. iref = (struct btrfs_extent_inline_ref *)ptr;
  1480. btrfs_set_extent_inline_ref_type(leaf, iref, type);
  1481. if (type == BTRFS_EXTENT_DATA_REF_KEY) {
  1482. struct btrfs_extent_data_ref *dref;
  1483. dref = (struct btrfs_extent_data_ref *)(&iref->offset);
  1484. btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
  1485. btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
  1486. btrfs_set_extent_data_ref_offset(leaf, dref, offset);
  1487. btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
  1488. } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
  1489. struct btrfs_shared_data_ref *sref;
  1490. sref = (struct btrfs_shared_data_ref *)(iref + 1);
  1491. btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
  1492. btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
  1493. } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
  1494. btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
  1495. } else {
  1496. btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
  1497. }
  1498. btrfs_mark_buffer_dirty(leaf);
  1499. }
  1500. static int lookup_extent_backref(struct btrfs_trans_handle *trans,
  1501. struct btrfs_root *root,
  1502. struct btrfs_path *path,
  1503. struct btrfs_extent_inline_ref **ref_ret,
  1504. u64 bytenr, u64 num_bytes, u64 parent,
  1505. u64 root_objectid, u64 owner, u64 offset)
  1506. {
  1507. int ret;
  1508. ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
  1509. bytenr, num_bytes, parent,
  1510. root_objectid, owner, offset, 0);
  1511. if (ret != -ENOENT)
  1512. return ret;
  1513. btrfs_release_path(path);
  1514. *ref_ret = NULL;
  1515. if (owner < BTRFS_FIRST_FREE_OBJECTID) {
  1516. ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
  1517. root_objectid);
  1518. } else {
  1519. ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
  1520. root_objectid, owner, offset);
  1521. }
  1522. return ret;
  1523. }
  1524. /*
  1525. * helper to update/remove inline back ref
  1526. */
  1527. static noinline_for_stack
  1528. void update_inline_extent_backref(struct btrfs_trans_handle *trans,
  1529. struct btrfs_root *root,
  1530. struct btrfs_path *path,
  1531. struct btrfs_extent_inline_ref *iref,
  1532. int refs_to_mod,
  1533. struct btrfs_delayed_extent_op *extent_op)
  1534. {
  1535. struct extent_buffer *leaf;
  1536. struct btrfs_extent_item *ei;
  1537. struct btrfs_extent_data_ref *dref = NULL;
  1538. struct btrfs_shared_data_ref *sref = NULL;
  1539. unsigned long ptr;
  1540. unsigned long end;
  1541. u32 item_size;
  1542. int size;
  1543. int type;
  1544. u64 refs;
  1545. leaf = path->nodes[0];
  1546. ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
  1547. refs = btrfs_extent_refs(leaf, ei);
  1548. WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
  1549. refs += refs_to_mod;
  1550. btrfs_set_extent_refs(leaf, ei, refs);
  1551. if (extent_op)
  1552. __run_delayed_extent_op(extent_op, leaf, ei);
  1553. type = btrfs_extent_inline_ref_type(leaf, iref);
  1554. if (type == BTRFS_EXTENT_DATA_REF_KEY) {
  1555. dref = (struct btrfs_extent_data_ref *)(&iref->offset);
  1556. refs = btrfs_extent_data_ref_count(leaf, dref);
  1557. } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
  1558. sref = (struct btrfs_shared_data_ref *)(iref + 1);
  1559. refs = btrfs_shared_data_ref_count(leaf, sref);
  1560. } else {
  1561. refs = 1;
  1562. BUG_ON(refs_to_mod != -1);
  1563. }
  1564. BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
  1565. refs += refs_to_mod;
  1566. if (refs > 0) {
  1567. if (type == BTRFS_EXTENT_DATA_REF_KEY)
  1568. btrfs_set_extent_data_ref_count(leaf, dref, refs);
  1569. else
  1570. btrfs_set_shared_data_ref_count(leaf, sref, refs);
  1571. } else {
  1572. size = btrfs_extent_inline_ref_size(type);
  1573. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  1574. ptr = (unsigned long)iref;
  1575. end = (unsigned long)ei + item_size;
  1576. if (ptr + size < end)
  1577. memmove_extent_buffer(leaf, ptr, ptr + size,
  1578. end - ptr - size);
  1579. item_size -= size;
  1580. btrfs_truncate_item(trans, root, path, item_size, 1);
  1581. }
  1582. btrfs_mark_buffer_dirty(leaf);
  1583. }
  1584. static noinline_for_stack
  1585. int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
  1586. struct btrfs_root *root,
  1587. struct btrfs_path *path,
  1588. u64 bytenr, u64 num_bytes, u64 parent,
  1589. u64 root_objectid, u64 owner,
  1590. u64 offset, int refs_to_add,
  1591. struct btrfs_delayed_extent_op *extent_op)
  1592. {
  1593. struct btrfs_extent_inline_ref *iref;
  1594. int ret;
  1595. ret = lookup_inline_extent_backref(trans, root, path, &iref,
  1596. bytenr, num_bytes, parent,
  1597. root_objectid, owner, offset, 1);
  1598. if (ret == 0) {
  1599. BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
  1600. update_inline_extent_backref(trans, root, path, iref,
  1601. refs_to_add, extent_op);
  1602. } else if (ret == -ENOENT) {
  1603. setup_inline_extent_backref(trans, root, path, iref, parent,
  1604. root_objectid, owner, offset,
  1605. refs_to_add, extent_op);
  1606. ret = 0;
  1607. }
  1608. return ret;
  1609. }
  1610. static int insert_extent_backref(struct btrfs_trans_handle *trans,
  1611. struct btrfs_root *root,
  1612. struct btrfs_path *path,
  1613. u64 bytenr, u64 parent, u64 root_objectid,
  1614. u64 owner, u64 offset, int refs_to_add)
  1615. {
  1616. int ret;
  1617. if (owner < BTRFS_FIRST_FREE_OBJECTID) {
  1618. BUG_ON(refs_to_add != 1);
  1619. ret = insert_tree_block_ref(trans, root, path, bytenr,
  1620. parent, root_objectid);
  1621. } else {
  1622. ret = insert_extent_data_ref(trans, root, path, bytenr,
  1623. parent, root_objectid,
  1624. owner, offset, refs_to_add);
  1625. }
  1626. return ret;
  1627. }
  1628. static int remove_extent_backref(struct btrfs_trans_handle *trans,
  1629. struct btrfs_root *root,
  1630. struct btrfs_path *path,
  1631. struct btrfs_extent_inline_ref *iref,
  1632. int refs_to_drop, int is_data)
  1633. {
  1634. int ret = 0;
  1635. BUG_ON(!is_data && refs_to_drop != 1);
  1636. if (iref) {
  1637. update_inline_extent_backref(trans, root, path, iref,
  1638. -refs_to_drop, NULL);
  1639. } else if (is_data) {
  1640. ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
  1641. } else {
  1642. ret = btrfs_del_item(trans, root, path);
  1643. }
  1644. return ret;
  1645. }
  1646. static int btrfs_issue_discard(struct block_device *bdev,
  1647. u64 start, u64 len)
  1648. {
  1649. return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
  1650. }
  1651. static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
  1652. u64 num_bytes, u64 *actual_bytes)
  1653. {
  1654. int ret;
  1655. u64 discarded_bytes = 0;
  1656. struct btrfs_bio *bbio = NULL;
  1657. /* Tell the block device(s) that the sectors can be discarded */
  1658. ret = btrfs_map_block(&root->fs_info->mapping_tree, REQ_DISCARD,
  1659. bytenr, &num_bytes, &bbio, 0);
  1660. /* Error condition is -ENOMEM */
  1661. if (!ret) {
  1662. struct btrfs_bio_stripe *stripe = bbio->stripes;
  1663. int i;
  1664. for (i = 0; i < bbio->num_stripes; i++, stripe++) {
  1665. if (!stripe->dev->can_discard)
  1666. continue;
  1667. ret = btrfs_issue_discard(stripe->dev->bdev,
  1668. stripe->physical,
  1669. stripe->length);
  1670. if (!ret)
  1671. discarded_bytes += stripe->length;
  1672. else if (ret != -EOPNOTSUPP)
  1673. break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
  1674. /*
  1675. * Just in case we get back EOPNOTSUPP for some reason,
  1676. * just ignore the return value so we don't screw up
  1677. * people calling discard_extent.
  1678. */
  1679. ret = 0;
  1680. }
  1681. kfree(bbio);
  1682. }
  1683. if (actual_bytes)
  1684. *actual_bytes = discarded_bytes;
  1685. return ret;
  1686. }
  1687. /* Can return -ENOMEM */
  1688. int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
  1689. struct btrfs_root *root,
  1690. u64 bytenr, u64 num_bytes, u64 parent,
  1691. u64 root_objectid, u64 owner, u64 offset, int for_cow)
  1692. {
  1693. int ret;
  1694. struct btrfs_fs_info *fs_info = root->fs_info;
  1695. BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
  1696. root_objectid == BTRFS_TREE_LOG_OBJECTID);
  1697. if (owner < BTRFS_FIRST_FREE_OBJECTID) {
  1698. ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
  1699. num_bytes,
  1700. parent, root_objectid, (int)owner,
  1701. BTRFS_ADD_DELAYED_REF, NULL, for_cow);
  1702. } else {
  1703. ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
  1704. num_bytes,
  1705. parent, root_objectid, owner, offset,
  1706. BTRFS_ADD_DELAYED_REF, NULL, for_cow);
  1707. }
  1708. return ret;
  1709. }
  1710. static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
  1711. struct btrfs_root *root,
  1712. u64 bytenr, u64 num_bytes,
  1713. u64 parent, u64 root_objectid,
  1714. u64 owner, u64 offset, int refs_to_add,
  1715. struct btrfs_delayed_extent_op *extent_op)
  1716. {
  1717. struct btrfs_path *path;
  1718. struct extent_buffer *leaf;
  1719. struct btrfs_extent_item *item;
  1720. u64 refs;
  1721. int ret;
  1722. int err = 0;
  1723. path = btrfs_alloc_path();
  1724. if (!path)
  1725. return -ENOMEM;
  1726. path->reada = 1;
  1727. path->leave_spinning = 1;
  1728. /* this will setup the path even if it fails to insert the back ref */
  1729. ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
  1730. path, bytenr, num_bytes, parent,
  1731. root_objectid, owner, offset,
  1732. refs_to_add, extent_op);
  1733. if (ret == 0)
  1734. goto out;
  1735. if (ret != -EAGAIN) {
  1736. err = ret;
  1737. goto out;
  1738. }
  1739. leaf = path->nodes[0];
  1740. item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
  1741. refs = btrfs_extent_refs(leaf, item);
  1742. btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
  1743. if (extent_op)
  1744. __run_delayed_extent_op(extent_op, leaf, item);
  1745. btrfs_mark_buffer_dirty(leaf);
  1746. btrfs_release_path(path);
  1747. path->reada = 1;
  1748. path->leave_spinning = 1;
  1749. /* now insert the actual backref */
  1750. ret = insert_extent_backref(trans, root->fs_info->extent_root,
  1751. path, bytenr, parent, root_objectid,
  1752. owner, offset, refs_to_add);
  1753. if (ret)
  1754. btrfs_abort_transaction(trans, root, ret);
  1755. out:
  1756. btrfs_free_path(path);
  1757. return err;
  1758. }
  1759. static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
  1760. struct btrfs_root *root,
  1761. struct btrfs_delayed_ref_node *node,
  1762. struct btrfs_delayed_extent_op *extent_op,
  1763. int insert_reserved)
  1764. {
  1765. int ret = 0;
  1766. struct btrfs_delayed_data_ref *ref;
  1767. struct btrfs_key ins;
  1768. u64 parent = 0;
  1769. u64 ref_root = 0;
  1770. u64 flags = 0;
  1771. ins.objectid = node->bytenr;
  1772. ins.offset = node->num_bytes;
  1773. ins.type = BTRFS_EXTENT_ITEM_KEY;
  1774. ref = btrfs_delayed_node_to_data_ref(node);
  1775. if (node->type == BTRFS_SHARED_DATA_REF_KEY)
  1776. parent = ref->parent;
  1777. else
  1778. ref_root = ref->root;
  1779. if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
  1780. if (extent_op) {
  1781. BUG_ON(extent_op->update_key);
  1782. flags |= extent_op->flags_to_set;
  1783. }
  1784. ret = alloc_reserved_file_extent(trans, root,
  1785. parent, ref_root, flags,
  1786. ref->objectid, ref->offset,
  1787. &ins, node->ref_mod);
  1788. } else if (node->action == BTRFS_ADD_DELAYED_REF) {
  1789. ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
  1790. node->num_bytes, parent,
  1791. ref_root, ref->objectid,
  1792. ref->offset, node->ref_mod,
  1793. extent_op);
  1794. } else if (node->action == BTRFS_DROP_DELAYED_REF) {
  1795. ret = __btrfs_free_extent(trans, root, node->bytenr,
  1796. node->num_bytes, parent,
  1797. ref_root, ref->objectid,
  1798. ref->offset, node->ref_mod,
  1799. extent_op);
  1800. } else {
  1801. BUG();
  1802. }
  1803. return ret;
  1804. }
  1805. static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
  1806. struct extent_buffer *leaf,
  1807. struct btrfs_extent_item *ei)
  1808. {
  1809. u64 flags = btrfs_extent_flags(leaf, ei);
  1810. if (extent_op->update_flags) {
  1811. flags |= extent_op->flags_to_set;
  1812. btrfs_set_extent_flags(leaf, ei, flags);
  1813. }
  1814. if (extent_op->update_key) {
  1815. struct btrfs_tree_block_info *bi;
  1816. BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
  1817. bi = (struct btrfs_tree_block_info *)(ei + 1);
  1818. btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
  1819. }
  1820. }
  1821. static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
  1822. struct btrfs_root *root,
  1823. struct btrfs_delayed_ref_node *node,
  1824. struct btrfs_delayed_extent_op *extent_op)
  1825. {
  1826. struct btrfs_key key;
  1827. struct btrfs_path *path;
  1828. struct btrfs_extent_item *ei;
  1829. struct extent_buffer *leaf;
  1830. u32 item_size;
  1831. int ret;
  1832. int err = 0;
  1833. if (trans->aborted)
  1834. return 0;
  1835. path = btrfs_alloc_path();
  1836. if (!path)
  1837. return -ENOMEM;
  1838. key.objectid = node->bytenr;
  1839. key.type = BTRFS_EXTENT_ITEM_KEY;
  1840. key.offset = node->num_bytes;
  1841. path->reada = 1;
  1842. path->leave_spinning = 1;
  1843. ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
  1844. path, 0, 1);
  1845. if (ret < 0) {
  1846. err = ret;
  1847. goto out;
  1848. }
  1849. if (ret > 0) {
  1850. err = -EIO;
  1851. goto out;
  1852. }
  1853. leaf = path->nodes[0];
  1854. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  1855. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  1856. if (item_size < sizeof(*ei)) {
  1857. ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
  1858. path, (u64)-1, 0);
  1859. if (ret < 0) {
  1860. err = ret;
  1861. goto out;
  1862. }
  1863. leaf = path->nodes[0];
  1864. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  1865. }
  1866. #endif
  1867. BUG_ON(item_size < sizeof(*ei));
  1868. ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
  1869. __run_delayed_extent_op(extent_op, leaf, ei);
  1870. btrfs_mark_buffer_dirty(leaf);
  1871. out:
  1872. btrfs_free_path(path);
  1873. return err;
  1874. }
  1875. static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
  1876. struct btrfs_root *root,
  1877. struct btrfs_delayed_ref_node *node,
  1878. struct btrfs_delayed_extent_op *extent_op,
  1879. int insert_reserved)
  1880. {
  1881. int ret = 0;
  1882. struct btrfs_delayed_tree_ref *ref;
  1883. struct btrfs_key ins;
  1884. u64 parent = 0;
  1885. u64 ref_root = 0;
  1886. ins.objectid = node->bytenr;
  1887. ins.offset = node->num_bytes;
  1888. ins.type = BTRFS_EXTENT_ITEM_KEY;
  1889. ref = btrfs_delayed_node_to_tree_ref(node);
  1890. if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
  1891. parent = ref->parent;
  1892. else
  1893. ref_root = ref->root;
  1894. BUG_ON(node->ref_mod != 1);
  1895. if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
  1896. BUG_ON(!extent_op || !extent_op->update_flags ||
  1897. !extent_op->update_key);
  1898. ret = alloc_reserved_tree_block(trans, root,
  1899. parent, ref_root,
  1900. extent_op->flags_to_set,
  1901. &extent_op->key,
  1902. ref->level, &ins);
  1903. } else if (node->action == BTRFS_ADD_DELAYED_REF) {
  1904. ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
  1905. node->num_bytes, parent, ref_root,
  1906. ref->level, 0, 1, extent_op);
  1907. } else if (node->action == BTRFS_DROP_DELAYED_REF) {
  1908. ret = __btrfs_free_extent(trans, root, node->bytenr,
  1909. node->num_bytes, parent, ref_root,
  1910. ref->level, 0, 1, extent_op);
  1911. } else {
  1912. BUG();
  1913. }
  1914. return ret;
  1915. }
  1916. /* helper function to actually process a single delayed ref entry */
  1917. static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
  1918. struct btrfs_root *root,
  1919. struct btrfs_delayed_ref_node *node,
  1920. struct btrfs_delayed_extent_op *extent_op,
  1921. int insert_reserved)
  1922. {
  1923. int ret = 0;
  1924. if (trans->aborted)
  1925. return 0;
  1926. if (btrfs_delayed_ref_is_head(node)) {
  1927. struct btrfs_delayed_ref_head *head;
  1928. /*
  1929. * we've hit the end of the chain and we were supposed
  1930. * to insert this extent into the tree. But, it got
  1931. * deleted before we ever needed to insert it, so all
  1932. * we have to do is clean up the accounting
  1933. */
  1934. BUG_ON(extent_op);
  1935. head = btrfs_delayed_node_to_head(node);
  1936. if (insert_reserved) {
  1937. btrfs_pin_extent(root, node->bytenr,
  1938. node->num_bytes, 1);
  1939. if (head->is_data) {
  1940. ret = btrfs_del_csums(trans, root,
  1941. node->bytenr,
  1942. node->num_bytes);
  1943. }
  1944. }
  1945. mutex_unlock(&head->mutex);
  1946. return ret;
  1947. }
  1948. if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
  1949. node->type == BTRFS_SHARED_BLOCK_REF_KEY)
  1950. ret = run_delayed_tree_ref(trans, root, node, extent_op,
  1951. insert_reserved);
  1952. else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
  1953. node->type == BTRFS_SHARED_DATA_REF_KEY)
  1954. ret = run_delayed_data_ref(trans, root, node, extent_op,
  1955. insert_reserved);
  1956. else
  1957. BUG();
  1958. return ret;
  1959. }
  1960. static noinline struct btrfs_delayed_ref_node *
  1961. select_delayed_ref(struct btrfs_delayed_ref_head *head)
  1962. {
  1963. struct rb_node *node;
  1964. struct btrfs_delayed_ref_node *ref;
  1965. int action = BTRFS_ADD_DELAYED_REF;
  1966. again:
  1967. /*
  1968. * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
  1969. * this prevents ref count from going down to zero when
  1970. * there still are pending delayed ref.
  1971. */
  1972. node = rb_prev(&head->node.rb_node);
  1973. while (1) {
  1974. if (!node)
  1975. break;
  1976. ref = rb_entry(node, struct btrfs_delayed_ref_node,
  1977. rb_node);
  1978. if (ref->bytenr != head->node.bytenr)
  1979. break;
  1980. if (ref->action == action)
  1981. return ref;
  1982. node = rb_prev(node);
  1983. }
  1984. if (action == BTRFS_ADD_DELAYED_REF) {
  1985. action = BTRFS_DROP_DELAYED_REF;
  1986. goto again;
  1987. }
  1988. return NULL;
  1989. }
  1990. /*
  1991. * Returns 0 on success or if called with an already aborted transaction.
  1992. * Returns -ENOMEM or -EIO on failure and will abort the transaction.
  1993. */
  1994. static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
  1995. struct btrfs_root *root,
  1996. struct list_head *cluster)
  1997. {
  1998. struct btrfs_delayed_ref_root *delayed_refs;
  1999. struct btrfs_delayed_ref_node *ref;
  2000. struct btrfs_delayed_ref_head *locked_ref = NULL;
  2001. struct btrfs_delayed_extent_op *extent_op;
  2002. struct btrfs_fs_info *fs_info = root->fs_info;
  2003. int ret;
  2004. int count = 0;
  2005. int must_insert_reserved = 0;
  2006. delayed_refs = &trans->transaction->delayed_refs;
  2007. while (1) {
  2008. if (!locked_ref) {
  2009. /* pick a new head ref from the cluster list */
  2010. if (list_empty(cluster))
  2011. break;
  2012. locked_ref = list_entry(cluster->next,
  2013. struct btrfs_delayed_ref_head, cluster);
  2014. /* grab the lock that says we are going to process
  2015. * all the refs for this head */
  2016. ret = btrfs_delayed_ref_lock(trans, locked_ref);
  2017. /*
  2018. * we may have dropped the spin lock to get the head
  2019. * mutex lock, and that might have given someone else
  2020. * time to free the head. If that's true, it has been
  2021. * removed from our list and we can move on.
  2022. */
  2023. if (ret == -EAGAIN) {
  2024. locked_ref = NULL;
  2025. count++;
  2026. continue;
  2027. }
  2028. }
  2029. /*
  2030. * We need to try and merge add/drops of the same ref since we
  2031. * can run into issues with relocate dropping the implicit ref
  2032. * and then it being added back again before the drop can
  2033. * finish. If we merged anything we need to re-loop so we can
  2034. * get a good ref.
  2035. */
  2036. btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
  2037. locked_ref);
  2038. /*
  2039. * locked_ref is the head node, so we have to go one
  2040. * node back for any delayed ref updates
  2041. */
  2042. ref = select_delayed_ref(locked_ref);
  2043. if (ref && ref->seq &&
  2044. btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
  2045. /*
  2046. * there are still refs with lower seq numbers in the
  2047. * process of being added. Don't run this ref yet.
  2048. */
  2049. list_del_init(&locked_ref->cluster);
  2050. mutex_unlock(&locked_ref->mutex);
  2051. locked_ref = NULL;
  2052. delayed_refs->num_heads_ready++;
  2053. spin_unlock(&delayed_refs->lock);
  2054. cond_resched();
  2055. spin_lock(&delayed_refs->lock);
  2056. continue;
  2057. }
  2058. /*
  2059. * record the must insert reserved flag before we
  2060. * drop the spin lock.
  2061. */
  2062. must_insert_reserved = locked_ref->must_insert_reserved;
  2063. locked_ref->must_insert_reserved = 0;
  2064. extent_op = locked_ref->extent_op;
  2065. locked_ref->extent_op = NULL;
  2066. if (!ref) {
  2067. /* All delayed refs have been processed, Go ahead
  2068. * and send the head node to run_one_delayed_ref,
  2069. * so that any accounting fixes can happen
  2070. */
  2071. ref = &locked_ref->node;
  2072. if (extent_op && must_insert_reserved) {
  2073. kfree(extent_op);
  2074. extent_op = NULL;
  2075. }
  2076. if (extent_op) {
  2077. spin_unlock(&delayed_refs->lock);
  2078. ret = run_delayed_extent_op(trans, root,
  2079. ref, extent_op);
  2080. kfree(extent_op);
  2081. if (ret) {
  2082. printk(KERN_DEBUG "btrfs: run_delayed_extent_op returned %d\n", ret);
  2083. spin_lock(&delayed_refs->lock);
  2084. return ret;
  2085. }
  2086. goto next;
  2087. }
  2088. list_del_init(&locked_ref->cluster);
  2089. locked_ref = NULL;
  2090. }
  2091. ref->in_tree = 0;
  2092. rb_erase(&ref->rb_node, &delayed_refs->root);
  2093. delayed_refs->num_entries--;
  2094. if (locked_ref) {
  2095. /*
  2096. * when we play the delayed ref, also correct the
  2097. * ref_mod on head
  2098. */
  2099. switch (ref->action) {
  2100. case BTRFS_ADD_DELAYED_REF:
  2101. case BTRFS_ADD_DELAYED_EXTENT:
  2102. locked_ref->node.ref_mod -= ref->ref_mod;
  2103. break;
  2104. case BTRFS_DROP_DELAYED_REF:
  2105. locked_ref->node.ref_mod += ref->ref_mod;
  2106. break;
  2107. default:
  2108. WARN_ON(1);
  2109. }
  2110. }
  2111. spin_unlock(&delayed_refs->lock);
  2112. ret = run_one_delayed_ref(trans, root, ref, extent_op,
  2113. must_insert_reserved);
  2114. btrfs_put_delayed_ref(ref);
  2115. kfree(extent_op);
  2116. count++;
  2117. if (ret) {
  2118. printk(KERN_DEBUG "btrfs: run_one_delayed_ref returned %d\n", ret);
  2119. spin_lock(&delayed_refs->lock);
  2120. return ret;
  2121. }
  2122. next:
  2123. do_chunk_alloc(trans, fs_info->extent_root,
  2124. 2 * 1024 * 1024,
  2125. btrfs_get_alloc_profile(root, 0),
  2126. CHUNK_ALLOC_NO_FORCE);
  2127. cond_resched();
  2128. spin_lock(&delayed_refs->lock);
  2129. }
  2130. return count;
  2131. }
  2132. #ifdef SCRAMBLE_DELAYED_REFS
  2133. /*
  2134. * Normally delayed refs get processed in ascending bytenr order. This
  2135. * correlates in most cases to the order added. To expose dependencies on this
  2136. * order, we start to process the tree in the middle instead of the beginning
  2137. */
  2138. static u64 find_middle(struct rb_root *root)
  2139. {
  2140. struct rb_node *n = root->rb_node;
  2141. struct btrfs_delayed_ref_node *entry;
  2142. int alt = 1;
  2143. u64 middle;
  2144. u64 first = 0, last = 0;
  2145. n = rb_first(root);
  2146. if (n) {
  2147. entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
  2148. first = entry->bytenr;
  2149. }
  2150. n = rb_last(root);
  2151. if (n) {
  2152. entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
  2153. last = entry->bytenr;
  2154. }
  2155. n = root->rb_node;
  2156. while (n) {
  2157. entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
  2158. WARN_ON(!entry->in_tree);
  2159. middle = entry->bytenr;
  2160. if (alt)
  2161. n = n->rb_left;
  2162. else
  2163. n = n->rb_right;
  2164. alt = 1 - alt;
  2165. }
  2166. return middle;
  2167. }
  2168. #endif
  2169. int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
  2170. struct btrfs_fs_info *fs_info)
  2171. {
  2172. struct qgroup_update *qgroup_update;
  2173. int ret = 0;
  2174. if (list_empty(&trans->qgroup_ref_list) !=
  2175. !trans->delayed_ref_elem.seq) {
  2176. /* list without seq or seq without list */
  2177. printk(KERN_ERR "btrfs: qgroup accounting update error, list is%s empty, seq is %llu\n",
  2178. list_empty(&trans->qgroup_ref_list) ? "" : " not",
  2179. trans->delayed_ref_elem.seq);
  2180. BUG();
  2181. }
  2182. if (!trans->delayed_ref_elem.seq)
  2183. return 0;
  2184. while (!list_empty(&trans->qgroup_ref_list)) {
  2185. qgroup_update = list_first_entry(&trans->qgroup_ref_list,
  2186. struct qgroup_update, list);
  2187. list_del(&qgroup_update->list);
  2188. if (!ret)
  2189. ret = btrfs_qgroup_account_ref(
  2190. trans, fs_info, qgroup_update->node,
  2191. qgroup_update->extent_op);
  2192. kfree(qgroup_update);
  2193. }
  2194. btrfs_put_tree_mod_seq(fs_info, &trans->delayed_ref_elem);
  2195. return ret;
  2196. }
  2197. /*
  2198. * this starts processing the delayed reference count updates and
  2199. * extent insertions we have queued up so far. count can be
  2200. * 0, which means to process everything in the tree at the start
  2201. * of the run (but not newly added entries), or it can be some target
  2202. * number you'd like to process.
  2203. *
  2204. * Returns 0 on success or if called with an aborted transaction
  2205. * Returns <0 on error and aborts the transaction
  2206. */
  2207. int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
  2208. struct btrfs_root *root, unsigned long count)
  2209. {
  2210. struct rb_node *node;
  2211. struct btrfs_delayed_ref_root *delayed_refs;
  2212. struct btrfs_delayed_ref_node *ref;
  2213. struct list_head cluster;
  2214. int ret;
  2215. u64 delayed_start;
  2216. int run_all = count == (unsigned long)-1;
  2217. int run_most = 0;
  2218. int loops;
  2219. /* We'll clean this up in btrfs_cleanup_transaction */
  2220. if (trans->aborted)
  2221. return 0;
  2222. if (root == root->fs_info->extent_root)
  2223. root = root->fs_info->tree_root;
  2224. do_chunk_alloc(trans, root->fs_info->extent_root,
  2225. 2 * 1024 * 1024, btrfs_get_alloc_profile(root, 0),
  2226. CHUNK_ALLOC_NO_FORCE);
  2227. btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
  2228. delayed_refs = &trans->transaction->delayed_refs;
  2229. INIT_LIST_HEAD(&cluster);
  2230. again:
  2231. loops = 0;
  2232. spin_lock(&delayed_refs->lock);
  2233. #ifdef SCRAMBLE_DELAYED_REFS
  2234. delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
  2235. #endif
  2236. if (count == 0) {
  2237. count = delayed_refs->num_entries * 2;
  2238. run_most = 1;
  2239. }
  2240. while (1) {
  2241. if (!(run_all || run_most) &&
  2242. delayed_refs->num_heads_ready < 64)
  2243. break;
  2244. /*
  2245. * go find something we can process in the rbtree. We start at
  2246. * the beginning of the tree, and then build a cluster
  2247. * of refs to process starting at the first one we are able to
  2248. * lock
  2249. */
  2250. delayed_start = delayed_refs->run_delayed_start;
  2251. ret = btrfs_find_ref_cluster(trans, &cluster,
  2252. delayed_refs->run_delayed_start);
  2253. if (ret)
  2254. break;
  2255. ret = run_clustered_refs(trans, root, &cluster);
  2256. if (ret < 0) {
  2257. spin_unlock(&delayed_refs->lock);
  2258. btrfs_abort_transaction(trans, root, ret);
  2259. return ret;
  2260. }
  2261. count -= min_t(unsigned long, ret, count);
  2262. if (count == 0)
  2263. break;
  2264. if (delayed_start >= delayed_refs->run_delayed_start) {
  2265. if (loops == 0) {
  2266. /*
  2267. * btrfs_find_ref_cluster looped. let's do one
  2268. * more cycle. if we don't run any delayed ref
  2269. * during that cycle (because we can't because
  2270. * all of them are blocked), bail out.
  2271. */
  2272. loops = 1;
  2273. } else {
  2274. /*
  2275. * no runnable refs left, stop trying
  2276. */
  2277. BUG_ON(run_all);
  2278. break;
  2279. }
  2280. }
  2281. if (ret) {
  2282. /* refs were run, let's reset staleness detection */
  2283. loops = 0;
  2284. }
  2285. }
  2286. if (run_all) {
  2287. node = rb_first(&delayed_refs->root);
  2288. if (!node)
  2289. goto out;
  2290. count = (unsigned long)-1;
  2291. while (node) {
  2292. ref = rb_entry(node, struct btrfs_delayed_ref_node,
  2293. rb_node);
  2294. if (btrfs_delayed_ref_is_head(ref)) {
  2295. struct btrfs_delayed_ref_head *head;
  2296. head = btrfs_delayed_node_to_head(ref);
  2297. atomic_inc(&ref->refs);
  2298. spin_unlock(&delayed_refs->lock);
  2299. /*
  2300. * Mutex was contended, block until it's
  2301. * released and try again
  2302. */
  2303. mutex_lock(&head->mutex);
  2304. mutex_unlock(&head->mutex);
  2305. btrfs_put_delayed_ref(ref);
  2306. cond_resched();
  2307. goto again;
  2308. }
  2309. node = rb_next(node);
  2310. }
  2311. spin_unlock(&delayed_refs->lock);
  2312. schedule_timeout(1);
  2313. goto again;
  2314. }
  2315. out:
  2316. spin_unlock(&delayed_refs->lock);
  2317. assert_qgroups_uptodate(trans);
  2318. return 0;
  2319. }
  2320. int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
  2321. struct btrfs_root *root,
  2322. u64 bytenr, u64 num_bytes, u64 flags,
  2323. int is_data)
  2324. {
  2325. struct btrfs_delayed_extent_op *extent_op;
  2326. int ret;
  2327. extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
  2328. if (!extent_op)
  2329. return -ENOMEM;
  2330. extent_op->flags_to_set = flags;
  2331. extent_op->update_flags = 1;
  2332. extent_op->update_key = 0;
  2333. extent_op->is_data = is_data ? 1 : 0;
  2334. ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
  2335. num_bytes, extent_op);
  2336. if (ret)
  2337. kfree(extent_op);
  2338. return ret;
  2339. }
  2340. static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
  2341. struct btrfs_root *root,
  2342. struct btrfs_path *path,
  2343. u64 objectid, u64 offset, u64 bytenr)
  2344. {
  2345. struct btrfs_delayed_ref_head *head;
  2346. struct btrfs_delayed_ref_node *ref;
  2347. struct btrfs_delayed_data_ref *data_ref;
  2348. struct btrfs_delayed_ref_root *delayed_refs;
  2349. struct rb_node *node;
  2350. int ret = 0;
  2351. ret = -ENOENT;
  2352. delayed_refs = &trans->transaction->delayed_refs;
  2353. spin_lock(&delayed_refs->lock);
  2354. head = btrfs_find_delayed_ref_head(trans, bytenr);
  2355. if (!head)
  2356. goto out;
  2357. if (!mutex_trylock(&head->mutex)) {
  2358. atomic_inc(&head->node.refs);
  2359. spin_unlock(&delayed_refs->lock);
  2360. btrfs_release_path(path);
  2361. /*
  2362. * Mutex was contended, block until it's released and let
  2363. * caller try again
  2364. */
  2365. mutex_lock(&head->mutex);
  2366. mutex_unlock(&head->mutex);
  2367. btrfs_put_delayed_ref(&head->node);
  2368. return -EAGAIN;
  2369. }
  2370. node = rb_prev(&head->node.rb_node);
  2371. if (!node)
  2372. goto out_unlock;
  2373. ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
  2374. if (ref->bytenr != bytenr)
  2375. goto out_unlock;
  2376. ret = 1;
  2377. if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
  2378. goto out_unlock;
  2379. data_ref = btrfs_delayed_node_to_data_ref(ref);
  2380. node = rb_prev(node);
  2381. if (node) {
  2382. int seq = ref->seq;
  2383. ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
  2384. if (ref->bytenr == bytenr && ref->seq == seq)
  2385. goto out_unlock;
  2386. }
  2387. if (data_ref->root != root->root_key.objectid ||
  2388. data_ref->objectid != objectid || data_ref->offset != offset)
  2389. goto out_unlock;
  2390. ret = 0;
  2391. out_unlock:
  2392. mutex_unlock(&head->mutex);
  2393. out:
  2394. spin_unlock(&delayed_refs->lock);
  2395. return ret;
  2396. }
  2397. static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
  2398. struct btrfs_root *root,
  2399. struct btrfs_path *path,
  2400. u64 objectid, u64 offset, u64 bytenr)
  2401. {
  2402. struct btrfs_root *extent_root = root->fs_info->extent_root;
  2403. struct extent_buffer *leaf;
  2404. struct btrfs_extent_data_ref *ref;
  2405. struct btrfs_extent_inline_ref *iref;
  2406. struct btrfs_extent_item *ei;
  2407. struct btrfs_key key;
  2408. u32 item_size;
  2409. int ret;
  2410. key.objectid = bytenr;
  2411. key.offset = (u64)-1;
  2412. key.type = BTRFS_EXTENT_ITEM_KEY;
  2413. ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
  2414. if (ret < 0)
  2415. goto out;
  2416. BUG_ON(ret == 0); /* Corruption */
  2417. ret = -ENOENT;
  2418. if (path->slots[0] == 0)
  2419. goto out;
  2420. path->slots[0]--;
  2421. leaf = path->nodes[0];
  2422. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  2423. if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
  2424. goto out;
  2425. ret = 1;
  2426. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  2427. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  2428. if (item_size < sizeof(*ei)) {
  2429. WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
  2430. goto out;
  2431. }
  2432. #endif
  2433. ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
  2434. if (item_size != sizeof(*ei) +
  2435. btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
  2436. goto out;
  2437. if (btrfs_extent_generation(leaf, ei) <=
  2438. btrfs_root_last_snapshot(&root->root_item))
  2439. goto out;
  2440. iref = (struct btrfs_extent_inline_ref *)(ei + 1);
  2441. if (btrfs_extent_inline_ref_type(leaf, iref) !=
  2442. BTRFS_EXTENT_DATA_REF_KEY)
  2443. goto out;
  2444. ref = (struct btrfs_extent_data_ref *)(&iref->offset);
  2445. if (btrfs_extent_refs(leaf, ei) !=
  2446. btrfs_extent_data_ref_count(leaf, ref) ||
  2447. btrfs_extent_data_ref_root(leaf, ref) !=
  2448. root->root_key.objectid ||
  2449. btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
  2450. btrfs_extent_data_ref_offset(leaf, ref) != offset)
  2451. goto out;
  2452. ret = 0;
  2453. out:
  2454. return ret;
  2455. }
  2456. int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
  2457. struct btrfs_root *root,
  2458. u64 objectid, u64 offset, u64 bytenr)
  2459. {
  2460. struct btrfs_path *path;
  2461. int ret;
  2462. int ret2;
  2463. path = btrfs_alloc_path();
  2464. if (!path)
  2465. return -ENOENT;
  2466. do {
  2467. ret = check_committed_ref(trans, root, path, objectid,
  2468. offset, bytenr);
  2469. if (ret && ret != -ENOENT)
  2470. goto out;
  2471. ret2 = check_delayed_ref(trans, root, path, objectid,
  2472. offset, bytenr);
  2473. } while (ret2 == -EAGAIN);
  2474. if (ret2 && ret2 != -ENOENT) {
  2475. ret = ret2;
  2476. goto out;
  2477. }
  2478. if (ret != -ENOENT || ret2 != -ENOENT)
  2479. ret = 0;
  2480. out:
  2481. btrfs_free_path(path);
  2482. if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
  2483. WARN_ON(ret > 0);
  2484. return ret;
  2485. }
  2486. static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
  2487. struct btrfs_root *root,
  2488. struct extent_buffer *buf,
  2489. int full_backref, int inc, int for_cow)
  2490. {
  2491. u64 bytenr;
  2492. u64 num_bytes;
  2493. u64 parent;
  2494. u64 ref_root;
  2495. u32 nritems;
  2496. struct btrfs_key key;
  2497. struct btrfs_file_extent_item *fi;
  2498. int i;
  2499. int level;
  2500. int ret = 0;
  2501. int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
  2502. u64, u64, u64, u64, u64, u64, int);
  2503. ref_root = btrfs_header_owner(buf);
  2504. nritems = btrfs_header_nritems(buf);
  2505. level = btrfs_header_level(buf);
  2506. if (!root->ref_cows && level == 0)
  2507. return 0;
  2508. if (inc)
  2509. process_func = btrfs_inc_extent_ref;
  2510. else
  2511. process_func = btrfs_free_extent;
  2512. if (full_backref)
  2513. parent = buf->start;
  2514. else
  2515. parent = 0;
  2516. for (i = 0; i < nritems; i++) {
  2517. if (level == 0) {
  2518. btrfs_item_key_to_cpu(buf, &key, i);
  2519. if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
  2520. continue;
  2521. fi = btrfs_item_ptr(buf, i,
  2522. struct btrfs_file_extent_item);
  2523. if (btrfs_file_extent_type(buf, fi) ==
  2524. BTRFS_FILE_EXTENT_INLINE)
  2525. continue;
  2526. bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
  2527. if (bytenr == 0)
  2528. continue;
  2529. num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
  2530. key.offset -= btrfs_file_extent_offset(buf, fi);
  2531. ret = process_func(trans, root, bytenr, num_bytes,
  2532. parent, ref_root, key.objectid,
  2533. key.offset, for_cow);
  2534. if (ret)
  2535. goto fail;
  2536. } else {
  2537. bytenr = btrfs_node_blockptr(buf, i);
  2538. num_bytes = btrfs_level_size(root, level - 1);
  2539. ret = process_func(trans, root, bytenr, num_bytes,
  2540. parent, ref_root, level - 1, 0,
  2541. for_cow);
  2542. if (ret)
  2543. goto fail;
  2544. }
  2545. }
  2546. return 0;
  2547. fail:
  2548. return ret;
  2549. }
  2550. int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  2551. struct extent_buffer *buf, int full_backref, int for_cow)
  2552. {
  2553. return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow);
  2554. }
  2555. int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  2556. struct extent_buffer *buf, int full_backref, int for_cow)
  2557. {
  2558. return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow);
  2559. }
  2560. static int write_one_cache_group(struct btrfs_trans_handle *trans,
  2561. struct btrfs_root *root,
  2562. struct btrfs_path *path,
  2563. struct btrfs_block_group_cache *cache)
  2564. {
  2565. int ret;
  2566. struct btrfs_root *extent_root = root->fs_info->extent_root;
  2567. unsigned long bi;
  2568. struct extent_buffer *leaf;
  2569. ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
  2570. if (ret < 0)
  2571. goto fail;
  2572. BUG_ON(ret); /* Corruption */
  2573. leaf = path->nodes[0];
  2574. bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
  2575. write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
  2576. btrfs_mark_buffer_dirty(leaf);
  2577. btrfs_release_path(path);
  2578. fail:
  2579. if (ret) {
  2580. btrfs_abort_transaction(trans, root, ret);
  2581. return ret;
  2582. }
  2583. return 0;
  2584. }
  2585. static struct btrfs_block_group_cache *
  2586. next_block_group(struct btrfs_root *root,
  2587. struct btrfs_block_group_cache *cache)
  2588. {
  2589. struct rb_node *node;
  2590. spin_lock(&root->fs_info->block_group_cache_lock);
  2591. node = rb_next(&cache->cache_node);
  2592. btrfs_put_block_group(cache);
  2593. if (node) {
  2594. cache = rb_entry(node, struct btrfs_block_group_cache,
  2595. cache_node);
  2596. btrfs_get_block_group(cache);
  2597. } else
  2598. cache = NULL;
  2599. spin_unlock(&root->fs_info->block_group_cache_lock);
  2600. return cache;
  2601. }
  2602. static int cache_save_setup(struct btrfs_block_group_cache *block_group,
  2603. struct btrfs_trans_handle *trans,
  2604. struct btrfs_path *path)
  2605. {
  2606. struct btrfs_root *root = block_group->fs_info->tree_root;
  2607. struct inode *inode = NULL;
  2608. u64 alloc_hint = 0;
  2609. int dcs = BTRFS_DC_ERROR;
  2610. int num_pages = 0;
  2611. int retries = 0;
  2612. int ret = 0;
  2613. /*
  2614. * If this block group is smaller than 100 megs don't bother caching the
  2615. * block group.
  2616. */
  2617. if (block_group->key.offset < (100 * 1024 * 1024)) {
  2618. spin_lock(&block_group->lock);
  2619. block_group->disk_cache_state = BTRFS_DC_WRITTEN;
  2620. spin_unlock(&block_group->lock);
  2621. return 0;
  2622. }
  2623. again:
  2624. inode = lookup_free_space_inode(root, block_group, path);
  2625. if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
  2626. ret = PTR_ERR(inode);
  2627. btrfs_release_path(path);
  2628. goto out;
  2629. }
  2630. if (IS_ERR(inode)) {
  2631. BUG_ON(retries);
  2632. retries++;
  2633. if (block_group->ro)
  2634. goto out_free;
  2635. ret = create_free_space_inode(root, trans, block_group, path);
  2636. if (ret)
  2637. goto out_free;
  2638. goto again;
  2639. }
  2640. /* We've already setup this transaction, go ahead and exit */
  2641. if (block_group->cache_generation == trans->transid &&
  2642. i_size_read(inode)) {
  2643. dcs = BTRFS_DC_SETUP;
  2644. goto out_put;
  2645. }
  2646. /*
  2647. * We want to set the generation to 0, that way if anything goes wrong
  2648. * from here on out we know not to trust this cache when we load up next
  2649. * time.
  2650. */
  2651. BTRFS_I(inode)->generation = 0;
  2652. ret = btrfs_update_inode(trans, root, inode);
  2653. WARN_ON(ret);
  2654. if (i_size_read(inode) > 0) {
  2655. ret = btrfs_truncate_free_space_cache(root, trans, path,
  2656. inode);
  2657. if (ret)
  2658. goto out_put;
  2659. }
  2660. spin_lock(&block_group->lock);
  2661. if (block_group->cached != BTRFS_CACHE_FINISHED ||
  2662. !btrfs_test_opt(root, SPACE_CACHE)) {
  2663. /*
  2664. * don't bother trying to write stuff out _if_
  2665. * a) we're not cached,
  2666. * b) we're with nospace_cache mount option.
  2667. */
  2668. dcs = BTRFS_DC_WRITTEN;
  2669. spin_unlock(&block_group->lock);
  2670. goto out_put;
  2671. }
  2672. spin_unlock(&block_group->lock);
  2673. /*
  2674. * Try to preallocate enough space based on how big the block group is.
  2675. * Keep in mind this has to include any pinned space which could end up
  2676. * taking up quite a bit since it's not folded into the other space
  2677. * cache.
  2678. */
  2679. num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024);
  2680. if (!num_pages)
  2681. num_pages = 1;
  2682. num_pages *= 16;
  2683. num_pages *= PAGE_CACHE_SIZE;
  2684. ret = btrfs_check_data_free_space(inode, num_pages);
  2685. if (ret)
  2686. goto out_put;
  2687. ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
  2688. num_pages, num_pages,
  2689. &alloc_hint);
  2690. if (!ret)
  2691. dcs = BTRFS_DC_SETUP;
  2692. btrfs_free_reserved_data_space(inode, num_pages);
  2693. out_put:
  2694. iput(inode);
  2695. out_free:
  2696. btrfs_release_path(path);
  2697. out:
  2698. spin_lock(&block_group->lock);
  2699. if (!ret && dcs == BTRFS_DC_SETUP)
  2700. block_group->cache_generation = trans->transid;
  2701. block_group->disk_cache_state = dcs;
  2702. spin_unlock(&block_group->lock);
  2703. return ret;
  2704. }
  2705. int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
  2706. struct btrfs_root *root)
  2707. {
  2708. struct btrfs_block_group_cache *cache;
  2709. int err = 0;
  2710. struct btrfs_path *path;
  2711. u64 last = 0;
  2712. path = btrfs_alloc_path();
  2713. if (!path)
  2714. return -ENOMEM;
  2715. again:
  2716. while (1) {
  2717. cache = btrfs_lookup_first_block_group(root->fs_info, last);
  2718. while (cache) {
  2719. if (cache->disk_cache_state == BTRFS_DC_CLEAR)
  2720. break;
  2721. cache = next_block_group(root, cache);
  2722. }
  2723. if (!cache) {
  2724. if (last == 0)
  2725. break;
  2726. last = 0;
  2727. continue;
  2728. }
  2729. err = cache_save_setup(cache, trans, path);
  2730. last = cache->key.objectid + cache->key.offset;
  2731. btrfs_put_block_group(cache);
  2732. }
  2733. while (1) {
  2734. if (last == 0) {
  2735. err = btrfs_run_delayed_refs(trans, root,
  2736. (unsigned long)-1);
  2737. if (err) /* File system offline */
  2738. goto out;
  2739. }
  2740. cache = btrfs_lookup_first_block_group(root->fs_info, last);
  2741. while (cache) {
  2742. if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
  2743. btrfs_put_block_group(cache);
  2744. goto again;
  2745. }
  2746. if (cache->dirty)
  2747. break;
  2748. cache = next_block_group(root, cache);
  2749. }
  2750. if (!cache) {
  2751. if (last == 0)
  2752. break;
  2753. last = 0;
  2754. continue;
  2755. }
  2756. if (cache->disk_cache_state == BTRFS_DC_SETUP)
  2757. cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
  2758. cache->dirty = 0;
  2759. last = cache->key.objectid + cache->key.offset;
  2760. err = write_one_cache_group(trans, root, path, cache);
  2761. if (err) /* File system offline */
  2762. goto out;
  2763. btrfs_put_block_group(cache);
  2764. }
  2765. while (1) {
  2766. /*
  2767. * I don't think this is needed since we're just marking our
  2768. * preallocated extent as written, but just in case it can't
  2769. * hurt.
  2770. */
  2771. if (last == 0) {
  2772. err = btrfs_run_delayed_refs(trans, root,
  2773. (unsigned long)-1);
  2774. if (err) /* File system offline */
  2775. goto out;
  2776. }
  2777. cache = btrfs_lookup_first_block_group(root->fs_info, last);
  2778. while (cache) {
  2779. /*
  2780. * Really this shouldn't happen, but it could if we
  2781. * couldn't write the entire preallocated extent and
  2782. * splitting the extent resulted in a new block.
  2783. */
  2784. if (cache->dirty) {
  2785. btrfs_put_block_group(cache);
  2786. goto again;
  2787. }
  2788. if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
  2789. break;
  2790. cache = next_block_group(root, cache);
  2791. }
  2792. if (!cache) {
  2793. if (last == 0)
  2794. break;
  2795. last = 0;
  2796. continue;
  2797. }
  2798. err = btrfs_write_out_cache(root, trans, cache, path);
  2799. /*
  2800. * If we didn't have an error then the cache state is still
  2801. * NEED_WRITE, so we can set it to WRITTEN.
  2802. */
  2803. if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
  2804. cache->disk_cache_state = BTRFS_DC_WRITTEN;
  2805. last = cache->key.objectid + cache->key.offset;
  2806. btrfs_put_block_group(cache);
  2807. }
  2808. out:
  2809. btrfs_free_path(path);
  2810. return err;
  2811. }
  2812. int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
  2813. {
  2814. struct btrfs_block_group_cache *block_group;
  2815. int readonly = 0;
  2816. block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
  2817. if (!block_group || block_group->ro)
  2818. readonly = 1;
  2819. if (block_group)
  2820. btrfs_put_block_group(block_group);
  2821. return readonly;
  2822. }
  2823. static int update_space_info(struct btrfs_fs_info *info, u64 flags,
  2824. u64 total_bytes, u64 bytes_used,
  2825. struct btrfs_space_info **space_info)
  2826. {
  2827. struct btrfs_space_info *found;
  2828. int i;
  2829. int factor;
  2830. if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
  2831. BTRFS_BLOCK_GROUP_RAID10))
  2832. factor = 2;
  2833. else
  2834. factor = 1;
  2835. found = __find_space_info(info, flags);
  2836. if (found) {
  2837. spin_lock(&found->lock);
  2838. found->total_bytes += total_bytes;
  2839. found->disk_total += total_bytes * factor;
  2840. found->bytes_used += bytes_used;
  2841. found->disk_used += bytes_used * factor;
  2842. found->full = 0;
  2843. spin_unlock(&found->lock);
  2844. *space_info = found;
  2845. return 0;
  2846. }
  2847. found = kzalloc(sizeof(*found), GFP_NOFS);
  2848. if (!found)
  2849. return -ENOMEM;
  2850. for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
  2851. INIT_LIST_HEAD(&found->block_groups[i]);
  2852. init_rwsem(&found->groups_sem);
  2853. spin_lock_init(&found->lock);
  2854. found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
  2855. found->total_bytes = total_bytes;
  2856. found->disk_total = total_bytes * factor;
  2857. found->bytes_used = bytes_used;
  2858. found->disk_used = bytes_used * factor;
  2859. found->bytes_pinned = 0;
  2860. found->bytes_reserved = 0;
  2861. found->bytes_readonly = 0;
  2862. found->bytes_may_use = 0;
  2863. found->full = 0;
  2864. found->force_alloc = CHUNK_ALLOC_NO_FORCE;
  2865. found->chunk_alloc = 0;
  2866. found->flush = 0;
  2867. init_waitqueue_head(&found->wait);
  2868. *space_info = found;
  2869. list_add_rcu(&found->list, &info->space_info);
  2870. if (flags & BTRFS_BLOCK_GROUP_DATA)
  2871. info->data_sinfo = found;
  2872. return 0;
  2873. }
  2874. static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
  2875. {
  2876. u64 extra_flags = chunk_to_extended(flags) &
  2877. BTRFS_EXTENDED_PROFILE_MASK;
  2878. if (flags & BTRFS_BLOCK_GROUP_DATA)
  2879. fs_info->avail_data_alloc_bits |= extra_flags;
  2880. if (flags & BTRFS_BLOCK_GROUP_METADATA)
  2881. fs_info->avail_metadata_alloc_bits |= extra_flags;
  2882. if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
  2883. fs_info->avail_system_alloc_bits |= extra_flags;
  2884. }
  2885. /*
  2886. * returns target flags in extended format or 0 if restripe for this
  2887. * chunk_type is not in progress
  2888. *
  2889. * should be called with either volume_mutex or balance_lock held
  2890. */
  2891. static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
  2892. {
  2893. struct btrfs_balance_control *bctl = fs_info->balance_ctl;
  2894. u64 target = 0;
  2895. if (!bctl)
  2896. return 0;
  2897. if (flags & BTRFS_BLOCK_GROUP_DATA &&
  2898. bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
  2899. target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
  2900. } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
  2901. bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
  2902. target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
  2903. } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
  2904. bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
  2905. target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
  2906. }
  2907. return target;
  2908. }
  2909. /*
  2910. * @flags: available profiles in extended format (see ctree.h)
  2911. *
  2912. * Returns reduced profile in chunk format. If profile changing is in
  2913. * progress (either running or paused) picks the target profile (if it's
  2914. * already available), otherwise falls back to plain reducing.
  2915. */
  2916. u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
  2917. {
  2918. /*
  2919. * we add in the count of missing devices because we want
  2920. * to make sure that any RAID levels on a degraded FS
  2921. * continue to be honored.
  2922. */
  2923. u64 num_devices = root->fs_info->fs_devices->rw_devices +
  2924. root->fs_info->fs_devices->missing_devices;
  2925. u64 target;
  2926. /*
  2927. * see if restripe for this chunk_type is in progress, if so
  2928. * try to reduce to the target profile
  2929. */
  2930. spin_lock(&root->fs_info->balance_lock);
  2931. target = get_restripe_target(root->fs_info, flags);
  2932. if (target) {
  2933. /* pick target profile only if it's already available */
  2934. if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
  2935. spin_unlock(&root->fs_info->balance_lock);
  2936. return extended_to_chunk(target);
  2937. }
  2938. }
  2939. spin_unlock(&root->fs_info->balance_lock);
  2940. if (num_devices == 1)
  2941. flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
  2942. if (num_devices < 4)
  2943. flags &= ~BTRFS_BLOCK_GROUP_RAID10;
  2944. if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
  2945. (flags & (BTRFS_BLOCK_GROUP_RAID1 |
  2946. BTRFS_BLOCK_GROUP_RAID10))) {
  2947. flags &= ~BTRFS_BLOCK_GROUP_DUP;
  2948. }
  2949. if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
  2950. (flags & BTRFS_BLOCK_GROUP_RAID10)) {
  2951. flags &= ~BTRFS_BLOCK_GROUP_RAID1;
  2952. }
  2953. if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
  2954. ((flags & BTRFS_BLOCK_GROUP_RAID1) |
  2955. (flags & BTRFS_BLOCK_GROUP_RAID10) |
  2956. (flags & BTRFS_BLOCK_GROUP_DUP))) {
  2957. flags &= ~BTRFS_BLOCK_GROUP_RAID0;
  2958. }
  2959. return extended_to_chunk(flags);
  2960. }
  2961. static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
  2962. {
  2963. if (flags & BTRFS_BLOCK_GROUP_DATA)
  2964. flags |= root->fs_info->avail_data_alloc_bits;
  2965. else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
  2966. flags |= root->fs_info->avail_system_alloc_bits;
  2967. else if (flags & BTRFS_BLOCK_GROUP_METADATA)
  2968. flags |= root->fs_info->avail_metadata_alloc_bits;
  2969. return btrfs_reduce_alloc_profile(root, flags);
  2970. }
  2971. u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
  2972. {
  2973. u64 flags;
  2974. if (data)
  2975. flags = BTRFS_BLOCK_GROUP_DATA;
  2976. else if (root == root->fs_info->chunk_root)
  2977. flags = BTRFS_BLOCK_GROUP_SYSTEM;
  2978. else
  2979. flags = BTRFS_BLOCK_GROUP_METADATA;
  2980. return get_alloc_profile(root, flags);
  2981. }
  2982. /*
  2983. * This will check the space that the inode allocates from to make sure we have
  2984. * enough space for bytes.
  2985. */
  2986. int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
  2987. {
  2988. struct btrfs_space_info *data_sinfo;
  2989. struct btrfs_root *root = BTRFS_I(inode)->root;
  2990. struct btrfs_fs_info *fs_info = root->fs_info;
  2991. u64 used;
  2992. int ret = 0, committed = 0, alloc_chunk = 1;
  2993. /* make sure bytes are sectorsize aligned */
  2994. bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
  2995. if (root == root->fs_info->tree_root ||
  2996. BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) {
  2997. alloc_chunk = 0;
  2998. committed = 1;
  2999. }
  3000. data_sinfo = fs_info->data_sinfo;
  3001. if (!data_sinfo)
  3002. goto alloc;
  3003. again:
  3004. /* make sure we have enough space to handle the data first */
  3005. spin_lock(&data_sinfo->lock);
  3006. used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
  3007. data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
  3008. data_sinfo->bytes_may_use;
  3009. if (used + bytes > data_sinfo->total_bytes) {
  3010. struct btrfs_trans_handle *trans;
  3011. /*
  3012. * if we don't have enough free bytes in this space then we need
  3013. * to alloc a new chunk.
  3014. */
  3015. if (!data_sinfo->full && alloc_chunk) {
  3016. u64 alloc_target;
  3017. data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
  3018. spin_unlock(&data_sinfo->lock);
  3019. alloc:
  3020. alloc_target = btrfs_get_alloc_profile(root, 1);
  3021. trans = btrfs_join_transaction(root);
  3022. if (IS_ERR(trans))
  3023. return PTR_ERR(trans);
  3024. ret = do_chunk_alloc(trans, root->fs_info->extent_root,
  3025. bytes + 2 * 1024 * 1024,
  3026. alloc_target,
  3027. CHUNK_ALLOC_NO_FORCE);
  3028. btrfs_end_transaction(trans, root);
  3029. if (ret < 0) {
  3030. if (ret != -ENOSPC)
  3031. return ret;
  3032. else
  3033. goto commit_trans;
  3034. }
  3035. if (!data_sinfo)
  3036. data_sinfo = fs_info->data_sinfo;
  3037. goto again;
  3038. }
  3039. /*
  3040. * If we have less pinned bytes than we want to allocate then
  3041. * don't bother committing the transaction, it won't help us.
  3042. */
  3043. if (data_sinfo->bytes_pinned < bytes)
  3044. committed = 1;
  3045. spin_unlock(&data_sinfo->lock);
  3046. /* commit the current transaction and try again */
  3047. commit_trans:
  3048. if (!committed &&
  3049. !atomic_read(&root->fs_info->open_ioctl_trans)) {
  3050. committed = 1;
  3051. trans = btrfs_join_transaction(root);
  3052. if (IS_ERR(trans))
  3053. return PTR_ERR(trans);
  3054. ret = btrfs_commit_transaction(trans, root);
  3055. if (ret)
  3056. return ret;
  3057. goto again;
  3058. }
  3059. return -ENOSPC;
  3060. }
  3061. data_sinfo->bytes_may_use += bytes;
  3062. trace_btrfs_space_reservation(root->fs_info, "space_info",
  3063. data_sinfo->flags, bytes, 1);
  3064. spin_unlock(&data_sinfo->lock);
  3065. return 0;
  3066. }
  3067. /*
  3068. * Called if we need to clear a data reservation for this inode.
  3069. */
  3070. void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
  3071. {
  3072. struct btrfs_root *root = BTRFS_I(inode)->root;
  3073. struct btrfs_space_info *data_sinfo;
  3074. /* make sure bytes are sectorsize aligned */
  3075. bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
  3076. data_sinfo = root->fs_info->data_sinfo;
  3077. spin_lock(&data_sinfo->lock);
  3078. data_sinfo->bytes_may_use -= bytes;
  3079. trace_btrfs_space_reservation(root->fs_info, "space_info",
  3080. data_sinfo->flags, bytes, 0);
  3081. spin_unlock(&data_sinfo->lock);
  3082. }
  3083. static void force_metadata_allocation(struct btrfs_fs_info *info)
  3084. {
  3085. struct list_head *head = &info->space_info;
  3086. struct btrfs_space_info *found;
  3087. rcu_read_lock();
  3088. list_for_each_entry_rcu(found, head, list) {
  3089. if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
  3090. found->force_alloc = CHUNK_ALLOC_FORCE;
  3091. }
  3092. rcu_read_unlock();
  3093. }
  3094. static int should_alloc_chunk(struct btrfs_root *root,
  3095. struct btrfs_space_info *sinfo, u64 alloc_bytes,
  3096. int force)
  3097. {
  3098. struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
  3099. u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
  3100. u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
  3101. u64 thresh;
  3102. if (force == CHUNK_ALLOC_FORCE)
  3103. return 1;
  3104. /*
  3105. * We need to take into account the global rsv because for all intents
  3106. * and purposes it's used space. Don't worry about locking the
  3107. * global_rsv, it doesn't change except when the transaction commits.
  3108. */
  3109. if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
  3110. num_allocated += global_rsv->size;
  3111. /*
  3112. * in limited mode, we want to have some free space up to
  3113. * about 1% of the FS size.
  3114. */
  3115. if (force == CHUNK_ALLOC_LIMITED) {
  3116. thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
  3117. thresh = max_t(u64, 64 * 1024 * 1024,
  3118. div_factor_fine(thresh, 1));
  3119. if (num_bytes - num_allocated < thresh)
  3120. return 1;
  3121. }
  3122. if (num_allocated + alloc_bytes < div_factor(num_bytes, 8))
  3123. return 0;
  3124. return 1;
  3125. }
  3126. static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
  3127. {
  3128. u64 num_dev;
  3129. if (type & BTRFS_BLOCK_GROUP_RAID10 ||
  3130. type & BTRFS_BLOCK_GROUP_RAID0)
  3131. num_dev = root->fs_info->fs_devices->rw_devices;
  3132. else if (type & BTRFS_BLOCK_GROUP_RAID1)
  3133. num_dev = 2;
  3134. else
  3135. num_dev = 1; /* DUP or single */
  3136. /* metadata for updaing devices and chunk tree */
  3137. return btrfs_calc_trans_metadata_size(root, num_dev + 1);
  3138. }
  3139. static void check_system_chunk(struct btrfs_trans_handle *trans,
  3140. struct btrfs_root *root, u64 type)
  3141. {
  3142. struct btrfs_space_info *info;
  3143. u64 left;
  3144. u64 thresh;
  3145. info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
  3146. spin_lock(&info->lock);
  3147. left = info->total_bytes - info->bytes_used - info->bytes_pinned -
  3148. info->bytes_reserved - info->bytes_readonly;
  3149. spin_unlock(&info->lock);
  3150. thresh = get_system_chunk_thresh(root, type);
  3151. if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
  3152. printk(KERN_INFO "left=%llu, need=%llu, flags=%llu\n",
  3153. left, thresh, type);
  3154. dump_space_info(info, 0, 0);
  3155. }
  3156. if (left < thresh) {
  3157. u64 flags;
  3158. flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
  3159. btrfs_alloc_chunk(trans, root, flags);
  3160. }
  3161. }
  3162. static int do_chunk_alloc(struct btrfs_trans_handle *trans,
  3163. struct btrfs_root *extent_root, u64 alloc_bytes,
  3164. u64 flags, int force)
  3165. {
  3166. struct btrfs_space_info *space_info;
  3167. struct btrfs_fs_info *fs_info = extent_root->fs_info;
  3168. int wait_for_alloc = 0;
  3169. int ret = 0;
  3170. space_info = __find_space_info(extent_root->fs_info, flags);
  3171. if (!space_info) {
  3172. ret = update_space_info(extent_root->fs_info, flags,
  3173. 0, 0, &space_info);
  3174. BUG_ON(ret); /* -ENOMEM */
  3175. }
  3176. BUG_ON(!space_info); /* Logic error */
  3177. again:
  3178. spin_lock(&space_info->lock);
  3179. if (force < space_info->force_alloc)
  3180. force = space_info->force_alloc;
  3181. if (space_info->full) {
  3182. spin_unlock(&space_info->lock);
  3183. return 0;
  3184. }
  3185. if (!should_alloc_chunk(extent_root, space_info, alloc_bytes, force)) {
  3186. spin_unlock(&space_info->lock);
  3187. return 0;
  3188. } else if (space_info->chunk_alloc) {
  3189. wait_for_alloc = 1;
  3190. } else {
  3191. space_info->chunk_alloc = 1;
  3192. }
  3193. spin_unlock(&space_info->lock);
  3194. mutex_lock(&fs_info->chunk_mutex);
  3195. /*
  3196. * The chunk_mutex is held throughout the entirety of a chunk
  3197. * allocation, so once we've acquired the chunk_mutex we know that the
  3198. * other guy is done and we need to recheck and see if we should
  3199. * allocate.
  3200. */
  3201. if (wait_for_alloc) {
  3202. mutex_unlock(&fs_info->chunk_mutex);
  3203. wait_for_alloc = 0;
  3204. goto again;
  3205. }
  3206. /*
  3207. * If we have mixed data/metadata chunks we want to make sure we keep
  3208. * allocating mixed chunks instead of individual chunks.
  3209. */
  3210. if (btrfs_mixed_space_info(space_info))
  3211. flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
  3212. /*
  3213. * if we're doing a data chunk, go ahead and make sure that
  3214. * we keep a reasonable number of metadata chunks allocated in the
  3215. * FS as well.
  3216. */
  3217. if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
  3218. fs_info->data_chunk_allocations++;
  3219. if (!(fs_info->data_chunk_allocations %
  3220. fs_info->metadata_ratio))
  3221. force_metadata_allocation(fs_info);
  3222. }
  3223. /*
  3224. * Check if we have enough space in SYSTEM chunk because we may need
  3225. * to update devices.
  3226. */
  3227. check_system_chunk(trans, extent_root, flags);
  3228. ret = btrfs_alloc_chunk(trans, extent_root, flags);
  3229. if (ret < 0 && ret != -ENOSPC)
  3230. goto out;
  3231. spin_lock(&space_info->lock);
  3232. if (ret)
  3233. space_info->full = 1;
  3234. else
  3235. ret = 1;
  3236. space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
  3237. space_info->chunk_alloc = 0;
  3238. spin_unlock(&space_info->lock);
  3239. out:
  3240. mutex_unlock(&fs_info->chunk_mutex);
  3241. return ret;
  3242. }
  3243. /*
  3244. * shrink metadata reservation for delalloc
  3245. */
  3246. static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
  3247. bool wait_ordered)
  3248. {
  3249. struct btrfs_block_rsv *block_rsv;
  3250. struct btrfs_space_info *space_info;
  3251. struct btrfs_trans_handle *trans;
  3252. u64 delalloc_bytes;
  3253. u64 max_reclaim;
  3254. long time_left;
  3255. unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
  3256. int loops = 0;
  3257. trans = (struct btrfs_trans_handle *)current->journal_info;
  3258. block_rsv = &root->fs_info->delalloc_block_rsv;
  3259. space_info = block_rsv->space_info;
  3260. smp_mb();
  3261. delalloc_bytes = root->fs_info->delalloc_bytes;
  3262. if (delalloc_bytes == 0) {
  3263. if (trans)
  3264. return;
  3265. btrfs_wait_ordered_extents(root, 0, 0);
  3266. return;
  3267. }
  3268. while (delalloc_bytes && loops < 3) {
  3269. max_reclaim = min(delalloc_bytes, to_reclaim);
  3270. nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
  3271. writeback_inodes_sb_nr_if_idle(root->fs_info->sb, nr_pages,
  3272. WB_REASON_FS_FREE_SPACE);
  3273. spin_lock(&space_info->lock);
  3274. if (space_info->bytes_used + space_info->bytes_reserved +
  3275. space_info->bytes_pinned + space_info->bytes_readonly +
  3276. space_info->bytes_may_use + orig <=
  3277. space_info->total_bytes) {
  3278. spin_unlock(&space_info->lock);
  3279. break;
  3280. }
  3281. spin_unlock(&space_info->lock);
  3282. loops++;
  3283. if (wait_ordered && !trans) {
  3284. btrfs_wait_ordered_extents(root, 0, 0);
  3285. } else {
  3286. time_left = schedule_timeout_killable(1);
  3287. if (time_left)
  3288. break;
  3289. }
  3290. smp_mb();
  3291. delalloc_bytes = root->fs_info->delalloc_bytes;
  3292. }
  3293. }
  3294. /**
  3295. * maybe_commit_transaction - possibly commit the transaction if its ok to
  3296. * @root - the root we're allocating for
  3297. * @bytes - the number of bytes we want to reserve
  3298. * @force - force the commit
  3299. *
  3300. * This will check to make sure that committing the transaction will actually
  3301. * get us somewhere and then commit the transaction if it does. Otherwise it
  3302. * will return -ENOSPC.
  3303. */
  3304. static int may_commit_transaction(struct btrfs_root *root,
  3305. struct btrfs_space_info *space_info,
  3306. u64 bytes, int force)
  3307. {
  3308. struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
  3309. struct btrfs_trans_handle *trans;
  3310. trans = (struct btrfs_trans_handle *)current->journal_info;
  3311. if (trans)
  3312. return -EAGAIN;
  3313. if (force)
  3314. goto commit;
  3315. /* See if there is enough pinned space to make this reservation */
  3316. spin_lock(&space_info->lock);
  3317. if (space_info->bytes_pinned >= bytes) {
  3318. spin_unlock(&space_info->lock);
  3319. goto commit;
  3320. }
  3321. spin_unlock(&space_info->lock);
  3322. /*
  3323. * See if there is some space in the delayed insertion reservation for
  3324. * this reservation.
  3325. */
  3326. if (space_info != delayed_rsv->space_info)
  3327. return -ENOSPC;
  3328. spin_lock(&space_info->lock);
  3329. spin_lock(&delayed_rsv->lock);
  3330. if (space_info->bytes_pinned + delayed_rsv->size < bytes) {
  3331. spin_unlock(&delayed_rsv->lock);
  3332. spin_unlock(&space_info->lock);
  3333. return -ENOSPC;
  3334. }
  3335. spin_unlock(&delayed_rsv->lock);
  3336. spin_unlock(&space_info->lock);
  3337. commit:
  3338. trans = btrfs_join_transaction(root);
  3339. if (IS_ERR(trans))
  3340. return -ENOSPC;
  3341. return btrfs_commit_transaction(trans, root);
  3342. }
  3343. enum flush_state {
  3344. FLUSH_DELALLOC = 1,
  3345. FLUSH_DELALLOC_WAIT = 2,
  3346. FLUSH_DELAYED_ITEMS_NR = 3,
  3347. FLUSH_DELAYED_ITEMS = 4,
  3348. COMMIT_TRANS = 5,
  3349. };
  3350. static int flush_space(struct btrfs_root *root,
  3351. struct btrfs_space_info *space_info, u64 num_bytes,
  3352. u64 orig_bytes, int state)
  3353. {
  3354. struct btrfs_trans_handle *trans;
  3355. int nr;
  3356. int ret = 0;
  3357. switch (state) {
  3358. case FLUSH_DELALLOC:
  3359. case FLUSH_DELALLOC_WAIT:
  3360. shrink_delalloc(root, num_bytes, orig_bytes,
  3361. state == FLUSH_DELALLOC_WAIT);
  3362. break;
  3363. case FLUSH_DELAYED_ITEMS_NR:
  3364. case FLUSH_DELAYED_ITEMS:
  3365. if (state == FLUSH_DELAYED_ITEMS_NR) {
  3366. u64 bytes = btrfs_calc_trans_metadata_size(root, 1);
  3367. nr = (int)div64_u64(num_bytes, bytes);
  3368. if (!nr)
  3369. nr = 1;
  3370. nr *= 2;
  3371. } else {
  3372. nr = -1;
  3373. }
  3374. trans = btrfs_join_transaction(root);
  3375. if (IS_ERR(trans)) {
  3376. ret = PTR_ERR(trans);
  3377. break;
  3378. }
  3379. ret = btrfs_run_delayed_items_nr(trans, root, nr);
  3380. btrfs_end_transaction(trans, root);
  3381. break;
  3382. case COMMIT_TRANS:
  3383. ret = may_commit_transaction(root, space_info, orig_bytes, 0);
  3384. break;
  3385. default:
  3386. ret = -ENOSPC;
  3387. break;
  3388. }
  3389. return ret;
  3390. }
  3391. /**
  3392. * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
  3393. * @root - the root we're allocating for
  3394. * @block_rsv - the block_rsv we're allocating for
  3395. * @orig_bytes - the number of bytes we want
  3396. * @flush - wether or not we can flush to make our reservation
  3397. *
  3398. * This will reserve orgi_bytes number of bytes from the space info associated
  3399. * with the block_rsv. If there is not enough space it will make an attempt to
  3400. * flush out space to make room. It will do this by flushing delalloc if
  3401. * possible or committing the transaction. If flush is 0 then no attempts to
  3402. * regain reservations will be made and this will fail if there is not enough
  3403. * space already.
  3404. */
  3405. static int reserve_metadata_bytes(struct btrfs_root *root,
  3406. struct btrfs_block_rsv *block_rsv,
  3407. u64 orig_bytes, int flush)
  3408. {
  3409. struct btrfs_space_info *space_info = block_rsv->space_info;
  3410. u64 used;
  3411. u64 num_bytes = orig_bytes;
  3412. int flush_state = FLUSH_DELALLOC;
  3413. int ret = 0;
  3414. bool flushing = false;
  3415. bool committed = false;
  3416. again:
  3417. ret = 0;
  3418. spin_lock(&space_info->lock);
  3419. /*
  3420. * We only want to wait if somebody other than us is flushing and we are
  3421. * actually alloed to flush.
  3422. */
  3423. while (flush && !flushing && space_info->flush) {
  3424. spin_unlock(&space_info->lock);
  3425. /*
  3426. * If we have a trans handle we can't wait because the flusher
  3427. * may have to commit the transaction, which would mean we would
  3428. * deadlock since we are waiting for the flusher to finish, but
  3429. * hold the current transaction open.
  3430. */
  3431. if (current->journal_info)
  3432. return -EAGAIN;
  3433. ret = wait_event_killable(space_info->wait, !space_info->flush);
  3434. /* Must have been killed, return */
  3435. if (ret)
  3436. return -EINTR;
  3437. spin_lock(&space_info->lock);
  3438. }
  3439. ret = -ENOSPC;
  3440. used = space_info->bytes_used + space_info->bytes_reserved +
  3441. space_info->bytes_pinned + space_info->bytes_readonly +
  3442. space_info->bytes_may_use;
  3443. /*
  3444. * The idea here is that we've not already over-reserved the block group
  3445. * then we can go ahead and save our reservation first and then start
  3446. * flushing if we need to. Otherwise if we've already overcommitted
  3447. * lets start flushing stuff first and then come back and try to make
  3448. * our reservation.
  3449. */
  3450. if (used <= space_info->total_bytes) {
  3451. if (used + orig_bytes <= space_info->total_bytes) {
  3452. space_info->bytes_may_use += orig_bytes;
  3453. trace_btrfs_space_reservation(root->fs_info,
  3454. "space_info", space_info->flags, orig_bytes, 1);
  3455. ret = 0;
  3456. } else {
  3457. /*
  3458. * Ok set num_bytes to orig_bytes since we aren't
  3459. * overocmmitted, this way we only try and reclaim what
  3460. * we need.
  3461. */
  3462. num_bytes = orig_bytes;
  3463. }
  3464. } else {
  3465. /*
  3466. * Ok we're over committed, set num_bytes to the overcommitted
  3467. * amount plus the amount of bytes that we need for this
  3468. * reservation.
  3469. */
  3470. num_bytes = used - space_info->total_bytes +
  3471. (orig_bytes * 2);
  3472. }
  3473. if (ret) {
  3474. u64 profile = btrfs_get_alloc_profile(root, 0);
  3475. u64 avail;
  3476. /*
  3477. * If we have a lot of space that's pinned, don't bother doing
  3478. * the overcommit dance yet and just commit the transaction.
  3479. */
  3480. avail = (space_info->total_bytes - space_info->bytes_used) * 8;
  3481. do_div(avail, 10);
  3482. if (space_info->bytes_pinned >= avail && flush && !committed) {
  3483. space_info->flush = 1;
  3484. flushing = true;
  3485. spin_unlock(&space_info->lock);
  3486. ret = may_commit_transaction(root, space_info,
  3487. orig_bytes, 1);
  3488. if (ret)
  3489. goto out;
  3490. committed = true;
  3491. goto again;
  3492. }
  3493. spin_lock(&root->fs_info->free_chunk_lock);
  3494. avail = root->fs_info->free_chunk_space;
  3495. /*
  3496. * If we have dup, raid1 or raid10 then only half of the free
  3497. * space is actually useable.
  3498. */
  3499. if (profile & (BTRFS_BLOCK_GROUP_DUP |
  3500. BTRFS_BLOCK_GROUP_RAID1 |
  3501. BTRFS_BLOCK_GROUP_RAID10))
  3502. avail >>= 1;
  3503. /*
  3504. * If we aren't flushing don't let us overcommit too much, say
  3505. * 1/8th of the space. If we can flush, let it overcommit up to
  3506. * 1/2 of the space.
  3507. */
  3508. if (flush)
  3509. avail >>= 3;
  3510. else
  3511. avail >>= 1;
  3512. spin_unlock(&root->fs_info->free_chunk_lock);
  3513. if (used + num_bytes < space_info->total_bytes + avail) {
  3514. space_info->bytes_may_use += orig_bytes;
  3515. trace_btrfs_space_reservation(root->fs_info,
  3516. "space_info", space_info->flags, orig_bytes, 1);
  3517. ret = 0;
  3518. }
  3519. }
  3520. /*
  3521. * Couldn't make our reservation, save our place so while we're trying
  3522. * to reclaim space we can actually use it instead of somebody else
  3523. * stealing it from us.
  3524. */
  3525. if (ret && flush) {
  3526. flushing = true;
  3527. space_info->flush = 1;
  3528. }
  3529. spin_unlock(&space_info->lock);
  3530. if (!ret || !flush)
  3531. goto out;
  3532. ret = flush_space(root, space_info, num_bytes, orig_bytes,
  3533. flush_state);
  3534. flush_state++;
  3535. if (!ret)
  3536. goto again;
  3537. else if (flush_state <= COMMIT_TRANS)
  3538. goto again;
  3539. out:
  3540. if (flushing) {
  3541. spin_lock(&space_info->lock);
  3542. space_info->flush = 0;
  3543. wake_up_all(&space_info->wait);
  3544. spin_unlock(&space_info->lock);
  3545. }
  3546. return ret;
  3547. }
  3548. static struct btrfs_block_rsv *get_block_rsv(
  3549. const struct btrfs_trans_handle *trans,
  3550. const struct btrfs_root *root)
  3551. {
  3552. struct btrfs_block_rsv *block_rsv = NULL;
  3553. if (root->ref_cows)
  3554. block_rsv = trans->block_rsv;
  3555. if (root == root->fs_info->csum_root && trans->adding_csums)
  3556. block_rsv = trans->block_rsv;
  3557. if (!block_rsv)
  3558. block_rsv = root->block_rsv;
  3559. if (!block_rsv)
  3560. block_rsv = &root->fs_info->empty_block_rsv;
  3561. return block_rsv;
  3562. }
  3563. static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
  3564. u64 num_bytes)
  3565. {
  3566. int ret = -ENOSPC;
  3567. spin_lock(&block_rsv->lock);
  3568. if (block_rsv->reserved >= num_bytes) {
  3569. block_rsv->reserved -= num_bytes;
  3570. if (block_rsv->reserved < block_rsv->size)
  3571. block_rsv->full = 0;
  3572. ret = 0;
  3573. }
  3574. spin_unlock(&block_rsv->lock);
  3575. return ret;
  3576. }
  3577. static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
  3578. u64 num_bytes, int update_size)
  3579. {
  3580. spin_lock(&block_rsv->lock);
  3581. block_rsv->reserved += num_bytes;
  3582. if (update_size)
  3583. block_rsv->size += num_bytes;
  3584. else if (block_rsv->reserved >= block_rsv->size)
  3585. block_rsv->full = 1;
  3586. spin_unlock(&block_rsv->lock);
  3587. }
  3588. static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
  3589. struct btrfs_block_rsv *block_rsv,
  3590. struct btrfs_block_rsv *dest, u64 num_bytes)
  3591. {
  3592. struct btrfs_space_info *space_info = block_rsv->space_info;
  3593. spin_lock(&block_rsv->lock);
  3594. if (num_bytes == (u64)-1)
  3595. num_bytes = block_rsv->size;
  3596. block_rsv->size -= num_bytes;
  3597. if (block_rsv->reserved >= block_rsv->size) {
  3598. num_bytes = block_rsv->reserved - block_rsv->size;
  3599. block_rsv->reserved = block_rsv->size;
  3600. block_rsv->full = 1;
  3601. } else {
  3602. num_bytes = 0;
  3603. }
  3604. spin_unlock(&block_rsv->lock);
  3605. if (num_bytes > 0) {
  3606. if (dest) {
  3607. spin_lock(&dest->lock);
  3608. if (!dest->full) {
  3609. u64 bytes_to_add;
  3610. bytes_to_add = dest->size - dest->reserved;
  3611. bytes_to_add = min(num_bytes, bytes_to_add);
  3612. dest->reserved += bytes_to_add;
  3613. if (dest->reserved >= dest->size)
  3614. dest->full = 1;
  3615. num_bytes -= bytes_to_add;
  3616. }
  3617. spin_unlock(&dest->lock);
  3618. }
  3619. if (num_bytes) {
  3620. spin_lock(&space_info->lock);
  3621. space_info->bytes_may_use -= num_bytes;
  3622. trace_btrfs_space_reservation(fs_info, "space_info",
  3623. space_info->flags, num_bytes, 0);
  3624. space_info->reservation_progress++;
  3625. spin_unlock(&space_info->lock);
  3626. }
  3627. }
  3628. }
  3629. static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
  3630. struct btrfs_block_rsv *dst, u64 num_bytes)
  3631. {
  3632. int ret;
  3633. ret = block_rsv_use_bytes(src, num_bytes);
  3634. if (ret)
  3635. return ret;
  3636. block_rsv_add_bytes(dst, num_bytes, 1);
  3637. return 0;
  3638. }
  3639. void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv)
  3640. {
  3641. memset(rsv, 0, sizeof(*rsv));
  3642. spin_lock_init(&rsv->lock);
  3643. }
  3644. struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root)
  3645. {
  3646. struct btrfs_block_rsv *block_rsv;
  3647. struct btrfs_fs_info *fs_info = root->fs_info;
  3648. block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
  3649. if (!block_rsv)
  3650. return NULL;
  3651. btrfs_init_block_rsv(block_rsv);
  3652. block_rsv->space_info = __find_space_info(fs_info,
  3653. BTRFS_BLOCK_GROUP_METADATA);
  3654. return block_rsv;
  3655. }
  3656. void btrfs_free_block_rsv(struct btrfs_root *root,
  3657. struct btrfs_block_rsv *rsv)
  3658. {
  3659. if (!rsv)
  3660. return;
  3661. btrfs_block_rsv_release(root, rsv, (u64)-1);
  3662. kfree(rsv);
  3663. }
  3664. static inline int __block_rsv_add(struct btrfs_root *root,
  3665. struct btrfs_block_rsv *block_rsv,
  3666. u64 num_bytes, int flush)
  3667. {
  3668. int ret;
  3669. if (num_bytes == 0)
  3670. return 0;
  3671. ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
  3672. if (!ret) {
  3673. block_rsv_add_bytes(block_rsv, num_bytes, 1);
  3674. return 0;
  3675. }
  3676. return ret;
  3677. }
  3678. int btrfs_block_rsv_add(struct btrfs_root *root,
  3679. struct btrfs_block_rsv *block_rsv,
  3680. u64 num_bytes)
  3681. {
  3682. return __block_rsv_add(root, block_rsv, num_bytes, 1);
  3683. }
  3684. int btrfs_block_rsv_add_noflush(struct btrfs_root *root,
  3685. struct btrfs_block_rsv *block_rsv,
  3686. u64 num_bytes)
  3687. {
  3688. return __block_rsv_add(root, block_rsv, num_bytes, 0);
  3689. }
  3690. int btrfs_block_rsv_check(struct btrfs_root *root,
  3691. struct btrfs_block_rsv *block_rsv, int min_factor)
  3692. {
  3693. u64 num_bytes = 0;
  3694. int ret = -ENOSPC;
  3695. if (!block_rsv)
  3696. return 0;
  3697. spin_lock(&block_rsv->lock);
  3698. num_bytes = div_factor(block_rsv->size, min_factor);
  3699. if (block_rsv->reserved >= num_bytes)
  3700. ret = 0;
  3701. spin_unlock(&block_rsv->lock);
  3702. return ret;
  3703. }
  3704. static inline int __btrfs_block_rsv_refill(struct btrfs_root *root,
  3705. struct btrfs_block_rsv *block_rsv,
  3706. u64 min_reserved, int flush)
  3707. {
  3708. u64 num_bytes = 0;
  3709. int ret = -ENOSPC;
  3710. if (!block_rsv)
  3711. return 0;
  3712. spin_lock(&block_rsv->lock);
  3713. num_bytes = min_reserved;
  3714. if (block_rsv->reserved >= num_bytes)
  3715. ret = 0;
  3716. else
  3717. num_bytes -= block_rsv->reserved;
  3718. spin_unlock(&block_rsv->lock);
  3719. if (!ret)
  3720. return 0;
  3721. ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
  3722. if (!ret) {
  3723. block_rsv_add_bytes(block_rsv, num_bytes, 0);
  3724. return 0;
  3725. }
  3726. return ret;
  3727. }
  3728. int btrfs_block_rsv_refill(struct btrfs_root *root,
  3729. struct btrfs_block_rsv *block_rsv,
  3730. u64 min_reserved)
  3731. {
  3732. return __btrfs_block_rsv_refill(root, block_rsv, min_reserved, 1);
  3733. }
  3734. int btrfs_block_rsv_refill_noflush(struct btrfs_root *root,
  3735. struct btrfs_block_rsv *block_rsv,
  3736. u64 min_reserved)
  3737. {
  3738. return __btrfs_block_rsv_refill(root, block_rsv, min_reserved, 0);
  3739. }
  3740. int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
  3741. struct btrfs_block_rsv *dst_rsv,
  3742. u64 num_bytes)
  3743. {
  3744. return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
  3745. }
  3746. void btrfs_block_rsv_release(struct btrfs_root *root,
  3747. struct btrfs_block_rsv *block_rsv,
  3748. u64 num_bytes)
  3749. {
  3750. struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
  3751. if (global_rsv->full || global_rsv == block_rsv ||
  3752. block_rsv->space_info != global_rsv->space_info)
  3753. global_rsv = NULL;
  3754. block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
  3755. num_bytes);
  3756. }
  3757. /*
  3758. * helper to calculate size of global block reservation.
  3759. * the desired value is sum of space used by extent tree,
  3760. * checksum tree and root tree
  3761. */
  3762. static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
  3763. {
  3764. struct btrfs_space_info *sinfo;
  3765. u64 num_bytes;
  3766. u64 meta_used;
  3767. u64 data_used;
  3768. int csum_size = btrfs_super_csum_size(fs_info->super_copy);
  3769. sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
  3770. spin_lock(&sinfo->lock);
  3771. data_used = sinfo->bytes_used;
  3772. spin_unlock(&sinfo->lock);
  3773. sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
  3774. spin_lock(&sinfo->lock);
  3775. if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
  3776. data_used = 0;
  3777. meta_used = sinfo->bytes_used;
  3778. spin_unlock(&sinfo->lock);
  3779. num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
  3780. csum_size * 2;
  3781. num_bytes += div64_u64(data_used + meta_used, 50);
  3782. if (num_bytes * 3 > meta_used)
  3783. num_bytes = div64_u64(meta_used, 3);
  3784. return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
  3785. }
  3786. static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
  3787. {
  3788. struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
  3789. struct btrfs_space_info *sinfo = block_rsv->space_info;
  3790. u64 num_bytes;
  3791. num_bytes = calc_global_metadata_size(fs_info);
  3792. spin_lock(&sinfo->lock);
  3793. spin_lock(&block_rsv->lock);
  3794. block_rsv->size = num_bytes;
  3795. num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
  3796. sinfo->bytes_reserved + sinfo->bytes_readonly +
  3797. sinfo->bytes_may_use;
  3798. if (sinfo->total_bytes > num_bytes) {
  3799. num_bytes = sinfo->total_bytes - num_bytes;
  3800. block_rsv->reserved += num_bytes;
  3801. sinfo->bytes_may_use += num_bytes;
  3802. trace_btrfs_space_reservation(fs_info, "space_info",
  3803. sinfo->flags, num_bytes, 1);
  3804. }
  3805. if (block_rsv->reserved >= block_rsv->size) {
  3806. num_bytes = block_rsv->reserved - block_rsv->size;
  3807. sinfo->bytes_may_use -= num_bytes;
  3808. trace_btrfs_space_reservation(fs_info, "space_info",
  3809. sinfo->flags, num_bytes, 0);
  3810. sinfo->reservation_progress++;
  3811. block_rsv->reserved = block_rsv->size;
  3812. block_rsv->full = 1;
  3813. }
  3814. spin_unlock(&block_rsv->lock);
  3815. spin_unlock(&sinfo->lock);
  3816. }
  3817. static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
  3818. {
  3819. struct btrfs_space_info *space_info;
  3820. space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
  3821. fs_info->chunk_block_rsv.space_info = space_info;
  3822. space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
  3823. fs_info->global_block_rsv.space_info = space_info;
  3824. fs_info->delalloc_block_rsv.space_info = space_info;
  3825. fs_info->trans_block_rsv.space_info = space_info;
  3826. fs_info->empty_block_rsv.space_info = space_info;
  3827. fs_info->delayed_block_rsv.space_info = space_info;
  3828. fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
  3829. fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
  3830. fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
  3831. fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
  3832. fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
  3833. update_global_block_rsv(fs_info);
  3834. }
  3835. static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
  3836. {
  3837. block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
  3838. (u64)-1);
  3839. WARN_ON(fs_info->delalloc_block_rsv.size > 0);
  3840. WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
  3841. WARN_ON(fs_info->trans_block_rsv.size > 0);
  3842. WARN_ON(fs_info->trans_block_rsv.reserved > 0);
  3843. WARN_ON(fs_info->chunk_block_rsv.size > 0);
  3844. WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
  3845. WARN_ON(fs_info->delayed_block_rsv.size > 0);
  3846. WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
  3847. }
  3848. void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
  3849. struct btrfs_root *root)
  3850. {
  3851. if (!trans->block_rsv)
  3852. return;
  3853. if (!trans->bytes_reserved)
  3854. return;
  3855. trace_btrfs_space_reservation(root->fs_info, "transaction",
  3856. trans->transid, trans->bytes_reserved, 0);
  3857. btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
  3858. trans->bytes_reserved = 0;
  3859. }
  3860. /* Can only return 0 or -ENOSPC */
  3861. int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
  3862. struct inode *inode)
  3863. {
  3864. struct btrfs_root *root = BTRFS_I(inode)->root;
  3865. struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
  3866. struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
  3867. /*
  3868. * We need to hold space in order to delete our orphan item once we've
  3869. * added it, so this takes the reservation so we can release it later
  3870. * when we are truly done with the orphan item.
  3871. */
  3872. u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
  3873. trace_btrfs_space_reservation(root->fs_info, "orphan",
  3874. btrfs_ino(inode), num_bytes, 1);
  3875. return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
  3876. }
  3877. void btrfs_orphan_release_metadata(struct inode *inode)
  3878. {
  3879. struct btrfs_root *root = BTRFS_I(inode)->root;
  3880. u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
  3881. trace_btrfs_space_reservation(root->fs_info, "orphan",
  3882. btrfs_ino(inode), num_bytes, 0);
  3883. btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
  3884. }
  3885. int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans,
  3886. struct btrfs_pending_snapshot *pending)
  3887. {
  3888. struct btrfs_root *root = pending->root;
  3889. struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
  3890. struct btrfs_block_rsv *dst_rsv = &pending->block_rsv;
  3891. /*
  3892. * two for root back/forward refs, two for directory entries
  3893. * and one for root of the snapshot.
  3894. */
  3895. u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
  3896. dst_rsv->space_info = src_rsv->space_info;
  3897. return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
  3898. }
  3899. /**
  3900. * drop_outstanding_extent - drop an outstanding extent
  3901. * @inode: the inode we're dropping the extent for
  3902. *
  3903. * This is called when we are freeing up an outstanding extent, either called
  3904. * after an error or after an extent is written. This will return the number of
  3905. * reserved extents that need to be freed. This must be called with
  3906. * BTRFS_I(inode)->lock held.
  3907. */
  3908. static unsigned drop_outstanding_extent(struct inode *inode)
  3909. {
  3910. unsigned drop_inode_space = 0;
  3911. unsigned dropped_extents = 0;
  3912. BUG_ON(!BTRFS_I(inode)->outstanding_extents);
  3913. BTRFS_I(inode)->outstanding_extents--;
  3914. if (BTRFS_I(inode)->outstanding_extents == 0 &&
  3915. test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
  3916. &BTRFS_I(inode)->runtime_flags))
  3917. drop_inode_space = 1;
  3918. /*
  3919. * If we have more or the same amount of outsanding extents than we have
  3920. * reserved then we need to leave the reserved extents count alone.
  3921. */
  3922. if (BTRFS_I(inode)->outstanding_extents >=
  3923. BTRFS_I(inode)->reserved_extents)
  3924. return drop_inode_space;
  3925. dropped_extents = BTRFS_I(inode)->reserved_extents -
  3926. BTRFS_I(inode)->outstanding_extents;
  3927. BTRFS_I(inode)->reserved_extents -= dropped_extents;
  3928. return dropped_extents + drop_inode_space;
  3929. }
  3930. /**
  3931. * calc_csum_metadata_size - return the amount of metada space that must be
  3932. * reserved/free'd for the given bytes.
  3933. * @inode: the inode we're manipulating
  3934. * @num_bytes: the number of bytes in question
  3935. * @reserve: 1 if we are reserving space, 0 if we are freeing space
  3936. *
  3937. * This adjusts the number of csum_bytes in the inode and then returns the
  3938. * correct amount of metadata that must either be reserved or freed. We
  3939. * calculate how many checksums we can fit into one leaf and then divide the
  3940. * number of bytes that will need to be checksumed by this value to figure out
  3941. * how many checksums will be required. If we are adding bytes then the number
  3942. * may go up and we will return the number of additional bytes that must be
  3943. * reserved. If it is going down we will return the number of bytes that must
  3944. * be freed.
  3945. *
  3946. * This must be called with BTRFS_I(inode)->lock held.
  3947. */
  3948. static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
  3949. int reserve)
  3950. {
  3951. struct btrfs_root *root = BTRFS_I(inode)->root;
  3952. u64 csum_size;
  3953. int num_csums_per_leaf;
  3954. int num_csums;
  3955. int old_csums;
  3956. if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
  3957. BTRFS_I(inode)->csum_bytes == 0)
  3958. return 0;
  3959. old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
  3960. if (reserve)
  3961. BTRFS_I(inode)->csum_bytes += num_bytes;
  3962. else
  3963. BTRFS_I(inode)->csum_bytes -= num_bytes;
  3964. csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
  3965. num_csums_per_leaf = (int)div64_u64(csum_size,
  3966. sizeof(struct btrfs_csum_item) +
  3967. sizeof(struct btrfs_disk_key));
  3968. num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
  3969. num_csums = num_csums + num_csums_per_leaf - 1;
  3970. num_csums = num_csums / num_csums_per_leaf;
  3971. old_csums = old_csums + num_csums_per_leaf - 1;
  3972. old_csums = old_csums / num_csums_per_leaf;
  3973. /* No change, no need to reserve more */
  3974. if (old_csums == num_csums)
  3975. return 0;
  3976. if (reserve)
  3977. return btrfs_calc_trans_metadata_size(root,
  3978. num_csums - old_csums);
  3979. return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
  3980. }
  3981. int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
  3982. {
  3983. struct btrfs_root *root = BTRFS_I(inode)->root;
  3984. struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
  3985. u64 to_reserve = 0;
  3986. u64 csum_bytes;
  3987. unsigned nr_extents = 0;
  3988. int extra_reserve = 0;
  3989. int flush = 1;
  3990. int ret;
  3991. /* Need to be holding the i_mutex here if we aren't free space cache */
  3992. if (btrfs_is_free_space_inode(inode))
  3993. flush = 0;
  3994. if (flush && btrfs_transaction_in_commit(root->fs_info))
  3995. schedule_timeout(1);
  3996. mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
  3997. num_bytes = ALIGN(num_bytes, root->sectorsize);
  3998. spin_lock(&BTRFS_I(inode)->lock);
  3999. BTRFS_I(inode)->outstanding_extents++;
  4000. if (BTRFS_I(inode)->outstanding_extents >
  4001. BTRFS_I(inode)->reserved_extents)
  4002. nr_extents = BTRFS_I(inode)->outstanding_extents -
  4003. BTRFS_I(inode)->reserved_extents;
  4004. /*
  4005. * Add an item to reserve for updating the inode when we complete the
  4006. * delalloc io.
  4007. */
  4008. if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
  4009. &BTRFS_I(inode)->runtime_flags)) {
  4010. nr_extents++;
  4011. extra_reserve = 1;
  4012. }
  4013. to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
  4014. to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
  4015. csum_bytes = BTRFS_I(inode)->csum_bytes;
  4016. spin_unlock(&BTRFS_I(inode)->lock);
  4017. if (root->fs_info->quota_enabled) {
  4018. ret = btrfs_qgroup_reserve(root, num_bytes +
  4019. nr_extents * root->leafsize);
  4020. if (ret) {
  4021. mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
  4022. return ret;
  4023. }
  4024. }
  4025. ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
  4026. if (ret) {
  4027. u64 to_free = 0;
  4028. unsigned dropped;
  4029. spin_lock(&BTRFS_I(inode)->lock);
  4030. dropped = drop_outstanding_extent(inode);
  4031. /*
  4032. * If the inodes csum_bytes is the same as the original
  4033. * csum_bytes then we know we haven't raced with any free()ers
  4034. * so we can just reduce our inodes csum bytes and carry on.
  4035. * Otherwise we have to do the normal free thing to account for
  4036. * the case that the free side didn't free up its reserve
  4037. * because of this outstanding reservation.
  4038. */
  4039. if (BTRFS_I(inode)->csum_bytes == csum_bytes)
  4040. calc_csum_metadata_size(inode, num_bytes, 0);
  4041. else
  4042. to_free = calc_csum_metadata_size(inode, num_bytes, 0);
  4043. spin_unlock(&BTRFS_I(inode)->lock);
  4044. if (dropped)
  4045. to_free += btrfs_calc_trans_metadata_size(root, dropped);
  4046. if (to_free) {
  4047. btrfs_block_rsv_release(root, block_rsv, to_free);
  4048. trace_btrfs_space_reservation(root->fs_info,
  4049. "delalloc",
  4050. btrfs_ino(inode),
  4051. to_free, 0);
  4052. }
  4053. mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
  4054. return ret;
  4055. }
  4056. spin_lock(&BTRFS_I(inode)->lock);
  4057. if (extra_reserve) {
  4058. set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
  4059. &BTRFS_I(inode)->runtime_flags);
  4060. nr_extents--;
  4061. }
  4062. BTRFS_I(inode)->reserved_extents += nr_extents;
  4063. spin_unlock(&BTRFS_I(inode)->lock);
  4064. mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
  4065. if (to_reserve)
  4066. trace_btrfs_space_reservation(root->fs_info,"delalloc",
  4067. btrfs_ino(inode), to_reserve, 1);
  4068. block_rsv_add_bytes(block_rsv, to_reserve, 1);
  4069. return 0;
  4070. }
  4071. /**
  4072. * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
  4073. * @inode: the inode to release the reservation for
  4074. * @num_bytes: the number of bytes we're releasing
  4075. *
  4076. * This will release the metadata reservation for an inode. This can be called
  4077. * once we complete IO for a given set of bytes to release their metadata
  4078. * reservations.
  4079. */
  4080. void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
  4081. {
  4082. struct btrfs_root *root = BTRFS_I(inode)->root;
  4083. u64 to_free = 0;
  4084. unsigned dropped;
  4085. num_bytes = ALIGN(num_bytes, root->sectorsize);
  4086. spin_lock(&BTRFS_I(inode)->lock);
  4087. dropped = drop_outstanding_extent(inode);
  4088. to_free = calc_csum_metadata_size(inode, num_bytes, 0);
  4089. spin_unlock(&BTRFS_I(inode)->lock);
  4090. if (dropped > 0)
  4091. to_free += btrfs_calc_trans_metadata_size(root, dropped);
  4092. trace_btrfs_space_reservation(root->fs_info, "delalloc",
  4093. btrfs_ino(inode), to_free, 0);
  4094. if (root->fs_info->quota_enabled) {
  4095. btrfs_qgroup_free(root, num_bytes +
  4096. dropped * root->leafsize);
  4097. }
  4098. btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
  4099. to_free);
  4100. }
  4101. /**
  4102. * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
  4103. * @inode: inode we're writing to
  4104. * @num_bytes: the number of bytes we want to allocate
  4105. *
  4106. * This will do the following things
  4107. *
  4108. * o reserve space in the data space info for num_bytes
  4109. * o reserve space in the metadata space info based on number of outstanding
  4110. * extents and how much csums will be needed
  4111. * o add to the inodes ->delalloc_bytes
  4112. * o add it to the fs_info's delalloc inodes list.
  4113. *
  4114. * This will return 0 for success and -ENOSPC if there is no space left.
  4115. */
  4116. int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
  4117. {
  4118. int ret;
  4119. ret = btrfs_check_data_free_space(inode, num_bytes);
  4120. if (ret)
  4121. return ret;
  4122. ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
  4123. if (ret) {
  4124. btrfs_free_reserved_data_space(inode, num_bytes);
  4125. return ret;
  4126. }
  4127. return 0;
  4128. }
  4129. /**
  4130. * btrfs_delalloc_release_space - release data and metadata space for delalloc
  4131. * @inode: inode we're releasing space for
  4132. * @num_bytes: the number of bytes we want to free up
  4133. *
  4134. * This must be matched with a call to btrfs_delalloc_reserve_space. This is
  4135. * called in the case that we don't need the metadata AND data reservations
  4136. * anymore. So if there is an error or we insert an inline extent.
  4137. *
  4138. * This function will release the metadata space that was not used and will
  4139. * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
  4140. * list if there are no delalloc bytes left.
  4141. */
  4142. void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
  4143. {
  4144. btrfs_delalloc_release_metadata(inode, num_bytes);
  4145. btrfs_free_reserved_data_space(inode, num_bytes);
  4146. }
  4147. static int update_block_group(struct btrfs_trans_handle *trans,
  4148. struct btrfs_root *root,
  4149. u64 bytenr, u64 num_bytes, int alloc)
  4150. {
  4151. struct btrfs_block_group_cache *cache = NULL;
  4152. struct btrfs_fs_info *info = root->fs_info;
  4153. u64 total = num_bytes;
  4154. u64 old_val;
  4155. u64 byte_in_group;
  4156. int factor;
  4157. /* block accounting for super block */
  4158. spin_lock(&info->delalloc_lock);
  4159. old_val = btrfs_super_bytes_used(info->super_copy);
  4160. if (alloc)
  4161. old_val += num_bytes;
  4162. else
  4163. old_val -= num_bytes;
  4164. btrfs_set_super_bytes_used(info->super_copy, old_val);
  4165. spin_unlock(&info->delalloc_lock);
  4166. while (total) {
  4167. cache = btrfs_lookup_block_group(info, bytenr);
  4168. if (!cache)
  4169. return -ENOENT;
  4170. if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
  4171. BTRFS_BLOCK_GROUP_RAID1 |
  4172. BTRFS_BLOCK_GROUP_RAID10))
  4173. factor = 2;
  4174. else
  4175. factor = 1;
  4176. /*
  4177. * If this block group has free space cache written out, we
  4178. * need to make sure to load it if we are removing space. This
  4179. * is because we need the unpinning stage to actually add the
  4180. * space back to the block group, otherwise we will leak space.
  4181. */
  4182. if (!alloc && cache->cached == BTRFS_CACHE_NO)
  4183. cache_block_group(cache, trans, NULL, 1);
  4184. byte_in_group = bytenr - cache->key.objectid;
  4185. WARN_ON(byte_in_group > cache->key.offset);
  4186. spin_lock(&cache->space_info->lock);
  4187. spin_lock(&cache->lock);
  4188. if (btrfs_test_opt(root, SPACE_CACHE) &&
  4189. cache->disk_cache_state < BTRFS_DC_CLEAR)
  4190. cache->disk_cache_state = BTRFS_DC_CLEAR;
  4191. cache->dirty = 1;
  4192. old_val = btrfs_block_group_used(&cache->item);
  4193. num_bytes = min(total, cache->key.offset - byte_in_group);
  4194. if (alloc) {
  4195. old_val += num_bytes;
  4196. btrfs_set_block_group_used(&cache->item, old_val);
  4197. cache->reserved -= num_bytes;
  4198. cache->space_info->bytes_reserved -= num_bytes;
  4199. cache->space_info->bytes_used += num_bytes;
  4200. cache->space_info->disk_used += num_bytes * factor;
  4201. spin_unlock(&cache->lock);
  4202. spin_unlock(&cache->space_info->lock);
  4203. } else {
  4204. old_val -= num_bytes;
  4205. btrfs_set_block_group_used(&cache->item, old_val);
  4206. cache->pinned += num_bytes;
  4207. cache->space_info->bytes_pinned += num_bytes;
  4208. cache->space_info->bytes_used -= num_bytes;
  4209. cache->space_info->disk_used -= num_bytes * factor;
  4210. spin_unlock(&cache->lock);
  4211. spin_unlock(&cache->space_info->lock);
  4212. set_extent_dirty(info->pinned_extents,
  4213. bytenr, bytenr + num_bytes - 1,
  4214. GFP_NOFS | __GFP_NOFAIL);
  4215. }
  4216. btrfs_put_block_group(cache);
  4217. total -= num_bytes;
  4218. bytenr += num_bytes;
  4219. }
  4220. return 0;
  4221. }
  4222. static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
  4223. {
  4224. struct btrfs_block_group_cache *cache;
  4225. u64 bytenr;
  4226. cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
  4227. if (!cache)
  4228. return 0;
  4229. bytenr = cache->key.objectid;
  4230. btrfs_put_block_group(cache);
  4231. return bytenr;
  4232. }
  4233. static int pin_down_extent(struct btrfs_root *root,
  4234. struct btrfs_block_group_cache *cache,
  4235. u64 bytenr, u64 num_bytes, int reserved)
  4236. {
  4237. spin_lock(&cache->space_info->lock);
  4238. spin_lock(&cache->lock);
  4239. cache->pinned += num_bytes;
  4240. cache->space_info->bytes_pinned += num_bytes;
  4241. if (reserved) {
  4242. cache->reserved -= num_bytes;
  4243. cache->space_info->bytes_reserved -= num_bytes;
  4244. }
  4245. spin_unlock(&cache->lock);
  4246. spin_unlock(&cache->space_info->lock);
  4247. set_extent_dirty(root->fs_info->pinned_extents, bytenr,
  4248. bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
  4249. return 0;
  4250. }
  4251. /*
  4252. * this function must be called within transaction
  4253. */
  4254. int btrfs_pin_extent(struct btrfs_root *root,
  4255. u64 bytenr, u64 num_bytes, int reserved)
  4256. {
  4257. struct btrfs_block_group_cache *cache;
  4258. cache = btrfs_lookup_block_group(root->fs_info, bytenr);
  4259. BUG_ON(!cache); /* Logic error */
  4260. pin_down_extent(root, cache, bytenr, num_bytes, reserved);
  4261. btrfs_put_block_group(cache);
  4262. return 0;
  4263. }
  4264. /*
  4265. * this function must be called within transaction
  4266. */
  4267. int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
  4268. struct btrfs_root *root,
  4269. u64 bytenr, u64 num_bytes)
  4270. {
  4271. struct btrfs_block_group_cache *cache;
  4272. cache = btrfs_lookup_block_group(root->fs_info, bytenr);
  4273. BUG_ON(!cache); /* Logic error */
  4274. /*
  4275. * pull in the free space cache (if any) so that our pin
  4276. * removes the free space from the cache. We have load_only set
  4277. * to one because the slow code to read in the free extents does check
  4278. * the pinned extents.
  4279. */
  4280. cache_block_group(cache, trans, root, 1);
  4281. pin_down_extent(root, cache, bytenr, num_bytes, 0);
  4282. /* remove us from the free space cache (if we're there at all) */
  4283. btrfs_remove_free_space(cache, bytenr, num_bytes);
  4284. btrfs_put_block_group(cache);
  4285. return 0;
  4286. }
  4287. /**
  4288. * btrfs_update_reserved_bytes - update the block_group and space info counters
  4289. * @cache: The cache we are manipulating
  4290. * @num_bytes: The number of bytes in question
  4291. * @reserve: One of the reservation enums
  4292. *
  4293. * This is called by the allocator when it reserves space, or by somebody who is
  4294. * freeing space that was never actually used on disk. For example if you
  4295. * reserve some space for a new leaf in transaction A and before transaction A
  4296. * commits you free that leaf, you call this with reserve set to 0 in order to
  4297. * clear the reservation.
  4298. *
  4299. * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
  4300. * ENOSPC accounting. For data we handle the reservation through clearing the
  4301. * delalloc bits in the io_tree. We have to do this since we could end up
  4302. * allocating less disk space for the amount of data we have reserved in the
  4303. * case of compression.
  4304. *
  4305. * If this is a reservation and the block group has become read only we cannot
  4306. * make the reservation and return -EAGAIN, otherwise this function always
  4307. * succeeds.
  4308. */
  4309. static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
  4310. u64 num_bytes, int reserve)
  4311. {
  4312. struct btrfs_space_info *space_info = cache->space_info;
  4313. int ret = 0;
  4314. spin_lock(&space_info->lock);
  4315. spin_lock(&cache->lock);
  4316. if (reserve != RESERVE_FREE) {
  4317. if (cache->ro) {
  4318. ret = -EAGAIN;
  4319. } else {
  4320. cache->reserved += num_bytes;
  4321. space_info->bytes_reserved += num_bytes;
  4322. if (reserve == RESERVE_ALLOC) {
  4323. trace_btrfs_space_reservation(cache->fs_info,
  4324. "space_info", space_info->flags,
  4325. num_bytes, 0);
  4326. space_info->bytes_may_use -= num_bytes;
  4327. }
  4328. }
  4329. } else {
  4330. if (cache->ro)
  4331. space_info->bytes_readonly += num_bytes;
  4332. cache->reserved -= num_bytes;
  4333. space_info->bytes_reserved -= num_bytes;
  4334. space_info->reservation_progress++;
  4335. }
  4336. spin_unlock(&cache->lock);
  4337. spin_unlock(&space_info->lock);
  4338. return ret;
  4339. }
  4340. void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
  4341. struct btrfs_root *root)
  4342. {
  4343. struct btrfs_fs_info *fs_info = root->fs_info;
  4344. struct btrfs_caching_control *next;
  4345. struct btrfs_caching_control *caching_ctl;
  4346. struct btrfs_block_group_cache *cache;
  4347. down_write(&fs_info->extent_commit_sem);
  4348. list_for_each_entry_safe(caching_ctl, next,
  4349. &fs_info->caching_block_groups, list) {
  4350. cache = caching_ctl->block_group;
  4351. if (block_group_cache_done(cache)) {
  4352. cache->last_byte_to_unpin = (u64)-1;
  4353. list_del_init(&caching_ctl->list);
  4354. put_caching_control(caching_ctl);
  4355. } else {
  4356. cache->last_byte_to_unpin = caching_ctl->progress;
  4357. }
  4358. }
  4359. if (fs_info->pinned_extents == &fs_info->freed_extents[0])
  4360. fs_info->pinned_extents = &fs_info->freed_extents[1];
  4361. else
  4362. fs_info->pinned_extents = &fs_info->freed_extents[0];
  4363. up_write(&fs_info->extent_commit_sem);
  4364. update_global_block_rsv(fs_info);
  4365. }
  4366. static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
  4367. {
  4368. struct btrfs_fs_info *fs_info = root->fs_info;
  4369. struct btrfs_block_group_cache *cache = NULL;
  4370. u64 len;
  4371. while (start <= end) {
  4372. if (!cache ||
  4373. start >= cache->key.objectid + cache->key.offset) {
  4374. if (cache)
  4375. btrfs_put_block_group(cache);
  4376. cache = btrfs_lookup_block_group(fs_info, start);
  4377. BUG_ON(!cache); /* Logic error */
  4378. }
  4379. len = cache->key.objectid + cache->key.offset - start;
  4380. len = min(len, end + 1 - start);
  4381. if (start < cache->last_byte_to_unpin) {
  4382. len = min(len, cache->last_byte_to_unpin - start);
  4383. btrfs_add_free_space(cache, start, len);
  4384. }
  4385. start += len;
  4386. spin_lock(&cache->space_info->lock);
  4387. spin_lock(&cache->lock);
  4388. cache->pinned -= len;
  4389. cache->space_info->bytes_pinned -= len;
  4390. if (cache->ro)
  4391. cache->space_info->bytes_readonly += len;
  4392. spin_unlock(&cache->lock);
  4393. spin_unlock(&cache->space_info->lock);
  4394. }
  4395. if (cache)
  4396. btrfs_put_block_group(cache);
  4397. return 0;
  4398. }
  4399. int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
  4400. struct btrfs_root *root)
  4401. {
  4402. struct btrfs_fs_info *fs_info = root->fs_info;
  4403. struct extent_io_tree *unpin;
  4404. u64 start;
  4405. u64 end;
  4406. int ret;
  4407. if (trans->aborted)
  4408. return 0;
  4409. if (fs_info->pinned_extents == &fs_info->freed_extents[0])
  4410. unpin = &fs_info->freed_extents[1];
  4411. else
  4412. unpin = &fs_info->freed_extents[0];
  4413. while (1) {
  4414. ret = find_first_extent_bit(unpin, 0, &start, &end,
  4415. EXTENT_DIRTY);
  4416. if (ret)
  4417. break;
  4418. if (btrfs_test_opt(root, DISCARD))
  4419. ret = btrfs_discard_extent(root, start,
  4420. end + 1 - start, NULL);
  4421. clear_extent_dirty(unpin, start, end, GFP_NOFS);
  4422. unpin_extent_range(root, start, end);
  4423. cond_resched();
  4424. }
  4425. return 0;
  4426. }
  4427. static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
  4428. struct btrfs_root *root,
  4429. u64 bytenr, u64 num_bytes, u64 parent,
  4430. u64 root_objectid, u64 owner_objectid,
  4431. u64 owner_offset, int refs_to_drop,
  4432. struct btrfs_delayed_extent_op *extent_op)
  4433. {
  4434. struct btrfs_key key;
  4435. struct btrfs_path *path;
  4436. struct btrfs_fs_info *info = root->fs_info;
  4437. struct btrfs_root *extent_root = info->extent_root;
  4438. struct extent_buffer *leaf;
  4439. struct btrfs_extent_item *ei;
  4440. struct btrfs_extent_inline_ref *iref;
  4441. int ret;
  4442. int is_data;
  4443. int extent_slot = 0;
  4444. int found_extent = 0;
  4445. int num_to_del = 1;
  4446. u32 item_size;
  4447. u64 refs;
  4448. path = btrfs_alloc_path();
  4449. if (!path)
  4450. return -ENOMEM;
  4451. path->reada = 1;
  4452. path->leave_spinning = 1;
  4453. is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
  4454. BUG_ON(!is_data && refs_to_drop != 1);
  4455. ret = lookup_extent_backref(trans, extent_root, path, &iref,
  4456. bytenr, num_bytes, parent,
  4457. root_objectid, owner_objectid,
  4458. owner_offset);
  4459. if (ret == 0) {
  4460. extent_slot = path->slots[0];
  4461. while (extent_slot >= 0) {
  4462. btrfs_item_key_to_cpu(path->nodes[0], &key,
  4463. extent_slot);
  4464. if (key.objectid != bytenr)
  4465. break;
  4466. if (key.type == BTRFS_EXTENT_ITEM_KEY &&
  4467. key.offset == num_bytes) {
  4468. found_extent = 1;
  4469. break;
  4470. }
  4471. if (path->slots[0] - extent_slot > 5)
  4472. break;
  4473. extent_slot--;
  4474. }
  4475. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  4476. item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
  4477. if (found_extent && item_size < sizeof(*ei))
  4478. found_extent = 0;
  4479. #endif
  4480. if (!found_extent) {
  4481. BUG_ON(iref);
  4482. ret = remove_extent_backref(trans, extent_root, path,
  4483. NULL, refs_to_drop,
  4484. is_data);
  4485. if (ret)
  4486. goto abort;
  4487. btrfs_release_path(path);
  4488. path->leave_spinning = 1;
  4489. key.objectid = bytenr;
  4490. key.type = BTRFS_EXTENT_ITEM_KEY;
  4491. key.offset = num_bytes;
  4492. ret = btrfs_search_slot(trans, extent_root,
  4493. &key, path, -1, 1);
  4494. if (ret) {
  4495. printk(KERN_ERR "umm, got %d back from search"
  4496. ", was looking for %llu\n", ret,
  4497. (unsigned long long)bytenr);
  4498. if (ret > 0)
  4499. btrfs_print_leaf(extent_root,
  4500. path->nodes[0]);
  4501. }
  4502. if (ret < 0)
  4503. goto abort;
  4504. extent_slot = path->slots[0];
  4505. }
  4506. } else if (ret == -ENOENT) {
  4507. btrfs_print_leaf(extent_root, path->nodes[0]);
  4508. WARN_ON(1);
  4509. printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
  4510. "parent %llu root %llu owner %llu offset %llu\n",
  4511. (unsigned long long)bytenr,
  4512. (unsigned long long)parent,
  4513. (unsigned long long)root_objectid,
  4514. (unsigned long long)owner_objectid,
  4515. (unsigned long long)owner_offset);
  4516. } else {
  4517. goto abort;
  4518. }
  4519. leaf = path->nodes[0];
  4520. item_size = btrfs_item_size_nr(leaf, extent_slot);
  4521. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  4522. if (item_size < sizeof(*ei)) {
  4523. BUG_ON(found_extent || extent_slot != path->slots[0]);
  4524. ret = convert_extent_item_v0(trans, extent_root, path,
  4525. owner_objectid, 0);
  4526. if (ret < 0)
  4527. goto abort;
  4528. btrfs_release_path(path);
  4529. path->leave_spinning = 1;
  4530. key.objectid = bytenr;
  4531. key.type = BTRFS_EXTENT_ITEM_KEY;
  4532. key.offset = num_bytes;
  4533. ret = btrfs_search_slot(trans, extent_root, &key, path,
  4534. -1, 1);
  4535. if (ret) {
  4536. printk(KERN_ERR "umm, got %d back from search"
  4537. ", was looking for %llu\n", ret,
  4538. (unsigned long long)bytenr);
  4539. btrfs_print_leaf(extent_root, path->nodes[0]);
  4540. }
  4541. if (ret < 0)
  4542. goto abort;
  4543. extent_slot = path->slots[0];
  4544. leaf = path->nodes[0];
  4545. item_size = btrfs_item_size_nr(leaf, extent_slot);
  4546. }
  4547. #endif
  4548. BUG_ON(item_size < sizeof(*ei));
  4549. ei = btrfs_item_ptr(leaf, extent_slot,
  4550. struct btrfs_extent_item);
  4551. if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
  4552. struct btrfs_tree_block_info *bi;
  4553. BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
  4554. bi = (struct btrfs_tree_block_info *)(ei + 1);
  4555. WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
  4556. }
  4557. refs = btrfs_extent_refs(leaf, ei);
  4558. BUG_ON(refs < refs_to_drop);
  4559. refs -= refs_to_drop;
  4560. if (refs > 0) {
  4561. if (extent_op)
  4562. __run_delayed_extent_op(extent_op, leaf, ei);
  4563. /*
  4564. * In the case of inline back ref, reference count will
  4565. * be updated by remove_extent_backref
  4566. */
  4567. if (iref) {
  4568. BUG_ON(!found_extent);
  4569. } else {
  4570. btrfs_set_extent_refs(leaf, ei, refs);
  4571. btrfs_mark_buffer_dirty(leaf);
  4572. }
  4573. if (found_extent) {
  4574. ret = remove_extent_backref(trans, extent_root, path,
  4575. iref, refs_to_drop,
  4576. is_data);
  4577. if (ret)
  4578. goto abort;
  4579. }
  4580. } else {
  4581. if (found_extent) {
  4582. BUG_ON(is_data && refs_to_drop !=
  4583. extent_data_ref_count(root, path, iref));
  4584. if (iref) {
  4585. BUG_ON(path->slots[0] != extent_slot);
  4586. } else {
  4587. BUG_ON(path->slots[0] != extent_slot + 1);
  4588. path->slots[0] = extent_slot;
  4589. num_to_del = 2;
  4590. }
  4591. }
  4592. ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
  4593. num_to_del);
  4594. if (ret)
  4595. goto abort;
  4596. btrfs_release_path(path);
  4597. if (is_data) {
  4598. ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
  4599. if (ret)
  4600. goto abort;
  4601. }
  4602. ret = update_block_group(trans, root, bytenr, num_bytes, 0);
  4603. if (ret)
  4604. goto abort;
  4605. }
  4606. out:
  4607. btrfs_free_path(path);
  4608. return ret;
  4609. abort:
  4610. btrfs_abort_transaction(trans, extent_root, ret);
  4611. goto out;
  4612. }
  4613. /*
  4614. * when we free an block, it is possible (and likely) that we free the last
  4615. * delayed ref for that extent as well. This searches the delayed ref tree for
  4616. * a given extent, and if there are no other delayed refs to be processed, it
  4617. * removes it from the tree.
  4618. */
  4619. static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
  4620. struct btrfs_root *root, u64 bytenr)
  4621. {
  4622. struct btrfs_delayed_ref_head *head;
  4623. struct btrfs_delayed_ref_root *delayed_refs;
  4624. struct btrfs_delayed_ref_node *ref;
  4625. struct rb_node *node;
  4626. int ret = 0;
  4627. delayed_refs = &trans->transaction->delayed_refs;
  4628. spin_lock(&delayed_refs->lock);
  4629. head = btrfs_find_delayed_ref_head(trans, bytenr);
  4630. if (!head)
  4631. goto out;
  4632. node = rb_prev(&head->node.rb_node);
  4633. if (!node)
  4634. goto out;
  4635. ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
  4636. /* there are still entries for this ref, we can't drop it */
  4637. if (ref->bytenr == bytenr)
  4638. goto out;
  4639. if (head->extent_op) {
  4640. if (!head->must_insert_reserved)
  4641. goto out;
  4642. kfree(head->extent_op);
  4643. head->extent_op = NULL;
  4644. }
  4645. /*
  4646. * waiting for the lock here would deadlock. If someone else has it
  4647. * locked they are already in the process of dropping it anyway
  4648. */
  4649. if (!mutex_trylock(&head->mutex))
  4650. goto out;
  4651. /*
  4652. * at this point we have a head with no other entries. Go
  4653. * ahead and process it.
  4654. */
  4655. head->node.in_tree = 0;
  4656. rb_erase(&head->node.rb_node, &delayed_refs->root);
  4657. delayed_refs->num_entries--;
  4658. /*
  4659. * we don't take a ref on the node because we're removing it from the
  4660. * tree, so we just steal the ref the tree was holding.
  4661. */
  4662. delayed_refs->num_heads--;
  4663. if (list_empty(&head->cluster))
  4664. delayed_refs->num_heads_ready--;
  4665. list_del_init(&head->cluster);
  4666. spin_unlock(&delayed_refs->lock);
  4667. BUG_ON(head->extent_op);
  4668. if (head->must_insert_reserved)
  4669. ret = 1;
  4670. mutex_unlock(&head->mutex);
  4671. btrfs_put_delayed_ref(&head->node);
  4672. return ret;
  4673. out:
  4674. spin_unlock(&delayed_refs->lock);
  4675. return 0;
  4676. }
  4677. void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
  4678. struct btrfs_root *root,
  4679. struct extent_buffer *buf,
  4680. u64 parent, int last_ref)
  4681. {
  4682. struct btrfs_block_group_cache *cache = NULL;
  4683. int ret;
  4684. if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
  4685. ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
  4686. buf->start, buf->len,
  4687. parent, root->root_key.objectid,
  4688. btrfs_header_level(buf),
  4689. BTRFS_DROP_DELAYED_REF, NULL, 0);
  4690. BUG_ON(ret); /* -ENOMEM */
  4691. }
  4692. if (!last_ref)
  4693. return;
  4694. cache = btrfs_lookup_block_group(root->fs_info, buf->start);
  4695. if (btrfs_header_generation(buf) == trans->transid) {
  4696. if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
  4697. ret = check_ref_cleanup(trans, root, buf->start);
  4698. if (!ret)
  4699. goto out;
  4700. }
  4701. if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
  4702. pin_down_extent(root, cache, buf->start, buf->len, 1);
  4703. goto out;
  4704. }
  4705. WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
  4706. btrfs_add_free_space(cache, buf->start, buf->len);
  4707. btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
  4708. }
  4709. out:
  4710. /*
  4711. * Deleting the buffer, clear the corrupt flag since it doesn't matter
  4712. * anymore.
  4713. */
  4714. clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
  4715. btrfs_put_block_group(cache);
  4716. }
  4717. /* Can return -ENOMEM */
  4718. int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  4719. u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
  4720. u64 owner, u64 offset, int for_cow)
  4721. {
  4722. int ret;
  4723. struct btrfs_fs_info *fs_info = root->fs_info;
  4724. /*
  4725. * tree log blocks never actually go into the extent allocation
  4726. * tree, just update pinning info and exit early.
  4727. */
  4728. if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
  4729. WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
  4730. /* unlocks the pinned mutex */
  4731. btrfs_pin_extent(root, bytenr, num_bytes, 1);
  4732. ret = 0;
  4733. } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
  4734. ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
  4735. num_bytes,
  4736. parent, root_objectid, (int)owner,
  4737. BTRFS_DROP_DELAYED_REF, NULL, for_cow);
  4738. } else {
  4739. ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
  4740. num_bytes,
  4741. parent, root_objectid, owner,
  4742. offset, BTRFS_DROP_DELAYED_REF,
  4743. NULL, for_cow);
  4744. }
  4745. return ret;
  4746. }
  4747. static u64 stripe_align(struct btrfs_root *root, u64 val)
  4748. {
  4749. u64 mask = ((u64)root->stripesize - 1);
  4750. u64 ret = (val + mask) & ~mask;
  4751. return ret;
  4752. }
  4753. /*
  4754. * when we wait for progress in the block group caching, its because
  4755. * our allocation attempt failed at least once. So, we must sleep
  4756. * and let some progress happen before we try again.
  4757. *
  4758. * This function will sleep at least once waiting for new free space to
  4759. * show up, and then it will check the block group free space numbers
  4760. * for our min num_bytes. Another option is to have it go ahead
  4761. * and look in the rbtree for a free extent of a given size, but this
  4762. * is a good start.
  4763. */
  4764. static noinline int
  4765. wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
  4766. u64 num_bytes)
  4767. {
  4768. struct btrfs_caching_control *caching_ctl;
  4769. DEFINE_WAIT(wait);
  4770. caching_ctl = get_caching_control(cache);
  4771. if (!caching_ctl)
  4772. return 0;
  4773. wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
  4774. (cache->free_space_ctl->free_space >= num_bytes));
  4775. put_caching_control(caching_ctl);
  4776. return 0;
  4777. }
  4778. static noinline int
  4779. wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
  4780. {
  4781. struct btrfs_caching_control *caching_ctl;
  4782. DEFINE_WAIT(wait);
  4783. caching_ctl = get_caching_control(cache);
  4784. if (!caching_ctl)
  4785. return 0;
  4786. wait_event(caching_ctl->wait, block_group_cache_done(cache));
  4787. put_caching_control(caching_ctl);
  4788. return 0;
  4789. }
  4790. static int __get_block_group_index(u64 flags)
  4791. {
  4792. int index;
  4793. if (flags & BTRFS_BLOCK_GROUP_RAID10)
  4794. index = 0;
  4795. else if (flags & BTRFS_BLOCK_GROUP_RAID1)
  4796. index = 1;
  4797. else if (flags & BTRFS_BLOCK_GROUP_DUP)
  4798. index = 2;
  4799. else if (flags & BTRFS_BLOCK_GROUP_RAID0)
  4800. index = 3;
  4801. else
  4802. index = 4;
  4803. return index;
  4804. }
  4805. static int get_block_group_index(struct btrfs_block_group_cache *cache)
  4806. {
  4807. return __get_block_group_index(cache->flags);
  4808. }
  4809. enum btrfs_loop_type {
  4810. LOOP_CACHING_NOWAIT = 0,
  4811. LOOP_CACHING_WAIT = 1,
  4812. LOOP_ALLOC_CHUNK = 2,
  4813. LOOP_NO_EMPTY_SIZE = 3,
  4814. };
  4815. /*
  4816. * walks the btree of allocated extents and find a hole of a given size.
  4817. * The key ins is changed to record the hole:
  4818. * ins->objectid == block start
  4819. * ins->flags = BTRFS_EXTENT_ITEM_KEY
  4820. * ins->offset == number of blocks
  4821. * Any available blocks before search_start are skipped.
  4822. */
  4823. static noinline int find_free_extent(struct btrfs_trans_handle *trans,
  4824. struct btrfs_root *orig_root,
  4825. u64 num_bytes, u64 empty_size,
  4826. u64 hint_byte, struct btrfs_key *ins,
  4827. u64 data)
  4828. {
  4829. int ret = 0;
  4830. struct btrfs_root *root = orig_root->fs_info->extent_root;
  4831. struct btrfs_free_cluster *last_ptr = NULL;
  4832. struct btrfs_block_group_cache *block_group = NULL;
  4833. struct btrfs_block_group_cache *used_block_group;
  4834. u64 search_start = 0;
  4835. int empty_cluster = 2 * 1024 * 1024;
  4836. int allowed_chunk_alloc = 0;
  4837. int done_chunk_alloc = 0;
  4838. struct btrfs_space_info *space_info;
  4839. int loop = 0;
  4840. int index = 0;
  4841. int alloc_type = (data & BTRFS_BLOCK_GROUP_DATA) ?
  4842. RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
  4843. bool found_uncached_bg = false;
  4844. bool failed_cluster_refill = false;
  4845. bool failed_alloc = false;
  4846. bool use_cluster = true;
  4847. bool have_caching_bg = false;
  4848. WARN_ON(num_bytes < root->sectorsize);
  4849. btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
  4850. ins->objectid = 0;
  4851. ins->offset = 0;
  4852. trace_find_free_extent(orig_root, num_bytes, empty_size, data);
  4853. space_info = __find_space_info(root->fs_info, data);
  4854. if (!space_info) {
  4855. printk(KERN_ERR "No space info for %llu\n", data);
  4856. return -ENOSPC;
  4857. }
  4858. /*
  4859. * If the space info is for both data and metadata it means we have a
  4860. * small filesystem and we can't use the clustering stuff.
  4861. */
  4862. if (btrfs_mixed_space_info(space_info))
  4863. use_cluster = false;
  4864. if (orig_root->ref_cows || empty_size)
  4865. allowed_chunk_alloc = 1;
  4866. if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
  4867. last_ptr = &root->fs_info->meta_alloc_cluster;
  4868. if (!btrfs_test_opt(root, SSD))
  4869. empty_cluster = 64 * 1024;
  4870. }
  4871. if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
  4872. btrfs_test_opt(root, SSD)) {
  4873. last_ptr = &root->fs_info->data_alloc_cluster;
  4874. }
  4875. if (last_ptr) {
  4876. spin_lock(&last_ptr->lock);
  4877. if (last_ptr->block_group)
  4878. hint_byte = last_ptr->window_start;
  4879. spin_unlock(&last_ptr->lock);
  4880. }
  4881. search_start = max(search_start, first_logical_byte(root, 0));
  4882. search_start = max(search_start, hint_byte);
  4883. if (!last_ptr)
  4884. empty_cluster = 0;
  4885. if (search_start == hint_byte) {
  4886. block_group = btrfs_lookup_block_group(root->fs_info,
  4887. search_start);
  4888. used_block_group = block_group;
  4889. /*
  4890. * we don't want to use the block group if it doesn't match our
  4891. * allocation bits, or if its not cached.
  4892. *
  4893. * However if we are re-searching with an ideal block group
  4894. * picked out then we don't care that the block group is cached.
  4895. */
  4896. if (block_group && block_group_bits(block_group, data) &&
  4897. block_group->cached != BTRFS_CACHE_NO) {
  4898. down_read(&space_info->groups_sem);
  4899. if (list_empty(&block_group->list) ||
  4900. block_group->ro) {
  4901. /*
  4902. * someone is removing this block group,
  4903. * we can't jump into the have_block_group
  4904. * target because our list pointers are not
  4905. * valid
  4906. */
  4907. btrfs_put_block_group(block_group);
  4908. up_read(&space_info->groups_sem);
  4909. } else {
  4910. index = get_block_group_index(block_group);
  4911. goto have_block_group;
  4912. }
  4913. } else if (block_group) {
  4914. btrfs_put_block_group(block_group);
  4915. }
  4916. }
  4917. search:
  4918. have_caching_bg = false;
  4919. down_read(&space_info->groups_sem);
  4920. list_for_each_entry(block_group, &space_info->block_groups[index],
  4921. list) {
  4922. u64 offset;
  4923. int cached;
  4924. used_block_group = block_group;
  4925. btrfs_get_block_group(block_group);
  4926. search_start = block_group->key.objectid;
  4927. /*
  4928. * this can happen if we end up cycling through all the
  4929. * raid types, but we want to make sure we only allocate
  4930. * for the proper type.
  4931. */
  4932. if (!block_group_bits(block_group, data)) {
  4933. u64 extra = BTRFS_BLOCK_GROUP_DUP |
  4934. BTRFS_BLOCK_GROUP_RAID1 |
  4935. BTRFS_BLOCK_GROUP_RAID10;
  4936. /*
  4937. * if they asked for extra copies and this block group
  4938. * doesn't provide them, bail. This does allow us to
  4939. * fill raid0 from raid1.
  4940. */
  4941. if ((data & extra) && !(block_group->flags & extra))
  4942. goto loop;
  4943. }
  4944. have_block_group:
  4945. cached = block_group_cache_done(block_group);
  4946. if (unlikely(!cached)) {
  4947. found_uncached_bg = true;
  4948. ret = cache_block_group(block_group, trans,
  4949. orig_root, 0);
  4950. BUG_ON(ret < 0);
  4951. ret = 0;
  4952. }
  4953. if (unlikely(block_group->ro))
  4954. goto loop;
  4955. /*
  4956. * Ok we want to try and use the cluster allocator, so
  4957. * lets look there
  4958. */
  4959. if (last_ptr) {
  4960. /*
  4961. * the refill lock keeps out other
  4962. * people trying to start a new cluster
  4963. */
  4964. spin_lock(&last_ptr->refill_lock);
  4965. used_block_group = last_ptr->block_group;
  4966. if (used_block_group != block_group &&
  4967. (!used_block_group ||
  4968. used_block_group->ro ||
  4969. !block_group_bits(used_block_group, data))) {
  4970. used_block_group = block_group;
  4971. goto refill_cluster;
  4972. }
  4973. if (used_block_group != block_group)
  4974. btrfs_get_block_group(used_block_group);
  4975. offset = btrfs_alloc_from_cluster(used_block_group,
  4976. last_ptr, num_bytes, used_block_group->key.objectid);
  4977. if (offset) {
  4978. /* we have a block, we're done */
  4979. spin_unlock(&last_ptr->refill_lock);
  4980. trace_btrfs_reserve_extent_cluster(root,
  4981. block_group, search_start, num_bytes);
  4982. goto checks;
  4983. }
  4984. WARN_ON(last_ptr->block_group != used_block_group);
  4985. if (used_block_group != block_group) {
  4986. btrfs_put_block_group(used_block_group);
  4987. used_block_group = block_group;
  4988. }
  4989. refill_cluster:
  4990. BUG_ON(used_block_group != block_group);
  4991. /* If we are on LOOP_NO_EMPTY_SIZE, we can't
  4992. * set up a new clusters, so lets just skip it
  4993. * and let the allocator find whatever block
  4994. * it can find. If we reach this point, we
  4995. * will have tried the cluster allocator
  4996. * plenty of times and not have found
  4997. * anything, so we are likely way too
  4998. * fragmented for the clustering stuff to find
  4999. * anything.
  5000. *
  5001. * However, if the cluster is taken from the
  5002. * current block group, release the cluster
  5003. * first, so that we stand a better chance of
  5004. * succeeding in the unclustered
  5005. * allocation. */
  5006. if (loop >= LOOP_NO_EMPTY_SIZE &&
  5007. last_ptr->block_group != block_group) {
  5008. spin_unlock(&last_ptr->refill_lock);
  5009. goto unclustered_alloc;
  5010. }
  5011. /*
  5012. * this cluster didn't work out, free it and
  5013. * start over
  5014. */
  5015. btrfs_return_cluster_to_free_space(NULL, last_ptr);
  5016. if (loop >= LOOP_NO_EMPTY_SIZE) {
  5017. spin_unlock(&last_ptr->refill_lock);
  5018. goto unclustered_alloc;
  5019. }
  5020. /* allocate a cluster in this block group */
  5021. ret = btrfs_find_space_cluster(trans, root,
  5022. block_group, last_ptr,
  5023. search_start, num_bytes,
  5024. empty_cluster + empty_size);
  5025. if (ret == 0) {
  5026. /*
  5027. * now pull our allocation out of this
  5028. * cluster
  5029. */
  5030. offset = btrfs_alloc_from_cluster(block_group,
  5031. last_ptr, num_bytes,
  5032. search_start);
  5033. if (offset) {
  5034. /* we found one, proceed */
  5035. spin_unlock(&last_ptr->refill_lock);
  5036. trace_btrfs_reserve_extent_cluster(root,
  5037. block_group, search_start,
  5038. num_bytes);
  5039. goto checks;
  5040. }
  5041. } else if (!cached && loop > LOOP_CACHING_NOWAIT
  5042. && !failed_cluster_refill) {
  5043. spin_unlock(&last_ptr->refill_lock);
  5044. failed_cluster_refill = true;
  5045. wait_block_group_cache_progress(block_group,
  5046. num_bytes + empty_cluster + empty_size);
  5047. goto have_block_group;
  5048. }
  5049. /*
  5050. * at this point we either didn't find a cluster
  5051. * or we weren't able to allocate a block from our
  5052. * cluster. Free the cluster we've been trying
  5053. * to use, and go to the next block group
  5054. */
  5055. btrfs_return_cluster_to_free_space(NULL, last_ptr);
  5056. spin_unlock(&last_ptr->refill_lock);
  5057. goto loop;
  5058. }
  5059. unclustered_alloc:
  5060. spin_lock(&block_group->free_space_ctl->tree_lock);
  5061. if (cached &&
  5062. block_group->free_space_ctl->free_space <
  5063. num_bytes + empty_cluster + empty_size) {
  5064. spin_unlock(&block_group->free_space_ctl->tree_lock);
  5065. goto loop;
  5066. }
  5067. spin_unlock(&block_group->free_space_ctl->tree_lock);
  5068. offset = btrfs_find_space_for_alloc(block_group, search_start,
  5069. num_bytes, empty_size);
  5070. /*
  5071. * If we didn't find a chunk, and we haven't failed on this
  5072. * block group before, and this block group is in the middle of
  5073. * caching and we are ok with waiting, then go ahead and wait
  5074. * for progress to be made, and set failed_alloc to true.
  5075. *
  5076. * If failed_alloc is true then we've already waited on this
  5077. * block group once and should move on to the next block group.
  5078. */
  5079. if (!offset && !failed_alloc && !cached &&
  5080. loop > LOOP_CACHING_NOWAIT) {
  5081. wait_block_group_cache_progress(block_group,
  5082. num_bytes + empty_size);
  5083. failed_alloc = true;
  5084. goto have_block_group;
  5085. } else if (!offset) {
  5086. if (!cached)
  5087. have_caching_bg = true;
  5088. goto loop;
  5089. }
  5090. checks:
  5091. search_start = stripe_align(root, offset);
  5092. /* move on to the next group */
  5093. if (search_start + num_bytes >
  5094. used_block_group->key.objectid + used_block_group->key.offset) {
  5095. btrfs_add_free_space(used_block_group, offset, num_bytes);
  5096. goto loop;
  5097. }
  5098. if (offset < search_start)
  5099. btrfs_add_free_space(used_block_group, offset,
  5100. search_start - offset);
  5101. BUG_ON(offset > search_start);
  5102. ret = btrfs_update_reserved_bytes(used_block_group, num_bytes,
  5103. alloc_type);
  5104. if (ret == -EAGAIN) {
  5105. btrfs_add_free_space(used_block_group, offset, num_bytes);
  5106. goto loop;
  5107. }
  5108. /* we are all good, lets return */
  5109. ins->objectid = search_start;
  5110. ins->offset = num_bytes;
  5111. trace_btrfs_reserve_extent(orig_root, block_group,
  5112. search_start, num_bytes);
  5113. if (offset < search_start)
  5114. btrfs_add_free_space(used_block_group, offset,
  5115. search_start - offset);
  5116. BUG_ON(offset > search_start);
  5117. if (used_block_group != block_group)
  5118. btrfs_put_block_group(used_block_group);
  5119. btrfs_put_block_group(block_group);
  5120. break;
  5121. loop:
  5122. failed_cluster_refill = false;
  5123. failed_alloc = false;
  5124. BUG_ON(index != get_block_group_index(block_group));
  5125. if (used_block_group != block_group)
  5126. btrfs_put_block_group(used_block_group);
  5127. btrfs_put_block_group(block_group);
  5128. }
  5129. up_read(&space_info->groups_sem);
  5130. if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
  5131. goto search;
  5132. if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
  5133. goto search;
  5134. /*
  5135. * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
  5136. * caching kthreads as we move along
  5137. * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
  5138. * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
  5139. * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
  5140. * again
  5141. */
  5142. if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
  5143. index = 0;
  5144. loop++;
  5145. if (loop == LOOP_ALLOC_CHUNK) {
  5146. if (allowed_chunk_alloc) {
  5147. ret = do_chunk_alloc(trans, root, num_bytes +
  5148. 2 * 1024 * 1024, data,
  5149. CHUNK_ALLOC_LIMITED);
  5150. /*
  5151. * Do not bail out on ENOSPC since we
  5152. * can do more things.
  5153. */
  5154. if (ret < 0 && ret != -ENOSPC) {
  5155. btrfs_abort_transaction(trans,
  5156. root, ret);
  5157. goto out;
  5158. }
  5159. allowed_chunk_alloc = 0;
  5160. if (ret == 1)
  5161. done_chunk_alloc = 1;
  5162. } else if (!done_chunk_alloc &&
  5163. space_info->force_alloc ==
  5164. CHUNK_ALLOC_NO_FORCE) {
  5165. space_info->force_alloc = CHUNK_ALLOC_LIMITED;
  5166. }
  5167. /*
  5168. * We didn't allocate a chunk, go ahead and drop the
  5169. * empty size and loop again.
  5170. */
  5171. if (!done_chunk_alloc)
  5172. loop = LOOP_NO_EMPTY_SIZE;
  5173. }
  5174. if (loop == LOOP_NO_EMPTY_SIZE) {
  5175. empty_size = 0;
  5176. empty_cluster = 0;
  5177. }
  5178. goto search;
  5179. } else if (!ins->objectid) {
  5180. ret = -ENOSPC;
  5181. } else if (ins->objectid) {
  5182. ret = 0;
  5183. }
  5184. out:
  5185. return ret;
  5186. }
  5187. static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
  5188. int dump_block_groups)
  5189. {
  5190. struct btrfs_block_group_cache *cache;
  5191. int index = 0;
  5192. spin_lock(&info->lock);
  5193. printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n",
  5194. (unsigned long long)info->flags,
  5195. (unsigned long long)(info->total_bytes - info->bytes_used -
  5196. info->bytes_pinned - info->bytes_reserved -
  5197. info->bytes_readonly),
  5198. (info->full) ? "" : "not ");
  5199. printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
  5200. "reserved=%llu, may_use=%llu, readonly=%llu\n",
  5201. (unsigned long long)info->total_bytes,
  5202. (unsigned long long)info->bytes_used,
  5203. (unsigned long long)info->bytes_pinned,
  5204. (unsigned long long)info->bytes_reserved,
  5205. (unsigned long long)info->bytes_may_use,
  5206. (unsigned long long)info->bytes_readonly);
  5207. spin_unlock(&info->lock);
  5208. if (!dump_block_groups)
  5209. return;
  5210. down_read(&info->groups_sem);
  5211. again:
  5212. list_for_each_entry(cache, &info->block_groups[index], list) {
  5213. spin_lock(&cache->lock);
  5214. printk(KERN_INFO "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s\n",
  5215. (unsigned long long)cache->key.objectid,
  5216. (unsigned long long)cache->key.offset,
  5217. (unsigned long long)btrfs_block_group_used(&cache->item),
  5218. (unsigned long long)cache->pinned,
  5219. (unsigned long long)cache->reserved,
  5220. cache->ro ? "[readonly]" : "");
  5221. btrfs_dump_free_space(cache, bytes);
  5222. spin_unlock(&cache->lock);
  5223. }
  5224. if (++index < BTRFS_NR_RAID_TYPES)
  5225. goto again;
  5226. up_read(&info->groups_sem);
  5227. }
  5228. int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
  5229. struct btrfs_root *root,
  5230. u64 num_bytes, u64 min_alloc_size,
  5231. u64 empty_size, u64 hint_byte,
  5232. struct btrfs_key *ins, u64 data)
  5233. {
  5234. bool final_tried = false;
  5235. int ret;
  5236. data = btrfs_get_alloc_profile(root, data);
  5237. again:
  5238. /*
  5239. * the only place that sets empty_size is btrfs_realloc_node, which
  5240. * is not called recursively on allocations
  5241. */
  5242. if (empty_size || root->ref_cows) {
  5243. ret = do_chunk_alloc(trans, root->fs_info->extent_root,
  5244. num_bytes + 2 * 1024 * 1024, data,
  5245. CHUNK_ALLOC_NO_FORCE);
  5246. if (ret < 0 && ret != -ENOSPC) {
  5247. btrfs_abort_transaction(trans, root, ret);
  5248. return ret;
  5249. }
  5250. }
  5251. WARN_ON(num_bytes < root->sectorsize);
  5252. ret = find_free_extent(trans, root, num_bytes, empty_size,
  5253. hint_byte, ins, data);
  5254. if (ret == -ENOSPC) {
  5255. if (!final_tried) {
  5256. num_bytes = num_bytes >> 1;
  5257. num_bytes = num_bytes & ~(root->sectorsize - 1);
  5258. num_bytes = max(num_bytes, min_alloc_size);
  5259. ret = do_chunk_alloc(trans, root->fs_info->extent_root,
  5260. num_bytes, data, CHUNK_ALLOC_FORCE);
  5261. if (ret < 0 && ret != -ENOSPC) {
  5262. btrfs_abort_transaction(trans, root, ret);
  5263. return ret;
  5264. }
  5265. if (num_bytes == min_alloc_size)
  5266. final_tried = true;
  5267. goto again;
  5268. } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
  5269. struct btrfs_space_info *sinfo;
  5270. sinfo = __find_space_info(root->fs_info, data);
  5271. printk(KERN_ERR "btrfs allocation failed flags %llu, "
  5272. "wanted %llu\n", (unsigned long long)data,
  5273. (unsigned long long)num_bytes);
  5274. if (sinfo)
  5275. dump_space_info(sinfo, num_bytes, 1);
  5276. }
  5277. }
  5278. trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
  5279. return ret;
  5280. }
  5281. static int __btrfs_free_reserved_extent(struct btrfs_root *root,
  5282. u64 start, u64 len, int pin)
  5283. {
  5284. struct btrfs_block_group_cache *cache;
  5285. int ret = 0;
  5286. cache = btrfs_lookup_block_group(root->fs_info, start);
  5287. if (!cache) {
  5288. printk(KERN_ERR "Unable to find block group for %llu\n",
  5289. (unsigned long long)start);
  5290. return -ENOSPC;
  5291. }
  5292. if (btrfs_test_opt(root, DISCARD))
  5293. ret = btrfs_discard_extent(root, start, len, NULL);
  5294. if (pin)
  5295. pin_down_extent(root, cache, start, len, 1);
  5296. else {
  5297. btrfs_add_free_space(cache, start, len);
  5298. btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
  5299. }
  5300. btrfs_put_block_group(cache);
  5301. trace_btrfs_reserved_extent_free(root, start, len);
  5302. return ret;
  5303. }
  5304. int btrfs_free_reserved_extent(struct btrfs_root *root,
  5305. u64 start, u64 len)
  5306. {
  5307. return __btrfs_free_reserved_extent(root, start, len, 0);
  5308. }
  5309. int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
  5310. u64 start, u64 len)
  5311. {
  5312. return __btrfs_free_reserved_extent(root, start, len, 1);
  5313. }
  5314. static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
  5315. struct btrfs_root *root,
  5316. u64 parent, u64 root_objectid,
  5317. u64 flags, u64 owner, u64 offset,
  5318. struct btrfs_key *ins, int ref_mod)
  5319. {
  5320. int ret;
  5321. struct btrfs_fs_info *fs_info = root->fs_info;
  5322. struct btrfs_extent_item *extent_item;
  5323. struct btrfs_extent_inline_ref *iref;
  5324. struct btrfs_path *path;
  5325. struct extent_buffer *leaf;
  5326. int type;
  5327. u32 size;
  5328. if (parent > 0)
  5329. type = BTRFS_SHARED_DATA_REF_KEY;
  5330. else
  5331. type = BTRFS_EXTENT_DATA_REF_KEY;
  5332. size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
  5333. path = btrfs_alloc_path();
  5334. if (!path)
  5335. return -ENOMEM;
  5336. path->leave_spinning = 1;
  5337. ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
  5338. ins, size);
  5339. if (ret) {
  5340. btrfs_free_path(path);
  5341. return ret;
  5342. }
  5343. leaf = path->nodes[0];
  5344. extent_item = btrfs_item_ptr(leaf, path->slots[0],
  5345. struct btrfs_extent_item);
  5346. btrfs_set_extent_refs(leaf, extent_item, ref_mod);
  5347. btrfs_set_extent_generation(leaf, extent_item, trans->transid);
  5348. btrfs_set_extent_flags(leaf, extent_item,
  5349. flags | BTRFS_EXTENT_FLAG_DATA);
  5350. iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
  5351. btrfs_set_extent_inline_ref_type(leaf, iref, type);
  5352. if (parent > 0) {
  5353. struct btrfs_shared_data_ref *ref;
  5354. ref = (struct btrfs_shared_data_ref *)(iref + 1);
  5355. btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
  5356. btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
  5357. } else {
  5358. struct btrfs_extent_data_ref *ref;
  5359. ref = (struct btrfs_extent_data_ref *)(&iref->offset);
  5360. btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
  5361. btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
  5362. btrfs_set_extent_data_ref_offset(leaf, ref, offset);
  5363. btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
  5364. }
  5365. btrfs_mark_buffer_dirty(path->nodes[0]);
  5366. btrfs_free_path(path);
  5367. ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
  5368. if (ret) { /* -ENOENT, logic error */
  5369. printk(KERN_ERR "btrfs update block group failed for %llu "
  5370. "%llu\n", (unsigned long long)ins->objectid,
  5371. (unsigned long long)ins->offset);
  5372. BUG();
  5373. }
  5374. return ret;
  5375. }
  5376. static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
  5377. struct btrfs_root *root,
  5378. u64 parent, u64 root_objectid,
  5379. u64 flags, struct btrfs_disk_key *key,
  5380. int level, struct btrfs_key *ins)
  5381. {
  5382. int ret;
  5383. struct btrfs_fs_info *fs_info = root->fs_info;
  5384. struct btrfs_extent_item *extent_item;
  5385. struct btrfs_tree_block_info *block_info;
  5386. struct btrfs_extent_inline_ref *iref;
  5387. struct btrfs_path *path;
  5388. struct extent_buffer *leaf;
  5389. u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
  5390. path = btrfs_alloc_path();
  5391. if (!path)
  5392. return -ENOMEM;
  5393. path->leave_spinning = 1;
  5394. ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
  5395. ins, size);
  5396. if (ret) {
  5397. btrfs_free_path(path);
  5398. return ret;
  5399. }
  5400. leaf = path->nodes[0];
  5401. extent_item = btrfs_item_ptr(leaf, path->slots[0],
  5402. struct btrfs_extent_item);
  5403. btrfs_set_extent_refs(leaf, extent_item, 1);
  5404. btrfs_set_extent_generation(leaf, extent_item, trans->transid);
  5405. btrfs_set_extent_flags(leaf, extent_item,
  5406. flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
  5407. block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
  5408. btrfs_set_tree_block_key(leaf, block_info, key);
  5409. btrfs_set_tree_block_level(leaf, block_info, level);
  5410. iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
  5411. if (parent > 0) {
  5412. BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
  5413. btrfs_set_extent_inline_ref_type(leaf, iref,
  5414. BTRFS_SHARED_BLOCK_REF_KEY);
  5415. btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
  5416. } else {
  5417. btrfs_set_extent_inline_ref_type(leaf, iref,
  5418. BTRFS_TREE_BLOCK_REF_KEY);
  5419. btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
  5420. }
  5421. btrfs_mark_buffer_dirty(leaf);
  5422. btrfs_free_path(path);
  5423. ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
  5424. if (ret) { /* -ENOENT, logic error */
  5425. printk(KERN_ERR "btrfs update block group failed for %llu "
  5426. "%llu\n", (unsigned long long)ins->objectid,
  5427. (unsigned long long)ins->offset);
  5428. BUG();
  5429. }
  5430. return ret;
  5431. }
  5432. int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
  5433. struct btrfs_root *root,
  5434. u64 root_objectid, u64 owner,
  5435. u64 offset, struct btrfs_key *ins)
  5436. {
  5437. int ret;
  5438. BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
  5439. ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
  5440. ins->offset, 0,
  5441. root_objectid, owner, offset,
  5442. BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
  5443. return ret;
  5444. }
  5445. /*
  5446. * this is used by the tree logging recovery code. It records that
  5447. * an extent has been allocated and makes sure to clear the free
  5448. * space cache bits as well
  5449. */
  5450. int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
  5451. struct btrfs_root *root,
  5452. u64 root_objectid, u64 owner, u64 offset,
  5453. struct btrfs_key *ins)
  5454. {
  5455. int ret;
  5456. struct btrfs_block_group_cache *block_group;
  5457. struct btrfs_caching_control *caching_ctl;
  5458. u64 start = ins->objectid;
  5459. u64 num_bytes = ins->offset;
  5460. block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
  5461. cache_block_group(block_group, trans, NULL, 0);
  5462. caching_ctl = get_caching_control(block_group);
  5463. if (!caching_ctl) {
  5464. BUG_ON(!block_group_cache_done(block_group));
  5465. ret = btrfs_remove_free_space(block_group, start, num_bytes);
  5466. BUG_ON(ret); /* -ENOMEM */
  5467. } else {
  5468. mutex_lock(&caching_ctl->mutex);
  5469. if (start >= caching_ctl->progress) {
  5470. ret = add_excluded_extent(root, start, num_bytes);
  5471. BUG_ON(ret); /* -ENOMEM */
  5472. } else if (start + num_bytes <= caching_ctl->progress) {
  5473. ret = btrfs_remove_free_space(block_group,
  5474. start, num_bytes);
  5475. BUG_ON(ret); /* -ENOMEM */
  5476. } else {
  5477. num_bytes = caching_ctl->progress - start;
  5478. ret = btrfs_remove_free_space(block_group,
  5479. start, num_bytes);
  5480. BUG_ON(ret); /* -ENOMEM */
  5481. start = caching_ctl->progress;
  5482. num_bytes = ins->objectid + ins->offset -
  5483. caching_ctl->progress;
  5484. ret = add_excluded_extent(root, start, num_bytes);
  5485. BUG_ON(ret); /* -ENOMEM */
  5486. }
  5487. mutex_unlock(&caching_ctl->mutex);
  5488. put_caching_control(caching_ctl);
  5489. }
  5490. ret = btrfs_update_reserved_bytes(block_group, ins->offset,
  5491. RESERVE_ALLOC_NO_ACCOUNT);
  5492. BUG_ON(ret); /* logic error */
  5493. btrfs_put_block_group(block_group);
  5494. ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
  5495. 0, owner, offset, ins, 1);
  5496. return ret;
  5497. }
  5498. struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
  5499. struct btrfs_root *root,
  5500. u64 bytenr, u32 blocksize,
  5501. int level)
  5502. {
  5503. struct extent_buffer *buf;
  5504. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  5505. if (!buf)
  5506. return ERR_PTR(-ENOMEM);
  5507. btrfs_set_header_generation(buf, trans->transid);
  5508. btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
  5509. btrfs_tree_lock(buf);
  5510. clean_tree_block(trans, root, buf);
  5511. clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
  5512. btrfs_set_lock_blocking(buf);
  5513. btrfs_set_buffer_uptodate(buf);
  5514. if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
  5515. /*
  5516. * we allow two log transactions at a time, use different
  5517. * EXENT bit to differentiate dirty pages.
  5518. */
  5519. if (root->log_transid % 2 == 0)
  5520. set_extent_dirty(&root->dirty_log_pages, buf->start,
  5521. buf->start + buf->len - 1, GFP_NOFS);
  5522. else
  5523. set_extent_new(&root->dirty_log_pages, buf->start,
  5524. buf->start + buf->len - 1, GFP_NOFS);
  5525. } else {
  5526. set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
  5527. buf->start + buf->len - 1, GFP_NOFS);
  5528. }
  5529. trans->blocks_used++;
  5530. /* this returns a buffer locked for blocking */
  5531. return buf;
  5532. }
  5533. static struct btrfs_block_rsv *
  5534. use_block_rsv(struct btrfs_trans_handle *trans,
  5535. struct btrfs_root *root, u32 blocksize)
  5536. {
  5537. struct btrfs_block_rsv *block_rsv;
  5538. struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
  5539. int ret;
  5540. block_rsv = get_block_rsv(trans, root);
  5541. if (block_rsv->size == 0) {
  5542. ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0);
  5543. /*
  5544. * If we couldn't reserve metadata bytes try and use some from
  5545. * the global reserve.
  5546. */
  5547. if (ret && block_rsv != global_rsv) {
  5548. ret = block_rsv_use_bytes(global_rsv, blocksize);
  5549. if (!ret)
  5550. return global_rsv;
  5551. return ERR_PTR(ret);
  5552. } else if (ret) {
  5553. return ERR_PTR(ret);
  5554. }
  5555. return block_rsv;
  5556. }
  5557. ret = block_rsv_use_bytes(block_rsv, blocksize);
  5558. if (!ret)
  5559. return block_rsv;
  5560. if (ret && !block_rsv->failfast) {
  5561. static DEFINE_RATELIMIT_STATE(_rs,
  5562. DEFAULT_RATELIMIT_INTERVAL,
  5563. /*DEFAULT_RATELIMIT_BURST*/ 2);
  5564. if (__ratelimit(&_rs)) {
  5565. printk(KERN_DEBUG "btrfs: block rsv returned %d\n", ret);
  5566. WARN_ON(1);
  5567. }
  5568. ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0);
  5569. if (!ret) {
  5570. return block_rsv;
  5571. } else if (ret && block_rsv != global_rsv) {
  5572. ret = block_rsv_use_bytes(global_rsv, blocksize);
  5573. if (!ret)
  5574. return global_rsv;
  5575. }
  5576. }
  5577. return ERR_PTR(-ENOSPC);
  5578. }
  5579. static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
  5580. struct btrfs_block_rsv *block_rsv, u32 blocksize)
  5581. {
  5582. block_rsv_add_bytes(block_rsv, blocksize, 0);
  5583. block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
  5584. }
  5585. /*
  5586. * finds a free extent and does all the dirty work required for allocation
  5587. * returns the key for the extent through ins, and a tree buffer for
  5588. * the first block of the extent through buf.
  5589. *
  5590. * returns the tree buffer or NULL.
  5591. */
  5592. struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
  5593. struct btrfs_root *root, u32 blocksize,
  5594. u64 parent, u64 root_objectid,
  5595. struct btrfs_disk_key *key, int level,
  5596. u64 hint, u64 empty_size)
  5597. {
  5598. struct btrfs_key ins;
  5599. struct btrfs_block_rsv *block_rsv;
  5600. struct extent_buffer *buf;
  5601. u64 flags = 0;
  5602. int ret;
  5603. block_rsv = use_block_rsv(trans, root, blocksize);
  5604. if (IS_ERR(block_rsv))
  5605. return ERR_CAST(block_rsv);
  5606. ret = btrfs_reserve_extent(trans, root, blocksize, blocksize,
  5607. empty_size, hint, &ins, 0);
  5608. if (ret) {
  5609. unuse_block_rsv(root->fs_info, block_rsv, blocksize);
  5610. return ERR_PTR(ret);
  5611. }
  5612. buf = btrfs_init_new_buffer(trans, root, ins.objectid,
  5613. blocksize, level);
  5614. BUG_ON(IS_ERR(buf)); /* -ENOMEM */
  5615. if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
  5616. if (parent == 0)
  5617. parent = ins.objectid;
  5618. flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
  5619. } else
  5620. BUG_ON(parent > 0);
  5621. if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
  5622. struct btrfs_delayed_extent_op *extent_op;
  5623. extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
  5624. BUG_ON(!extent_op); /* -ENOMEM */
  5625. if (key)
  5626. memcpy(&extent_op->key, key, sizeof(extent_op->key));
  5627. else
  5628. memset(&extent_op->key, 0, sizeof(extent_op->key));
  5629. extent_op->flags_to_set = flags;
  5630. extent_op->update_key = 1;
  5631. extent_op->update_flags = 1;
  5632. extent_op->is_data = 0;
  5633. ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
  5634. ins.objectid,
  5635. ins.offset, parent, root_objectid,
  5636. level, BTRFS_ADD_DELAYED_EXTENT,
  5637. extent_op, 0);
  5638. BUG_ON(ret); /* -ENOMEM */
  5639. }
  5640. return buf;
  5641. }
  5642. struct walk_control {
  5643. u64 refs[BTRFS_MAX_LEVEL];
  5644. u64 flags[BTRFS_MAX_LEVEL];
  5645. struct btrfs_key update_progress;
  5646. int stage;
  5647. int level;
  5648. int shared_level;
  5649. int update_ref;
  5650. int keep_locks;
  5651. int reada_slot;
  5652. int reada_count;
  5653. int for_reloc;
  5654. };
  5655. #define DROP_REFERENCE 1
  5656. #define UPDATE_BACKREF 2
  5657. static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
  5658. struct btrfs_root *root,
  5659. struct walk_control *wc,
  5660. struct btrfs_path *path)
  5661. {
  5662. u64 bytenr;
  5663. u64 generation;
  5664. u64 refs;
  5665. u64 flags;
  5666. u32 nritems;
  5667. u32 blocksize;
  5668. struct btrfs_key key;
  5669. struct extent_buffer *eb;
  5670. int ret;
  5671. int slot;
  5672. int nread = 0;
  5673. if (path->slots[wc->level] < wc->reada_slot) {
  5674. wc->reada_count = wc->reada_count * 2 / 3;
  5675. wc->reada_count = max(wc->reada_count, 2);
  5676. } else {
  5677. wc->reada_count = wc->reada_count * 3 / 2;
  5678. wc->reada_count = min_t(int, wc->reada_count,
  5679. BTRFS_NODEPTRS_PER_BLOCK(root));
  5680. }
  5681. eb = path->nodes[wc->level];
  5682. nritems = btrfs_header_nritems(eb);
  5683. blocksize = btrfs_level_size(root, wc->level - 1);
  5684. for (slot = path->slots[wc->level]; slot < nritems; slot++) {
  5685. if (nread >= wc->reada_count)
  5686. break;
  5687. cond_resched();
  5688. bytenr = btrfs_node_blockptr(eb, slot);
  5689. generation = btrfs_node_ptr_generation(eb, slot);
  5690. if (slot == path->slots[wc->level])
  5691. goto reada;
  5692. if (wc->stage == UPDATE_BACKREF &&
  5693. generation <= root->root_key.offset)
  5694. continue;
  5695. /* We don't lock the tree block, it's OK to be racy here */
  5696. ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
  5697. &refs, &flags);
  5698. /* We don't care about errors in readahead. */
  5699. if (ret < 0)
  5700. continue;
  5701. BUG_ON(refs == 0);
  5702. if (wc->stage == DROP_REFERENCE) {
  5703. if (refs == 1)
  5704. goto reada;
  5705. if (wc->level == 1 &&
  5706. (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
  5707. continue;
  5708. if (!wc->update_ref ||
  5709. generation <= root->root_key.offset)
  5710. continue;
  5711. btrfs_node_key_to_cpu(eb, &key, slot);
  5712. ret = btrfs_comp_cpu_keys(&key,
  5713. &wc->update_progress);
  5714. if (ret < 0)
  5715. continue;
  5716. } else {
  5717. if (wc->level == 1 &&
  5718. (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
  5719. continue;
  5720. }
  5721. reada:
  5722. ret = readahead_tree_block(root, bytenr, blocksize,
  5723. generation);
  5724. if (ret)
  5725. break;
  5726. nread++;
  5727. }
  5728. wc->reada_slot = slot;
  5729. }
  5730. /*
  5731. * hepler to process tree block while walking down the tree.
  5732. *
  5733. * when wc->stage == UPDATE_BACKREF, this function updates
  5734. * back refs for pointers in the block.
  5735. *
  5736. * NOTE: return value 1 means we should stop walking down.
  5737. */
  5738. static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
  5739. struct btrfs_root *root,
  5740. struct btrfs_path *path,
  5741. struct walk_control *wc, int lookup_info)
  5742. {
  5743. int level = wc->level;
  5744. struct extent_buffer *eb = path->nodes[level];
  5745. u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
  5746. int ret;
  5747. if (wc->stage == UPDATE_BACKREF &&
  5748. btrfs_header_owner(eb) != root->root_key.objectid)
  5749. return 1;
  5750. /*
  5751. * when reference count of tree block is 1, it won't increase
  5752. * again. once full backref flag is set, we never clear it.
  5753. */
  5754. if (lookup_info &&
  5755. ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
  5756. (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
  5757. BUG_ON(!path->locks[level]);
  5758. ret = btrfs_lookup_extent_info(trans, root,
  5759. eb->start, eb->len,
  5760. &wc->refs[level],
  5761. &wc->flags[level]);
  5762. BUG_ON(ret == -ENOMEM);
  5763. if (ret)
  5764. return ret;
  5765. BUG_ON(wc->refs[level] == 0);
  5766. }
  5767. if (wc->stage == DROP_REFERENCE) {
  5768. if (wc->refs[level] > 1)
  5769. return 1;
  5770. if (path->locks[level] && !wc->keep_locks) {
  5771. btrfs_tree_unlock_rw(eb, path->locks[level]);
  5772. path->locks[level] = 0;
  5773. }
  5774. return 0;
  5775. }
  5776. /* wc->stage == UPDATE_BACKREF */
  5777. if (!(wc->flags[level] & flag)) {
  5778. BUG_ON(!path->locks[level]);
  5779. ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc);
  5780. BUG_ON(ret); /* -ENOMEM */
  5781. ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc);
  5782. BUG_ON(ret); /* -ENOMEM */
  5783. ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
  5784. eb->len, flag, 0);
  5785. BUG_ON(ret); /* -ENOMEM */
  5786. wc->flags[level] |= flag;
  5787. }
  5788. /*
  5789. * the block is shared by multiple trees, so it's not good to
  5790. * keep the tree lock
  5791. */
  5792. if (path->locks[level] && level > 0) {
  5793. btrfs_tree_unlock_rw(eb, path->locks[level]);
  5794. path->locks[level] = 0;
  5795. }
  5796. return 0;
  5797. }
  5798. /*
  5799. * hepler to process tree block pointer.
  5800. *
  5801. * when wc->stage == DROP_REFERENCE, this function checks
  5802. * reference count of the block pointed to. if the block
  5803. * is shared and we need update back refs for the subtree
  5804. * rooted at the block, this function changes wc->stage to
  5805. * UPDATE_BACKREF. if the block is shared and there is no
  5806. * need to update back, this function drops the reference
  5807. * to the block.
  5808. *
  5809. * NOTE: return value 1 means we should stop walking down.
  5810. */
  5811. static noinline int do_walk_down(struct btrfs_trans_handle *trans,
  5812. struct btrfs_root *root,
  5813. struct btrfs_path *path,
  5814. struct walk_control *wc, int *lookup_info)
  5815. {
  5816. u64 bytenr;
  5817. u64 generation;
  5818. u64 parent;
  5819. u32 blocksize;
  5820. struct btrfs_key key;
  5821. struct extent_buffer *next;
  5822. int level = wc->level;
  5823. int reada = 0;
  5824. int ret = 0;
  5825. generation = btrfs_node_ptr_generation(path->nodes[level],
  5826. path->slots[level]);
  5827. /*
  5828. * if the lower level block was created before the snapshot
  5829. * was created, we know there is no need to update back refs
  5830. * for the subtree
  5831. */
  5832. if (wc->stage == UPDATE_BACKREF &&
  5833. generation <= root->root_key.offset) {
  5834. *lookup_info = 1;
  5835. return 1;
  5836. }
  5837. bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
  5838. blocksize = btrfs_level_size(root, level - 1);
  5839. next = btrfs_find_tree_block(root, bytenr, blocksize);
  5840. if (!next) {
  5841. next = btrfs_find_create_tree_block(root, bytenr, blocksize);
  5842. if (!next)
  5843. return -ENOMEM;
  5844. reada = 1;
  5845. }
  5846. btrfs_tree_lock(next);
  5847. btrfs_set_lock_blocking(next);
  5848. ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
  5849. &wc->refs[level - 1],
  5850. &wc->flags[level - 1]);
  5851. if (ret < 0) {
  5852. btrfs_tree_unlock(next);
  5853. return ret;
  5854. }
  5855. BUG_ON(wc->refs[level - 1] == 0);
  5856. *lookup_info = 0;
  5857. if (wc->stage == DROP_REFERENCE) {
  5858. if (wc->refs[level - 1] > 1) {
  5859. if (level == 1 &&
  5860. (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
  5861. goto skip;
  5862. if (!wc->update_ref ||
  5863. generation <= root->root_key.offset)
  5864. goto skip;
  5865. btrfs_node_key_to_cpu(path->nodes[level], &key,
  5866. path->slots[level]);
  5867. ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
  5868. if (ret < 0)
  5869. goto skip;
  5870. wc->stage = UPDATE_BACKREF;
  5871. wc->shared_level = level - 1;
  5872. }
  5873. } else {
  5874. if (level == 1 &&
  5875. (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
  5876. goto skip;
  5877. }
  5878. if (!btrfs_buffer_uptodate(next, generation, 0)) {
  5879. btrfs_tree_unlock(next);
  5880. free_extent_buffer(next);
  5881. next = NULL;
  5882. *lookup_info = 1;
  5883. }
  5884. if (!next) {
  5885. if (reada && level == 1)
  5886. reada_walk_down(trans, root, wc, path);
  5887. next = read_tree_block(root, bytenr, blocksize, generation);
  5888. if (!next)
  5889. return -EIO;
  5890. btrfs_tree_lock(next);
  5891. btrfs_set_lock_blocking(next);
  5892. }
  5893. level--;
  5894. BUG_ON(level != btrfs_header_level(next));
  5895. path->nodes[level] = next;
  5896. path->slots[level] = 0;
  5897. path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
  5898. wc->level = level;
  5899. if (wc->level == 1)
  5900. wc->reada_slot = 0;
  5901. return 0;
  5902. skip:
  5903. wc->refs[level - 1] = 0;
  5904. wc->flags[level - 1] = 0;
  5905. if (wc->stage == DROP_REFERENCE) {
  5906. if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
  5907. parent = path->nodes[level]->start;
  5908. } else {
  5909. BUG_ON(root->root_key.objectid !=
  5910. btrfs_header_owner(path->nodes[level]));
  5911. parent = 0;
  5912. }
  5913. ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
  5914. root->root_key.objectid, level - 1, 0, 0);
  5915. BUG_ON(ret); /* -ENOMEM */
  5916. }
  5917. btrfs_tree_unlock(next);
  5918. free_extent_buffer(next);
  5919. *lookup_info = 1;
  5920. return 1;
  5921. }
  5922. /*
  5923. * hepler to process tree block while walking up the tree.
  5924. *
  5925. * when wc->stage == DROP_REFERENCE, this function drops
  5926. * reference count on the block.
  5927. *
  5928. * when wc->stage == UPDATE_BACKREF, this function changes
  5929. * wc->stage back to DROP_REFERENCE if we changed wc->stage
  5930. * to UPDATE_BACKREF previously while processing the block.
  5931. *
  5932. * NOTE: return value 1 means we should stop walking up.
  5933. */
  5934. static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
  5935. struct btrfs_root *root,
  5936. struct btrfs_path *path,
  5937. struct walk_control *wc)
  5938. {
  5939. int ret;
  5940. int level = wc->level;
  5941. struct extent_buffer *eb = path->nodes[level];
  5942. u64 parent = 0;
  5943. if (wc->stage == UPDATE_BACKREF) {
  5944. BUG_ON(wc->shared_level < level);
  5945. if (level < wc->shared_level)
  5946. goto out;
  5947. ret = find_next_key(path, level + 1, &wc->update_progress);
  5948. if (ret > 0)
  5949. wc->update_ref = 0;
  5950. wc->stage = DROP_REFERENCE;
  5951. wc->shared_level = -1;
  5952. path->slots[level] = 0;
  5953. /*
  5954. * check reference count again if the block isn't locked.
  5955. * we should start walking down the tree again if reference
  5956. * count is one.
  5957. */
  5958. if (!path->locks[level]) {
  5959. BUG_ON(level == 0);
  5960. btrfs_tree_lock(eb);
  5961. btrfs_set_lock_blocking(eb);
  5962. path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
  5963. ret = btrfs_lookup_extent_info(trans, root,
  5964. eb->start, eb->len,
  5965. &wc->refs[level],
  5966. &wc->flags[level]);
  5967. if (ret < 0) {
  5968. btrfs_tree_unlock_rw(eb, path->locks[level]);
  5969. return ret;
  5970. }
  5971. BUG_ON(wc->refs[level] == 0);
  5972. if (wc->refs[level] == 1) {
  5973. btrfs_tree_unlock_rw(eb, path->locks[level]);
  5974. return 1;
  5975. }
  5976. }
  5977. }
  5978. /* wc->stage == DROP_REFERENCE */
  5979. BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
  5980. if (wc->refs[level] == 1) {
  5981. if (level == 0) {
  5982. if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
  5983. ret = btrfs_dec_ref(trans, root, eb, 1,
  5984. wc->for_reloc);
  5985. else
  5986. ret = btrfs_dec_ref(trans, root, eb, 0,
  5987. wc->for_reloc);
  5988. BUG_ON(ret); /* -ENOMEM */
  5989. }
  5990. /* make block locked assertion in clean_tree_block happy */
  5991. if (!path->locks[level] &&
  5992. btrfs_header_generation(eb) == trans->transid) {
  5993. btrfs_tree_lock(eb);
  5994. btrfs_set_lock_blocking(eb);
  5995. path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
  5996. }
  5997. clean_tree_block(trans, root, eb);
  5998. }
  5999. if (eb == root->node) {
  6000. if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
  6001. parent = eb->start;
  6002. else
  6003. BUG_ON(root->root_key.objectid !=
  6004. btrfs_header_owner(eb));
  6005. } else {
  6006. if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
  6007. parent = path->nodes[level + 1]->start;
  6008. else
  6009. BUG_ON(root->root_key.objectid !=
  6010. btrfs_header_owner(path->nodes[level + 1]));
  6011. }
  6012. btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
  6013. out:
  6014. wc->refs[level] = 0;
  6015. wc->flags[level] = 0;
  6016. return 0;
  6017. }
  6018. static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
  6019. struct btrfs_root *root,
  6020. struct btrfs_path *path,
  6021. struct walk_control *wc)
  6022. {
  6023. int level = wc->level;
  6024. int lookup_info = 1;
  6025. int ret;
  6026. while (level >= 0) {
  6027. ret = walk_down_proc(trans, root, path, wc, lookup_info);
  6028. if (ret > 0)
  6029. break;
  6030. if (level == 0)
  6031. break;
  6032. if (path->slots[level] >=
  6033. btrfs_header_nritems(path->nodes[level]))
  6034. break;
  6035. ret = do_walk_down(trans, root, path, wc, &lookup_info);
  6036. if (ret > 0) {
  6037. path->slots[level]++;
  6038. continue;
  6039. } else if (ret < 0)
  6040. return ret;
  6041. level = wc->level;
  6042. }
  6043. return 0;
  6044. }
  6045. static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
  6046. struct btrfs_root *root,
  6047. struct btrfs_path *path,
  6048. struct walk_control *wc, int max_level)
  6049. {
  6050. int level = wc->level;
  6051. int ret;
  6052. path->slots[level] = btrfs_header_nritems(path->nodes[level]);
  6053. while (level < max_level && path->nodes[level]) {
  6054. wc->level = level;
  6055. if (path->slots[level] + 1 <
  6056. btrfs_header_nritems(path->nodes[level])) {
  6057. path->slots[level]++;
  6058. return 0;
  6059. } else {
  6060. ret = walk_up_proc(trans, root, path, wc);
  6061. if (ret > 0)
  6062. return 0;
  6063. if (path->locks[level]) {
  6064. btrfs_tree_unlock_rw(path->nodes[level],
  6065. path->locks[level]);
  6066. path->locks[level] = 0;
  6067. }
  6068. free_extent_buffer(path->nodes[level]);
  6069. path->nodes[level] = NULL;
  6070. level++;
  6071. }
  6072. }
  6073. return 1;
  6074. }
  6075. /*
  6076. * drop a subvolume tree.
  6077. *
  6078. * this function traverses the tree freeing any blocks that only
  6079. * referenced by the tree.
  6080. *
  6081. * when a shared tree block is found. this function decreases its
  6082. * reference count by one. if update_ref is true, this function
  6083. * also make sure backrefs for the shared block and all lower level
  6084. * blocks are properly updated.
  6085. */
  6086. int btrfs_drop_snapshot(struct btrfs_root *root,
  6087. struct btrfs_block_rsv *block_rsv, int update_ref,
  6088. int for_reloc)
  6089. {
  6090. struct btrfs_path *path;
  6091. struct btrfs_trans_handle *trans;
  6092. struct btrfs_root *tree_root = root->fs_info->tree_root;
  6093. struct btrfs_root_item *root_item = &root->root_item;
  6094. struct walk_control *wc;
  6095. struct btrfs_key key;
  6096. int err = 0;
  6097. int ret;
  6098. int level;
  6099. path = btrfs_alloc_path();
  6100. if (!path) {
  6101. err = -ENOMEM;
  6102. goto out;
  6103. }
  6104. wc = kzalloc(sizeof(*wc), GFP_NOFS);
  6105. if (!wc) {
  6106. btrfs_free_path(path);
  6107. err = -ENOMEM;
  6108. goto out;
  6109. }
  6110. trans = btrfs_start_transaction(tree_root, 0);
  6111. if (IS_ERR(trans)) {
  6112. err = PTR_ERR(trans);
  6113. goto out_free;
  6114. }
  6115. if (block_rsv)
  6116. trans->block_rsv = block_rsv;
  6117. if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
  6118. level = btrfs_header_level(root->node);
  6119. path->nodes[level] = btrfs_lock_root_node(root);
  6120. btrfs_set_lock_blocking(path->nodes[level]);
  6121. path->slots[level] = 0;
  6122. path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
  6123. memset(&wc->update_progress, 0,
  6124. sizeof(wc->update_progress));
  6125. } else {
  6126. btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
  6127. memcpy(&wc->update_progress, &key,
  6128. sizeof(wc->update_progress));
  6129. level = root_item->drop_level;
  6130. BUG_ON(level == 0);
  6131. path->lowest_level = level;
  6132. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  6133. path->lowest_level = 0;
  6134. if (ret < 0) {
  6135. err = ret;
  6136. goto out_end_trans;
  6137. }
  6138. WARN_ON(ret > 0);
  6139. /*
  6140. * unlock our path, this is safe because only this
  6141. * function is allowed to delete this snapshot
  6142. */
  6143. btrfs_unlock_up_safe(path, 0);
  6144. level = btrfs_header_level(root->node);
  6145. while (1) {
  6146. btrfs_tree_lock(path->nodes[level]);
  6147. btrfs_set_lock_blocking(path->nodes[level]);
  6148. ret = btrfs_lookup_extent_info(trans, root,
  6149. path->nodes[level]->start,
  6150. path->nodes[level]->len,
  6151. &wc->refs[level],
  6152. &wc->flags[level]);
  6153. if (ret < 0) {
  6154. err = ret;
  6155. goto out_end_trans;
  6156. }
  6157. BUG_ON(wc->refs[level] == 0);
  6158. if (level == root_item->drop_level)
  6159. break;
  6160. btrfs_tree_unlock(path->nodes[level]);
  6161. WARN_ON(wc->refs[level] != 1);
  6162. level--;
  6163. }
  6164. }
  6165. wc->level = level;
  6166. wc->shared_level = -1;
  6167. wc->stage = DROP_REFERENCE;
  6168. wc->update_ref = update_ref;
  6169. wc->keep_locks = 0;
  6170. wc->for_reloc = for_reloc;
  6171. wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
  6172. while (1) {
  6173. ret = walk_down_tree(trans, root, path, wc);
  6174. if (ret < 0) {
  6175. err = ret;
  6176. break;
  6177. }
  6178. ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
  6179. if (ret < 0) {
  6180. err = ret;
  6181. break;
  6182. }
  6183. if (ret > 0) {
  6184. BUG_ON(wc->stage != DROP_REFERENCE);
  6185. break;
  6186. }
  6187. if (wc->stage == DROP_REFERENCE) {
  6188. level = wc->level;
  6189. btrfs_node_key(path->nodes[level],
  6190. &root_item->drop_progress,
  6191. path->slots[level]);
  6192. root_item->drop_level = level;
  6193. }
  6194. BUG_ON(wc->level == 0);
  6195. if (btrfs_should_end_transaction(trans, tree_root)) {
  6196. ret = btrfs_update_root(trans, tree_root,
  6197. &root->root_key,
  6198. root_item);
  6199. if (ret) {
  6200. btrfs_abort_transaction(trans, tree_root, ret);
  6201. err = ret;
  6202. goto out_end_trans;
  6203. }
  6204. btrfs_end_transaction_throttle(trans, tree_root);
  6205. trans = btrfs_start_transaction(tree_root, 0);
  6206. if (IS_ERR(trans)) {
  6207. err = PTR_ERR(trans);
  6208. goto out_free;
  6209. }
  6210. if (block_rsv)
  6211. trans->block_rsv = block_rsv;
  6212. }
  6213. }
  6214. btrfs_release_path(path);
  6215. if (err)
  6216. goto out_end_trans;
  6217. ret = btrfs_del_root(trans, tree_root, &root->root_key);
  6218. if (ret) {
  6219. btrfs_abort_transaction(trans, tree_root, ret);
  6220. goto out_end_trans;
  6221. }
  6222. if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
  6223. ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
  6224. NULL, NULL);
  6225. if (ret < 0) {
  6226. btrfs_abort_transaction(trans, tree_root, ret);
  6227. err = ret;
  6228. goto out_end_trans;
  6229. } else if (ret > 0) {
  6230. /* if we fail to delete the orphan item this time
  6231. * around, it'll get picked up the next time.
  6232. *
  6233. * The most common failure here is just -ENOENT.
  6234. */
  6235. btrfs_del_orphan_item(trans, tree_root,
  6236. root->root_key.objectid);
  6237. }
  6238. }
  6239. if (root->in_radix) {
  6240. btrfs_free_fs_root(tree_root->fs_info, root);
  6241. } else {
  6242. free_extent_buffer(root->node);
  6243. free_extent_buffer(root->commit_root);
  6244. kfree(root);
  6245. }
  6246. out_end_trans:
  6247. btrfs_end_transaction_throttle(trans, tree_root);
  6248. out_free:
  6249. kfree(wc);
  6250. btrfs_free_path(path);
  6251. out:
  6252. if (err)
  6253. btrfs_std_error(root->fs_info, err);
  6254. return err;
  6255. }
  6256. /*
  6257. * drop subtree rooted at tree block 'node'.
  6258. *
  6259. * NOTE: this function will unlock and release tree block 'node'
  6260. * only used by relocation code
  6261. */
  6262. int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
  6263. struct btrfs_root *root,
  6264. struct extent_buffer *node,
  6265. struct extent_buffer *parent)
  6266. {
  6267. struct btrfs_path *path;
  6268. struct walk_control *wc;
  6269. int level;
  6270. int parent_level;
  6271. int ret = 0;
  6272. int wret;
  6273. BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
  6274. path = btrfs_alloc_path();
  6275. if (!path)
  6276. return -ENOMEM;
  6277. wc = kzalloc(sizeof(*wc), GFP_NOFS);
  6278. if (!wc) {
  6279. btrfs_free_path(path);
  6280. return -ENOMEM;
  6281. }
  6282. btrfs_assert_tree_locked(parent);
  6283. parent_level = btrfs_header_level(parent);
  6284. extent_buffer_get(parent);
  6285. path->nodes[parent_level] = parent;
  6286. path->slots[parent_level] = btrfs_header_nritems(parent);
  6287. btrfs_assert_tree_locked(node);
  6288. level = btrfs_header_level(node);
  6289. path->nodes[level] = node;
  6290. path->slots[level] = 0;
  6291. path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
  6292. wc->refs[parent_level] = 1;
  6293. wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
  6294. wc->level = level;
  6295. wc->shared_level = -1;
  6296. wc->stage = DROP_REFERENCE;
  6297. wc->update_ref = 0;
  6298. wc->keep_locks = 1;
  6299. wc->for_reloc = 1;
  6300. wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
  6301. while (1) {
  6302. wret = walk_down_tree(trans, root, path, wc);
  6303. if (wret < 0) {
  6304. ret = wret;
  6305. break;
  6306. }
  6307. wret = walk_up_tree(trans, root, path, wc, parent_level);
  6308. if (wret < 0)
  6309. ret = wret;
  6310. if (wret != 0)
  6311. break;
  6312. }
  6313. kfree(wc);
  6314. btrfs_free_path(path);
  6315. return ret;
  6316. }
  6317. static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
  6318. {
  6319. u64 num_devices;
  6320. u64 stripped;
  6321. /*
  6322. * if restripe for this chunk_type is on pick target profile and
  6323. * return, otherwise do the usual balance
  6324. */
  6325. stripped = get_restripe_target(root->fs_info, flags);
  6326. if (stripped)
  6327. return extended_to_chunk(stripped);
  6328. /*
  6329. * we add in the count of missing devices because we want
  6330. * to make sure that any RAID levels on a degraded FS
  6331. * continue to be honored.
  6332. */
  6333. num_devices = root->fs_info->fs_devices->rw_devices +
  6334. root->fs_info->fs_devices->missing_devices;
  6335. stripped = BTRFS_BLOCK_GROUP_RAID0 |
  6336. BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
  6337. if (num_devices == 1) {
  6338. stripped |= BTRFS_BLOCK_GROUP_DUP;
  6339. stripped = flags & ~stripped;
  6340. /* turn raid0 into single device chunks */
  6341. if (flags & BTRFS_BLOCK_GROUP_RAID0)
  6342. return stripped;
  6343. /* turn mirroring into duplication */
  6344. if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
  6345. BTRFS_BLOCK_GROUP_RAID10))
  6346. return stripped | BTRFS_BLOCK_GROUP_DUP;
  6347. } else {
  6348. /* they already had raid on here, just return */
  6349. if (flags & stripped)
  6350. return flags;
  6351. stripped |= BTRFS_BLOCK_GROUP_DUP;
  6352. stripped = flags & ~stripped;
  6353. /* switch duplicated blocks with raid1 */
  6354. if (flags & BTRFS_BLOCK_GROUP_DUP)
  6355. return stripped | BTRFS_BLOCK_GROUP_RAID1;
  6356. /* this is drive concat, leave it alone */
  6357. }
  6358. return flags;
  6359. }
  6360. static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
  6361. {
  6362. struct btrfs_space_info *sinfo = cache->space_info;
  6363. u64 num_bytes;
  6364. u64 min_allocable_bytes;
  6365. int ret = -ENOSPC;
  6366. /*
  6367. * We need some metadata space and system metadata space for
  6368. * allocating chunks in some corner cases until we force to set
  6369. * it to be readonly.
  6370. */
  6371. if ((sinfo->flags &
  6372. (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
  6373. !force)
  6374. min_allocable_bytes = 1 * 1024 * 1024;
  6375. else
  6376. min_allocable_bytes = 0;
  6377. spin_lock(&sinfo->lock);
  6378. spin_lock(&cache->lock);
  6379. if (cache->ro) {
  6380. ret = 0;
  6381. goto out;
  6382. }
  6383. num_bytes = cache->key.offset - cache->reserved - cache->pinned -
  6384. cache->bytes_super - btrfs_block_group_used(&cache->item);
  6385. if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
  6386. sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
  6387. min_allocable_bytes <= sinfo->total_bytes) {
  6388. sinfo->bytes_readonly += num_bytes;
  6389. cache->ro = 1;
  6390. ret = 0;
  6391. }
  6392. out:
  6393. spin_unlock(&cache->lock);
  6394. spin_unlock(&sinfo->lock);
  6395. return ret;
  6396. }
  6397. int btrfs_set_block_group_ro(struct btrfs_root *root,
  6398. struct btrfs_block_group_cache *cache)
  6399. {
  6400. struct btrfs_trans_handle *trans;
  6401. u64 alloc_flags;
  6402. int ret;
  6403. BUG_ON(cache->ro);
  6404. trans = btrfs_join_transaction(root);
  6405. if (IS_ERR(trans))
  6406. return PTR_ERR(trans);
  6407. alloc_flags = update_block_group_flags(root, cache->flags);
  6408. if (alloc_flags != cache->flags) {
  6409. ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
  6410. CHUNK_ALLOC_FORCE);
  6411. if (ret < 0)
  6412. goto out;
  6413. }
  6414. ret = set_block_group_ro(cache, 0);
  6415. if (!ret)
  6416. goto out;
  6417. alloc_flags = get_alloc_profile(root, cache->space_info->flags);
  6418. ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
  6419. CHUNK_ALLOC_FORCE);
  6420. if (ret < 0)
  6421. goto out;
  6422. ret = set_block_group_ro(cache, 0);
  6423. out:
  6424. btrfs_end_transaction(trans, root);
  6425. return ret;
  6426. }
  6427. int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
  6428. struct btrfs_root *root, u64 type)
  6429. {
  6430. u64 alloc_flags = get_alloc_profile(root, type);
  6431. return do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
  6432. CHUNK_ALLOC_FORCE);
  6433. }
  6434. /*
  6435. * helper to account the unused space of all the readonly block group in the
  6436. * list. takes mirrors into account.
  6437. */
  6438. static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
  6439. {
  6440. struct btrfs_block_group_cache *block_group;
  6441. u64 free_bytes = 0;
  6442. int factor;
  6443. list_for_each_entry(block_group, groups_list, list) {
  6444. spin_lock(&block_group->lock);
  6445. if (!block_group->ro) {
  6446. spin_unlock(&block_group->lock);
  6447. continue;
  6448. }
  6449. if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
  6450. BTRFS_BLOCK_GROUP_RAID10 |
  6451. BTRFS_BLOCK_GROUP_DUP))
  6452. factor = 2;
  6453. else
  6454. factor = 1;
  6455. free_bytes += (block_group->key.offset -
  6456. btrfs_block_group_used(&block_group->item)) *
  6457. factor;
  6458. spin_unlock(&block_group->lock);
  6459. }
  6460. return free_bytes;
  6461. }
  6462. /*
  6463. * helper to account the unused space of all the readonly block group in the
  6464. * space_info. takes mirrors into account.
  6465. */
  6466. u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
  6467. {
  6468. int i;
  6469. u64 free_bytes = 0;
  6470. spin_lock(&sinfo->lock);
  6471. for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
  6472. if (!list_empty(&sinfo->block_groups[i]))
  6473. free_bytes += __btrfs_get_ro_block_group_free_space(
  6474. &sinfo->block_groups[i]);
  6475. spin_unlock(&sinfo->lock);
  6476. return free_bytes;
  6477. }
  6478. void btrfs_set_block_group_rw(struct btrfs_root *root,
  6479. struct btrfs_block_group_cache *cache)
  6480. {
  6481. struct btrfs_space_info *sinfo = cache->space_info;
  6482. u64 num_bytes;
  6483. BUG_ON(!cache->ro);
  6484. spin_lock(&sinfo->lock);
  6485. spin_lock(&cache->lock);
  6486. num_bytes = cache->key.offset - cache->reserved - cache->pinned -
  6487. cache->bytes_super - btrfs_block_group_used(&cache->item);
  6488. sinfo->bytes_readonly -= num_bytes;
  6489. cache->ro = 0;
  6490. spin_unlock(&cache->lock);
  6491. spin_unlock(&sinfo->lock);
  6492. }
  6493. /*
  6494. * checks to see if its even possible to relocate this block group.
  6495. *
  6496. * @return - -1 if it's not a good idea to relocate this block group, 0 if its
  6497. * ok to go ahead and try.
  6498. */
  6499. int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
  6500. {
  6501. struct btrfs_block_group_cache *block_group;
  6502. struct btrfs_space_info *space_info;
  6503. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  6504. struct btrfs_device *device;
  6505. u64 min_free;
  6506. u64 dev_min = 1;
  6507. u64 dev_nr = 0;
  6508. u64 target;
  6509. int index;
  6510. int full = 0;
  6511. int ret = 0;
  6512. block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
  6513. /* odd, couldn't find the block group, leave it alone */
  6514. if (!block_group)
  6515. return -1;
  6516. min_free = btrfs_block_group_used(&block_group->item);
  6517. /* no bytes used, we're good */
  6518. if (!min_free)
  6519. goto out;
  6520. space_info = block_group->space_info;
  6521. spin_lock(&space_info->lock);
  6522. full = space_info->full;
  6523. /*
  6524. * if this is the last block group we have in this space, we can't
  6525. * relocate it unless we're able to allocate a new chunk below.
  6526. *
  6527. * Otherwise, we need to make sure we have room in the space to handle
  6528. * all of the extents from this block group. If we can, we're good
  6529. */
  6530. if ((space_info->total_bytes != block_group->key.offset) &&
  6531. (space_info->bytes_used + space_info->bytes_reserved +
  6532. space_info->bytes_pinned + space_info->bytes_readonly +
  6533. min_free < space_info->total_bytes)) {
  6534. spin_unlock(&space_info->lock);
  6535. goto out;
  6536. }
  6537. spin_unlock(&space_info->lock);
  6538. /*
  6539. * ok we don't have enough space, but maybe we have free space on our
  6540. * devices to allocate new chunks for relocation, so loop through our
  6541. * alloc devices and guess if we have enough space. if this block
  6542. * group is going to be restriped, run checks against the target
  6543. * profile instead of the current one.
  6544. */
  6545. ret = -1;
  6546. /*
  6547. * index:
  6548. * 0: raid10
  6549. * 1: raid1
  6550. * 2: dup
  6551. * 3: raid0
  6552. * 4: single
  6553. */
  6554. target = get_restripe_target(root->fs_info, block_group->flags);
  6555. if (target) {
  6556. index = __get_block_group_index(extended_to_chunk(target));
  6557. } else {
  6558. /*
  6559. * this is just a balance, so if we were marked as full
  6560. * we know there is no space for a new chunk
  6561. */
  6562. if (full)
  6563. goto out;
  6564. index = get_block_group_index(block_group);
  6565. }
  6566. if (index == 0) {
  6567. dev_min = 4;
  6568. /* Divide by 2 */
  6569. min_free >>= 1;
  6570. } else if (index == 1) {
  6571. dev_min = 2;
  6572. } else if (index == 2) {
  6573. /* Multiply by 2 */
  6574. min_free <<= 1;
  6575. } else if (index == 3) {
  6576. dev_min = fs_devices->rw_devices;
  6577. do_div(min_free, dev_min);
  6578. }
  6579. mutex_lock(&root->fs_info->chunk_mutex);
  6580. list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
  6581. u64 dev_offset;
  6582. /*
  6583. * check to make sure we can actually find a chunk with enough
  6584. * space to fit our block group in.
  6585. */
  6586. if (device->total_bytes > device->bytes_used + min_free) {
  6587. ret = find_free_dev_extent(device, min_free,
  6588. &dev_offset, NULL);
  6589. if (!ret)
  6590. dev_nr++;
  6591. if (dev_nr >= dev_min)
  6592. break;
  6593. ret = -1;
  6594. }
  6595. }
  6596. mutex_unlock(&root->fs_info->chunk_mutex);
  6597. out:
  6598. btrfs_put_block_group(block_group);
  6599. return ret;
  6600. }
  6601. static int find_first_block_group(struct btrfs_root *root,
  6602. struct btrfs_path *path, struct btrfs_key *key)
  6603. {
  6604. int ret = 0;
  6605. struct btrfs_key found_key;
  6606. struct extent_buffer *leaf;
  6607. int slot;
  6608. ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
  6609. if (ret < 0)
  6610. goto out;
  6611. while (1) {
  6612. slot = path->slots[0];
  6613. leaf = path->nodes[0];
  6614. if (slot >= btrfs_header_nritems(leaf)) {
  6615. ret = btrfs_next_leaf(root, path);
  6616. if (ret == 0)
  6617. continue;
  6618. if (ret < 0)
  6619. goto out;
  6620. break;
  6621. }
  6622. btrfs_item_key_to_cpu(leaf, &found_key, slot);
  6623. if (found_key.objectid >= key->objectid &&
  6624. found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
  6625. ret = 0;
  6626. goto out;
  6627. }
  6628. path->slots[0]++;
  6629. }
  6630. out:
  6631. return ret;
  6632. }
  6633. void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
  6634. {
  6635. struct btrfs_block_group_cache *block_group;
  6636. u64 last = 0;
  6637. while (1) {
  6638. struct inode *inode;
  6639. block_group = btrfs_lookup_first_block_group(info, last);
  6640. while (block_group) {
  6641. spin_lock(&block_group->lock);
  6642. if (block_group->iref)
  6643. break;
  6644. spin_unlock(&block_group->lock);
  6645. block_group = next_block_group(info->tree_root,
  6646. block_group);
  6647. }
  6648. if (!block_group) {
  6649. if (last == 0)
  6650. break;
  6651. last = 0;
  6652. continue;
  6653. }
  6654. inode = block_group->inode;
  6655. block_group->iref = 0;
  6656. block_group->inode = NULL;
  6657. spin_unlock(&block_group->lock);
  6658. iput(inode);
  6659. last = block_group->key.objectid + block_group->key.offset;
  6660. btrfs_put_block_group(block_group);
  6661. }
  6662. }
  6663. int btrfs_free_block_groups(struct btrfs_fs_info *info)
  6664. {
  6665. struct btrfs_block_group_cache *block_group;
  6666. struct btrfs_space_info *space_info;
  6667. struct btrfs_caching_control *caching_ctl;
  6668. struct rb_node *n;
  6669. down_write(&info->extent_commit_sem);
  6670. while (!list_empty(&info->caching_block_groups)) {
  6671. caching_ctl = list_entry(info->caching_block_groups.next,
  6672. struct btrfs_caching_control, list);
  6673. list_del(&caching_ctl->list);
  6674. put_caching_control(caching_ctl);
  6675. }
  6676. up_write(&info->extent_commit_sem);
  6677. spin_lock(&info->block_group_cache_lock);
  6678. while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
  6679. block_group = rb_entry(n, struct btrfs_block_group_cache,
  6680. cache_node);
  6681. rb_erase(&block_group->cache_node,
  6682. &info->block_group_cache_tree);
  6683. spin_unlock(&info->block_group_cache_lock);
  6684. down_write(&block_group->space_info->groups_sem);
  6685. list_del(&block_group->list);
  6686. up_write(&block_group->space_info->groups_sem);
  6687. if (block_group->cached == BTRFS_CACHE_STARTED)
  6688. wait_block_group_cache_done(block_group);
  6689. /*
  6690. * We haven't cached this block group, which means we could
  6691. * possibly have excluded extents on this block group.
  6692. */
  6693. if (block_group->cached == BTRFS_CACHE_NO)
  6694. free_excluded_extents(info->extent_root, block_group);
  6695. btrfs_remove_free_space_cache(block_group);
  6696. btrfs_put_block_group(block_group);
  6697. spin_lock(&info->block_group_cache_lock);
  6698. }
  6699. spin_unlock(&info->block_group_cache_lock);
  6700. /* now that all the block groups are freed, go through and
  6701. * free all the space_info structs. This is only called during
  6702. * the final stages of unmount, and so we know nobody is
  6703. * using them. We call synchronize_rcu() once before we start,
  6704. * just to be on the safe side.
  6705. */
  6706. synchronize_rcu();
  6707. release_global_block_rsv(info);
  6708. while(!list_empty(&info->space_info)) {
  6709. space_info = list_entry(info->space_info.next,
  6710. struct btrfs_space_info,
  6711. list);
  6712. if (space_info->bytes_pinned > 0 ||
  6713. space_info->bytes_reserved > 0 ||
  6714. space_info->bytes_may_use > 0) {
  6715. WARN_ON(1);
  6716. dump_space_info(space_info, 0, 0);
  6717. }
  6718. list_del(&space_info->list);
  6719. kfree(space_info);
  6720. }
  6721. return 0;
  6722. }
  6723. static void __link_block_group(struct btrfs_space_info *space_info,
  6724. struct btrfs_block_group_cache *cache)
  6725. {
  6726. int index = get_block_group_index(cache);
  6727. down_write(&space_info->groups_sem);
  6728. list_add_tail(&cache->list, &space_info->block_groups[index]);
  6729. up_write(&space_info->groups_sem);
  6730. }
  6731. int btrfs_read_block_groups(struct btrfs_root *root)
  6732. {
  6733. struct btrfs_path *path;
  6734. int ret;
  6735. struct btrfs_block_group_cache *cache;
  6736. struct btrfs_fs_info *info = root->fs_info;
  6737. struct btrfs_space_info *space_info;
  6738. struct btrfs_key key;
  6739. struct btrfs_key found_key;
  6740. struct extent_buffer *leaf;
  6741. int need_clear = 0;
  6742. u64 cache_gen;
  6743. root = info->extent_root;
  6744. key.objectid = 0;
  6745. key.offset = 0;
  6746. btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
  6747. path = btrfs_alloc_path();
  6748. if (!path)
  6749. return -ENOMEM;
  6750. path->reada = 1;
  6751. cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
  6752. if (btrfs_test_opt(root, SPACE_CACHE) &&
  6753. btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
  6754. need_clear = 1;
  6755. if (btrfs_test_opt(root, CLEAR_CACHE))
  6756. need_clear = 1;
  6757. while (1) {
  6758. ret = find_first_block_group(root, path, &key);
  6759. if (ret > 0)
  6760. break;
  6761. if (ret != 0)
  6762. goto error;
  6763. leaf = path->nodes[0];
  6764. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  6765. cache = kzalloc(sizeof(*cache), GFP_NOFS);
  6766. if (!cache) {
  6767. ret = -ENOMEM;
  6768. goto error;
  6769. }
  6770. cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
  6771. GFP_NOFS);
  6772. if (!cache->free_space_ctl) {
  6773. kfree(cache);
  6774. ret = -ENOMEM;
  6775. goto error;
  6776. }
  6777. atomic_set(&cache->count, 1);
  6778. spin_lock_init(&cache->lock);
  6779. cache->fs_info = info;
  6780. INIT_LIST_HEAD(&cache->list);
  6781. INIT_LIST_HEAD(&cache->cluster_list);
  6782. if (need_clear) {
  6783. /*
  6784. * When we mount with old space cache, we need to
  6785. * set BTRFS_DC_CLEAR and set dirty flag.
  6786. *
  6787. * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
  6788. * truncate the old free space cache inode and
  6789. * setup a new one.
  6790. * b) Setting 'dirty flag' makes sure that we flush
  6791. * the new space cache info onto disk.
  6792. */
  6793. cache->disk_cache_state = BTRFS_DC_CLEAR;
  6794. if (btrfs_test_opt(root, SPACE_CACHE))
  6795. cache->dirty = 1;
  6796. }
  6797. read_extent_buffer(leaf, &cache->item,
  6798. btrfs_item_ptr_offset(leaf, path->slots[0]),
  6799. sizeof(cache->item));
  6800. memcpy(&cache->key, &found_key, sizeof(found_key));
  6801. key.objectid = found_key.objectid + found_key.offset;
  6802. btrfs_release_path(path);
  6803. cache->flags = btrfs_block_group_flags(&cache->item);
  6804. cache->sectorsize = root->sectorsize;
  6805. btrfs_init_free_space_ctl(cache);
  6806. /*
  6807. * We need to exclude the super stripes now so that the space
  6808. * info has super bytes accounted for, otherwise we'll think
  6809. * we have more space than we actually do.
  6810. */
  6811. exclude_super_stripes(root, cache);
  6812. /*
  6813. * check for two cases, either we are full, and therefore
  6814. * don't need to bother with the caching work since we won't
  6815. * find any space, or we are empty, and we can just add all
  6816. * the space in and be done with it. This saves us _alot_ of
  6817. * time, particularly in the full case.
  6818. */
  6819. if (found_key.offset == btrfs_block_group_used(&cache->item)) {
  6820. cache->last_byte_to_unpin = (u64)-1;
  6821. cache->cached = BTRFS_CACHE_FINISHED;
  6822. free_excluded_extents(root, cache);
  6823. } else if (btrfs_block_group_used(&cache->item) == 0) {
  6824. cache->last_byte_to_unpin = (u64)-1;
  6825. cache->cached = BTRFS_CACHE_FINISHED;
  6826. add_new_free_space(cache, root->fs_info,
  6827. found_key.objectid,
  6828. found_key.objectid +
  6829. found_key.offset);
  6830. free_excluded_extents(root, cache);
  6831. }
  6832. ret = update_space_info(info, cache->flags, found_key.offset,
  6833. btrfs_block_group_used(&cache->item),
  6834. &space_info);
  6835. BUG_ON(ret); /* -ENOMEM */
  6836. cache->space_info = space_info;
  6837. spin_lock(&cache->space_info->lock);
  6838. cache->space_info->bytes_readonly += cache->bytes_super;
  6839. spin_unlock(&cache->space_info->lock);
  6840. __link_block_group(space_info, cache);
  6841. ret = btrfs_add_block_group_cache(root->fs_info, cache);
  6842. BUG_ON(ret); /* Logic error */
  6843. set_avail_alloc_bits(root->fs_info, cache->flags);
  6844. if (btrfs_chunk_readonly(root, cache->key.objectid))
  6845. set_block_group_ro(cache, 1);
  6846. }
  6847. list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
  6848. if (!(get_alloc_profile(root, space_info->flags) &
  6849. (BTRFS_BLOCK_GROUP_RAID10 |
  6850. BTRFS_BLOCK_GROUP_RAID1 |
  6851. BTRFS_BLOCK_GROUP_DUP)))
  6852. continue;
  6853. /*
  6854. * avoid allocating from un-mirrored block group if there are
  6855. * mirrored block groups.
  6856. */
  6857. list_for_each_entry(cache, &space_info->block_groups[3], list)
  6858. set_block_group_ro(cache, 1);
  6859. list_for_each_entry(cache, &space_info->block_groups[4], list)
  6860. set_block_group_ro(cache, 1);
  6861. }
  6862. init_global_block_rsv(info);
  6863. ret = 0;
  6864. error:
  6865. btrfs_free_path(path);
  6866. return ret;
  6867. }
  6868. int btrfs_make_block_group(struct btrfs_trans_handle *trans,
  6869. struct btrfs_root *root, u64 bytes_used,
  6870. u64 type, u64 chunk_objectid, u64 chunk_offset,
  6871. u64 size)
  6872. {
  6873. int ret;
  6874. struct btrfs_root *extent_root;
  6875. struct btrfs_block_group_cache *cache;
  6876. extent_root = root->fs_info->extent_root;
  6877. root->fs_info->last_trans_log_full_commit = trans->transid;
  6878. cache = kzalloc(sizeof(*cache), GFP_NOFS);
  6879. if (!cache)
  6880. return -ENOMEM;
  6881. cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
  6882. GFP_NOFS);
  6883. if (!cache->free_space_ctl) {
  6884. kfree(cache);
  6885. return -ENOMEM;
  6886. }
  6887. cache->key.objectid = chunk_offset;
  6888. cache->key.offset = size;
  6889. cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
  6890. cache->sectorsize = root->sectorsize;
  6891. cache->fs_info = root->fs_info;
  6892. atomic_set(&cache->count, 1);
  6893. spin_lock_init(&cache->lock);
  6894. INIT_LIST_HEAD(&cache->list);
  6895. INIT_LIST_HEAD(&cache->cluster_list);
  6896. btrfs_init_free_space_ctl(cache);
  6897. btrfs_set_block_group_used(&cache->item, bytes_used);
  6898. btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
  6899. cache->flags = type;
  6900. btrfs_set_block_group_flags(&cache->item, type);
  6901. cache->last_byte_to_unpin = (u64)-1;
  6902. cache->cached = BTRFS_CACHE_FINISHED;
  6903. exclude_super_stripes(root, cache);
  6904. add_new_free_space(cache, root->fs_info, chunk_offset,
  6905. chunk_offset + size);
  6906. free_excluded_extents(root, cache);
  6907. ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
  6908. &cache->space_info);
  6909. BUG_ON(ret); /* -ENOMEM */
  6910. update_global_block_rsv(root->fs_info);
  6911. spin_lock(&cache->space_info->lock);
  6912. cache->space_info->bytes_readonly += cache->bytes_super;
  6913. spin_unlock(&cache->space_info->lock);
  6914. __link_block_group(cache->space_info, cache);
  6915. ret = btrfs_add_block_group_cache(root->fs_info, cache);
  6916. BUG_ON(ret); /* Logic error */
  6917. ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item,
  6918. sizeof(cache->item));
  6919. if (ret) {
  6920. btrfs_abort_transaction(trans, extent_root, ret);
  6921. return ret;
  6922. }
  6923. set_avail_alloc_bits(extent_root->fs_info, type);
  6924. return 0;
  6925. }
  6926. static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
  6927. {
  6928. u64 extra_flags = chunk_to_extended(flags) &
  6929. BTRFS_EXTENDED_PROFILE_MASK;
  6930. if (flags & BTRFS_BLOCK_GROUP_DATA)
  6931. fs_info->avail_data_alloc_bits &= ~extra_flags;
  6932. if (flags & BTRFS_BLOCK_GROUP_METADATA)
  6933. fs_info->avail_metadata_alloc_bits &= ~extra_flags;
  6934. if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
  6935. fs_info->avail_system_alloc_bits &= ~extra_flags;
  6936. }
  6937. int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
  6938. struct btrfs_root *root, u64 group_start)
  6939. {
  6940. struct btrfs_path *path;
  6941. struct btrfs_block_group_cache *block_group;
  6942. struct btrfs_free_cluster *cluster;
  6943. struct btrfs_root *tree_root = root->fs_info->tree_root;
  6944. struct btrfs_key key;
  6945. struct inode *inode;
  6946. int ret;
  6947. int index;
  6948. int factor;
  6949. root = root->fs_info->extent_root;
  6950. block_group = btrfs_lookup_block_group(root->fs_info, group_start);
  6951. BUG_ON(!block_group);
  6952. BUG_ON(!block_group->ro);
  6953. /*
  6954. * Free the reserved super bytes from this block group before
  6955. * remove it.
  6956. */
  6957. free_excluded_extents(root, block_group);
  6958. memcpy(&key, &block_group->key, sizeof(key));
  6959. index = get_block_group_index(block_group);
  6960. if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
  6961. BTRFS_BLOCK_GROUP_RAID1 |
  6962. BTRFS_BLOCK_GROUP_RAID10))
  6963. factor = 2;
  6964. else
  6965. factor = 1;
  6966. /* make sure this block group isn't part of an allocation cluster */
  6967. cluster = &root->fs_info->data_alloc_cluster;
  6968. spin_lock(&cluster->refill_lock);
  6969. btrfs_return_cluster_to_free_space(block_group, cluster);
  6970. spin_unlock(&cluster->refill_lock);
  6971. /*
  6972. * make sure this block group isn't part of a metadata
  6973. * allocation cluster
  6974. */
  6975. cluster = &root->fs_info->meta_alloc_cluster;
  6976. spin_lock(&cluster->refill_lock);
  6977. btrfs_return_cluster_to_free_space(block_group, cluster);
  6978. spin_unlock(&cluster->refill_lock);
  6979. path = btrfs_alloc_path();
  6980. if (!path) {
  6981. ret = -ENOMEM;
  6982. goto out;
  6983. }
  6984. inode = lookup_free_space_inode(tree_root, block_group, path);
  6985. if (!IS_ERR(inode)) {
  6986. ret = btrfs_orphan_add(trans, inode);
  6987. if (ret) {
  6988. btrfs_add_delayed_iput(inode);
  6989. goto out;
  6990. }
  6991. clear_nlink(inode);
  6992. /* One for the block groups ref */
  6993. spin_lock(&block_group->lock);
  6994. if (block_group->iref) {
  6995. block_group->iref = 0;
  6996. block_group->inode = NULL;
  6997. spin_unlock(&block_group->lock);
  6998. iput(inode);
  6999. } else {
  7000. spin_unlock(&block_group->lock);
  7001. }
  7002. /* One for our lookup ref */
  7003. btrfs_add_delayed_iput(inode);
  7004. }
  7005. key.objectid = BTRFS_FREE_SPACE_OBJECTID;
  7006. key.offset = block_group->key.objectid;
  7007. key.type = 0;
  7008. ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
  7009. if (ret < 0)
  7010. goto out;
  7011. if (ret > 0)
  7012. btrfs_release_path(path);
  7013. if (ret == 0) {
  7014. ret = btrfs_del_item(trans, tree_root, path);
  7015. if (ret)
  7016. goto out;
  7017. btrfs_release_path(path);
  7018. }
  7019. spin_lock(&root->fs_info->block_group_cache_lock);
  7020. rb_erase(&block_group->cache_node,
  7021. &root->fs_info->block_group_cache_tree);
  7022. spin_unlock(&root->fs_info->block_group_cache_lock);
  7023. down_write(&block_group->space_info->groups_sem);
  7024. /*
  7025. * we must use list_del_init so people can check to see if they
  7026. * are still on the list after taking the semaphore
  7027. */
  7028. list_del_init(&block_group->list);
  7029. if (list_empty(&block_group->space_info->block_groups[index]))
  7030. clear_avail_alloc_bits(root->fs_info, block_group->flags);
  7031. up_write(&block_group->space_info->groups_sem);
  7032. if (block_group->cached == BTRFS_CACHE_STARTED)
  7033. wait_block_group_cache_done(block_group);
  7034. btrfs_remove_free_space_cache(block_group);
  7035. spin_lock(&block_group->space_info->lock);
  7036. block_group->space_info->total_bytes -= block_group->key.offset;
  7037. block_group->space_info->bytes_readonly -= block_group->key.offset;
  7038. block_group->space_info->disk_total -= block_group->key.offset * factor;
  7039. spin_unlock(&block_group->space_info->lock);
  7040. memcpy(&key, &block_group->key, sizeof(key));
  7041. btrfs_clear_space_info_full(root->fs_info);
  7042. btrfs_put_block_group(block_group);
  7043. btrfs_put_block_group(block_group);
  7044. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  7045. if (ret > 0)
  7046. ret = -EIO;
  7047. if (ret < 0)
  7048. goto out;
  7049. ret = btrfs_del_item(trans, root, path);
  7050. out:
  7051. btrfs_free_path(path);
  7052. return ret;
  7053. }
  7054. int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
  7055. {
  7056. struct btrfs_space_info *space_info;
  7057. struct btrfs_super_block *disk_super;
  7058. u64 features;
  7059. u64 flags;
  7060. int mixed = 0;
  7061. int ret;
  7062. disk_super = fs_info->super_copy;
  7063. if (!btrfs_super_root(disk_super))
  7064. return 1;
  7065. features = btrfs_super_incompat_flags(disk_super);
  7066. if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
  7067. mixed = 1;
  7068. flags = BTRFS_BLOCK_GROUP_SYSTEM;
  7069. ret = update_space_info(fs_info, flags, 0, 0, &space_info);
  7070. if (ret)
  7071. goto out;
  7072. if (mixed) {
  7073. flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
  7074. ret = update_space_info(fs_info, flags, 0, 0, &space_info);
  7075. } else {
  7076. flags = BTRFS_BLOCK_GROUP_METADATA;
  7077. ret = update_space_info(fs_info, flags, 0, 0, &space_info);
  7078. if (ret)
  7079. goto out;
  7080. flags = BTRFS_BLOCK_GROUP_DATA;
  7081. ret = update_space_info(fs_info, flags, 0, 0, &space_info);
  7082. }
  7083. out:
  7084. return ret;
  7085. }
  7086. int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
  7087. {
  7088. return unpin_extent_range(root, start, end);
  7089. }
  7090. int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
  7091. u64 num_bytes, u64 *actual_bytes)
  7092. {
  7093. return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
  7094. }
  7095. int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
  7096. {
  7097. struct btrfs_fs_info *fs_info = root->fs_info;
  7098. struct btrfs_block_group_cache *cache = NULL;
  7099. u64 group_trimmed;
  7100. u64 start;
  7101. u64 end;
  7102. u64 trimmed = 0;
  7103. u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
  7104. int ret = 0;
  7105. /*
  7106. * try to trim all FS space, our block group may start from non-zero.
  7107. */
  7108. if (range->len == total_bytes)
  7109. cache = btrfs_lookup_first_block_group(fs_info, range->start);
  7110. else
  7111. cache = btrfs_lookup_block_group(fs_info, range->start);
  7112. while (cache) {
  7113. if (cache->key.objectid >= (range->start + range->len)) {
  7114. btrfs_put_block_group(cache);
  7115. break;
  7116. }
  7117. start = max(range->start, cache->key.objectid);
  7118. end = min(range->start + range->len,
  7119. cache->key.objectid + cache->key.offset);
  7120. if (end - start >= range->minlen) {
  7121. if (!block_group_cache_done(cache)) {
  7122. ret = cache_block_group(cache, NULL, root, 0);
  7123. if (!ret)
  7124. wait_block_group_cache_done(cache);
  7125. }
  7126. ret = btrfs_trim_block_group(cache,
  7127. &group_trimmed,
  7128. start,
  7129. end,
  7130. range->minlen);
  7131. trimmed += group_trimmed;
  7132. if (ret) {
  7133. btrfs_put_block_group(cache);
  7134. break;
  7135. }
  7136. }
  7137. cache = next_block_group(fs_info->tree_root, cache);
  7138. }
  7139. range->len = trimmed;
  7140. return ret;
  7141. }