sched_fair.c 26 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084
  1. /*
  2. * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
  3. *
  4. * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  5. *
  6. * Interactivity improvements by Mike Galbraith
  7. * (C) 2007 Mike Galbraith <efault@gmx.de>
  8. *
  9. * Various enhancements by Dmitry Adamushko.
  10. * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11. *
  12. * Group scheduling enhancements by Srivatsa Vaddagiri
  13. * Copyright IBM Corporation, 2007
  14. * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15. *
  16. * Scaled math optimizations by Thomas Gleixner
  17. * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18. *
  19. * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  21. */
  22. /*
  23. * Targeted preemption latency for CPU-bound tasks:
  24. * (default: 20ms, units: nanoseconds)
  25. *
  26. * NOTE: this latency value is not the same as the concept of
  27. * 'timeslice length' - timeslices in CFS are of variable length
  28. * and have no persistent notion like in traditional, time-slice
  29. * based scheduling concepts.
  30. *
  31. * (to see the precise effective timeslice length of your workload,
  32. * run vmstat and monitor the context-switches (cs) field)
  33. */
  34. const_debug unsigned int sysctl_sched_latency = 20000000ULL;
  35. /*
  36. * After fork, child runs first. (default) If set to 0 then
  37. * parent will (try to) run first.
  38. */
  39. const_debug unsigned int sysctl_sched_child_runs_first = 1;
  40. /*
  41. * Minimal preemption granularity for CPU-bound tasks:
  42. * (default: 2 msec, units: nanoseconds)
  43. */
  44. const_debug unsigned int sysctl_sched_nr_latency = 20;
  45. /*
  46. * sys_sched_yield() compat mode
  47. *
  48. * This option switches the agressive yield implementation of the
  49. * old scheduler back on.
  50. */
  51. unsigned int __read_mostly sysctl_sched_compat_yield;
  52. /*
  53. * SCHED_BATCH wake-up granularity.
  54. * (default: 10 msec, units: nanoseconds)
  55. *
  56. * This option delays the preemption effects of decoupled workloads
  57. * and reduces their over-scheduling. Synchronous workloads will still
  58. * have immediate wakeup/sleep latencies.
  59. */
  60. const_debug unsigned int sysctl_sched_batch_wakeup_granularity = 10000000UL;
  61. /*
  62. * SCHED_OTHER wake-up granularity.
  63. * (default: 10 msec, units: nanoseconds)
  64. *
  65. * This option delays the preemption effects of decoupled workloads
  66. * and reduces their over-scheduling. Synchronous workloads will still
  67. * have immediate wakeup/sleep latencies.
  68. */
  69. const_debug unsigned int sysctl_sched_wakeup_granularity = 10000000UL;
  70. const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  71. /**************************************************************
  72. * CFS operations on generic schedulable entities:
  73. */
  74. #ifdef CONFIG_FAIR_GROUP_SCHED
  75. /* cpu runqueue to which this cfs_rq is attached */
  76. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  77. {
  78. return cfs_rq->rq;
  79. }
  80. /* An entity is a task if it doesn't "own" a runqueue */
  81. #define entity_is_task(se) (!se->my_q)
  82. #else /* CONFIG_FAIR_GROUP_SCHED */
  83. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  84. {
  85. return container_of(cfs_rq, struct rq, cfs);
  86. }
  87. #define entity_is_task(se) 1
  88. #endif /* CONFIG_FAIR_GROUP_SCHED */
  89. static inline struct task_struct *task_of(struct sched_entity *se)
  90. {
  91. return container_of(se, struct task_struct, se);
  92. }
  93. /**************************************************************
  94. * Scheduling class tree data structure manipulation methods:
  95. */
  96. static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
  97. {
  98. s64 delta = (s64)(vruntime - min_vruntime);
  99. if (delta > 0)
  100. min_vruntime = vruntime;
  101. return min_vruntime;
  102. }
  103. static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
  104. {
  105. s64 delta = (s64)(vruntime - min_vruntime);
  106. if (delta < 0)
  107. min_vruntime = vruntime;
  108. return min_vruntime;
  109. }
  110. static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
  111. {
  112. return se->vruntime - cfs_rq->min_vruntime;
  113. }
  114. /*
  115. * Enqueue an entity into the rb-tree:
  116. */
  117. static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  118. {
  119. struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
  120. struct rb_node *parent = NULL;
  121. struct sched_entity *entry;
  122. s64 key = entity_key(cfs_rq, se);
  123. int leftmost = 1;
  124. /*
  125. * Find the right place in the rbtree:
  126. */
  127. while (*link) {
  128. parent = *link;
  129. entry = rb_entry(parent, struct sched_entity, run_node);
  130. /*
  131. * We dont care about collisions. Nodes with
  132. * the same key stay together.
  133. */
  134. if (key < entity_key(cfs_rq, entry)) {
  135. link = &parent->rb_left;
  136. } else {
  137. link = &parent->rb_right;
  138. leftmost = 0;
  139. }
  140. }
  141. /*
  142. * Maintain a cache of leftmost tree entries (it is frequently
  143. * used):
  144. */
  145. if (leftmost)
  146. cfs_rq->rb_leftmost = &se->run_node;
  147. rb_link_node(&se->run_node, parent, link);
  148. rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
  149. }
  150. static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  151. {
  152. if (cfs_rq->rb_leftmost == &se->run_node)
  153. cfs_rq->rb_leftmost = rb_next(&se->run_node);
  154. rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
  155. }
  156. static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
  157. {
  158. return cfs_rq->rb_leftmost;
  159. }
  160. static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
  161. {
  162. return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
  163. }
  164. static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
  165. {
  166. struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
  167. struct sched_entity *se = NULL;
  168. struct rb_node *parent;
  169. while (*link) {
  170. parent = *link;
  171. se = rb_entry(parent, struct sched_entity, run_node);
  172. link = &parent->rb_right;
  173. }
  174. return se;
  175. }
  176. /**************************************************************
  177. * Scheduling class statistics methods:
  178. */
  179. /*
  180. * The idea is to set a period in which each task runs once.
  181. *
  182. * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
  183. * this period because otherwise the slices get too small.
  184. *
  185. * p = (nr <= nl) ? l : l*nr/nl
  186. */
  187. static u64 __sched_period(unsigned long nr_running)
  188. {
  189. u64 period = sysctl_sched_latency;
  190. unsigned long nr_latency = sysctl_sched_nr_latency;
  191. if (unlikely(nr_running > nr_latency)) {
  192. period *= nr_running;
  193. do_div(period, nr_latency);
  194. }
  195. return period;
  196. }
  197. /*
  198. * We calculate the wall-time slice from the period by taking a part
  199. * proportional to the weight.
  200. *
  201. * s = p*w/rw
  202. */
  203. static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  204. {
  205. u64 slice = __sched_period(cfs_rq->nr_running);
  206. slice *= se->load.weight;
  207. do_div(slice, cfs_rq->load.weight);
  208. return slice;
  209. }
  210. /*
  211. * We calculate the vruntime slice.
  212. *
  213. * vs = s/w = p/rw
  214. */
  215. static u64 __sched_vslice(unsigned long rq_weight, unsigned long nr_running)
  216. {
  217. u64 vslice = __sched_period(nr_running);
  218. do_div(vslice, rq_weight);
  219. return vslice;
  220. }
  221. static u64 sched_vslice(struct cfs_rq *cfs_rq)
  222. {
  223. return __sched_vslice(cfs_rq->load.weight, cfs_rq->nr_running);
  224. }
  225. static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
  226. {
  227. return __sched_vslice(cfs_rq->load.weight + se->load.weight,
  228. cfs_rq->nr_running + 1);
  229. }
  230. /*
  231. * Update the current task's runtime statistics. Skip current tasks that
  232. * are not in our scheduling class.
  233. */
  234. static inline void
  235. __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
  236. unsigned long delta_exec)
  237. {
  238. unsigned long delta_exec_weighted;
  239. u64 vruntime;
  240. schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
  241. curr->sum_exec_runtime += delta_exec;
  242. schedstat_add(cfs_rq, exec_clock, delta_exec);
  243. delta_exec_weighted = delta_exec;
  244. if (unlikely(curr->load.weight != NICE_0_LOAD)) {
  245. delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
  246. &curr->load);
  247. }
  248. curr->vruntime += delta_exec_weighted;
  249. /*
  250. * maintain cfs_rq->min_vruntime to be a monotonic increasing
  251. * value tracking the leftmost vruntime in the tree.
  252. */
  253. if (first_fair(cfs_rq)) {
  254. vruntime = min_vruntime(curr->vruntime,
  255. __pick_next_entity(cfs_rq)->vruntime);
  256. } else
  257. vruntime = curr->vruntime;
  258. cfs_rq->min_vruntime =
  259. max_vruntime(cfs_rq->min_vruntime, vruntime);
  260. }
  261. static void update_curr(struct cfs_rq *cfs_rq)
  262. {
  263. struct sched_entity *curr = cfs_rq->curr;
  264. u64 now = rq_of(cfs_rq)->clock;
  265. unsigned long delta_exec;
  266. if (unlikely(!curr))
  267. return;
  268. /*
  269. * Get the amount of time the current task was running
  270. * since the last time we changed load (this cannot
  271. * overflow on 32 bits):
  272. */
  273. delta_exec = (unsigned long)(now - curr->exec_start);
  274. __update_curr(cfs_rq, curr, delta_exec);
  275. curr->exec_start = now;
  276. }
  277. static inline void
  278. update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  279. {
  280. schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
  281. }
  282. /*
  283. * Task is being enqueued - update stats:
  284. */
  285. static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  286. {
  287. /*
  288. * Are we enqueueing a waiting task? (for current tasks
  289. * a dequeue/enqueue event is a NOP)
  290. */
  291. if (se != cfs_rq->curr)
  292. update_stats_wait_start(cfs_rq, se);
  293. }
  294. static void
  295. update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  296. {
  297. schedstat_set(se->wait_max, max(se->wait_max,
  298. rq_of(cfs_rq)->clock - se->wait_start));
  299. schedstat_set(se->wait_start, 0);
  300. }
  301. static inline void
  302. update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  303. {
  304. /*
  305. * Mark the end of the wait period if dequeueing a
  306. * waiting task:
  307. */
  308. if (se != cfs_rq->curr)
  309. update_stats_wait_end(cfs_rq, se);
  310. }
  311. /*
  312. * We are picking a new current task - update its stats:
  313. */
  314. static inline void
  315. update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  316. {
  317. /*
  318. * We are starting a new run period:
  319. */
  320. se->exec_start = rq_of(cfs_rq)->clock;
  321. }
  322. /**************************************************
  323. * Scheduling class queueing methods:
  324. */
  325. static void
  326. account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  327. {
  328. update_load_add(&cfs_rq->load, se->load.weight);
  329. cfs_rq->nr_running++;
  330. se->on_rq = 1;
  331. }
  332. static void
  333. account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  334. {
  335. update_load_sub(&cfs_rq->load, se->load.weight);
  336. cfs_rq->nr_running--;
  337. se->on_rq = 0;
  338. }
  339. static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
  340. {
  341. #ifdef CONFIG_SCHEDSTATS
  342. if (se->sleep_start) {
  343. u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
  344. if ((s64)delta < 0)
  345. delta = 0;
  346. if (unlikely(delta > se->sleep_max))
  347. se->sleep_max = delta;
  348. se->sleep_start = 0;
  349. se->sum_sleep_runtime += delta;
  350. }
  351. if (se->block_start) {
  352. u64 delta = rq_of(cfs_rq)->clock - se->block_start;
  353. if ((s64)delta < 0)
  354. delta = 0;
  355. if (unlikely(delta > se->block_max))
  356. se->block_max = delta;
  357. se->block_start = 0;
  358. se->sum_sleep_runtime += delta;
  359. /*
  360. * Blocking time is in units of nanosecs, so shift by 20 to
  361. * get a milliseconds-range estimation of the amount of
  362. * time that the task spent sleeping:
  363. */
  364. if (unlikely(prof_on == SLEEP_PROFILING)) {
  365. struct task_struct *tsk = task_of(se);
  366. profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
  367. delta >> 20);
  368. }
  369. }
  370. #endif
  371. }
  372. static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
  373. {
  374. #ifdef CONFIG_SCHED_DEBUG
  375. s64 d = se->vruntime - cfs_rq->min_vruntime;
  376. if (d < 0)
  377. d = -d;
  378. if (d > 3*sysctl_sched_latency)
  379. schedstat_inc(cfs_rq, nr_spread_over);
  380. #endif
  381. }
  382. static void
  383. place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
  384. {
  385. u64 vruntime;
  386. vruntime = cfs_rq->min_vruntime;
  387. if (sched_feat(TREE_AVG)) {
  388. struct sched_entity *last = __pick_last_entity(cfs_rq);
  389. if (last) {
  390. vruntime += last->vruntime;
  391. vruntime >>= 1;
  392. }
  393. } else if (sched_feat(APPROX_AVG) && cfs_rq->nr_running)
  394. vruntime += sched_vslice(cfs_rq)/2;
  395. if (initial && sched_feat(START_DEBIT))
  396. vruntime += sched_vslice_add(cfs_rq, se);
  397. if (!initial) {
  398. if (sched_feat(NEW_FAIR_SLEEPERS) && entity_is_task(se) &&
  399. task_of(se)->policy != SCHED_BATCH)
  400. vruntime -= sysctl_sched_latency;
  401. vruntime = max_t(s64, vruntime, se->vruntime);
  402. }
  403. se->vruntime = vruntime;
  404. }
  405. static void
  406. enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
  407. {
  408. /*
  409. * Update run-time statistics of the 'current'.
  410. */
  411. update_curr(cfs_rq);
  412. if (wakeup) {
  413. place_entity(cfs_rq, se, 0);
  414. enqueue_sleeper(cfs_rq, se);
  415. }
  416. update_stats_enqueue(cfs_rq, se);
  417. check_spread(cfs_rq, se);
  418. if (se != cfs_rq->curr)
  419. __enqueue_entity(cfs_rq, se);
  420. account_entity_enqueue(cfs_rq, se);
  421. }
  422. static void
  423. dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
  424. {
  425. /*
  426. * Update run-time statistics of the 'current'.
  427. */
  428. update_curr(cfs_rq);
  429. update_stats_dequeue(cfs_rq, se);
  430. if (sleep) {
  431. se->peer_preempt = 0;
  432. #ifdef CONFIG_SCHEDSTATS
  433. if (entity_is_task(se)) {
  434. struct task_struct *tsk = task_of(se);
  435. if (tsk->state & TASK_INTERRUPTIBLE)
  436. se->sleep_start = rq_of(cfs_rq)->clock;
  437. if (tsk->state & TASK_UNINTERRUPTIBLE)
  438. se->block_start = rq_of(cfs_rq)->clock;
  439. }
  440. #endif
  441. }
  442. if (se != cfs_rq->curr)
  443. __dequeue_entity(cfs_rq, se);
  444. account_entity_dequeue(cfs_rq, se);
  445. }
  446. /*
  447. * Preempt the current task with a newly woken task if needed:
  448. */
  449. static void
  450. check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  451. {
  452. unsigned long ideal_runtime, delta_exec;
  453. ideal_runtime = sched_slice(cfs_rq, curr);
  454. delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  455. if (delta_exec > ideal_runtime ||
  456. (sched_feat(PREEMPT_RESTRICT) && curr->peer_preempt))
  457. resched_task(rq_of(cfs_rq)->curr);
  458. curr->peer_preempt = 0;
  459. }
  460. static void
  461. set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  462. {
  463. /* 'current' is not kept within the tree. */
  464. if (se->on_rq) {
  465. /*
  466. * Any task has to be enqueued before it get to execute on
  467. * a CPU. So account for the time it spent waiting on the
  468. * runqueue.
  469. */
  470. update_stats_wait_end(cfs_rq, se);
  471. __dequeue_entity(cfs_rq, se);
  472. }
  473. update_stats_curr_start(cfs_rq, se);
  474. cfs_rq->curr = se;
  475. #ifdef CONFIG_SCHEDSTATS
  476. /*
  477. * Track our maximum slice length, if the CPU's load is at
  478. * least twice that of our own weight (i.e. dont track it
  479. * when there are only lesser-weight tasks around):
  480. */
  481. if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
  482. se->slice_max = max(se->slice_max,
  483. se->sum_exec_runtime - se->prev_sum_exec_runtime);
  484. }
  485. #endif
  486. se->prev_sum_exec_runtime = se->sum_exec_runtime;
  487. }
  488. static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
  489. {
  490. struct sched_entity *se = NULL;
  491. if (first_fair(cfs_rq)) {
  492. se = __pick_next_entity(cfs_rq);
  493. set_next_entity(cfs_rq, se);
  494. }
  495. return se;
  496. }
  497. static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
  498. {
  499. /*
  500. * If still on the runqueue then deactivate_task()
  501. * was not called and update_curr() has to be done:
  502. */
  503. if (prev->on_rq)
  504. update_curr(cfs_rq);
  505. check_spread(cfs_rq, prev);
  506. if (prev->on_rq) {
  507. update_stats_wait_start(cfs_rq, prev);
  508. /* Put 'current' back into the tree. */
  509. __enqueue_entity(cfs_rq, prev);
  510. }
  511. cfs_rq->curr = NULL;
  512. }
  513. static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  514. {
  515. /*
  516. * Update run-time statistics of the 'current'.
  517. */
  518. update_curr(cfs_rq);
  519. if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
  520. check_preempt_tick(cfs_rq, curr);
  521. }
  522. /**************************************************
  523. * CFS operations on tasks:
  524. */
  525. #ifdef CONFIG_FAIR_GROUP_SCHED
  526. /* Walk up scheduling entities hierarchy */
  527. #define for_each_sched_entity(se) \
  528. for (; se; se = se->parent)
  529. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  530. {
  531. return p->se.cfs_rq;
  532. }
  533. /* runqueue on which this entity is (to be) queued */
  534. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  535. {
  536. return se->cfs_rq;
  537. }
  538. /* runqueue "owned" by this group */
  539. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  540. {
  541. return grp->my_q;
  542. }
  543. /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
  544. * another cpu ('this_cpu')
  545. */
  546. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  547. {
  548. return cfs_rq->tg->cfs_rq[this_cpu];
  549. }
  550. /* Iterate thr' all leaf cfs_rq's on a runqueue */
  551. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  552. list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
  553. /* Do the two (enqueued) entities belong to the same group ? */
  554. static inline int
  555. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  556. {
  557. if (se->cfs_rq == pse->cfs_rq)
  558. return 1;
  559. return 0;
  560. }
  561. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  562. {
  563. return se->parent;
  564. }
  565. #else /* CONFIG_FAIR_GROUP_SCHED */
  566. #define for_each_sched_entity(se) \
  567. for (; se; se = NULL)
  568. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  569. {
  570. return &task_rq(p)->cfs;
  571. }
  572. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  573. {
  574. struct task_struct *p = task_of(se);
  575. struct rq *rq = task_rq(p);
  576. return &rq->cfs;
  577. }
  578. /* runqueue "owned" by this group */
  579. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  580. {
  581. return NULL;
  582. }
  583. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  584. {
  585. return &cpu_rq(this_cpu)->cfs;
  586. }
  587. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  588. for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
  589. static inline int
  590. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  591. {
  592. return 1;
  593. }
  594. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  595. {
  596. return NULL;
  597. }
  598. #endif /* CONFIG_FAIR_GROUP_SCHED */
  599. /*
  600. * The enqueue_task method is called before nr_running is
  601. * increased. Here we update the fair scheduling stats and
  602. * then put the task into the rbtree:
  603. */
  604. static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
  605. {
  606. struct cfs_rq *cfs_rq;
  607. struct sched_entity *se = &p->se;
  608. for_each_sched_entity(se) {
  609. if (se->on_rq)
  610. break;
  611. cfs_rq = cfs_rq_of(se);
  612. enqueue_entity(cfs_rq, se, wakeup);
  613. wakeup = 1;
  614. }
  615. }
  616. /*
  617. * The dequeue_task method is called before nr_running is
  618. * decreased. We remove the task from the rbtree and
  619. * update the fair scheduling stats:
  620. */
  621. static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
  622. {
  623. struct cfs_rq *cfs_rq;
  624. struct sched_entity *se = &p->se;
  625. for_each_sched_entity(se) {
  626. cfs_rq = cfs_rq_of(se);
  627. dequeue_entity(cfs_rq, se, sleep);
  628. /* Don't dequeue parent if it has other entities besides us */
  629. if (cfs_rq->load.weight)
  630. break;
  631. sleep = 1;
  632. }
  633. }
  634. /*
  635. * sched_yield() support is very simple - we dequeue and enqueue.
  636. *
  637. * If compat_yield is turned on then we requeue to the end of the tree.
  638. */
  639. static void yield_task_fair(struct rq *rq)
  640. {
  641. struct cfs_rq *cfs_rq = task_cfs_rq(rq->curr);
  642. struct sched_entity *rightmost, *se = &rq->curr->se;
  643. /*
  644. * Are we the only task in the tree?
  645. */
  646. if (unlikely(cfs_rq->nr_running == 1))
  647. return;
  648. if (likely(!sysctl_sched_compat_yield)) {
  649. __update_rq_clock(rq);
  650. /*
  651. * Update run-time statistics of the 'current'.
  652. */
  653. update_curr(cfs_rq);
  654. return;
  655. }
  656. /*
  657. * Find the rightmost entry in the rbtree:
  658. */
  659. rightmost = __pick_last_entity(cfs_rq);
  660. /*
  661. * Already in the rightmost position?
  662. */
  663. if (unlikely(rightmost->vruntime < se->vruntime))
  664. return;
  665. /*
  666. * Minimally necessary key value to be last in the tree:
  667. * Upon rescheduling, sched_class::put_prev_task() will place
  668. * 'current' within the tree based on its new key value.
  669. */
  670. se->vruntime = rightmost->vruntime + 1;
  671. }
  672. /*
  673. * Preempt the current task with a newly woken task if needed:
  674. */
  675. static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
  676. {
  677. struct task_struct *curr = rq->curr;
  678. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  679. struct sched_entity *se = &curr->se, *pse = &p->se;
  680. s64 delta, gran;
  681. if (unlikely(rt_prio(p->prio))) {
  682. update_rq_clock(rq);
  683. update_curr(cfs_rq);
  684. resched_task(curr);
  685. return;
  686. }
  687. /*
  688. * Batch tasks do not preempt (their preemption is driven by
  689. * the tick):
  690. */
  691. if (unlikely(p->policy == SCHED_BATCH))
  692. return;
  693. if (sched_feat(WAKEUP_PREEMPT)) {
  694. while (!is_same_group(se, pse)) {
  695. se = parent_entity(se);
  696. pse = parent_entity(pse);
  697. }
  698. delta = se->vruntime - pse->vruntime;
  699. gran = sysctl_sched_wakeup_granularity;
  700. if (unlikely(se->load.weight != NICE_0_LOAD))
  701. gran = calc_delta_fair(gran, &se->load);
  702. if (delta > gran) {
  703. int now = !sched_feat(PREEMPT_RESTRICT);
  704. if (now || p->prio < curr->prio || !se->peer_preempt++)
  705. resched_task(curr);
  706. }
  707. }
  708. }
  709. static struct task_struct *pick_next_task_fair(struct rq *rq)
  710. {
  711. struct cfs_rq *cfs_rq = &rq->cfs;
  712. struct sched_entity *se;
  713. if (unlikely(!cfs_rq->nr_running))
  714. return NULL;
  715. do {
  716. se = pick_next_entity(cfs_rq);
  717. cfs_rq = group_cfs_rq(se);
  718. } while (cfs_rq);
  719. return task_of(se);
  720. }
  721. /*
  722. * Account for a descheduled task:
  723. */
  724. static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
  725. {
  726. struct sched_entity *se = &prev->se;
  727. struct cfs_rq *cfs_rq;
  728. for_each_sched_entity(se) {
  729. cfs_rq = cfs_rq_of(se);
  730. put_prev_entity(cfs_rq, se);
  731. }
  732. }
  733. /**************************************************
  734. * Fair scheduling class load-balancing methods:
  735. */
  736. /*
  737. * Load-balancing iterator. Note: while the runqueue stays locked
  738. * during the whole iteration, the current task might be
  739. * dequeued so the iterator has to be dequeue-safe. Here we
  740. * achieve that by always pre-iterating before returning
  741. * the current task:
  742. */
  743. static struct task_struct *
  744. __load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
  745. {
  746. struct task_struct *p;
  747. if (!curr)
  748. return NULL;
  749. p = rb_entry(curr, struct task_struct, se.run_node);
  750. cfs_rq->rb_load_balance_curr = rb_next(curr);
  751. return p;
  752. }
  753. static struct task_struct *load_balance_start_fair(void *arg)
  754. {
  755. struct cfs_rq *cfs_rq = arg;
  756. return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
  757. }
  758. static struct task_struct *load_balance_next_fair(void *arg)
  759. {
  760. struct cfs_rq *cfs_rq = arg;
  761. return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
  762. }
  763. #ifdef CONFIG_FAIR_GROUP_SCHED
  764. static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
  765. {
  766. struct sched_entity *curr;
  767. struct task_struct *p;
  768. if (!cfs_rq->nr_running)
  769. return MAX_PRIO;
  770. curr = cfs_rq->curr;
  771. if (!curr)
  772. curr = __pick_next_entity(cfs_rq);
  773. p = task_of(curr);
  774. return p->prio;
  775. }
  776. #endif
  777. static unsigned long
  778. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  779. unsigned long max_nr_move, unsigned long max_load_move,
  780. struct sched_domain *sd, enum cpu_idle_type idle,
  781. int *all_pinned, int *this_best_prio)
  782. {
  783. struct cfs_rq *busy_cfs_rq;
  784. unsigned long load_moved, total_nr_moved = 0, nr_moved;
  785. long rem_load_move = max_load_move;
  786. struct rq_iterator cfs_rq_iterator;
  787. cfs_rq_iterator.start = load_balance_start_fair;
  788. cfs_rq_iterator.next = load_balance_next_fair;
  789. for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
  790. #ifdef CONFIG_FAIR_GROUP_SCHED
  791. struct cfs_rq *this_cfs_rq;
  792. long imbalance;
  793. unsigned long maxload;
  794. this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
  795. imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
  796. /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
  797. if (imbalance <= 0)
  798. continue;
  799. /* Don't pull more than imbalance/2 */
  800. imbalance /= 2;
  801. maxload = min(rem_load_move, imbalance);
  802. *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
  803. #else
  804. # define maxload rem_load_move
  805. #endif
  806. /* pass busy_cfs_rq argument into
  807. * load_balance_[start|next]_fair iterators
  808. */
  809. cfs_rq_iterator.arg = busy_cfs_rq;
  810. nr_moved = balance_tasks(this_rq, this_cpu, busiest,
  811. max_nr_move, maxload, sd, idle, all_pinned,
  812. &load_moved, this_best_prio, &cfs_rq_iterator);
  813. total_nr_moved += nr_moved;
  814. max_nr_move -= nr_moved;
  815. rem_load_move -= load_moved;
  816. if (max_nr_move <= 0 || rem_load_move <= 0)
  817. break;
  818. }
  819. return max_load_move - rem_load_move;
  820. }
  821. /*
  822. * scheduler tick hitting a task of our scheduling class:
  823. */
  824. static void task_tick_fair(struct rq *rq, struct task_struct *curr)
  825. {
  826. struct cfs_rq *cfs_rq;
  827. struct sched_entity *se = &curr->se;
  828. for_each_sched_entity(se) {
  829. cfs_rq = cfs_rq_of(se);
  830. entity_tick(cfs_rq, se);
  831. }
  832. }
  833. #define swap(a,b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
  834. /*
  835. * Share the fairness runtime between parent and child, thus the
  836. * total amount of pressure for CPU stays equal - new tasks
  837. * get a chance to run but frequent forkers are not allowed to
  838. * monopolize the CPU. Note: the parent runqueue is locked,
  839. * the child is not running yet.
  840. */
  841. static void task_new_fair(struct rq *rq, struct task_struct *p)
  842. {
  843. struct cfs_rq *cfs_rq = task_cfs_rq(p);
  844. struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
  845. int this_cpu = smp_processor_id();
  846. sched_info_queued(p);
  847. update_curr(cfs_rq);
  848. place_entity(cfs_rq, se, 1);
  849. if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
  850. curr->vruntime < se->vruntime) {
  851. /*
  852. * Upon rescheduling, sched_class::put_prev_task() will place
  853. * 'current' within the tree based on its new key value.
  854. */
  855. swap(curr->vruntime, se->vruntime);
  856. }
  857. se->peer_preempt = 0;
  858. enqueue_task_fair(rq, p, 0);
  859. resched_task(rq->curr);
  860. }
  861. /* Account for a task changing its policy or group.
  862. *
  863. * This routine is mostly called to set cfs_rq->curr field when a task
  864. * migrates between groups/classes.
  865. */
  866. static void set_curr_task_fair(struct rq *rq)
  867. {
  868. struct sched_entity *se = &rq->curr->se;
  869. for_each_sched_entity(se)
  870. set_next_entity(cfs_rq_of(se), se);
  871. }
  872. /*
  873. * All the scheduling class methods:
  874. */
  875. static const struct sched_class fair_sched_class = {
  876. .next = &idle_sched_class,
  877. .enqueue_task = enqueue_task_fair,
  878. .dequeue_task = dequeue_task_fair,
  879. .yield_task = yield_task_fair,
  880. .check_preempt_curr = check_preempt_wakeup,
  881. .pick_next_task = pick_next_task_fair,
  882. .put_prev_task = put_prev_task_fair,
  883. .load_balance = load_balance_fair,
  884. .set_curr_task = set_curr_task_fair,
  885. .task_tick = task_tick_fair,
  886. .task_new = task_new_fair,
  887. };
  888. #ifdef CONFIG_SCHED_DEBUG
  889. static void print_cfs_stats(struct seq_file *m, int cpu)
  890. {
  891. struct cfs_rq *cfs_rq;
  892. #ifdef CONFIG_FAIR_GROUP_SCHED
  893. print_cfs_rq(m, cpu, &cpu_rq(cpu)->cfs);
  894. #endif
  895. for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
  896. print_cfs_rq(m, cpu, cfs_rq);
  897. }
  898. #endif