vmx.c 64 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "x86_emulate.h"
  19. #include "irq.h"
  20. #include "vmx.h"
  21. #include "segment_descriptor.h"
  22. #include <linux/module.h>
  23. #include <linux/kernel.h>
  24. #include <linux/mm.h>
  25. #include <linux/highmem.h>
  26. #include <linux/profile.h>
  27. #include <linux/sched.h>
  28. #include <asm/io.h>
  29. #include <asm/desc.h>
  30. MODULE_AUTHOR("Qumranet");
  31. MODULE_LICENSE("GPL");
  32. struct vmcs {
  33. u32 revision_id;
  34. u32 abort;
  35. char data[0];
  36. };
  37. struct vcpu_vmx {
  38. struct kvm_vcpu vcpu;
  39. int launched;
  40. struct kvm_msr_entry *guest_msrs;
  41. struct kvm_msr_entry *host_msrs;
  42. int nmsrs;
  43. int save_nmsrs;
  44. int msr_offset_efer;
  45. #ifdef CONFIG_X86_64
  46. int msr_offset_kernel_gs_base;
  47. #endif
  48. struct vmcs *vmcs;
  49. struct {
  50. int loaded;
  51. u16 fs_sel, gs_sel, ldt_sel;
  52. int gs_ldt_reload_needed;
  53. int fs_reload_needed;
  54. }host_state;
  55. };
  56. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  57. {
  58. return container_of(vcpu, struct vcpu_vmx, vcpu);
  59. }
  60. static int init_rmode_tss(struct kvm *kvm);
  61. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  62. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  63. static struct page *vmx_io_bitmap_a;
  64. static struct page *vmx_io_bitmap_b;
  65. #define EFER_SAVE_RESTORE_BITS ((u64)EFER_SCE)
  66. static struct vmcs_config {
  67. int size;
  68. int order;
  69. u32 revision_id;
  70. u32 pin_based_exec_ctrl;
  71. u32 cpu_based_exec_ctrl;
  72. u32 vmexit_ctrl;
  73. u32 vmentry_ctrl;
  74. } vmcs_config;
  75. #define VMX_SEGMENT_FIELD(seg) \
  76. [VCPU_SREG_##seg] = { \
  77. .selector = GUEST_##seg##_SELECTOR, \
  78. .base = GUEST_##seg##_BASE, \
  79. .limit = GUEST_##seg##_LIMIT, \
  80. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  81. }
  82. static struct kvm_vmx_segment_field {
  83. unsigned selector;
  84. unsigned base;
  85. unsigned limit;
  86. unsigned ar_bytes;
  87. } kvm_vmx_segment_fields[] = {
  88. VMX_SEGMENT_FIELD(CS),
  89. VMX_SEGMENT_FIELD(DS),
  90. VMX_SEGMENT_FIELD(ES),
  91. VMX_SEGMENT_FIELD(FS),
  92. VMX_SEGMENT_FIELD(GS),
  93. VMX_SEGMENT_FIELD(SS),
  94. VMX_SEGMENT_FIELD(TR),
  95. VMX_SEGMENT_FIELD(LDTR),
  96. };
  97. /*
  98. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  99. * away by decrementing the array size.
  100. */
  101. static const u32 vmx_msr_index[] = {
  102. #ifdef CONFIG_X86_64
  103. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
  104. #endif
  105. MSR_EFER, MSR_K6_STAR,
  106. };
  107. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  108. static void load_msrs(struct kvm_msr_entry *e, int n)
  109. {
  110. int i;
  111. for (i = 0; i < n; ++i)
  112. wrmsrl(e[i].index, e[i].data);
  113. }
  114. static void save_msrs(struct kvm_msr_entry *e, int n)
  115. {
  116. int i;
  117. for (i = 0; i < n; ++i)
  118. rdmsrl(e[i].index, e[i].data);
  119. }
  120. static inline u64 msr_efer_save_restore_bits(struct kvm_msr_entry msr)
  121. {
  122. return (u64)msr.data & EFER_SAVE_RESTORE_BITS;
  123. }
  124. static inline int msr_efer_need_save_restore(struct vcpu_vmx *vmx)
  125. {
  126. int efer_offset = vmx->msr_offset_efer;
  127. return msr_efer_save_restore_bits(vmx->host_msrs[efer_offset]) !=
  128. msr_efer_save_restore_bits(vmx->guest_msrs[efer_offset]);
  129. }
  130. static inline int is_page_fault(u32 intr_info)
  131. {
  132. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  133. INTR_INFO_VALID_MASK)) ==
  134. (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  135. }
  136. static inline int is_no_device(u32 intr_info)
  137. {
  138. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  139. INTR_INFO_VALID_MASK)) ==
  140. (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  141. }
  142. static inline int is_external_interrupt(u32 intr_info)
  143. {
  144. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  145. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  146. }
  147. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  148. {
  149. int i;
  150. for (i = 0; i < vmx->nmsrs; ++i)
  151. if (vmx->guest_msrs[i].index == msr)
  152. return i;
  153. return -1;
  154. }
  155. static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  156. {
  157. int i;
  158. i = __find_msr_index(vmx, msr);
  159. if (i >= 0)
  160. return &vmx->guest_msrs[i];
  161. return NULL;
  162. }
  163. static void vmcs_clear(struct vmcs *vmcs)
  164. {
  165. u64 phys_addr = __pa(vmcs);
  166. u8 error;
  167. asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
  168. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  169. : "cc", "memory");
  170. if (error)
  171. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  172. vmcs, phys_addr);
  173. }
  174. static void __vcpu_clear(void *arg)
  175. {
  176. struct vcpu_vmx *vmx = arg;
  177. int cpu = raw_smp_processor_id();
  178. if (vmx->vcpu.cpu == cpu)
  179. vmcs_clear(vmx->vmcs);
  180. if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
  181. per_cpu(current_vmcs, cpu) = NULL;
  182. rdtscll(vmx->vcpu.host_tsc);
  183. }
  184. static void vcpu_clear(struct vcpu_vmx *vmx)
  185. {
  186. if (vmx->vcpu.cpu != raw_smp_processor_id() && vmx->vcpu.cpu != -1)
  187. smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear,
  188. vmx, 0, 1);
  189. else
  190. __vcpu_clear(vmx);
  191. vmx->launched = 0;
  192. }
  193. static unsigned long vmcs_readl(unsigned long field)
  194. {
  195. unsigned long value;
  196. asm volatile (ASM_VMX_VMREAD_RDX_RAX
  197. : "=a"(value) : "d"(field) : "cc");
  198. return value;
  199. }
  200. static u16 vmcs_read16(unsigned long field)
  201. {
  202. return vmcs_readl(field);
  203. }
  204. static u32 vmcs_read32(unsigned long field)
  205. {
  206. return vmcs_readl(field);
  207. }
  208. static u64 vmcs_read64(unsigned long field)
  209. {
  210. #ifdef CONFIG_X86_64
  211. return vmcs_readl(field);
  212. #else
  213. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  214. #endif
  215. }
  216. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  217. {
  218. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  219. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  220. dump_stack();
  221. }
  222. static void vmcs_writel(unsigned long field, unsigned long value)
  223. {
  224. u8 error;
  225. asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
  226. : "=q"(error) : "a"(value), "d"(field) : "cc" );
  227. if (unlikely(error))
  228. vmwrite_error(field, value);
  229. }
  230. static void vmcs_write16(unsigned long field, u16 value)
  231. {
  232. vmcs_writel(field, value);
  233. }
  234. static void vmcs_write32(unsigned long field, u32 value)
  235. {
  236. vmcs_writel(field, value);
  237. }
  238. static void vmcs_write64(unsigned long field, u64 value)
  239. {
  240. #ifdef CONFIG_X86_64
  241. vmcs_writel(field, value);
  242. #else
  243. vmcs_writel(field, value);
  244. asm volatile ("");
  245. vmcs_writel(field+1, value >> 32);
  246. #endif
  247. }
  248. static void vmcs_clear_bits(unsigned long field, u32 mask)
  249. {
  250. vmcs_writel(field, vmcs_readl(field) & ~mask);
  251. }
  252. static void vmcs_set_bits(unsigned long field, u32 mask)
  253. {
  254. vmcs_writel(field, vmcs_readl(field) | mask);
  255. }
  256. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  257. {
  258. u32 eb;
  259. eb = 1u << PF_VECTOR;
  260. if (!vcpu->fpu_active)
  261. eb |= 1u << NM_VECTOR;
  262. if (vcpu->guest_debug.enabled)
  263. eb |= 1u << 1;
  264. if (vcpu->rmode.active)
  265. eb = ~0;
  266. vmcs_write32(EXCEPTION_BITMAP, eb);
  267. }
  268. static void reload_tss(void)
  269. {
  270. #ifndef CONFIG_X86_64
  271. /*
  272. * VT restores TR but not its size. Useless.
  273. */
  274. struct descriptor_table gdt;
  275. struct segment_descriptor *descs;
  276. get_gdt(&gdt);
  277. descs = (void *)gdt.base;
  278. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  279. load_TR_desc();
  280. #endif
  281. }
  282. static void load_transition_efer(struct vcpu_vmx *vmx)
  283. {
  284. u64 trans_efer;
  285. int efer_offset = vmx->msr_offset_efer;
  286. trans_efer = vmx->host_msrs[efer_offset].data;
  287. trans_efer &= ~EFER_SAVE_RESTORE_BITS;
  288. trans_efer |= msr_efer_save_restore_bits(vmx->guest_msrs[efer_offset]);
  289. wrmsrl(MSR_EFER, trans_efer);
  290. vmx->vcpu.stat.efer_reload++;
  291. }
  292. static void vmx_save_host_state(struct vcpu_vmx *vmx)
  293. {
  294. if (vmx->host_state.loaded)
  295. return;
  296. vmx->host_state.loaded = 1;
  297. /*
  298. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  299. * allow segment selectors with cpl > 0 or ti == 1.
  300. */
  301. vmx->host_state.ldt_sel = read_ldt();
  302. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  303. vmx->host_state.fs_sel = read_fs();
  304. if (!(vmx->host_state.fs_sel & 7)) {
  305. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  306. vmx->host_state.fs_reload_needed = 0;
  307. } else {
  308. vmcs_write16(HOST_FS_SELECTOR, 0);
  309. vmx->host_state.fs_reload_needed = 1;
  310. }
  311. vmx->host_state.gs_sel = read_gs();
  312. if (!(vmx->host_state.gs_sel & 7))
  313. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  314. else {
  315. vmcs_write16(HOST_GS_SELECTOR, 0);
  316. vmx->host_state.gs_ldt_reload_needed = 1;
  317. }
  318. #ifdef CONFIG_X86_64
  319. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  320. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  321. #else
  322. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  323. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  324. #endif
  325. #ifdef CONFIG_X86_64
  326. if (is_long_mode(&vmx->vcpu)) {
  327. save_msrs(vmx->host_msrs +
  328. vmx->msr_offset_kernel_gs_base, 1);
  329. }
  330. #endif
  331. load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  332. if (msr_efer_need_save_restore(vmx))
  333. load_transition_efer(vmx);
  334. }
  335. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  336. {
  337. unsigned long flags;
  338. if (!vmx->host_state.loaded)
  339. return;
  340. vmx->host_state.loaded = 0;
  341. if (vmx->host_state.fs_reload_needed)
  342. load_fs(vmx->host_state.fs_sel);
  343. if (vmx->host_state.gs_ldt_reload_needed) {
  344. load_ldt(vmx->host_state.ldt_sel);
  345. /*
  346. * If we have to reload gs, we must take care to
  347. * preserve our gs base.
  348. */
  349. local_irq_save(flags);
  350. load_gs(vmx->host_state.gs_sel);
  351. #ifdef CONFIG_X86_64
  352. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  353. #endif
  354. local_irq_restore(flags);
  355. }
  356. reload_tss();
  357. save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  358. load_msrs(vmx->host_msrs, vmx->save_nmsrs);
  359. if (msr_efer_need_save_restore(vmx))
  360. load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
  361. }
  362. /*
  363. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  364. * vcpu mutex is already taken.
  365. */
  366. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  367. {
  368. struct vcpu_vmx *vmx = to_vmx(vcpu);
  369. u64 phys_addr = __pa(vmx->vmcs);
  370. u64 tsc_this, delta;
  371. if (vcpu->cpu != cpu)
  372. vcpu_clear(vmx);
  373. if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
  374. u8 error;
  375. per_cpu(current_vmcs, cpu) = vmx->vmcs;
  376. asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
  377. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  378. : "cc");
  379. if (error)
  380. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  381. vmx->vmcs, phys_addr);
  382. }
  383. if (vcpu->cpu != cpu) {
  384. struct descriptor_table dt;
  385. unsigned long sysenter_esp;
  386. vcpu->cpu = cpu;
  387. /*
  388. * Linux uses per-cpu TSS and GDT, so set these when switching
  389. * processors.
  390. */
  391. vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
  392. get_gdt(&dt);
  393. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  394. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  395. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  396. /*
  397. * Make sure the time stamp counter is monotonous.
  398. */
  399. rdtscll(tsc_this);
  400. delta = vcpu->host_tsc - tsc_this;
  401. vmcs_write64(TSC_OFFSET, vmcs_read64(TSC_OFFSET) + delta);
  402. }
  403. }
  404. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  405. {
  406. vmx_load_host_state(to_vmx(vcpu));
  407. kvm_put_guest_fpu(vcpu);
  408. }
  409. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  410. {
  411. if (vcpu->fpu_active)
  412. return;
  413. vcpu->fpu_active = 1;
  414. vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
  415. if (vcpu->cr0 & X86_CR0_TS)
  416. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  417. update_exception_bitmap(vcpu);
  418. }
  419. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  420. {
  421. if (!vcpu->fpu_active)
  422. return;
  423. vcpu->fpu_active = 0;
  424. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  425. update_exception_bitmap(vcpu);
  426. }
  427. static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
  428. {
  429. vcpu_clear(to_vmx(vcpu));
  430. }
  431. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  432. {
  433. return vmcs_readl(GUEST_RFLAGS);
  434. }
  435. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  436. {
  437. vmcs_writel(GUEST_RFLAGS, rflags);
  438. }
  439. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  440. {
  441. unsigned long rip;
  442. u32 interruptibility;
  443. rip = vmcs_readl(GUEST_RIP);
  444. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  445. vmcs_writel(GUEST_RIP, rip);
  446. /*
  447. * We emulated an instruction, so temporary interrupt blocking
  448. * should be removed, if set.
  449. */
  450. interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  451. if (interruptibility & 3)
  452. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  453. interruptibility & ~3);
  454. vcpu->interrupt_window_open = 1;
  455. }
  456. static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
  457. {
  458. printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n",
  459. vmcs_readl(GUEST_RIP));
  460. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  461. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  462. GP_VECTOR |
  463. INTR_TYPE_EXCEPTION |
  464. INTR_INFO_DELIEVER_CODE_MASK |
  465. INTR_INFO_VALID_MASK);
  466. }
  467. /*
  468. * Swap MSR entry in host/guest MSR entry array.
  469. */
  470. #ifdef CONFIG_X86_64
  471. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  472. {
  473. struct kvm_msr_entry tmp;
  474. tmp = vmx->guest_msrs[to];
  475. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  476. vmx->guest_msrs[from] = tmp;
  477. tmp = vmx->host_msrs[to];
  478. vmx->host_msrs[to] = vmx->host_msrs[from];
  479. vmx->host_msrs[from] = tmp;
  480. }
  481. #endif
  482. /*
  483. * Set up the vmcs to automatically save and restore system
  484. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  485. * mode, as fiddling with msrs is very expensive.
  486. */
  487. static void setup_msrs(struct vcpu_vmx *vmx)
  488. {
  489. int save_nmsrs;
  490. save_nmsrs = 0;
  491. #ifdef CONFIG_X86_64
  492. if (is_long_mode(&vmx->vcpu)) {
  493. int index;
  494. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  495. if (index >= 0)
  496. move_msr_up(vmx, index, save_nmsrs++);
  497. index = __find_msr_index(vmx, MSR_LSTAR);
  498. if (index >= 0)
  499. move_msr_up(vmx, index, save_nmsrs++);
  500. index = __find_msr_index(vmx, MSR_CSTAR);
  501. if (index >= 0)
  502. move_msr_up(vmx, index, save_nmsrs++);
  503. index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  504. if (index >= 0)
  505. move_msr_up(vmx, index, save_nmsrs++);
  506. /*
  507. * MSR_K6_STAR is only needed on long mode guests, and only
  508. * if efer.sce is enabled.
  509. */
  510. index = __find_msr_index(vmx, MSR_K6_STAR);
  511. if ((index >= 0) && (vmx->vcpu.shadow_efer & EFER_SCE))
  512. move_msr_up(vmx, index, save_nmsrs++);
  513. }
  514. #endif
  515. vmx->save_nmsrs = save_nmsrs;
  516. #ifdef CONFIG_X86_64
  517. vmx->msr_offset_kernel_gs_base =
  518. __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  519. #endif
  520. vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
  521. }
  522. /*
  523. * reads and returns guest's timestamp counter "register"
  524. * guest_tsc = host_tsc + tsc_offset -- 21.3
  525. */
  526. static u64 guest_read_tsc(void)
  527. {
  528. u64 host_tsc, tsc_offset;
  529. rdtscll(host_tsc);
  530. tsc_offset = vmcs_read64(TSC_OFFSET);
  531. return host_tsc + tsc_offset;
  532. }
  533. /*
  534. * writes 'guest_tsc' into guest's timestamp counter "register"
  535. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  536. */
  537. static void guest_write_tsc(u64 guest_tsc)
  538. {
  539. u64 host_tsc;
  540. rdtscll(host_tsc);
  541. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  542. }
  543. /*
  544. * Reads an msr value (of 'msr_index') into 'pdata'.
  545. * Returns 0 on success, non-0 otherwise.
  546. * Assumes vcpu_load() was already called.
  547. */
  548. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  549. {
  550. u64 data;
  551. struct kvm_msr_entry *msr;
  552. if (!pdata) {
  553. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  554. return -EINVAL;
  555. }
  556. switch (msr_index) {
  557. #ifdef CONFIG_X86_64
  558. case MSR_FS_BASE:
  559. data = vmcs_readl(GUEST_FS_BASE);
  560. break;
  561. case MSR_GS_BASE:
  562. data = vmcs_readl(GUEST_GS_BASE);
  563. break;
  564. case MSR_EFER:
  565. return kvm_get_msr_common(vcpu, msr_index, pdata);
  566. #endif
  567. case MSR_IA32_TIME_STAMP_COUNTER:
  568. data = guest_read_tsc();
  569. break;
  570. case MSR_IA32_SYSENTER_CS:
  571. data = vmcs_read32(GUEST_SYSENTER_CS);
  572. break;
  573. case MSR_IA32_SYSENTER_EIP:
  574. data = vmcs_readl(GUEST_SYSENTER_EIP);
  575. break;
  576. case MSR_IA32_SYSENTER_ESP:
  577. data = vmcs_readl(GUEST_SYSENTER_ESP);
  578. break;
  579. default:
  580. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  581. if (msr) {
  582. data = msr->data;
  583. break;
  584. }
  585. return kvm_get_msr_common(vcpu, msr_index, pdata);
  586. }
  587. *pdata = data;
  588. return 0;
  589. }
  590. /*
  591. * Writes msr value into into the appropriate "register".
  592. * Returns 0 on success, non-0 otherwise.
  593. * Assumes vcpu_load() was already called.
  594. */
  595. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  596. {
  597. struct vcpu_vmx *vmx = to_vmx(vcpu);
  598. struct kvm_msr_entry *msr;
  599. int ret = 0;
  600. switch (msr_index) {
  601. #ifdef CONFIG_X86_64
  602. case MSR_EFER:
  603. ret = kvm_set_msr_common(vcpu, msr_index, data);
  604. if (vmx->host_state.loaded)
  605. load_transition_efer(vmx);
  606. break;
  607. case MSR_FS_BASE:
  608. vmcs_writel(GUEST_FS_BASE, data);
  609. break;
  610. case MSR_GS_BASE:
  611. vmcs_writel(GUEST_GS_BASE, data);
  612. break;
  613. #endif
  614. case MSR_IA32_SYSENTER_CS:
  615. vmcs_write32(GUEST_SYSENTER_CS, data);
  616. break;
  617. case MSR_IA32_SYSENTER_EIP:
  618. vmcs_writel(GUEST_SYSENTER_EIP, data);
  619. break;
  620. case MSR_IA32_SYSENTER_ESP:
  621. vmcs_writel(GUEST_SYSENTER_ESP, data);
  622. break;
  623. case MSR_IA32_TIME_STAMP_COUNTER:
  624. guest_write_tsc(data);
  625. break;
  626. default:
  627. msr = find_msr_entry(vmx, msr_index);
  628. if (msr) {
  629. msr->data = data;
  630. if (vmx->host_state.loaded)
  631. load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  632. break;
  633. }
  634. ret = kvm_set_msr_common(vcpu, msr_index, data);
  635. }
  636. return ret;
  637. }
  638. /*
  639. * Sync the rsp and rip registers into the vcpu structure. This allows
  640. * registers to be accessed by indexing vcpu->regs.
  641. */
  642. static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
  643. {
  644. vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  645. vcpu->rip = vmcs_readl(GUEST_RIP);
  646. }
  647. /*
  648. * Syncs rsp and rip back into the vmcs. Should be called after possible
  649. * modification.
  650. */
  651. static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
  652. {
  653. vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]);
  654. vmcs_writel(GUEST_RIP, vcpu->rip);
  655. }
  656. static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
  657. {
  658. unsigned long dr7 = 0x400;
  659. int old_singlestep;
  660. old_singlestep = vcpu->guest_debug.singlestep;
  661. vcpu->guest_debug.enabled = dbg->enabled;
  662. if (vcpu->guest_debug.enabled) {
  663. int i;
  664. dr7 |= 0x200; /* exact */
  665. for (i = 0; i < 4; ++i) {
  666. if (!dbg->breakpoints[i].enabled)
  667. continue;
  668. vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
  669. dr7 |= 2 << (i*2); /* global enable */
  670. dr7 |= 0 << (i*4+16); /* execution breakpoint */
  671. }
  672. vcpu->guest_debug.singlestep = dbg->singlestep;
  673. } else
  674. vcpu->guest_debug.singlestep = 0;
  675. if (old_singlestep && !vcpu->guest_debug.singlestep) {
  676. unsigned long flags;
  677. flags = vmcs_readl(GUEST_RFLAGS);
  678. flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  679. vmcs_writel(GUEST_RFLAGS, flags);
  680. }
  681. update_exception_bitmap(vcpu);
  682. vmcs_writel(GUEST_DR7, dr7);
  683. return 0;
  684. }
  685. static int vmx_get_irq(struct kvm_vcpu *vcpu)
  686. {
  687. u32 idtv_info_field;
  688. idtv_info_field = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  689. if (idtv_info_field & INTR_INFO_VALID_MASK) {
  690. if (is_external_interrupt(idtv_info_field))
  691. return idtv_info_field & VECTORING_INFO_VECTOR_MASK;
  692. else
  693. printk("pending exception: not handled yet\n");
  694. }
  695. return -1;
  696. }
  697. static __init int cpu_has_kvm_support(void)
  698. {
  699. unsigned long ecx = cpuid_ecx(1);
  700. return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
  701. }
  702. static __init int vmx_disabled_by_bios(void)
  703. {
  704. u64 msr;
  705. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  706. return (msr & (MSR_IA32_FEATURE_CONTROL_LOCKED |
  707. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
  708. == MSR_IA32_FEATURE_CONTROL_LOCKED;
  709. /* locked but not enabled */
  710. }
  711. static void hardware_enable(void *garbage)
  712. {
  713. int cpu = raw_smp_processor_id();
  714. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  715. u64 old;
  716. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  717. if ((old & (MSR_IA32_FEATURE_CONTROL_LOCKED |
  718. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
  719. != (MSR_IA32_FEATURE_CONTROL_LOCKED |
  720. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
  721. /* enable and lock */
  722. wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
  723. MSR_IA32_FEATURE_CONTROL_LOCKED |
  724. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED);
  725. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  726. asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
  727. : "memory", "cc");
  728. }
  729. static void hardware_disable(void *garbage)
  730. {
  731. asm volatile (ASM_VMX_VMXOFF : : : "cc");
  732. }
  733. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  734. u32 msr, u32* result)
  735. {
  736. u32 vmx_msr_low, vmx_msr_high;
  737. u32 ctl = ctl_min | ctl_opt;
  738. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  739. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  740. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  741. /* Ensure minimum (required) set of control bits are supported. */
  742. if (ctl_min & ~ctl)
  743. return -EIO;
  744. *result = ctl;
  745. return 0;
  746. }
  747. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  748. {
  749. u32 vmx_msr_low, vmx_msr_high;
  750. u32 min, opt;
  751. u32 _pin_based_exec_control = 0;
  752. u32 _cpu_based_exec_control = 0;
  753. u32 _vmexit_control = 0;
  754. u32 _vmentry_control = 0;
  755. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  756. opt = 0;
  757. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  758. &_pin_based_exec_control) < 0)
  759. return -EIO;
  760. min = CPU_BASED_HLT_EXITING |
  761. #ifdef CONFIG_X86_64
  762. CPU_BASED_CR8_LOAD_EXITING |
  763. CPU_BASED_CR8_STORE_EXITING |
  764. #endif
  765. CPU_BASED_USE_IO_BITMAPS |
  766. CPU_BASED_MOV_DR_EXITING |
  767. CPU_BASED_USE_TSC_OFFSETING;
  768. opt = 0;
  769. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  770. &_cpu_based_exec_control) < 0)
  771. return -EIO;
  772. min = 0;
  773. #ifdef CONFIG_X86_64
  774. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  775. #endif
  776. opt = 0;
  777. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  778. &_vmexit_control) < 0)
  779. return -EIO;
  780. min = opt = 0;
  781. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  782. &_vmentry_control) < 0)
  783. return -EIO;
  784. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  785. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  786. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  787. return -EIO;
  788. #ifdef CONFIG_X86_64
  789. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  790. if (vmx_msr_high & (1u<<16))
  791. return -EIO;
  792. #endif
  793. /* Require Write-Back (WB) memory type for VMCS accesses. */
  794. if (((vmx_msr_high >> 18) & 15) != 6)
  795. return -EIO;
  796. vmcs_conf->size = vmx_msr_high & 0x1fff;
  797. vmcs_conf->order = get_order(vmcs_config.size);
  798. vmcs_conf->revision_id = vmx_msr_low;
  799. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  800. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  801. vmcs_conf->vmexit_ctrl = _vmexit_control;
  802. vmcs_conf->vmentry_ctrl = _vmentry_control;
  803. return 0;
  804. }
  805. static struct vmcs *alloc_vmcs_cpu(int cpu)
  806. {
  807. int node = cpu_to_node(cpu);
  808. struct page *pages;
  809. struct vmcs *vmcs;
  810. pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
  811. if (!pages)
  812. return NULL;
  813. vmcs = page_address(pages);
  814. memset(vmcs, 0, vmcs_config.size);
  815. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  816. return vmcs;
  817. }
  818. static struct vmcs *alloc_vmcs(void)
  819. {
  820. return alloc_vmcs_cpu(raw_smp_processor_id());
  821. }
  822. static void free_vmcs(struct vmcs *vmcs)
  823. {
  824. free_pages((unsigned long)vmcs, vmcs_config.order);
  825. }
  826. static void free_kvm_area(void)
  827. {
  828. int cpu;
  829. for_each_online_cpu(cpu)
  830. free_vmcs(per_cpu(vmxarea, cpu));
  831. }
  832. static __init int alloc_kvm_area(void)
  833. {
  834. int cpu;
  835. for_each_online_cpu(cpu) {
  836. struct vmcs *vmcs;
  837. vmcs = alloc_vmcs_cpu(cpu);
  838. if (!vmcs) {
  839. free_kvm_area();
  840. return -ENOMEM;
  841. }
  842. per_cpu(vmxarea, cpu) = vmcs;
  843. }
  844. return 0;
  845. }
  846. static __init int hardware_setup(void)
  847. {
  848. if (setup_vmcs_config(&vmcs_config) < 0)
  849. return -EIO;
  850. return alloc_kvm_area();
  851. }
  852. static __exit void hardware_unsetup(void)
  853. {
  854. free_kvm_area();
  855. }
  856. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  857. {
  858. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  859. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  860. vmcs_write16(sf->selector, save->selector);
  861. vmcs_writel(sf->base, save->base);
  862. vmcs_write32(sf->limit, save->limit);
  863. vmcs_write32(sf->ar_bytes, save->ar);
  864. } else {
  865. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  866. << AR_DPL_SHIFT;
  867. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  868. }
  869. }
  870. static void enter_pmode(struct kvm_vcpu *vcpu)
  871. {
  872. unsigned long flags;
  873. vcpu->rmode.active = 0;
  874. vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base);
  875. vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit);
  876. vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar);
  877. flags = vmcs_readl(GUEST_RFLAGS);
  878. flags &= ~(IOPL_MASK | X86_EFLAGS_VM);
  879. flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT);
  880. vmcs_writel(GUEST_RFLAGS, flags);
  881. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  882. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  883. update_exception_bitmap(vcpu);
  884. fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es);
  885. fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds);
  886. fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs);
  887. fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs);
  888. vmcs_write16(GUEST_SS_SELECTOR, 0);
  889. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  890. vmcs_write16(GUEST_CS_SELECTOR,
  891. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  892. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  893. }
  894. static gva_t rmode_tss_base(struct kvm* kvm)
  895. {
  896. gfn_t base_gfn = kvm->memslots[0].base_gfn + kvm->memslots[0].npages - 3;
  897. return base_gfn << PAGE_SHIFT;
  898. }
  899. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  900. {
  901. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  902. save->selector = vmcs_read16(sf->selector);
  903. save->base = vmcs_readl(sf->base);
  904. save->limit = vmcs_read32(sf->limit);
  905. save->ar = vmcs_read32(sf->ar_bytes);
  906. vmcs_write16(sf->selector, vmcs_readl(sf->base) >> 4);
  907. vmcs_write32(sf->limit, 0xffff);
  908. vmcs_write32(sf->ar_bytes, 0xf3);
  909. }
  910. static void enter_rmode(struct kvm_vcpu *vcpu)
  911. {
  912. unsigned long flags;
  913. vcpu->rmode.active = 1;
  914. vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  915. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  916. vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  917. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  918. vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  919. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  920. flags = vmcs_readl(GUEST_RFLAGS);
  921. vcpu->rmode.save_iopl = (flags & IOPL_MASK) >> IOPL_SHIFT;
  922. flags |= IOPL_MASK | X86_EFLAGS_VM;
  923. vmcs_writel(GUEST_RFLAGS, flags);
  924. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  925. update_exception_bitmap(vcpu);
  926. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  927. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  928. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  929. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  930. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  931. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  932. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  933. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  934. fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es);
  935. fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds);
  936. fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs);
  937. fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs);
  938. init_rmode_tss(vcpu->kvm);
  939. }
  940. #ifdef CONFIG_X86_64
  941. static void enter_lmode(struct kvm_vcpu *vcpu)
  942. {
  943. u32 guest_tr_ar;
  944. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  945. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  946. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  947. __FUNCTION__);
  948. vmcs_write32(GUEST_TR_AR_BYTES,
  949. (guest_tr_ar & ~AR_TYPE_MASK)
  950. | AR_TYPE_BUSY_64_TSS);
  951. }
  952. vcpu->shadow_efer |= EFER_LMA;
  953. find_msr_entry(to_vmx(vcpu), MSR_EFER)->data |= EFER_LMA | EFER_LME;
  954. vmcs_write32(VM_ENTRY_CONTROLS,
  955. vmcs_read32(VM_ENTRY_CONTROLS)
  956. | VM_ENTRY_IA32E_MODE);
  957. }
  958. static void exit_lmode(struct kvm_vcpu *vcpu)
  959. {
  960. vcpu->shadow_efer &= ~EFER_LMA;
  961. vmcs_write32(VM_ENTRY_CONTROLS,
  962. vmcs_read32(VM_ENTRY_CONTROLS)
  963. & ~VM_ENTRY_IA32E_MODE);
  964. }
  965. #endif
  966. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  967. {
  968. vcpu->cr4 &= KVM_GUEST_CR4_MASK;
  969. vcpu->cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
  970. }
  971. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  972. {
  973. vmx_fpu_deactivate(vcpu);
  974. if (vcpu->rmode.active && (cr0 & X86_CR0_PE))
  975. enter_pmode(vcpu);
  976. if (!vcpu->rmode.active && !(cr0 & X86_CR0_PE))
  977. enter_rmode(vcpu);
  978. #ifdef CONFIG_X86_64
  979. if (vcpu->shadow_efer & EFER_LME) {
  980. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  981. enter_lmode(vcpu);
  982. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  983. exit_lmode(vcpu);
  984. }
  985. #endif
  986. vmcs_writel(CR0_READ_SHADOW, cr0);
  987. vmcs_writel(GUEST_CR0,
  988. (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
  989. vcpu->cr0 = cr0;
  990. if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
  991. vmx_fpu_activate(vcpu);
  992. }
  993. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  994. {
  995. vmcs_writel(GUEST_CR3, cr3);
  996. if (vcpu->cr0 & X86_CR0_PE)
  997. vmx_fpu_deactivate(vcpu);
  998. }
  999. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  1000. {
  1001. vmcs_writel(CR4_READ_SHADOW, cr4);
  1002. vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ?
  1003. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
  1004. vcpu->cr4 = cr4;
  1005. }
  1006. #ifdef CONFIG_X86_64
  1007. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1008. {
  1009. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1010. struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  1011. vcpu->shadow_efer = efer;
  1012. if (efer & EFER_LMA) {
  1013. vmcs_write32(VM_ENTRY_CONTROLS,
  1014. vmcs_read32(VM_ENTRY_CONTROLS) |
  1015. VM_ENTRY_IA32E_MODE);
  1016. msr->data = efer;
  1017. } else {
  1018. vmcs_write32(VM_ENTRY_CONTROLS,
  1019. vmcs_read32(VM_ENTRY_CONTROLS) &
  1020. ~VM_ENTRY_IA32E_MODE);
  1021. msr->data = efer & ~EFER_LME;
  1022. }
  1023. setup_msrs(vmx);
  1024. }
  1025. #endif
  1026. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1027. {
  1028. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1029. return vmcs_readl(sf->base);
  1030. }
  1031. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  1032. struct kvm_segment *var, int seg)
  1033. {
  1034. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1035. u32 ar;
  1036. var->base = vmcs_readl(sf->base);
  1037. var->limit = vmcs_read32(sf->limit);
  1038. var->selector = vmcs_read16(sf->selector);
  1039. ar = vmcs_read32(sf->ar_bytes);
  1040. if (ar & AR_UNUSABLE_MASK)
  1041. ar = 0;
  1042. var->type = ar & 15;
  1043. var->s = (ar >> 4) & 1;
  1044. var->dpl = (ar >> 5) & 3;
  1045. var->present = (ar >> 7) & 1;
  1046. var->avl = (ar >> 12) & 1;
  1047. var->l = (ar >> 13) & 1;
  1048. var->db = (ar >> 14) & 1;
  1049. var->g = (ar >> 15) & 1;
  1050. var->unusable = (ar >> 16) & 1;
  1051. }
  1052. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  1053. {
  1054. u32 ar;
  1055. if (var->unusable)
  1056. ar = 1 << 16;
  1057. else {
  1058. ar = var->type & 15;
  1059. ar |= (var->s & 1) << 4;
  1060. ar |= (var->dpl & 3) << 5;
  1061. ar |= (var->present & 1) << 7;
  1062. ar |= (var->avl & 1) << 12;
  1063. ar |= (var->l & 1) << 13;
  1064. ar |= (var->db & 1) << 14;
  1065. ar |= (var->g & 1) << 15;
  1066. }
  1067. if (ar == 0) /* a 0 value means unusable */
  1068. ar = AR_UNUSABLE_MASK;
  1069. return ar;
  1070. }
  1071. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  1072. struct kvm_segment *var, int seg)
  1073. {
  1074. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1075. u32 ar;
  1076. if (vcpu->rmode.active && seg == VCPU_SREG_TR) {
  1077. vcpu->rmode.tr.selector = var->selector;
  1078. vcpu->rmode.tr.base = var->base;
  1079. vcpu->rmode.tr.limit = var->limit;
  1080. vcpu->rmode.tr.ar = vmx_segment_access_rights(var);
  1081. return;
  1082. }
  1083. vmcs_writel(sf->base, var->base);
  1084. vmcs_write32(sf->limit, var->limit);
  1085. vmcs_write16(sf->selector, var->selector);
  1086. if (vcpu->rmode.active && var->s) {
  1087. /*
  1088. * Hack real-mode segments into vm86 compatibility.
  1089. */
  1090. if (var->base == 0xffff0000 && var->selector == 0xf000)
  1091. vmcs_writel(sf->base, 0xf0000);
  1092. ar = 0xf3;
  1093. } else
  1094. ar = vmx_segment_access_rights(var);
  1095. vmcs_write32(sf->ar_bytes, ar);
  1096. }
  1097. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1098. {
  1099. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1100. *db = (ar >> 14) & 1;
  1101. *l = (ar >> 13) & 1;
  1102. }
  1103. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1104. {
  1105. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  1106. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  1107. }
  1108. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1109. {
  1110. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  1111. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  1112. }
  1113. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1114. {
  1115. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  1116. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  1117. }
  1118. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1119. {
  1120. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  1121. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  1122. }
  1123. static int init_rmode_tss(struct kvm* kvm)
  1124. {
  1125. struct page *p1, *p2, *p3;
  1126. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  1127. char *page;
  1128. p1 = gfn_to_page(kvm, fn++);
  1129. p2 = gfn_to_page(kvm, fn++);
  1130. p3 = gfn_to_page(kvm, fn);
  1131. if (!p1 || !p2 || !p3) {
  1132. kvm_printf(kvm,"%s: gfn_to_page failed\n", __FUNCTION__);
  1133. return 0;
  1134. }
  1135. page = kmap_atomic(p1, KM_USER0);
  1136. clear_page(page);
  1137. *(u16*)(page + 0x66) = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  1138. kunmap_atomic(page, KM_USER0);
  1139. page = kmap_atomic(p2, KM_USER0);
  1140. clear_page(page);
  1141. kunmap_atomic(page, KM_USER0);
  1142. page = kmap_atomic(p3, KM_USER0);
  1143. clear_page(page);
  1144. *(page + RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1) = ~0;
  1145. kunmap_atomic(page, KM_USER0);
  1146. return 1;
  1147. }
  1148. static void seg_setup(int seg)
  1149. {
  1150. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1151. vmcs_write16(sf->selector, 0);
  1152. vmcs_writel(sf->base, 0);
  1153. vmcs_write32(sf->limit, 0xffff);
  1154. vmcs_write32(sf->ar_bytes, 0x93);
  1155. }
  1156. /*
  1157. * Sets up the vmcs for emulated real mode.
  1158. */
  1159. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  1160. {
  1161. u32 host_sysenter_cs;
  1162. u32 junk;
  1163. unsigned long a;
  1164. struct descriptor_table dt;
  1165. int i;
  1166. int ret = 0;
  1167. unsigned long kvm_vmx_return;
  1168. u64 msr;
  1169. if (!init_rmode_tss(vmx->vcpu.kvm)) {
  1170. ret = -ENOMEM;
  1171. goto out;
  1172. }
  1173. vmx->vcpu.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  1174. set_cr8(&vmx->vcpu, 0);
  1175. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  1176. if (vmx->vcpu.vcpu_id == 0)
  1177. msr |= MSR_IA32_APICBASE_BSP;
  1178. kvm_set_apic_base(&vmx->vcpu, msr);
  1179. fx_init(&vmx->vcpu);
  1180. /*
  1181. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  1182. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  1183. */
  1184. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  1185. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  1186. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1187. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1188. seg_setup(VCPU_SREG_DS);
  1189. seg_setup(VCPU_SREG_ES);
  1190. seg_setup(VCPU_SREG_FS);
  1191. seg_setup(VCPU_SREG_GS);
  1192. seg_setup(VCPU_SREG_SS);
  1193. vmcs_write16(GUEST_TR_SELECTOR, 0);
  1194. vmcs_writel(GUEST_TR_BASE, 0);
  1195. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  1196. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1197. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  1198. vmcs_writel(GUEST_LDTR_BASE, 0);
  1199. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  1200. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  1201. vmcs_write32(GUEST_SYSENTER_CS, 0);
  1202. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  1203. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  1204. vmcs_writel(GUEST_RFLAGS, 0x02);
  1205. vmcs_writel(GUEST_RIP, 0xfff0);
  1206. vmcs_writel(GUEST_RSP, 0);
  1207. //todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0
  1208. vmcs_writel(GUEST_DR7, 0x400);
  1209. vmcs_writel(GUEST_GDTR_BASE, 0);
  1210. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  1211. vmcs_writel(GUEST_IDTR_BASE, 0);
  1212. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  1213. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  1214. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  1215. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  1216. /* I/O */
  1217. vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
  1218. vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
  1219. guest_write_tsc(0);
  1220. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  1221. /* Special registers */
  1222. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  1223. /* Control */
  1224. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  1225. vmcs_config.pin_based_exec_ctrl);
  1226. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1227. vmcs_config.cpu_based_exec_ctrl);
  1228. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
  1229. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
  1230. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  1231. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  1232. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  1233. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  1234. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  1235. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1236. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1237. vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
  1238. vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
  1239. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1240. #ifdef CONFIG_X86_64
  1241. rdmsrl(MSR_FS_BASE, a);
  1242. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  1243. rdmsrl(MSR_GS_BASE, a);
  1244. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  1245. #else
  1246. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  1247. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  1248. #endif
  1249. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  1250. get_idt(&dt);
  1251. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  1252. asm ("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
  1253. vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
  1254. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  1255. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  1256. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  1257. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  1258. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  1259. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  1260. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  1261. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  1262. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  1263. for (i = 0; i < NR_VMX_MSR; ++i) {
  1264. u32 index = vmx_msr_index[i];
  1265. u32 data_low, data_high;
  1266. u64 data;
  1267. int j = vmx->nmsrs;
  1268. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  1269. continue;
  1270. if (wrmsr_safe(index, data_low, data_high) < 0)
  1271. continue;
  1272. data = data_low | ((u64)data_high << 32);
  1273. vmx->host_msrs[j].index = index;
  1274. vmx->host_msrs[j].reserved = 0;
  1275. vmx->host_msrs[j].data = data;
  1276. vmx->guest_msrs[j] = vmx->host_msrs[j];
  1277. ++vmx->nmsrs;
  1278. }
  1279. setup_msrs(vmx);
  1280. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  1281. /* 22.2.1, 20.8.1 */
  1282. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  1283. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  1284. #ifdef CONFIG_X86_64
  1285. vmcs_writel(VIRTUAL_APIC_PAGE_ADDR, 0);
  1286. vmcs_writel(TPR_THRESHOLD, 0);
  1287. #endif
  1288. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  1289. vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
  1290. vmx->vcpu.cr0 = 0x60000010;
  1291. vmx_set_cr0(&vmx->vcpu, vmx->vcpu.cr0); // enter rmode
  1292. vmx_set_cr4(&vmx->vcpu, 0);
  1293. #ifdef CONFIG_X86_64
  1294. vmx_set_efer(&vmx->vcpu, 0);
  1295. #endif
  1296. vmx_fpu_activate(&vmx->vcpu);
  1297. update_exception_bitmap(&vmx->vcpu);
  1298. return 0;
  1299. out:
  1300. return ret;
  1301. }
  1302. static void inject_rmode_irq(struct kvm_vcpu *vcpu, int irq)
  1303. {
  1304. u16 ent[2];
  1305. u16 cs;
  1306. u16 ip;
  1307. unsigned long flags;
  1308. unsigned long ss_base = vmcs_readl(GUEST_SS_BASE);
  1309. u16 sp = vmcs_readl(GUEST_RSP);
  1310. u32 ss_limit = vmcs_read32(GUEST_SS_LIMIT);
  1311. if (sp > ss_limit || sp < 6 ) {
  1312. vcpu_printf(vcpu, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n",
  1313. __FUNCTION__,
  1314. vmcs_readl(GUEST_RSP),
  1315. vmcs_readl(GUEST_SS_BASE),
  1316. vmcs_read32(GUEST_SS_LIMIT));
  1317. return;
  1318. }
  1319. if (emulator_read_std(irq * sizeof(ent), &ent, sizeof(ent), vcpu) !=
  1320. X86EMUL_CONTINUE) {
  1321. vcpu_printf(vcpu, "%s: read guest err\n", __FUNCTION__);
  1322. return;
  1323. }
  1324. flags = vmcs_readl(GUEST_RFLAGS);
  1325. cs = vmcs_readl(GUEST_CS_BASE) >> 4;
  1326. ip = vmcs_readl(GUEST_RIP);
  1327. if (emulator_write_emulated(ss_base + sp - 2, &flags, 2, vcpu) != X86EMUL_CONTINUE ||
  1328. emulator_write_emulated(ss_base + sp - 4, &cs, 2, vcpu) != X86EMUL_CONTINUE ||
  1329. emulator_write_emulated(ss_base + sp - 6, &ip, 2, vcpu) != X86EMUL_CONTINUE) {
  1330. vcpu_printf(vcpu, "%s: write guest err\n", __FUNCTION__);
  1331. return;
  1332. }
  1333. vmcs_writel(GUEST_RFLAGS, flags &
  1334. ~( X86_EFLAGS_IF | X86_EFLAGS_AC | X86_EFLAGS_TF));
  1335. vmcs_write16(GUEST_CS_SELECTOR, ent[1]) ;
  1336. vmcs_writel(GUEST_CS_BASE, ent[1] << 4);
  1337. vmcs_writel(GUEST_RIP, ent[0]);
  1338. vmcs_writel(GUEST_RSP, (vmcs_readl(GUEST_RSP) & ~0xffff) | (sp - 6));
  1339. }
  1340. static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
  1341. {
  1342. if (vcpu->rmode.active) {
  1343. inject_rmode_irq(vcpu, irq);
  1344. return;
  1345. }
  1346. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1347. irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  1348. }
  1349. static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
  1350. {
  1351. int word_index = __ffs(vcpu->irq_summary);
  1352. int bit_index = __ffs(vcpu->irq_pending[word_index]);
  1353. int irq = word_index * BITS_PER_LONG + bit_index;
  1354. clear_bit(bit_index, &vcpu->irq_pending[word_index]);
  1355. if (!vcpu->irq_pending[word_index])
  1356. clear_bit(word_index, &vcpu->irq_summary);
  1357. vmx_inject_irq(vcpu, irq);
  1358. }
  1359. static void do_interrupt_requests(struct kvm_vcpu *vcpu,
  1360. struct kvm_run *kvm_run)
  1361. {
  1362. u32 cpu_based_vm_exec_control;
  1363. vcpu->interrupt_window_open =
  1364. ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  1365. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
  1366. if (vcpu->interrupt_window_open &&
  1367. vcpu->irq_summary &&
  1368. !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
  1369. /*
  1370. * If interrupts enabled, and not blocked by sti or mov ss. Good.
  1371. */
  1372. kvm_do_inject_irq(vcpu);
  1373. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  1374. if (!vcpu->interrupt_window_open &&
  1375. (vcpu->irq_summary || kvm_run->request_interrupt_window))
  1376. /*
  1377. * Interrupts blocked. Wait for unblock.
  1378. */
  1379. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  1380. else
  1381. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  1382. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  1383. }
  1384. static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
  1385. {
  1386. struct kvm_guest_debug *dbg = &vcpu->guest_debug;
  1387. set_debugreg(dbg->bp[0], 0);
  1388. set_debugreg(dbg->bp[1], 1);
  1389. set_debugreg(dbg->bp[2], 2);
  1390. set_debugreg(dbg->bp[3], 3);
  1391. if (dbg->singlestep) {
  1392. unsigned long flags;
  1393. flags = vmcs_readl(GUEST_RFLAGS);
  1394. flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  1395. vmcs_writel(GUEST_RFLAGS, flags);
  1396. }
  1397. }
  1398. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  1399. int vec, u32 err_code)
  1400. {
  1401. if (!vcpu->rmode.active)
  1402. return 0;
  1403. /*
  1404. * Instruction with address size override prefix opcode 0x67
  1405. * Cause the #SS fault with 0 error code in VM86 mode.
  1406. */
  1407. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  1408. if (emulate_instruction(vcpu, NULL, 0, 0) == EMULATE_DONE)
  1409. return 1;
  1410. return 0;
  1411. }
  1412. static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1413. {
  1414. u32 intr_info, error_code;
  1415. unsigned long cr2, rip;
  1416. u32 vect_info;
  1417. enum emulation_result er;
  1418. int r;
  1419. vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1420. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  1421. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  1422. !is_page_fault(intr_info)) {
  1423. printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
  1424. "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
  1425. }
  1426. if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) {
  1427. int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
  1428. set_bit(irq, vcpu->irq_pending);
  1429. set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
  1430. }
  1431. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) { /* nmi */
  1432. asm ("int $2");
  1433. return 1;
  1434. }
  1435. if (is_no_device(intr_info)) {
  1436. vmx_fpu_activate(vcpu);
  1437. return 1;
  1438. }
  1439. error_code = 0;
  1440. rip = vmcs_readl(GUEST_RIP);
  1441. if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
  1442. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  1443. if (is_page_fault(intr_info)) {
  1444. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  1445. mutex_lock(&vcpu->kvm->lock);
  1446. r = kvm_mmu_page_fault(vcpu, cr2, error_code);
  1447. if (r < 0) {
  1448. mutex_unlock(&vcpu->kvm->lock);
  1449. return r;
  1450. }
  1451. if (!r) {
  1452. mutex_unlock(&vcpu->kvm->lock);
  1453. return 1;
  1454. }
  1455. er = emulate_instruction(vcpu, kvm_run, cr2, error_code);
  1456. mutex_unlock(&vcpu->kvm->lock);
  1457. switch (er) {
  1458. case EMULATE_DONE:
  1459. return 1;
  1460. case EMULATE_DO_MMIO:
  1461. ++vcpu->stat.mmio_exits;
  1462. return 0;
  1463. case EMULATE_FAIL:
  1464. vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
  1465. break;
  1466. default:
  1467. BUG();
  1468. }
  1469. }
  1470. if (vcpu->rmode.active &&
  1471. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  1472. error_code)) {
  1473. if (vcpu->halt_request) {
  1474. vcpu->halt_request = 0;
  1475. return kvm_emulate_halt(vcpu);
  1476. }
  1477. return 1;
  1478. }
  1479. if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) == (INTR_TYPE_EXCEPTION | 1)) {
  1480. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  1481. return 0;
  1482. }
  1483. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  1484. kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
  1485. kvm_run->ex.error_code = error_code;
  1486. return 0;
  1487. }
  1488. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  1489. struct kvm_run *kvm_run)
  1490. {
  1491. ++vcpu->stat.irq_exits;
  1492. return 1;
  1493. }
  1494. static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1495. {
  1496. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  1497. return 0;
  1498. }
  1499. static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1500. {
  1501. u64 exit_qualification;
  1502. int size, down, in, string, rep;
  1503. unsigned port;
  1504. ++vcpu->stat.io_exits;
  1505. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1506. string = (exit_qualification & 16) != 0;
  1507. if (string) {
  1508. if (emulate_instruction(vcpu, kvm_run, 0, 0) == EMULATE_DO_MMIO)
  1509. return 0;
  1510. return 1;
  1511. }
  1512. size = (exit_qualification & 7) + 1;
  1513. in = (exit_qualification & 8) != 0;
  1514. down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
  1515. rep = (exit_qualification & 32) != 0;
  1516. port = exit_qualification >> 16;
  1517. return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
  1518. }
  1519. static void
  1520. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  1521. {
  1522. /*
  1523. * Patch in the VMCALL instruction:
  1524. */
  1525. hypercall[0] = 0x0f;
  1526. hypercall[1] = 0x01;
  1527. hypercall[2] = 0xc1;
  1528. hypercall[3] = 0xc3;
  1529. }
  1530. static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1531. {
  1532. u64 exit_qualification;
  1533. int cr;
  1534. int reg;
  1535. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1536. cr = exit_qualification & 15;
  1537. reg = (exit_qualification >> 8) & 15;
  1538. switch ((exit_qualification >> 4) & 3) {
  1539. case 0: /* mov to cr */
  1540. switch (cr) {
  1541. case 0:
  1542. vcpu_load_rsp_rip(vcpu);
  1543. set_cr0(vcpu, vcpu->regs[reg]);
  1544. skip_emulated_instruction(vcpu);
  1545. return 1;
  1546. case 3:
  1547. vcpu_load_rsp_rip(vcpu);
  1548. set_cr3(vcpu, vcpu->regs[reg]);
  1549. skip_emulated_instruction(vcpu);
  1550. return 1;
  1551. case 4:
  1552. vcpu_load_rsp_rip(vcpu);
  1553. set_cr4(vcpu, vcpu->regs[reg]);
  1554. skip_emulated_instruction(vcpu);
  1555. return 1;
  1556. case 8:
  1557. vcpu_load_rsp_rip(vcpu);
  1558. set_cr8(vcpu, vcpu->regs[reg]);
  1559. skip_emulated_instruction(vcpu);
  1560. kvm_run->exit_reason = KVM_EXIT_SET_TPR;
  1561. return 0;
  1562. };
  1563. break;
  1564. case 2: /* clts */
  1565. vcpu_load_rsp_rip(vcpu);
  1566. vmx_fpu_deactivate(vcpu);
  1567. vcpu->cr0 &= ~X86_CR0_TS;
  1568. vmcs_writel(CR0_READ_SHADOW, vcpu->cr0);
  1569. vmx_fpu_activate(vcpu);
  1570. skip_emulated_instruction(vcpu);
  1571. return 1;
  1572. case 1: /*mov from cr*/
  1573. switch (cr) {
  1574. case 3:
  1575. vcpu_load_rsp_rip(vcpu);
  1576. vcpu->regs[reg] = vcpu->cr3;
  1577. vcpu_put_rsp_rip(vcpu);
  1578. skip_emulated_instruction(vcpu);
  1579. return 1;
  1580. case 8:
  1581. vcpu_load_rsp_rip(vcpu);
  1582. vcpu->regs[reg] = get_cr8(vcpu);
  1583. vcpu_put_rsp_rip(vcpu);
  1584. skip_emulated_instruction(vcpu);
  1585. return 1;
  1586. }
  1587. break;
  1588. case 3: /* lmsw */
  1589. lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  1590. skip_emulated_instruction(vcpu);
  1591. return 1;
  1592. default:
  1593. break;
  1594. }
  1595. kvm_run->exit_reason = 0;
  1596. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  1597. (int)(exit_qualification >> 4) & 3, cr);
  1598. return 0;
  1599. }
  1600. static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1601. {
  1602. u64 exit_qualification;
  1603. unsigned long val;
  1604. int dr, reg;
  1605. /*
  1606. * FIXME: this code assumes the host is debugging the guest.
  1607. * need to deal with guest debugging itself too.
  1608. */
  1609. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1610. dr = exit_qualification & 7;
  1611. reg = (exit_qualification >> 8) & 15;
  1612. vcpu_load_rsp_rip(vcpu);
  1613. if (exit_qualification & 16) {
  1614. /* mov from dr */
  1615. switch (dr) {
  1616. case 6:
  1617. val = 0xffff0ff0;
  1618. break;
  1619. case 7:
  1620. val = 0x400;
  1621. break;
  1622. default:
  1623. val = 0;
  1624. }
  1625. vcpu->regs[reg] = val;
  1626. } else {
  1627. /* mov to dr */
  1628. }
  1629. vcpu_put_rsp_rip(vcpu);
  1630. skip_emulated_instruction(vcpu);
  1631. return 1;
  1632. }
  1633. static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1634. {
  1635. kvm_emulate_cpuid(vcpu);
  1636. return 1;
  1637. }
  1638. static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1639. {
  1640. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  1641. u64 data;
  1642. if (vmx_get_msr(vcpu, ecx, &data)) {
  1643. vmx_inject_gp(vcpu, 0);
  1644. return 1;
  1645. }
  1646. /* FIXME: handling of bits 32:63 of rax, rdx */
  1647. vcpu->regs[VCPU_REGS_RAX] = data & -1u;
  1648. vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  1649. skip_emulated_instruction(vcpu);
  1650. return 1;
  1651. }
  1652. static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1653. {
  1654. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  1655. u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u)
  1656. | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
  1657. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  1658. vmx_inject_gp(vcpu, 0);
  1659. return 1;
  1660. }
  1661. skip_emulated_instruction(vcpu);
  1662. return 1;
  1663. }
  1664. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  1665. struct kvm_run *kvm_run)
  1666. {
  1667. kvm_run->if_flag = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) != 0;
  1668. kvm_run->cr8 = get_cr8(vcpu);
  1669. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  1670. if (irqchip_in_kernel(vcpu->kvm))
  1671. kvm_run->ready_for_interrupt_injection = 1;
  1672. else
  1673. kvm_run->ready_for_interrupt_injection =
  1674. (vcpu->interrupt_window_open &&
  1675. vcpu->irq_summary == 0);
  1676. }
  1677. static int handle_interrupt_window(struct kvm_vcpu *vcpu,
  1678. struct kvm_run *kvm_run)
  1679. {
  1680. u32 cpu_based_vm_exec_control;
  1681. /* clear pending irq */
  1682. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  1683. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  1684. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  1685. /*
  1686. * If the user space waits to inject interrupts, exit as soon as
  1687. * possible
  1688. */
  1689. if (kvm_run->request_interrupt_window &&
  1690. !vcpu->irq_summary) {
  1691. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  1692. ++vcpu->stat.irq_window_exits;
  1693. return 0;
  1694. }
  1695. return 1;
  1696. }
  1697. static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1698. {
  1699. skip_emulated_instruction(vcpu);
  1700. return kvm_emulate_halt(vcpu);
  1701. }
  1702. static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1703. {
  1704. skip_emulated_instruction(vcpu);
  1705. return kvm_hypercall(vcpu, kvm_run);
  1706. }
  1707. /*
  1708. * The exit handlers return 1 if the exit was handled fully and guest execution
  1709. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  1710. * to be done to userspace and return 0.
  1711. */
  1712. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
  1713. struct kvm_run *kvm_run) = {
  1714. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  1715. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  1716. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  1717. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  1718. [EXIT_REASON_CR_ACCESS] = handle_cr,
  1719. [EXIT_REASON_DR_ACCESS] = handle_dr,
  1720. [EXIT_REASON_CPUID] = handle_cpuid,
  1721. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  1722. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  1723. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  1724. [EXIT_REASON_HLT] = handle_halt,
  1725. [EXIT_REASON_VMCALL] = handle_vmcall,
  1726. };
  1727. static const int kvm_vmx_max_exit_handlers =
  1728. ARRAY_SIZE(kvm_vmx_exit_handlers);
  1729. /*
  1730. * The guest has exited. See if we can fix it or if we need userspace
  1731. * assistance.
  1732. */
  1733. static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  1734. {
  1735. u32 vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1736. u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
  1737. if ( (vectoring_info & VECTORING_INFO_VALID_MASK) &&
  1738. exit_reason != EXIT_REASON_EXCEPTION_NMI )
  1739. printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
  1740. "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
  1741. if (exit_reason < kvm_vmx_max_exit_handlers
  1742. && kvm_vmx_exit_handlers[exit_reason])
  1743. return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
  1744. else {
  1745. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  1746. kvm_run->hw.hardware_exit_reason = exit_reason;
  1747. }
  1748. return 0;
  1749. }
  1750. /*
  1751. * Check if userspace requested an interrupt window, and that the
  1752. * interrupt window is open.
  1753. *
  1754. * No need to exit to userspace if we already have an interrupt queued.
  1755. */
  1756. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  1757. struct kvm_run *kvm_run)
  1758. {
  1759. return (!vcpu->irq_summary &&
  1760. kvm_run->request_interrupt_window &&
  1761. vcpu->interrupt_window_open &&
  1762. (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF));
  1763. }
  1764. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1765. {
  1766. }
  1767. static void enable_irq_window(struct kvm_vcpu *vcpu)
  1768. {
  1769. u32 cpu_based_vm_exec_control;
  1770. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  1771. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  1772. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  1773. }
  1774. static void vmx_intr_assist(struct kvm_vcpu *vcpu)
  1775. {
  1776. u32 idtv_info_field, intr_info_field;
  1777. int has_ext_irq, interrupt_window_open;
  1778. has_ext_irq = kvm_cpu_has_interrupt(vcpu);
  1779. intr_info_field = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD);
  1780. idtv_info_field = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1781. if (intr_info_field & INTR_INFO_VALID_MASK) {
  1782. if (idtv_info_field & INTR_INFO_VALID_MASK) {
  1783. /* TODO: fault when IDT_Vectoring */
  1784. printk(KERN_ERR "Fault when IDT_Vectoring\n");
  1785. }
  1786. if (has_ext_irq)
  1787. enable_irq_window(vcpu);
  1788. return;
  1789. }
  1790. if (unlikely(idtv_info_field & INTR_INFO_VALID_MASK)) {
  1791. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, idtv_info_field);
  1792. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  1793. vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
  1794. if (unlikely(idtv_info_field & INTR_INFO_DELIEVER_CODE_MASK))
  1795. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
  1796. vmcs_read32(IDT_VECTORING_ERROR_CODE));
  1797. if (unlikely(has_ext_irq))
  1798. enable_irq_window(vcpu);
  1799. return;
  1800. }
  1801. if (!has_ext_irq)
  1802. return;
  1803. interrupt_window_open =
  1804. ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  1805. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
  1806. if (interrupt_window_open)
  1807. vmx_inject_irq(vcpu, kvm_cpu_get_interrupt(vcpu));
  1808. else
  1809. enable_irq_window(vcpu);
  1810. }
  1811. static int vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1812. {
  1813. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1814. u8 fail;
  1815. int r;
  1816. preempted:
  1817. if (vcpu->guest_debug.enabled)
  1818. kvm_guest_debug_pre(vcpu);
  1819. again:
  1820. r = kvm_mmu_reload(vcpu);
  1821. if (unlikely(r))
  1822. goto out;
  1823. preempt_disable();
  1824. vmx_save_host_state(vmx);
  1825. kvm_load_guest_fpu(vcpu);
  1826. /*
  1827. * Loading guest fpu may have cleared host cr0.ts
  1828. */
  1829. vmcs_writel(HOST_CR0, read_cr0());
  1830. local_irq_disable();
  1831. if (signal_pending(current)) {
  1832. local_irq_enable();
  1833. preempt_enable();
  1834. r = -EINTR;
  1835. kvm_run->exit_reason = KVM_EXIT_INTR;
  1836. ++vcpu->stat.signal_exits;
  1837. goto out;
  1838. }
  1839. if (irqchip_in_kernel(vcpu->kvm))
  1840. vmx_intr_assist(vcpu);
  1841. else if (!vcpu->mmio_read_completed)
  1842. do_interrupt_requests(vcpu, kvm_run);
  1843. vcpu->guest_mode = 1;
  1844. if (vcpu->requests)
  1845. if (test_and_clear_bit(KVM_TLB_FLUSH, &vcpu->requests))
  1846. vmx_flush_tlb(vcpu);
  1847. asm (
  1848. /* Store host registers */
  1849. #ifdef CONFIG_X86_64
  1850. "push %%rax; push %%rbx; push %%rdx;"
  1851. "push %%rsi; push %%rdi; push %%rbp;"
  1852. "push %%r8; push %%r9; push %%r10; push %%r11;"
  1853. "push %%r12; push %%r13; push %%r14; push %%r15;"
  1854. "push %%rcx \n\t"
  1855. ASM_VMX_VMWRITE_RSP_RDX "\n\t"
  1856. #else
  1857. "pusha; push %%ecx \n\t"
  1858. ASM_VMX_VMWRITE_RSP_RDX "\n\t"
  1859. #endif
  1860. /* Check if vmlaunch of vmresume is needed */
  1861. "cmp $0, %1 \n\t"
  1862. /* Load guest registers. Don't clobber flags. */
  1863. #ifdef CONFIG_X86_64
  1864. "mov %c[cr2](%3), %%rax \n\t"
  1865. "mov %%rax, %%cr2 \n\t"
  1866. "mov %c[rax](%3), %%rax \n\t"
  1867. "mov %c[rbx](%3), %%rbx \n\t"
  1868. "mov %c[rdx](%3), %%rdx \n\t"
  1869. "mov %c[rsi](%3), %%rsi \n\t"
  1870. "mov %c[rdi](%3), %%rdi \n\t"
  1871. "mov %c[rbp](%3), %%rbp \n\t"
  1872. "mov %c[r8](%3), %%r8 \n\t"
  1873. "mov %c[r9](%3), %%r9 \n\t"
  1874. "mov %c[r10](%3), %%r10 \n\t"
  1875. "mov %c[r11](%3), %%r11 \n\t"
  1876. "mov %c[r12](%3), %%r12 \n\t"
  1877. "mov %c[r13](%3), %%r13 \n\t"
  1878. "mov %c[r14](%3), %%r14 \n\t"
  1879. "mov %c[r15](%3), %%r15 \n\t"
  1880. "mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */
  1881. #else
  1882. "mov %c[cr2](%3), %%eax \n\t"
  1883. "mov %%eax, %%cr2 \n\t"
  1884. "mov %c[rax](%3), %%eax \n\t"
  1885. "mov %c[rbx](%3), %%ebx \n\t"
  1886. "mov %c[rdx](%3), %%edx \n\t"
  1887. "mov %c[rsi](%3), %%esi \n\t"
  1888. "mov %c[rdi](%3), %%edi \n\t"
  1889. "mov %c[rbp](%3), %%ebp \n\t"
  1890. "mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */
  1891. #endif
  1892. /* Enter guest mode */
  1893. "jne .Llaunched \n\t"
  1894. ASM_VMX_VMLAUNCH "\n\t"
  1895. "jmp .Lkvm_vmx_return \n\t"
  1896. ".Llaunched: " ASM_VMX_VMRESUME "\n\t"
  1897. ".Lkvm_vmx_return: "
  1898. /* Save guest registers, load host registers, keep flags */
  1899. #ifdef CONFIG_X86_64
  1900. "xchg %3, (%%rsp) \n\t"
  1901. "mov %%rax, %c[rax](%3) \n\t"
  1902. "mov %%rbx, %c[rbx](%3) \n\t"
  1903. "pushq (%%rsp); popq %c[rcx](%3) \n\t"
  1904. "mov %%rdx, %c[rdx](%3) \n\t"
  1905. "mov %%rsi, %c[rsi](%3) \n\t"
  1906. "mov %%rdi, %c[rdi](%3) \n\t"
  1907. "mov %%rbp, %c[rbp](%3) \n\t"
  1908. "mov %%r8, %c[r8](%3) \n\t"
  1909. "mov %%r9, %c[r9](%3) \n\t"
  1910. "mov %%r10, %c[r10](%3) \n\t"
  1911. "mov %%r11, %c[r11](%3) \n\t"
  1912. "mov %%r12, %c[r12](%3) \n\t"
  1913. "mov %%r13, %c[r13](%3) \n\t"
  1914. "mov %%r14, %c[r14](%3) \n\t"
  1915. "mov %%r15, %c[r15](%3) \n\t"
  1916. "mov %%cr2, %%rax \n\t"
  1917. "mov %%rax, %c[cr2](%3) \n\t"
  1918. "mov (%%rsp), %3 \n\t"
  1919. "pop %%rcx; pop %%r15; pop %%r14; pop %%r13; pop %%r12;"
  1920. "pop %%r11; pop %%r10; pop %%r9; pop %%r8;"
  1921. "pop %%rbp; pop %%rdi; pop %%rsi;"
  1922. "pop %%rdx; pop %%rbx; pop %%rax \n\t"
  1923. #else
  1924. "xchg %3, (%%esp) \n\t"
  1925. "mov %%eax, %c[rax](%3) \n\t"
  1926. "mov %%ebx, %c[rbx](%3) \n\t"
  1927. "pushl (%%esp); popl %c[rcx](%3) \n\t"
  1928. "mov %%edx, %c[rdx](%3) \n\t"
  1929. "mov %%esi, %c[rsi](%3) \n\t"
  1930. "mov %%edi, %c[rdi](%3) \n\t"
  1931. "mov %%ebp, %c[rbp](%3) \n\t"
  1932. "mov %%cr2, %%eax \n\t"
  1933. "mov %%eax, %c[cr2](%3) \n\t"
  1934. "mov (%%esp), %3 \n\t"
  1935. "pop %%ecx; popa \n\t"
  1936. #endif
  1937. "setbe %0 \n\t"
  1938. : "=q" (fail)
  1939. : "r"(vmx->launched), "d"((unsigned long)HOST_RSP),
  1940. "c"(vcpu),
  1941. [rax]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RAX])),
  1942. [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
  1943. [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
  1944. [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
  1945. [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
  1946. [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
  1947. [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP])),
  1948. #ifdef CONFIG_X86_64
  1949. [r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
  1950. [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
  1951. [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
  1952. [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
  1953. [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
  1954. [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
  1955. [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
  1956. [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15])),
  1957. #endif
  1958. [cr2]"i"(offsetof(struct kvm_vcpu, cr2))
  1959. : "cc", "memory" );
  1960. vcpu->guest_mode = 0;
  1961. local_irq_enable();
  1962. ++vcpu->stat.exits;
  1963. vcpu->interrupt_window_open = (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
  1964. asm ("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  1965. vmx->launched = 1;
  1966. preempt_enable();
  1967. if (unlikely(fail)) {
  1968. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  1969. kvm_run->fail_entry.hardware_entry_failure_reason
  1970. = vmcs_read32(VM_INSTRUCTION_ERROR);
  1971. r = 0;
  1972. goto out;
  1973. }
  1974. /*
  1975. * Profile KVM exit RIPs:
  1976. */
  1977. if (unlikely(prof_on == KVM_PROFILING))
  1978. profile_hit(KVM_PROFILING, (void *)vmcs_readl(GUEST_RIP));
  1979. r = kvm_handle_exit(kvm_run, vcpu);
  1980. if (r > 0) {
  1981. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  1982. r = -EINTR;
  1983. kvm_run->exit_reason = KVM_EXIT_INTR;
  1984. ++vcpu->stat.request_irq_exits;
  1985. goto out;
  1986. }
  1987. if (!need_resched()) {
  1988. ++vcpu->stat.light_exits;
  1989. goto again;
  1990. }
  1991. }
  1992. out:
  1993. if (r > 0) {
  1994. kvm_resched(vcpu);
  1995. goto preempted;
  1996. }
  1997. post_kvm_run_save(vcpu, kvm_run);
  1998. return r;
  1999. }
  2000. static void vmx_inject_page_fault(struct kvm_vcpu *vcpu,
  2001. unsigned long addr,
  2002. u32 err_code)
  2003. {
  2004. u32 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  2005. ++vcpu->stat.pf_guest;
  2006. if (is_page_fault(vect_info)) {
  2007. printk(KERN_DEBUG "inject_page_fault: "
  2008. "double fault 0x%lx @ 0x%lx\n",
  2009. addr, vmcs_readl(GUEST_RIP));
  2010. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0);
  2011. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2012. DF_VECTOR |
  2013. INTR_TYPE_EXCEPTION |
  2014. INTR_INFO_DELIEVER_CODE_MASK |
  2015. INTR_INFO_VALID_MASK);
  2016. return;
  2017. }
  2018. vcpu->cr2 = addr;
  2019. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code);
  2020. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2021. PF_VECTOR |
  2022. INTR_TYPE_EXCEPTION |
  2023. INTR_INFO_DELIEVER_CODE_MASK |
  2024. INTR_INFO_VALID_MASK);
  2025. }
  2026. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  2027. {
  2028. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2029. if (vmx->vmcs) {
  2030. on_each_cpu(__vcpu_clear, vmx, 0, 1);
  2031. free_vmcs(vmx->vmcs);
  2032. vmx->vmcs = NULL;
  2033. }
  2034. }
  2035. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  2036. {
  2037. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2038. vmx_free_vmcs(vcpu);
  2039. kfree(vmx->host_msrs);
  2040. kfree(vmx->guest_msrs);
  2041. kvm_vcpu_uninit(vcpu);
  2042. kmem_cache_free(kvm_vcpu_cache, vmx);
  2043. }
  2044. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  2045. {
  2046. int err;
  2047. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  2048. int cpu;
  2049. if (!vmx)
  2050. return ERR_PTR(-ENOMEM);
  2051. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  2052. if (err)
  2053. goto free_vcpu;
  2054. if (irqchip_in_kernel(kvm)) {
  2055. err = kvm_create_lapic(&vmx->vcpu);
  2056. if (err < 0)
  2057. goto free_vcpu;
  2058. }
  2059. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2060. if (!vmx->guest_msrs) {
  2061. err = -ENOMEM;
  2062. goto uninit_vcpu;
  2063. }
  2064. vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2065. if (!vmx->host_msrs)
  2066. goto free_guest_msrs;
  2067. vmx->vmcs = alloc_vmcs();
  2068. if (!vmx->vmcs)
  2069. goto free_msrs;
  2070. vmcs_clear(vmx->vmcs);
  2071. cpu = get_cpu();
  2072. vmx_vcpu_load(&vmx->vcpu, cpu);
  2073. err = vmx_vcpu_setup(vmx);
  2074. vmx_vcpu_put(&vmx->vcpu);
  2075. put_cpu();
  2076. if (err)
  2077. goto free_vmcs;
  2078. return &vmx->vcpu;
  2079. free_vmcs:
  2080. free_vmcs(vmx->vmcs);
  2081. free_msrs:
  2082. kfree(vmx->host_msrs);
  2083. free_guest_msrs:
  2084. kfree(vmx->guest_msrs);
  2085. uninit_vcpu:
  2086. kvm_vcpu_uninit(&vmx->vcpu);
  2087. free_vcpu:
  2088. kmem_cache_free(kvm_vcpu_cache, vmx);
  2089. return ERR_PTR(err);
  2090. }
  2091. static void __init vmx_check_processor_compat(void *rtn)
  2092. {
  2093. struct vmcs_config vmcs_conf;
  2094. *(int *)rtn = 0;
  2095. if (setup_vmcs_config(&vmcs_conf) < 0)
  2096. *(int *)rtn = -EIO;
  2097. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  2098. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  2099. smp_processor_id());
  2100. *(int *)rtn = -EIO;
  2101. }
  2102. }
  2103. static struct kvm_arch_ops vmx_arch_ops = {
  2104. .cpu_has_kvm_support = cpu_has_kvm_support,
  2105. .disabled_by_bios = vmx_disabled_by_bios,
  2106. .hardware_setup = hardware_setup,
  2107. .hardware_unsetup = hardware_unsetup,
  2108. .check_processor_compatibility = vmx_check_processor_compat,
  2109. .hardware_enable = hardware_enable,
  2110. .hardware_disable = hardware_disable,
  2111. .vcpu_create = vmx_create_vcpu,
  2112. .vcpu_free = vmx_free_vcpu,
  2113. .vcpu_load = vmx_vcpu_load,
  2114. .vcpu_put = vmx_vcpu_put,
  2115. .vcpu_decache = vmx_vcpu_decache,
  2116. .set_guest_debug = set_guest_debug,
  2117. .get_msr = vmx_get_msr,
  2118. .set_msr = vmx_set_msr,
  2119. .get_segment_base = vmx_get_segment_base,
  2120. .get_segment = vmx_get_segment,
  2121. .set_segment = vmx_set_segment,
  2122. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  2123. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  2124. .set_cr0 = vmx_set_cr0,
  2125. .set_cr3 = vmx_set_cr3,
  2126. .set_cr4 = vmx_set_cr4,
  2127. #ifdef CONFIG_X86_64
  2128. .set_efer = vmx_set_efer,
  2129. #endif
  2130. .get_idt = vmx_get_idt,
  2131. .set_idt = vmx_set_idt,
  2132. .get_gdt = vmx_get_gdt,
  2133. .set_gdt = vmx_set_gdt,
  2134. .cache_regs = vcpu_load_rsp_rip,
  2135. .decache_regs = vcpu_put_rsp_rip,
  2136. .get_rflags = vmx_get_rflags,
  2137. .set_rflags = vmx_set_rflags,
  2138. .tlb_flush = vmx_flush_tlb,
  2139. .inject_page_fault = vmx_inject_page_fault,
  2140. .inject_gp = vmx_inject_gp,
  2141. .run = vmx_vcpu_run,
  2142. .skip_emulated_instruction = skip_emulated_instruction,
  2143. .patch_hypercall = vmx_patch_hypercall,
  2144. .get_irq = vmx_get_irq,
  2145. .set_irq = vmx_inject_irq,
  2146. };
  2147. static int __init vmx_init(void)
  2148. {
  2149. void *iova;
  2150. int r;
  2151. vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  2152. if (!vmx_io_bitmap_a)
  2153. return -ENOMEM;
  2154. vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  2155. if (!vmx_io_bitmap_b) {
  2156. r = -ENOMEM;
  2157. goto out;
  2158. }
  2159. /*
  2160. * Allow direct access to the PC debug port (it is often used for I/O
  2161. * delays, but the vmexits simply slow things down).
  2162. */
  2163. iova = kmap(vmx_io_bitmap_a);
  2164. memset(iova, 0xff, PAGE_SIZE);
  2165. clear_bit(0x80, iova);
  2166. kunmap(vmx_io_bitmap_a);
  2167. iova = kmap(vmx_io_bitmap_b);
  2168. memset(iova, 0xff, PAGE_SIZE);
  2169. kunmap(vmx_io_bitmap_b);
  2170. r = kvm_init_arch(&vmx_arch_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
  2171. if (r)
  2172. goto out1;
  2173. return 0;
  2174. out1:
  2175. __free_page(vmx_io_bitmap_b);
  2176. out:
  2177. __free_page(vmx_io_bitmap_a);
  2178. return r;
  2179. }
  2180. static void __exit vmx_exit(void)
  2181. {
  2182. __free_page(vmx_io_bitmap_b);
  2183. __free_page(vmx_io_bitmap_a);
  2184. kvm_exit_arch();
  2185. }
  2186. module_init(vmx_init)
  2187. module_exit(vmx_exit)