sched.c 177 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. */
  26. #include <linux/mm.h>
  27. #include <linux/module.h>
  28. #include <linux/nmi.h>
  29. #include <linux/init.h>
  30. #include <linux/uaccess.h>
  31. #include <linux/highmem.h>
  32. #include <linux/smp_lock.h>
  33. #include <asm/mmu_context.h>
  34. #include <linux/interrupt.h>
  35. #include <linux/capability.h>
  36. #include <linux/completion.h>
  37. #include <linux/kernel_stat.h>
  38. #include <linux/debug_locks.h>
  39. #include <linux/security.h>
  40. #include <linux/notifier.h>
  41. #include <linux/profile.h>
  42. #include <linux/freezer.h>
  43. #include <linux/vmalloc.h>
  44. #include <linux/blkdev.h>
  45. #include <linux/delay.h>
  46. #include <linux/pid_namespace.h>
  47. #include <linux/smp.h>
  48. #include <linux/threads.h>
  49. #include <linux/timer.h>
  50. #include <linux/rcupdate.h>
  51. #include <linux/cpu.h>
  52. #include <linux/cpuset.h>
  53. #include <linux/percpu.h>
  54. #include <linux/cpu_acct.h>
  55. #include <linux/kthread.h>
  56. #include <linux/seq_file.h>
  57. #include <linux/sysctl.h>
  58. #include <linux/syscalls.h>
  59. #include <linux/times.h>
  60. #include <linux/tsacct_kern.h>
  61. #include <linux/kprobes.h>
  62. #include <linux/delayacct.h>
  63. #include <linux/reciprocal_div.h>
  64. #include <linux/unistd.h>
  65. #include <linux/pagemap.h>
  66. #include <asm/tlb.h>
  67. /*
  68. * Scheduler clock - returns current time in nanosec units.
  69. * This is default implementation.
  70. * Architectures and sub-architectures can override this.
  71. */
  72. unsigned long long __attribute__((weak)) sched_clock(void)
  73. {
  74. return (unsigned long long)jiffies * (1000000000 / HZ);
  75. }
  76. /*
  77. * Convert user-nice values [ -20 ... 0 ... 19 ]
  78. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  79. * and back.
  80. */
  81. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  82. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  83. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  84. /*
  85. * 'User priority' is the nice value converted to something we
  86. * can work with better when scaling various scheduler parameters,
  87. * it's a [ 0 ... 39 ] range.
  88. */
  89. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  90. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  91. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  92. /*
  93. * Some helpers for converting nanosecond timing to jiffy resolution
  94. */
  95. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (1000000000 / HZ))
  96. #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
  97. #define NICE_0_LOAD SCHED_LOAD_SCALE
  98. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  99. /*
  100. * These are the 'tuning knobs' of the scheduler:
  101. *
  102. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  103. * Timeslices get refilled after they expire.
  104. */
  105. #define DEF_TIMESLICE (100 * HZ / 1000)
  106. #ifdef CONFIG_SMP
  107. /*
  108. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  109. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  110. */
  111. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  112. {
  113. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  114. }
  115. /*
  116. * Each time a sched group cpu_power is changed,
  117. * we must compute its reciprocal value
  118. */
  119. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  120. {
  121. sg->__cpu_power += val;
  122. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  123. }
  124. #endif
  125. static inline int rt_policy(int policy)
  126. {
  127. if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
  128. return 1;
  129. return 0;
  130. }
  131. static inline int task_has_rt_policy(struct task_struct *p)
  132. {
  133. return rt_policy(p->policy);
  134. }
  135. /*
  136. * This is the priority-queue data structure of the RT scheduling class:
  137. */
  138. struct rt_prio_array {
  139. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  140. struct list_head queue[MAX_RT_PRIO];
  141. };
  142. #ifdef CONFIG_FAIR_GROUP_SCHED
  143. #include <linux/cgroup.h>
  144. struct cfs_rq;
  145. /* task group related information */
  146. struct task_group {
  147. #ifdef CONFIG_FAIR_CGROUP_SCHED
  148. struct cgroup_subsys_state css;
  149. #endif
  150. /* schedulable entities of this group on each cpu */
  151. struct sched_entity **se;
  152. /* runqueue "owned" by this group on each cpu */
  153. struct cfs_rq **cfs_rq;
  154. unsigned long shares;
  155. /* spinlock to serialize modification to shares */
  156. spinlock_t lock;
  157. };
  158. /* Default task group's sched entity on each cpu */
  159. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  160. /* Default task group's cfs_rq on each cpu */
  161. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  162. static struct sched_entity *init_sched_entity_p[NR_CPUS];
  163. static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
  164. /* Default task group.
  165. * Every task in system belong to this group at bootup.
  166. */
  167. struct task_group init_task_group = {
  168. .se = init_sched_entity_p,
  169. .cfs_rq = init_cfs_rq_p,
  170. };
  171. #ifdef CONFIG_FAIR_USER_SCHED
  172. # define INIT_TASK_GRP_LOAD 2*NICE_0_LOAD
  173. #else
  174. # define INIT_TASK_GRP_LOAD NICE_0_LOAD
  175. #endif
  176. static int init_task_group_load = INIT_TASK_GRP_LOAD;
  177. /* return group to which a task belongs */
  178. static inline struct task_group *task_group(struct task_struct *p)
  179. {
  180. struct task_group *tg;
  181. #ifdef CONFIG_FAIR_USER_SCHED
  182. tg = p->user->tg;
  183. #elif defined(CONFIG_FAIR_CGROUP_SCHED)
  184. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  185. struct task_group, css);
  186. #else
  187. tg = &init_task_group;
  188. #endif
  189. return tg;
  190. }
  191. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  192. static inline void set_task_cfs_rq(struct task_struct *p)
  193. {
  194. p->se.cfs_rq = task_group(p)->cfs_rq[task_cpu(p)];
  195. p->se.parent = task_group(p)->se[task_cpu(p)];
  196. }
  197. #else
  198. static inline void set_task_cfs_rq(struct task_struct *p) { }
  199. #endif /* CONFIG_FAIR_GROUP_SCHED */
  200. /* CFS-related fields in a runqueue */
  201. struct cfs_rq {
  202. struct load_weight load;
  203. unsigned long nr_running;
  204. u64 exec_clock;
  205. u64 min_vruntime;
  206. struct rb_root tasks_timeline;
  207. struct rb_node *rb_leftmost;
  208. struct rb_node *rb_load_balance_curr;
  209. /* 'curr' points to currently running entity on this cfs_rq.
  210. * It is set to NULL otherwise (i.e when none are currently running).
  211. */
  212. struct sched_entity *curr;
  213. unsigned long nr_spread_over;
  214. #ifdef CONFIG_FAIR_GROUP_SCHED
  215. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  216. /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  217. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  218. * (like users, containers etc.)
  219. *
  220. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  221. * list is used during load balance.
  222. */
  223. struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
  224. struct task_group *tg; /* group that "owns" this runqueue */
  225. struct rcu_head rcu;
  226. #endif
  227. };
  228. /* Real-Time classes' related field in a runqueue: */
  229. struct rt_rq {
  230. struct rt_prio_array active;
  231. int rt_load_balance_idx;
  232. struct list_head *rt_load_balance_head, *rt_load_balance_curr;
  233. };
  234. /*
  235. * This is the main, per-CPU runqueue data structure.
  236. *
  237. * Locking rule: those places that want to lock multiple runqueues
  238. * (such as the load balancing or the thread migration code), lock
  239. * acquire operations must be ordered by ascending &runqueue.
  240. */
  241. struct rq {
  242. /* runqueue lock: */
  243. spinlock_t lock;
  244. /*
  245. * nr_running and cpu_load should be in the same cacheline because
  246. * remote CPUs use both these fields when doing load calculation.
  247. */
  248. unsigned long nr_running;
  249. #define CPU_LOAD_IDX_MAX 5
  250. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  251. unsigned char idle_at_tick;
  252. #ifdef CONFIG_NO_HZ
  253. unsigned char in_nohz_recently;
  254. #endif
  255. /* capture load from *all* tasks on this cpu: */
  256. struct load_weight load;
  257. unsigned long nr_load_updates;
  258. u64 nr_switches;
  259. struct cfs_rq cfs;
  260. #ifdef CONFIG_FAIR_GROUP_SCHED
  261. /* list of leaf cfs_rq on this cpu: */
  262. struct list_head leaf_cfs_rq_list;
  263. #endif
  264. struct rt_rq rt;
  265. /*
  266. * This is part of a global counter where only the total sum
  267. * over all CPUs matters. A task can increase this counter on
  268. * one CPU and if it got migrated afterwards it may decrease
  269. * it on another CPU. Always updated under the runqueue lock:
  270. */
  271. unsigned long nr_uninterruptible;
  272. struct task_struct *curr, *idle;
  273. unsigned long next_balance;
  274. struct mm_struct *prev_mm;
  275. u64 clock, prev_clock_raw;
  276. s64 clock_max_delta;
  277. unsigned int clock_warps, clock_overflows;
  278. u64 idle_clock;
  279. unsigned int clock_deep_idle_events;
  280. u64 tick_timestamp;
  281. atomic_t nr_iowait;
  282. #ifdef CONFIG_SMP
  283. struct sched_domain *sd;
  284. /* For active balancing */
  285. int active_balance;
  286. int push_cpu;
  287. /* cpu of this runqueue: */
  288. int cpu;
  289. struct task_struct *migration_thread;
  290. struct list_head migration_queue;
  291. #endif
  292. #ifdef CONFIG_SCHEDSTATS
  293. /* latency stats */
  294. struct sched_info rq_sched_info;
  295. /* sys_sched_yield() stats */
  296. unsigned int yld_exp_empty;
  297. unsigned int yld_act_empty;
  298. unsigned int yld_both_empty;
  299. unsigned int yld_count;
  300. /* schedule() stats */
  301. unsigned int sched_switch;
  302. unsigned int sched_count;
  303. unsigned int sched_goidle;
  304. /* try_to_wake_up() stats */
  305. unsigned int ttwu_count;
  306. unsigned int ttwu_local;
  307. /* BKL stats */
  308. unsigned int bkl_count;
  309. #endif
  310. struct lock_class_key rq_lock_key;
  311. };
  312. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  313. static DEFINE_MUTEX(sched_hotcpu_mutex);
  314. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  315. {
  316. rq->curr->sched_class->check_preempt_curr(rq, p);
  317. }
  318. static inline int cpu_of(struct rq *rq)
  319. {
  320. #ifdef CONFIG_SMP
  321. return rq->cpu;
  322. #else
  323. return 0;
  324. #endif
  325. }
  326. /*
  327. * Update the per-runqueue clock, as finegrained as the platform can give
  328. * us, but without assuming monotonicity, etc.:
  329. */
  330. static void __update_rq_clock(struct rq *rq)
  331. {
  332. u64 prev_raw = rq->prev_clock_raw;
  333. u64 now = sched_clock();
  334. s64 delta = now - prev_raw;
  335. u64 clock = rq->clock;
  336. #ifdef CONFIG_SCHED_DEBUG
  337. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  338. #endif
  339. /*
  340. * Protect against sched_clock() occasionally going backwards:
  341. */
  342. if (unlikely(delta < 0)) {
  343. clock++;
  344. rq->clock_warps++;
  345. } else {
  346. /*
  347. * Catch too large forward jumps too:
  348. */
  349. if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
  350. if (clock < rq->tick_timestamp + TICK_NSEC)
  351. clock = rq->tick_timestamp + TICK_NSEC;
  352. else
  353. clock++;
  354. rq->clock_overflows++;
  355. } else {
  356. if (unlikely(delta > rq->clock_max_delta))
  357. rq->clock_max_delta = delta;
  358. clock += delta;
  359. }
  360. }
  361. rq->prev_clock_raw = now;
  362. rq->clock = clock;
  363. }
  364. static void update_rq_clock(struct rq *rq)
  365. {
  366. if (likely(smp_processor_id() == cpu_of(rq)))
  367. __update_rq_clock(rq);
  368. }
  369. /*
  370. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  371. * See detach_destroy_domains: synchronize_sched for details.
  372. *
  373. * The domain tree of any CPU may only be accessed from within
  374. * preempt-disabled sections.
  375. */
  376. #define for_each_domain(cpu, __sd) \
  377. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  378. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  379. #define this_rq() (&__get_cpu_var(runqueues))
  380. #define task_rq(p) cpu_rq(task_cpu(p))
  381. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  382. /*
  383. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  384. */
  385. #ifdef CONFIG_SCHED_DEBUG
  386. # define const_debug __read_mostly
  387. #else
  388. # define const_debug static const
  389. #endif
  390. /*
  391. * Debugging: various feature bits
  392. */
  393. enum {
  394. SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
  395. SCHED_FEAT_START_DEBIT = 2,
  396. SCHED_FEAT_TREE_AVG = 4,
  397. SCHED_FEAT_APPROX_AVG = 8,
  398. SCHED_FEAT_WAKEUP_PREEMPT = 16,
  399. SCHED_FEAT_PREEMPT_RESTRICT = 32,
  400. };
  401. const_debug unsigned int sysctl_sched_features =
  402. SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
  403. SCHED_FEAT_START_DEBIT * 1 |
  404. SCHED_FEAT_TREE_AVG * 0 |
  405. SCHED_FEAT_APPROX_AVG * 0 |
  406. SCHED_FEAT_WAKEUP_PREEMPT * 1 |
  407. SCHED_FEAT_PREEMPT_RESTRICT * 1;
  408. #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
  409. /*
  410. * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
  411. * clock constructed from sched_clock():
  412. */
  413. unsigned long long cpu_clock(int cpu)
  414. {
  415. unsigned long long now;
  416. unsigned long flags;
  417. struct rq *rq;
  418. local_irq_save(flags);
  419. rq = cpu_rq(cpu);
  420. update_rq_clock(rq);
  421. now = rq->clock;
  422. local_irq_restore(flags);
  423. return now;
  424. }
  425. EXPORT_SYMBOL_GPL(cpu_clock);
  426. #ifndef prepare_arch_switch
  427. # define prepare_arch_switch(next) do { } while (0)
  428. #endif
  429. #ifndef finish_arch_switch
  430. # define finish_arch_switch(prev) do { } while (0)
  431. #endif
  432. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  433. static inline int task_running(struct rq *rq, struct task_struct *p)
  434. {
  435. return rq->curr == p;
  436. }
  437. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  438. {
  439. }
  440. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  441. {
  442. #ifdef CONFIG_DEBUG_SPINLOCK
  443. /* this is a valid case when another task releases the spinlock */
  444. rq->lock.owner = current;
  445. #endif
  446. /*
  447. * If we are tracking spinlock dependencies then we have to
  448. * fix up the runqueue lock - which gets 'carried over' from
  449. * prev into current:
  450. */
  451. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  452. spin_unlock_irq(&rq->lock);
  453. }
  454. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  455. static inline int task_running(struct rq *rq, struct task_struct *p)
  456. {
  457. #ifdef CONFIG_SMP
  458. return p->oncpu;
  459. #else
  460. return rq->curr == p;
  461. #endif
  462. }
  463. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  464. {
  465. #ifdef CONFIG_SMP
  466. /*
  467. * We can optimise this out completely for !SMP, because the
  468. * SMP rebalancing from interrupt is the only thing that cares
  469. * here.
  470. */
  471. next->oncpu = 1;
  472. #endif
  473. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  474. spin_unlock_irq(&rq->lock);
  475. #else
  476. spin_unlock(&rq->lock);
  477. #endif
  478. }
  479. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  480. {
  481. #ifdef CONFIG_SMP
  482. /*
  483. * After ->oncpu is cleared, the task can be moved to a different CPU.
  484. * We must ensure this doesn't happen until the switch is completely
  485. * finished.
  486. */
  487. smp_wmb();
  488. prev->oncpu = 0;
  489. #endif
  490. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  491. local_irq_enable();
  492. #endif
  493. }
  494. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  495. /*
  496. * __task_rq_lock - lock the runqueue a given task resides on.
  497. * Must be called interrupts disabled.
  498. */
  499. static inline struct rq *__task_rq_lock(struct task_struct *p)
  500. __acquires(rq->lock)
  501. {
  502. for (;;) {
  503. struct rq *rq = task_rq(p);
  504. spin_lock(&rq->lock);
  505. if (likely(rq == task_rq(p)))
  506. return rq;
  507. spin_unlock(&rq->lock);
  508. }
  509. }
  510. /*
  511. * task_rq_lock - lock the runqueue a given task resides on and disable
  512. * interrupts. Note the ordering: we can safely lookup the task_rq without
  513. * explicitly disabling preemption.
  514. */
  515. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  516. __acquires(rq->lock)
  517. {
  518. struct rq *rq;
  519. for (;;) {
  520. local_irq_save(*flags);
  521. rq = task_rq(p);
  522. spin_lock(&rq->lock);
  523. if (likely(rq == task_rq(p)))
  524. return rq;
  525. spin_unlock_irqrestore(&rq->lock, *flags);
  526. }
  527. }
  528. static void __task_rq_unlock(struct rq *rq)
  529. __releases(rq->lock)
  530. {
  531. spin_unlock(&rq->lock);
  532. }
  533. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  534. __releases(rq->lock)
  535. {
  536. spin_unlock_irqrestore(&rq->lock, *flags);
  537. }
  538. /*
  539. * this_rq_lock - lock this runqueue and disable interrupts.
  540. */
  541. static struct rq *this_rq_lock(void)
  542. __acquires(rq->lock)
  543. {
  544. struct rq *rq;
  545. local_irq_disable();
  546. rq = this_rq();
  547. spin_lock(&rq->lock);
  548. return rq;
  549. }
  550. /*
  551. * We are going deep-idle (irqs are disabled):
  552. */
  553. void sched_clock_idle_sleep_event(void)
  554. {
  555. struct rq *rq = cpu_rq(smp_processor_id());
  556. spin_lock(&rq->lock);
  557. __update_rq_clock(rq);
  558. spin_unlock(&rq->lock);
  559. rq->clock_deep_idle_events++;
  560. }
  561. EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
  562. /*
  563. * We just idled delta nanoseconds (called with irqs disabled):
  564. */
  565. void sched_clock_idle_wakeup_event(u64 delta_ns)
  566. {
  567. struct rq *rq = cpu_rq(smp_processor_id());
  568. u64 now = sched_clock();
  569. rq->idle_clock += delta_ns;
  570. /*
  571. * Override the previous timestamp and ignore all
  572. * sched_clock() deltas that occured while we idled,
  573. * and use the PM-provided delta_ns to advance the
  574. * rq clock:
  575. */
  576. spin_lock(&rq->lock);
  577. rq->prev_clock_raw = now;
  578. rq->clock += delta_ns;
  579. spin_unlock(&rq->lock);
  580. }
  581. EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
  582. /*
  583. * resched_task - mark a task 'to be rescheduled now'.
  584. *
  585. * On UP this means the setting of the need_resched flag, on SMP it
  586. * might also involve a cross-CPU call to trigger the scheduler on
  587. * the target CPU.
  588. */
  589. #ifdef CONFIG_SMP
  590. #ifndef tsk_is_polling
  591. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  592. #endif
  593. static void resched_task(struct task_struct *p)
  594. {
  595. int cpu;
  596. assert_spin_locked(&task_rq(p)->lock);
  597. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  598. return;
  599. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  600. cpu = task_cpu(p);
  601. if (cpu == smp_processor_id())
  602. return;
  603. /* NEED_RESCHED must be visible before we test polling */
  604. smp_mb();
  605. if (!tsk_is_polling(p))
  606. smp_send_reschedule(cpu);
  607. }
  608. static void resched_cpu(int cpu)
  609. {
  610. struct rq *rq = cpu_rq(cpu);
  611. unsigned long flags;
  612. if (!spin_trylock_irqsave(&rq->lock, flags))
  613. return;
  614. resched_task(cpu_curr(cpu));
  615. spin_unlock_irqrestore(&rq->lock, flags);
  616. }
  617. #else
  618. static inline void resched_task(struct task_struct *p)
  619. {
  620. assert_spin_locked(&task_rq(p)->lock);
  621. set_tsk_need_resched(p);
  622. }
  623. #endif
  624. #if BITS_PER_LONG == 32
  625. # define WMULT_CONST (~0UL)
  626. #else
  627. # define WMULT_CONST (1UL << 32)
  628. #endif
  629. #define WMULT_SHIFT 32
  630. /*
  631. * Shift right and round:
  632. */
  633. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  634. static unsigned long
  635. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  636. struct load_weight *lw)
  637. {
  638. u64 tmp;
  639. if (unlikely(!lw->inv_weight))
  640. lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
  641. tmp = (u64)delta_exec * weight;
  642. /*
  643. * Check whether we'd overflow the 64-bit multiplication:
  644. */
  645. if (unlikely(tmp > WMULT_CONST))
  646. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  647. WMULT_SHIFT/2);
  648. else
  649. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  650. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  651. }
  652. static inline unsigned long
  653. calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
  654. {
  655. return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
  656. }
  657. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  658. {
  659. lw->weight += inc;
  660. }
  661. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  662. {
  663. lw->weight -= dec;
  664. }
  665. /*
  666. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  667. * of tasks with abnormal "nice" values across CPUs the contribution that
  668. * each task makes to its run queue's load is weighted according to its
  669. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  670. * scaled version of the new time slice allocation that they receive on time
  671. * slice expiry etc.
  672. */
  673. #define WEIGHT_IDLEPRIO 2
  674. #define WMULT_IDLEPRIO (1 << 31)
  675. /*
  676. * Nice levels are multiplicative, with a gentle 10% change for every
  677. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  678. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  679. * that remained on nice 0.
  680. *
  681. * The "10% effect" is relative and cumulative: from _any_ nice level,
  682. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  683. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  684. * If a task goes up by ~10% and another task goes down by ~10% then
  685. * the relative distance between them is ~25%.)
  686. */
  687. static const int prio_to_weight[40] = {
  688. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  689. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  690. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  691. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  692. /* 0 */ 1024, 820, 655, 526, 423,
  693. /* 5 */ 335, 272, 215, 172, 137,
  694. /* 10 */ 110, 87, 70, 56, 45,
  695. /* 15 */ 36, 29, 23, 18, 15,
  696. };
  697. /*
  698. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  699. *
  700. * In cases where the weight does not change often, we can use the
  701. * precalculated inverse to speed up arithmetics by turning divisions
  702. * into multiplications:
  703. */
  704. static const u32 prio_to_wmult[40] = {
  705. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  706. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  707. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  708. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  709. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  710. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  711. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  712. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  713. };
  714. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  715. /*
  716. * runqueue iterator, to support SMP load-balancing between different
  717. * scheduling classes, without having to expose their internal data
  718. * structures to the load-balancing proper:
  719. */
  720. struct rq_iterator {
  721. void *arg;
  722. struct task_struct *(*start)(void *);
  723. struct task_struct *(*next)(void *);
  724. };
  725. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  726. unsigned long max_nr_move, unsigned long max_load_move,
  727. struct sched_domain *sd, enum cpu_idle_type idle,
  728. int *all_pinned, unsigned long *load_moved,
  729. int *this_best_prio, struct rq_iterator *iterator);
  730. #include "sched_stats.h"
  731. #include "sched_idletask.c"
  732. #include "sched_fair.c"
  733. #include "sched_rt.c"
  734. #ifdef CONFIG_SCHED_DEBUG
  735. # include "sched_debug.c"
  736. #endif
  737. #define sched_class_highest (&rt_sched_class)
  738. /*
  739. * Update delta_exec, delta_fair fields for rq.
  740. *
  741. * delta_fair clock advances at a rate inversely proportional to
  742. * total load (rq->load.weight) on the runqueue, while
  743. * delta_exec advances at the same rate as wall-clock (provided
  744. * cpu is not idle).
  745. *
  746. * delta_exec / delta_fair is a measure of the (smoothened) load on this
  747. * runqueue over any given interval. This (smoothened) load is used
  748. * during load balance.
  749. *
  750. * This function is called /before/ updating rq->load
  751. * and when switching tasks.
  752. */
  753. static inline void inc_load(struct rq *rq, const struct task_struct *p)
  754. {
  755. update_load_add(&rq->load, p->se.load.weight);
  756. }
  757. static inline void dec_load(struct rq *rq, const struct task_struct *p)
  758. {
  759. update_load_sub(&rq->load, p->se.load.weight);
  760. }
  761. static void inc_nr_running(struct task_struct *p, struct rq *rq)
  762. {
  763. rq->nr_running++;
  764. inc_load(rq, p);
  765. }
  766. static void dec_nr_running(struct task_struct *p, struct rq *rq)
  767. {
  768. rq->nr_running--;
  769. dec_load(rq, p);
  770. }
  771. static void set_load_weight(struct task_struct *p)
  772. {
  773. if (task_has_rt_policy(p)) {
  774. p->se.load.weight = prio_to_weight[0] * 2;
  775. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  776. return;
  777. }
  778. /*
  779. * SCHED_IDLE tasks get minimal weight:
  780. */
  781. if (p->policy == SCHED_IDLE) {
  782. p->se.load.weight = WEIGHT_IDLEPRIO;
  783. p->se.load.inv_weight = WMULT_IDLEPRIO;
  784. return;
  785. }
  786. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  787. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  788. }
  789. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  790. {
  791. sched_info_queued(p);
  792. p->sched_class->enqueue_task(rq, p, wakeup);
  793. p->se.on_rq = 1;
  794. }
  795. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  796. {
  797. p->sched_class->dequeue_task(rq, p, sleep);
  798. p->se.on_rq = 0;
  799. }
  800. /*
  801. * __normal_prio - return the priority that is based on the static prio
  802. */
  803. static inline int __normal_prio(struct task_struct *p)
  804. {
  805. return p->static_prio;
  806. }
  807. /*
  808. * Calculate the expected normal priority: i.e. priority
  809. * without taking RT-inheritance into account. Might be
  810. * boosted by interactivity modifiers. Changes upon fork,
  811. * setprio syscalls, and whenever the interactivity
  812. * estimator recalculates.
  813. */
  814. static inline int normal_prio(struct task_struct *p)
  815. {
  816. int prio;
  817. if (task_has_rt_policy(p))
  818. prio = MAX_RT_PRIO-1 - p->rt_priority;
  819. else
  820. prio = __normal_prio(p);
  821. return prio;
  822. }
  823. /*
  824. * Calculate the current priority, i.e. the priority
  825. * taken into account by the scheduler. This value might
  826. * be boosted by RT tasks, or might be boosted by
  827. * interactivity modifiers. Will be RT if the task got
  828. * RT-boosted. If not then it returns p->normal_prio.
  829. */
  830. static int effective_prio(struct task_struct *p)
  831. {
  832. p->normal_prio = normal_prio(p);
  833. /*
  834. * If we are RT tasks or we were boosted to RT priority,
  835. * keep the priority unchanged. Otherwise, update priority
  836. * to the normal priority:
  837. */
  838. if (!rt_prio(p->prio))
  839. return p->normal_prio;
  840. return p->prio;
  841. }
  842. /*
  843. * activate_task - move a task to the runqueue.
  844. */
  845. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  846. {
  847. if (p->state == TASK_UNINTERRUPTIBLE)
  848. rq->nr_uninterruptible--;
  849. enqueue_task(rq, p, wakeup);
  850. inc_nr_running(p, rq);
  851. }
  852. /*
  853. * deactivate_task - remove a task from the runqueue.
  854. */
  855. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  856. {
  857. if (p->state == TASK_UNINTERRUPTIBLE)
  858. rq->nr_uninterruptible++;
  859. dequeue_task(rq, p, sleep);
  860. dec_nr_running(p, rq);
  861. }
  862. /**
  863. * task_curr - is this task currently executing on a CPU?
  864. * @p: the task in question.
  865. */
  866. inline int task_curr(const struct task_struct *p)
  867. {
  868. return cpu_curr(task_cpu(p)) == p;
  869. }
  870. /* Used instead of source_load when we know the type == 0 */
  871. unsigned long weighted_cpuload(const int cpu)
  872. {
  873. return cpu_rq(cpu)->load.weight;
  874. }
  875. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  876. {
  877. #ifdef CONFIG_SMP
  878. task_thread_info(p)->cpu = cpu;
  879. #endif
  880. set_task_cfs_rq(p);
  881. }
  882. #ifdef CONFIG_SMP
  883. /*
  884. * Is this task likely cache-hot:
  885. */
  886. static inline int
  887. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  888. {
  889. s64 delta;
  890. if (p->sched_class != &fair_sched_class)
  891. return 0;
  892. if (sysctl_sched_migration_cost == -1)
  893. return 1;
  894. if (sysctl_sched_migration_cost == 0)
  895. return 0;
  896. delta = now - p->se.exec_start;
  897. return delta < (s64)sysctl_sched_migration_cost;
  898. }
  899. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  900. {
  901. int old_cpu = task_cpu(p);
  902. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  903. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  904. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  905. u64 clock_offset;
  906. clock_offset = old_rq->clock - new_rq->clock;
  907. #ifdef CONFIG_SCHEDSTATS
  908. if (p->se.wait_start)
  909. p->se.wait_start -= clock_offset;
  910. if (p->se.sleep_start)
  911. p->se.sleep_start -= clock_offset;
  912. if (p->se.block_start)
  913. p->se.block_start -= clock_offset;
  914. if (old_cpu != new_cpu) {
  915. schedstat_inc(p, se.nr_migrations);
  916. if (task_hot(p, old_rq->clock, NULL))
  917. schedstat_inc(p, se.nr_forced2_migrations);
  918. }
  919. #endif
  920. p->se.vruntime -= old_cfsrq->min_vruntime -
  921. new_cfsrq->min_vruntime;
  922. __set_task_cpu(p, new_cpu);
  923. }
  924. struct migration_req {
  925. struct list_head list;
  926. struct task_struct *task;
  927. int dest_cpu;
  928. struct completion done;
  929. };
  930. /*
  931. * The task's runqueue lock must be held.
  932. * Returns true if you have to wait for migration thread.
  933. */
  934. static int
  935. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  936. {
  937. struct rq *rq = task_rq(p);
  938. /*
  939. * If the task is not on a runqueue (and not running), then
  940. * it is sufficient to simply update the task's cpu field.
  941. */
  942. if (!p->se.on_rq && !task_running(rq, p)) {
  943. set_task_cpu(p, dest_cpu);
  944. return 0;
  945. }
  946. init_completion(&req->done);
  947. req->task = p;
  948. req->dest_cpu = dest_cpu;
  949. list_add(&req->list, &rq->migration_queue);
  950. return 1;
  951. }
  952. /*
  953. * wait_task_inactive - wait for a thread to unschedule.
  954. *
  955. * The caller must ensure that the task *will* unschedule sometime soon,
  956. * else this function might spin for a *long* time. This function can't
  957. * be called with interrupts off, or it may introduce deadlock with
  958. * smp_call_function() if an IPI is sent by the same process we are
  959. * waiting to become inactive.
  960. */
  961. void wait_task_inactive(struct task_struct *p)
  962. {
  963. unsigned long flags;
  964. int running, on_rq;
  965. struct rq *rq;
  966. for (;;) {
  967. /*
  968. * We do the initial early heuristics without holding
  969. * any task-queue locks at all. We'll only try to get
  970. * the runqueue lock when things look like they will
  971. * work out!
  972. */
  973. rq = task_rq(p);
  974. /*
  975. * If the task is actively running on another CPU
  976. * still, just relax and busy-wait without holding
  977. * any locks.
  978. *
  979. * NOTE! Since we don't hold any locks, it's not
  980. * even sure that "rq" stays as the right runqueue!
  981. * But we don't care, since "task_running()" will
  982. * return false if the runqueue has changed and p
  983. * is actually now running somewhere else!
  984. */
  985. while (task_running(rq, p))
  986. cpu_relax();
  987. /*
  988. * Ok, time to look more closely! We need the rq
  989. * lock now, to be *sure*. If we're wrong, we'll
  990. * just go back and repeat.
  991. */
  992. rq = task_rq_lock(p, &flags);
  993. running = task_running(rq, p);
  994. on_rq = p->se.on_rq;
  995. task_rq_unlock(rq, &flags);
  996. /*
  997. * Was it really running after all now that we
  998. * checked with the proper locks actually held?
  999. *
  1000. * Oops. Go back and try again..
  1001. */
  1002. if (unlikely(running)) {
  1003. cpu_relax();
  1004. continue;
  1005. }
  1006. /*
  1007. * It's not enough that it's not actively running,
  1008. * it must be off the runqueue _entirely_, and not
  1009. * preempted!
  1010. *
  1011. * So if it wa still runnable (but just not actively
  1012. * running right now), it's preempted, and we should
  1013. * yield - it could be a while.
  1014. */
  1015. if (unlikely(on_rq)) {
  1016. schedule_timeout_uninterruptible(1);
  1017. continue;
  1018. }
  1019. /*
  1020. * Ahh, all good. It wasn't running, and it wasn't
  1021. * runnable, which means that it will never become
  1022. * running in the future either. We're all done!
  1023. */
  1024. break;
  1025. }
  1026. }
  1027. /***
  1028. * kick_process - kick a running thread to enter/exit the kernel
  1029. * @p: the to-be-kicked thread
  1030. *
  1031. * Cause a process which is running on another CPU to enter
  1032. * kernel-mode, without any delay. (to get signals handled.)
  1033. *
  1034. * NOTE: this function doesnt have to take the runqueue lock,
  1035. * because all it wants to ensure is that the remote task enters
  1036. * the kernel. If the IPI races and the task has been migrated
  1037. * to another CPU then no harm is done and the purpose has been
  1038. * achieved as well.
  1039. */
  1040. void kick_process(struct task_struct *p)
  1041. {
  1042. int cpu;
  1043. preempt_disable();
  1044. cpu = task_cpu(p);
  1045. if ((cpu != smp_processor_id()) && task_curr(p))
  1046. smp_send_reschedule(cpu);
  1047. preempt_enable();
  1048. }
  1049. /*
  1050. * Return a low guess at the load of a migration-source cpu weighted
  1051. * according to the scheduling class and "nice" value.
  1052. *
  1053. * We want to under-estimate the load of migration sources, to
  1054. * balance conservatively.
  1055. */
  1056. static unsigned long source_load(int cpu, int type)
  1057. {
  1058. struct rq *rq = cpu_rq(cpu);
  1059. unsigned long total = weighted_cpuload(cpu);
  1060. if (type == 0)
  1061. return total;
  1062. return min(rq->cpu_load[type-1], total);
  1063. }
  1064. /*
  1065. * Return a high guess at the load of a migration-target cpu weighted
  1066. * according to the scheduling class and "nice" value.
  1067. */
  1068. static unsigned long target_load(int cpu, int type)
  1069. {
  1070. struct rq *rq = cpu_rq(cpu);
  1071. unsigned long total = weighted_cpuload(cpu);
  1072. if (type == 0)
  1073. return total;
  1074. return max(rq->cpu_load[type-1], total);
  1075. }
  1076. /*
  1077. * Return the average load per task on the cpu's run queue
  1078. */
  1079. static inline unsigned long cpu_avg_load_per_task(int cpu)
  1080. {
  1081. struct rq *rq = cpu_rq(cpu);
  1082. unsigned long total = weighted_cpuload(cpu);
  1083. unsigned long n = rq->nr_running;
  1084. return n ? total / n : SCHED_LOAD_SCALE;
  1085. }
  1086. /*
  1087. * find_idlest_group finds and returns the least busy CPU group within the
  1088. * domain.
  1089. */
  1090. static struct sched_group *
  1091. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1092. {
  1093. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1094. unsigned long min_load = ULONG_MAX, this_load = 0;
  1095. int load_idx = sd->forkexec_idx;
  1096. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1097. do {
  1098. unsigned long load, avg_load;
  1099. int local_group;
  1100. int i;
  1101. /* Skip over this group if it has no CPUs allowed */
  1102. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1103. continue;
  1104. local_group = cpu_isset(this_cpu, group->cpumask);
  1105. /* Tally up the load of all CPUs in the group */
  1106. avg_load = 0;
  1107. for_each_cpu_mask(i, group->cpumask) {
  1108. /* Bias balancing toward cpus of our domain */
  1109. if (local_group)
  1110. load = source_load(i, load_idx);
  1111. else
  1112. load = target_load(i, load_idx);
  1113. avg_load += load;
  1114. }
  1115. /* Adjust by relative CPU power of the group */
  1116. avg_load = sg_div_cpu_power(group,
  1117. avg_load * SCHED_LOAD_SCALE);
  1118. if (local_group) {
  1119. this_load = avg_load;
  1120. this = group;
  1121. } else if (avg_load < min_load) {
  1122. min_load = avg_load;
  1123. idlest = group;
  1124. }
  1125. } while (group = group->next, group != sd->groups);
  1126. if (!idlest || 100*this_load < imbalance*min_load)
  1127. return NULL;
  1128. return idlest;
  1129. }
  1130. /*
  1131. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1132. */
  1133. static int
  1134. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1135. {
  1136. cpumask_t tmp;
  1137. unsigned long load, min_load = ULONG_MAX;
  1138. int idlest = -1;
  1139. int i;
  1140. /* Traverse only the allowed CPUs */
  1141. cpus_and(tmp, group->cpumask, p->cpus_allowed);
  1142. for_each_cpu_mask(i, tmp) {
  1143. load = weighted_cpuload(i);
  1144. if (load < min_load || (load == min_load && i == this_cpu)) {
  1145. min_load = load;
  1146. idlest = i;
  1147. }
  1148. }
  1149. return idlest;
  1150. }
  1151. /*
  1152. * sched_balance_self: balance the current task (running on cpu) in domains
  1153. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1154. * SD_BALANCE_EXEC.
  1155. *
  1156. * Balance, ie. select the least loaded group.
  1157. *
  1158. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1159. *
  1160. * preempt must be disabled.
  1161. */
  1162. static int sched_balance_self(int cpu, int flag)
  1163. {
  1164. struct task_struct *t = current;
  1165. struct sched_domain *tmp, *sd = NULL;
  1166. for_each_domain(cpu, tmp) {
  1167. /*
  1168. * If power savings logic is enabled for a domain, stop there.
  1169. */
  1170. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1171. break;
  1172. if (tmp->flags & flag)
  1173. sd = tmp;
  1174. }
  1175. while (sd) {
  1176. cpumask_t span;
  1177. struct sched_group *group;
  1178. int new_cpu, weight;
  1179. if (!(sd->flags & flag)) {
  1180. sd = sd->child;
  1181. continue;
  1182. }
  1183. span = sd->span;
  1184. group = find_idlest_group(sd, t, cpu);
  1185. if (!group) {
  1186. sd = sd->child;
  1187. continue;
  1188. }
  1189. new_cpu = find_idlest_cpu(group, t, cpu);
  1190. if (new_cpu == -1 || new_cpu == cpu) {
  1191. /* Now try balancing at a lower domain level of cpu */
  1192. sd = sd->child;
  1193. continue;
  1194. }
  1195. /* Now try balancing at a lower domain level of new_cpu */
  1196. cpu = new_cpu;
  1197. sd = NULL;
  1198. weight = cpus_weight(span);
  1199. for_each_domain(cpu, tmp) {
  1200. if (weight <= cpus_weight(tmp->span))
  1201. break;
  1202. if (tmp->flags & flag)
  1203. sd = tmp;
  1204. }
  1205. /* while loop will break here if sd == NULL */
  1206. }
  1207. return cpu;
  1208. }
  1209. #endif /* CONFIG_SMP */
  1210. /*
  1211. * wake_idle() will wake a task on an idle cpu if task->cpu is
  1212. * not idle and an idle cpu is available. The span of cpus to
  1213. * search starts with cpus closest then further out as needed,
  1214. * so we always favor a closer, idle cpu.
  1215. *
  1216. * Returns the CPU we should wake onto.
  1217. */
  1218. #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
  1219. static int wake_idle(int cpu, struct task_struct *p)
  1220. {
  1221. cpumask_t tmp;
  1222. struct sched_domain *sd;
  1223. int i;
  1224. /*
  1225. * If it is idle, then it is the best cpu to run this task.
  1226. *
  1227. * This cpu is also the best, if it has more than one task already.
  1228. * Siblings must be also busy(in most cases) as they didn't already
  1229. * pickup the extra load from this cpu and hence we need not check
  1230. * sibling runqueue info. This will avoid the checks and cache miss
  1231. * penalities associated with that.
  1232. */
  1233. if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
  1234. return cpu;
  1235. for_each_domain(cpu, sd) {
  1236. if (sd->flags & SD_WAKE_IDLE) {
  1237. cpus_and(tmp, sd->span, p->cpus_allowed);
  1238. for_each_cpu_mask(i, tmp) {
  1239. if (idle_cpu(i)) {
  1240. if (i != task_cpu(p)) {
  1241. schedstat_inc(p,
  1242. se.nr_wakeups_idle);
  1243. }
  1244. return i;
  1245. }
  1246. }
  1247. } else {
  1248. break;
  1249. }
  1250. }
  1251. return cpu;
  1252. }
  1253. #else
  1254. static inline int wake_idle(int cpu, struct task_struct *p)
  1255. {
  1256. return cpu;
  1257. }
  1258. #endif
  1259. /***
  1260. * try_to_wake_up - wake up a thread
  1261. * @p: the to-be-woken-up thread
  1262. * @state: the mask of task states that can be woken
  1263. * @sync: do a synchronous wakeup?
  1264. *
  1265. * Put it on the run-queue if it's not already there. The "current"
  1266. * thread is always on the run-queue (except when the actual
  1267. * re-schedule is in progress), and as such you're allowed to do
  1268. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1269. * runnable without the overhead of this.
  1270. *
  1271. * returns failure only if the task is already active.
  1272. */
  1273. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1274. {
  1275. int cpu, orig_cpu, this_cpu, success = 0;
  1276. unsigned long flags;
  1277. long old_state;
  1278. struct rq *rq;
  1279. #ifdef CONFIG_SMP
  1280. struct sched_domain *sd, *this_sd = NULL;
  1281. unsigned long load, this_load;
  1282. int new_cpu;
  1283. #endif
  1284. rq = task_rq_lock(p, &flags);
  1285. old_state = p->state;
  1286. if (!(old_state & state))
  1287. goto out;
  1288. if (p->se.on_rq)
  1289. goto out_running;
  1290. cpu = task_cpu(p);
  1291. orig_cpu = cpu;
  1292. this_cpu = smp_processor_id();
  1293. #ifdef CONFIG_SMP
  1294. if (unlikely(task_running(rq, p)))
  1295. goto out_activate;
  1296. new_cpu = cpu;
  1297. schedstat_inc(rq, ttwu_count);
  1298. if (cpu == this_cpu) {
  1299. schedstat_inc(rq, ttwu_local);
  1300. goto out_set_cpu;
  1301. }
  1302. for_each_domain(this_cpu, sd) {
  1303. if (cpu_isset(cpu, sd->span)) {
  1304. schedstat_inc(sd, ttwu_wake_remote);
  1305. this_sd = sd;
  1306. break;
  1307. }
  1308. }
  1309. if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
  1310. goto out_set_cpu;
  1311. /*
  1312. * Check for affine wakeup and passive balancing possibilities.
  1313. */
  1314. if (this_sd) {
  1315. int idx = this_sd->wake_idx;
  1316. unsigned int imbalance;
  1317. imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
  1318. load = source_load(cpu, idx);
  1319. this_load = target_load(this_cpu, idx);
  1320. new_cpu = this_cpu; /* Wake to this CPU if we can */
  1321. if (this_sd->flags & SD_WAKE_AFFINE) {
  1322. unsigned long tl = this_load;
  1323. unsigned long tl_per_task;
  1324. /*
  1325. * Attract cache-cold tasks on sync wakeups:
  1326. */
  1327. if (sync && !task_hot(p, rq->clock, this_sd))
  1328. goto out_set_cpu;
  1329. schedstat_inc(p, se.nr_wakeups_affine_attempts);
  1330. tl_per_task = cpu_avg_load_per_task(this_cpu);
  1331. /*
  1332. * If sync wakeup then subtract the (maximum possible)
  1333. * effect of the currently running task from the load
  1334. * of the current CPU:
  1335. */
  1336. if (sync)
  1337. tl -= current->se.load.weight;
  1338. if ((tl <= load &&
  1339. tl + target_load(cpu, idx) <= tl_per_task) ||
  1340. 100*(tl + p->se.load.weight) <= imbalance*load) {
  1341. /*
  1342. * This domain has SD_WAKE_AFFINE and
  1343. * p is cache cold in this domain, and
  1344. * there is no bad imbalance.
  1345. */
  1346. schedstat_inc(this_sd, ttwu_move_affine);
  1347. schedstat_inc(p, se.nr_wakeups_affine);
  1348. goto out_set_cpu;
  1349. }
  1350. }
  1351. /*
  1352. * Start passive balancing when half the imbalance_pct
  1353. * limit is reached.
  1354. */
  1355. if (this_sd->flags & SD_WAKE_BALANCE) {
  1356. if (imbalance*this_load <= 100*load) {
  1357. schedstat_inc(this_sd, ttwu_move_balance);
  1358. schedstat_inc(p, se.nr_wakeups_passive);
  1359. goto out_set_cpu;
  1360. }
  1361. }
  1362. }
  1363. new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
  1364. out_set_cpu:
  1365. new_cpu = wake_idle(new_cpu, p);
  1366. if (new_cpu != cpu) {
  1367. set_task_cpu(p, new_cpu);
  1368. task_rq_unlock(rq, &flags);
  1369. /* might preempt at this point */
  1370. rq = task_rq_lock(p, &flags);
  1371. old_state = p->state;
  1372. if (!(old_state & state))
  1373. goto out;
  1374. if (p->se.on_rq)
  1375. goto out_running;
  1376. this_cpu = smp_processor_id();
  1377. cpu = task_cpu(p);
  1378. }
  1379. out_activate:
  1380. #endif /* CONFIG_SMP */
  1381. schedstat_inc(p, se.nr_wakeups);
  1382. if (sync)
  1383. schedstat_inc(p, se.nr_wakeups_sync);
  1384. if (orig_cpu != cpu)
  1385. schedstat_inc(p, se.nr_wakeups_migrate);
  1386. if (cpu == this_cpu)
  1387. schedstat_inc(p, se.nr_wakeups_local);
  1388. else
  1389. schedstat_inc(p, se.nr_wakeups_remote);
  1390. update_rq_clock(rq);
  1391. activate_task(rq, p, 1);
  1392. check_preempt_curr(rq, p);
  1393. success = 1;
  1394. out_running:
  1395. p->state = TASK_RUNNING;
  1396. out:
  1397. task_rq_unlock(rq, &flags);
  1398. return success;
  1399. }
  1400. int fastcall wake_up_process(struct task_struct *p)
  1401. {
  1402. return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
  1403. TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
  1404. }
  1405. EXPORT_SYMBOL(wake_up_process);
  1406. int fastcall wake_up_state(struct task_struct *p, unsigned int state)
  1407. {
  1408. return try_to_wake_up(p, state, 0);
  1409. }
  1410. /*
  1411. * Perform scheduler related setup for a newly forked process p.
  1412. * p is forked by current.
  1413. *
  1414. * __sched_fork() is basic setup used by init_idle() too:
  1415. */
  1416. static void __sched_fork(struct task_struct *p)
  1417. {
  1418. p->se.exec_start = 0;
  1419. p->se.sum_exec_runtime = 0;
  1420. p->se.prev_sum_exec_runtime = 0;
  1421. #ifdef CONFIG_SCHEDSTATS
  1422. p->se.wait_start = 0;
  1423. p->se.sum_sleep_runtime = 0;
  1424. p->se.sleep_start = 0;
  1425. p->se.block_start = 0;
  1426. p->se.sleep_max = 0;
  1427. p->se.block_max = 0;
  1428. p->se.exec_max = 0;
  1429. p->se.slice_max = 0;
  1430. p->se.wait_max = 0;
  1431. #endif
  1432. INIT_LIST_HEAD(&p->run_list);
  1433. p->se.on_rq = 0;
  1434. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1435. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1436. #endif
  1437. /*
  1438. * We mark the process as running here, but have not actually
  1439. * inserted it onto the runqueue yet. This guarantees that
  1440. * nobody will actually run it, and a signal or other external
  1441. * event cannot wake it up and insert it on the runqueue either.
  1442. */
  1443. p->state = TASK_RUNNING;
  1444. }
  1445. /*
  1446. * fork()/clone()-time setup:
  1447. */
  1448. void sched_fork(struct task_struct *p, int clone_flags)
  1449. {
  1450. int cpu = get_cpu();
  1451. __sched_fork(p);
  1452. #ifdef CONFIG_SMP
  1453. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1454. #endif
  1455. set_task_cpu(p, cpu);
  1456. /*
  1457. * Make sure we do not leak PI boosting priority to the child:
  1458. */
  1459. p->prio = current->normal_prio;
  1460. if (!rt_prio(p->prio))
  1461. p->sched_class = &fair_sched_class;
  1462. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1463. if (likely(sched_info_on()))
  1464. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1465. #endif
  1466. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  1467. p->oncpu = 0;
  1468. #endif
  1469. #ifdef CONFIG_PREEMPT
  1470. /* Want to start with kernel preemption disabled. */
  1471. task_thread_info(p)->preempt_count = 1;
  1472. #endif
  1473. put_cpu();
  1474. }
  1475. /*
  1476. * wake_up_new_task - wake up a newly created task for the first time.
  1477. *
  1478. * This function will do some initial scheduler statistics housekeeping
  1479. * that must be done for every newly created context, then puts the task
  1480. * on the runqueue and wakes it.
  1481. */
  1482. void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  1483. {
  1484. unsigned long flags;
  1485. struct rq *rq;
  1486. rq = task_rq_lock(p, &flags);
  1487. BUG_ON(p->state != TASK_RUNNING);
  1488. update_rq_clock(rq);
  1489. p->prio = effective_prio(p);
  1490. if (!p->sched_class->task_new || !current->se.on_rq) {
  1491. activate_task(rq, p, 0);
  1492. } else {
  1493. /*
  1494. * Let the scheduling class do new task startup
  1495. * management (if any):
  1496. */
  1497. p->sched_class->task_new(rq, p);
  1498. inc_nr_running(p, rq);
  1499. }
  1500. check_preempt_curr(rq, p);
  1501. task_rq_unlock(rq, &flags);
  1502. }
  1503. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1504. /**
  1505. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  1506. * @notifier: notifier struct to register
  1507. */
  1508. void preempt_notifier_register(struct preempt_notifier *notifier)
  1509. {
  1510. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1511. }
  1512. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1513. /**
  1514. * preempt_notifier_unregister - no longer interested in preemption notifications
  1515. * @notifier: notifier struct to unregister
  1516. *
  1517. * This is safe to call from within a preemption notifier.
  1518. */
  1519. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1520. {
  1521. hlist_del(&notifier->link);
  1522. }
  1523. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1524. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1525. {
  1526. struct preempt_notifier *notifier;
  1527. struct hlist_node *node;
  1528. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1529. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1530. }
  1531. static void
  1532. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1533. struct task_struct *next)
  1534. {
  1535. struct preempt_notifier *notifier;
  1536. struct hlist_node *node;
  1537. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1538. notifier->ops->sched_out(notifier, next);
  1539. }
  1540. #else
  1541. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1542. {
  1543. }
  1544. static void
  1545. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1546. struct task_struct *next)
  1547. {
  1548. }
  1549. #endif
  1550. /**
  1551. * prepare_task_switch - prepare to switch tasks
  1552. * @rq: the runqueue preparing to switch
  1553. * @prev: the current task that is being switched out
  1554. * @next: the task we are going to switch to.
  1555. *
  1556. * This is called with the rq lock held and interrupts off. It must
  1557. * be paired with a subsequent finish_task_switch after the context
  1558. * switch.
  1559. *
  1560. * prepare_task_switch sets up locking and calls architecture specific
  1561. * hooks.
  1562. */
  1563. static inline void
  1564. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1565. struct task_struct *next)
  1566. {
  1567. fire_sched_out_preempt_notifiers(prev, next);
  1568. prepare_lock_switch(rq, next);
  1569. prepare_arch_switch(next);
  1570. }
  1571. /**
  1572. * finish_task_switch - clean up after a task-switch
  1573. * @rq: runqueue associated with task-switch
  1574. * @prev: the thread we just switched away from.
  1575. *
  1576. * finish_task_switch must be called after the context switch, paired
  1577. * with a prepare_task_switch call before the context switch.
  1578. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1579. * and do any other architecture-specific cleanup actions.
  1580. *
  1581. * Note that we may have delayed dropping an mm in context_switch(). If
  1582. * so, we finish that here outside of the runqueue lock. (Doing it
  1583. * with the lock held can cause deadlocks; see schedule() for
  1584. * details.)
  1585. */
  1586. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1587. __releases(rq->lock)
  1588. {
  1589. struct mm_struct *mm = rq->prev_mm;
  1590. long prev_state;
  1591. rq->prev_mm = NULL;
  1592. /*
  1593. * A task struct has one reference for the use as "current".
  1594. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1595. * schedule one last time. The schedule call will never return, and
  1596. * the scheduled task must drop that reference.
  1597. * The test for TASK_DEAD must occur while the runqueue locks are
  1598. * still held, otherwise prev could be scheduled on another cpu, die
  1599. * there before we look at prev->state, and then the reference would
  1600. * be dropped twice.
  1601. * Manfred Spraul <manfred@colorfullife.com>
  1602. */
  1603. prev_state = prev->state;
  1604. finish_arch_switch(prev);
  1605. finish_lock_switch(rq, prev);
  1606. fire_sched_in_preempt_notifiers(current);
  1607. if (mm)
  1608. mmdrop(mm);
  1609. if (unlikely(prev_state == TASK_DEAD)) {
  1610. /*
  1611. * Remove function-return probe instances associated with this
  1612. * task and put them back on the free list.
  1613. */
  1614. kprobe_flush_task(prev);
  1615. put_task_struct(prev);
  1616. }
  1617. }
  1618. /**
  1619. * schedule_tail - first thing a freshly forked thread must call.
  1620. * @prev: the thread we just switched away from.
  1621. */
  1622. asmlinkage void schedule_tail(struct task_struct *prev)
  1623. __releases(rq->lock)
  1624. {
  1625. struct rq *rq = this_rq();
  1626. finish_task_switch(rq, prev);
  1627. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1628. /* In this case, finish_task_switch does not reenable preemption */
  1629. preempt_enable();
  1630. #endif
  1631. if (current->set_child_tid)
  1632. put_user(task_pid_vnr(current), current->set_child_tid);
  1633. }
  1634. /*
  1635. * context_switch - switch to the new MM and the new
  1636. * thread's register state.
  1637. */
  1638. static inline void
  1639. context_switch(struct rq *rq, struct task_struct *prev,
  1640. struct task_struct *next)
  1641. {
  1642. struct mm_struct *mm, *oldmm;
  1643. prepare_task_switch(rq, prev, next);
  1644. mm = next->mm;
  1645. oldmm = prev->active_mm;
  1646. /*
  1647. * For paravirt, this is coupled with an exit in switch_to to
  1648. * combine the page table reload and the switch backend into
  1649. * one hypercall.
  1650. */
  1651. arch_enter_lazy_cpu_mode();
  1652. if (unlikely(!mm)) {
  1653. next->active_mm = oldmm;
  1654. atomic_inc(&oldmm->mm_count);
  1655. enter_lazy_tlb(oldmm, next);
  1656. } else
  1657. switch_mm(oldmm, mm, next);
  1658. if (unlikely(!prev->mm)) {
  1659. prev->active_mm = NULL;
  1660. rq->prev_mm = oldmm;
  1661. }
  1662. /*
  1663. * Since the runqueue lock will be released by the next
  1664. * task (which is an invalid locking op but in the case
  1665. * of the scheduler it's an obvious special-case), so we
  1666. * do an early lockdep release here:
  1667. */
  1668. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1669. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1670. #endif
  1671. /* Here we just switch the register state and the stack. */
  1672. switch_to(prev, next, prev);
  1673. barrier();
  1674. /*
  1675. * this_rq must be evaluated again because prev may have moved
  1676. * CPUs since it called schedule(), thus the 'rq' on its stack
  1677. * frame will be invalid.
  1678. */
  1679. finish_task_switch(this_rq(), prev);
  1680. }
  1681. /*
  1682. * nr_running, nr_uninterruptible and nr_context_switches:
  1683. *
  1684. * externally visible scheduler statistics: current number of runnable
  1685. * threads, current number of uninterruptible-sleeping threads, total
  1686. * number of context switches performed since bootup.
  1687. */
  1688. unsigned long nr_running(void)
  1689. {
  1690. unsigned long i, sum = 0;
  1691. for_each_online_cpu(i)
  1692. sum += cpu_rq(i)->nr_running;
  1693. return sum;
  1694. }
  1695. unsigned long nr_uninterruptible(void)
  1696. {
  1697. unsigned long i, sum = 0;
  1698. for_each_possible_cpu(i)
  1699. sum += cpu_rq(i)->nr_uninterruptible;
  1700. /*
  1701. * Since we read the counters lockless, it might be slightly
  1702. * inaccurate. Do not allow it to go below zero though:
  1703. */
  1704. if (unlikely((long)sum < 0))
  1705. sum = 0;
  1706. return sum;
  1707. }
  1708. unsigned long long nr_context_switches(void)
  1709. {
  1710. int i;
  1711. unsigned long long sum = 0;
  1712. for_each_possible_cpu(i)
  1713. sum += cpu_rq(i)->nr_switches;
  1714. return sum;
  1715. }
  1716. unsigned long nr_iowait(void)
  1717. {
  1718. unsigned long i, sum = 0;
  1719. for_each_possible_cpu(i)
  1720. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1721. return sum;
  1722. }
  1723. unsigned long nr_active(void)
  1724. {
  1725. unsigned long i, running = 0, uninterruptible = 0;
  1726. for_each_online_cpu(i) {
  1727. running += cpu_rq(i)->nr_running;
  1728. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  1729. }
  1730. if (unlikely((long)uninterruptible < 0))
  1731. uninterruptible = 0;
  1732. return running + uninterruptible;
  1733. }
  1734. /*
  1735. * Update rq->cpu_load[] statistics. This function is usually called every
  1736. * scheduler tick (TICK_NSEC).
  1737. */
  1738. static void update_cpu_load(struct rq *this_rq)
  1739. {
  1740. unsigned long this_load = this_rq->load.weight;
  1741. int i, scale;
  1742. this_rq->nr_load_updates++;
  1743. /* Update our load: */
  1744. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  1745. unsigned long old_load, new_load;
  1746. /* scale is effectively 1 << i now, and >> i divides by scale */
  1747. old_load = this_rq->cpu_load[i];
  1748. new_load = this_load;
  1749. /*
  1750. * Round up the averaging division if load is increasing. This
  1751. * prevents us from getting stuck on 9 if the load is 10, for
  1752. * example.
  1753. */
  1754. if (new_load > old_load)
  1755. new_load += scale-1;
  1756. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  1757. }
  1758. }
  1759. #ifdef CONFIG_SMP
  1760. /*
  1761. * double_rq_lock - safely lock two runqueues
  1762. *
  1763. * Note this does not disable interrupts like task_rq_lock,
  1764. * you need to do so manually before calling.
  1765. */
  1766. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1767. __acquires(rq1->lock)
  1768. __acquires(rq2->lock)
  1769. {
  1770. BUG_ON(!irqs_disabled());
  1771. if (rq1 == rq2) {
  1772. spin_lock(&rq1->lock);
  1773. __acquire(rq2->lock); /* Fake it out ;) */
  1774. } else {
  1775. if (rq1 < rq2) {
  1776. spin_lock(&rq1->lock);
  1777. spin_lock(&rq2->lock);
  1778. } else {
  1779. spin_lock(&rq2->lock);
  1780. spin_lock(&rq1->lock);
  1781. }
  1782. }
  1783. update_rq_clock(rq1);
  1784. update_rq_clock(rq2);
  1785. }
  1786. /*
  1787. * double_rq_unlock - safely unlock two runqueues
  1788. *
  1789. * Note this does not restore interrupts like task_rq_unlock,
  1790. * you need to do so manually after calling.
  1791. */
  1792. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1793. __releases(rq1->lock)
  1794. __releases(rq2->lock)
  1795. {
  1796. spin_unlock(&rq1->lock);
  1797. if (rq1 != rq2)
  1798. spin_unlock(&rq2->lock);
  1799. else
  1800. __release(rq2->lock);
  1801. }
  1802. /*
  1803. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1804. */
  1805. static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1806. __releases(this_rq->lock)
  1807. __acquires(busiest->lock)
  1808. __acquires(this_rq->lock)
  1809. {
  1810. if (unlikely(!irqs_disabled())) {
  1811. /* printk() doesn't work good under rq->lock */
  1812. spin_unlock(&this_rq->lock);
  1813. BUG_ON(1);
  1814. }
  1815. if (unlikely(!spin_trylock(&busiest->lock))) {
  1816. if (busiest < this_rq) {
  1817. spin_unlock(&this_rq->lock);
  1818. spin_lock(&busiest->lock);
  1819. spin_lock(&this_rq->lock);
  1820. } else
  1821. spin_lock(&busiest->lock);
  1822. }
  1823. }
  1824. /*
  1825. * If dest_cpu is allowed for this process, migrate the task to it.
  1826. * This is accomplished by forcing the cpu_allowed mask to only
  1827. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  1828. * the cpu_allowed mask is restored.
  1829. */
  1830. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  1831. {
  1832. struct migration_req req;
  1833. unsigned long flags;
  1834. struct rq *rq;
  1835. rq = task_rq_lock(p, &flags);
  1836. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  1837. || unlikely(cpu_is_offline(dest_cpu)))
  1838. goto out;
  1839. /* force the process onto the specified CPU */
  1840. if (migrate_task(p, dest_cpu, &req)) {
  1841. /* Need to wait for migration thread (might exit: take ref). */
  1842. struct task_struct *mt = rq->migration_thread;
  1843. get_task_struct(mt);
  1844. task_rq_unlock(rq, &flags);
  1845. wake_up_process(mt);
  1846. put_task_struct(mt);
  1847. wait_for_completion(&req.done);
  1848. return;
  1849. }
  1850. out:
  1851. task_rq_unlock(rq, &flags);
  1852. }
  1853. /*
  1854. * sched_exec - execve() is a valuable balancing opportunity, because at
  1855. * this point the task has the smallest effective memory and cache footprint.
  1856. */
  1857. void sched_exec(void)
  1858. {
  1859. int new_cpu, this_cpu = get_cpu();
  1860. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  1861. put_cpu();
  1862. if (new_cpu != this_cpu)
  1863. sched_migrate_task(current, new_cpu);
  1864. }
  1865. /*
  1866. * pull_task - move a task from a remote runqueue to the local runqueue.
  1867. * Both runqueues must be locked.
  1868. */
  1869. static void pull_task(struct rq *src_rq, struct task_struct *p,
  1870. struct rq *this_rq, int this_cpu)
  1871. {
  1872. deactivate_task(src_rq, p, 0);
  1873. set_task_cpu(p, this_cpu);
  1874. activate_task(this_rq, p, 0);
  1875. /*
  1876. * Note that idle threads have a prio of MAX_PRIO, for this test
  1877. * to be always true for them.
  1878. */
  1879. check_preempt_curr(this_rq, p);
  1880. }
  1881. /*
  1882. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  1883. */
  1884. static
  1885. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  1886. struct sched_domain *sd, enum cpu_idle_type idle,
  1887. int *all_pinned)
  1888. {
  1889. /*
  1890. * We do not migrate tasks that are:
  1891. * 1) running (obviously), or
  1892. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  1893. * 3) are cache-hot on their current CPU.
  1894. */
  1895. if (!cpu_isset(this_cpu, p->cpus_allowed)) {
  1896. schedstat_inc(p, se.nr_failed_migrations_affine);
  1897. return 0;
  1898. }
  1899. *all_pinned = 0;
  1900. if (task_running(rq, p)) {
  1901. schedstat_inc(p, se.nr_failed_migrations_running);
  1902. return 0;
  1903. }
  1904. /*
  1905. * Aggressive migration if:
  1906. * 1) task is cache cold, or
  1907. * 2) too many balance attempts have failed.
  1908. */
  1909. if (!task_hot(p, rq->clock, sd) ||
  1910. sd->nr_balance_failed > sd->cache_nice_tries) {
  1911. #ifdef CONFIG_SCHEDSTATS
  1912. if (task_hot(p, rq->clock, sd)) {
  1913. schedstat_inc(sd, lb_hot_gained[idle]);
  1914. schedstat_inc(p, se.nr_forced_migrations);
  1915. }
  1916. #endif
  1917. return 1;
  1918. }
  1919. if (task_hot(p, rq->clock, sd)) {
  1920. schedstat_inc(p, se.nr_failed_migrations_hot);
  1921. return 0;
  1922. }
  1923. return 1;
  1924. }
  1925. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1926. unsigned long max_nr_move, unsigned long max_load_move,
  1927. struct sched_domain *sd, enum cpu_idle_type idle,
  1928. int *all_pinned, unsigned long *load_moved,
  1929. int *this_best_prio, struct rq_iterator *iterator)
  1930. {
  1931. int pulled = 0, pinned = 0, skip_for_load;
  1932. struct task_struct *p;
  1933. long rem_load_move = max_load_move;
  1934. if (max_nr_move == 0 || max_load_move == 0)
  1935. goto out;
  1936. pinned = 1;
  1937. /*
  1938. * Start the load-balancing iterator:
  1939. */
  1940. p = iterator->start(iterator->arg);
  1941. next:
  1942. if (!p)
  1943. goto out;
  1944. /*
  1945. * To help distribute high priority tasks accross CPUs we don't
  1946. * skip a task if it will be the highest priority task (i.e. smallest
  1947. * prio value) on its new queue regardless of its load weight
  1948. */
  1949. skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
  1950. SCHED_LOAD_SCALE_FUZZ;
  1951. if ((skip_for_load && p->prio >= *this_best_prio) ||
  1952. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  1953. p = iterator->next(iterator->arg);
  1954. goto next;
  1955. }
  1956. pull_task(busiest, p, this_rq, this_cpu);
  1957. pulled++;
  1958. rem_load_move -= p->se.load.weight;
  1959. /*
  1960. * We only want to steal up to the prescribed number of tasks
  1961. * and the prescribed amount of weighted load.
  1962. */
  1963. if (pulled < max_nr_move && rem_load_move > 0) {
  1964. if (p->prio < *this_best_prio)
  1965. *this_best_prio = p->prio;
  1966. p = iterator->next(iterator->arg);
  1967. goto next;
  1968. }
  1969. out:
  1970. /*
  1971. * Right now, this is the only place pull_task() is called,
  1972. * so we can safely collect pull_task() stats here rather than
  1973. * inside pull_task().
  1974. */
  1975. schedstat_add(sd, lb_gained[idle], pulled);
  1976. if (all_pinned)
  1977. *all_pinned = pinned;
  1978. *load_moved = max_load_move - rem_load_move;
  1979. return pulled;
  1980. }
  1981. /*
  1982. * move_tasks tries to move up to max_load_move weighted load from busiest to
  1983. * this_rq, as part of a balancing operation within domain "sd".
  1984. * Returns 1 if successful and 0 otherwise.
  1985. *
  1986. * Called with both runqueues locked.
  1987. */
  1988. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1989. unsigned long max_load_move,
  1990. struct sched_domain *sd, enum cpu_idle_type idle,
  1991. int *all_pinned)
  1992. {
  1993. const struct sched_class *class = sched_class_highest;
  1994. unsigned long total_load_moved = 0;
  1995. int this_best_prio = this_rq->curr->prio;
  1996. do {
  1997. total_load_moved +=
  1998. class->load_balance(this_rq, this_cpu, busiest,
  1999. ULONG_MAX, max_load_move - total_load_moved,
  2000. sd, idle, all_pinned, &this_best_prio);
  2001. class = class->next;
  2002. } while (class && max_load_move > total_load_moved);
  2003. return total_load_moved > 0;
  2004. }
  2005. /*
  2006. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2007. * part of active balancing operations within "domain".
  2008. * Returns 1 if successful and 0 otherwise.
  2009. *
  2010. * Called with both runqueues locked.
  2011. */
  2012. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2013. struct sched_domain *sd, enum cpu_idle_type idle)
  2014. {
  2015. const struct sched_class *class;
  2016. int this_best_prio = MAX_PRIO;
  2017. for (class = sched_class_highest; class; class = class->next)
  2018. if (class->load_balance(this_rq, this_cpu, busiest,
  2019. 1, ULONG_MAX, sd, idle, NULL,
  2020. &this_best_prio))
  2021. return 1;
  2022. return 0;
  2023. }
  2024. /*
  2025. * find_busiest_group finds and returns the busiest CPU group within the
  2026. * domain. It calculates and returns the amount of weighted load which
  2027. * should be moved to restore balance via the imbalance parameter.
  2028. */
  2029. static struct sched_group *
  2030. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2031. unsigned long *imbalance, enum cpu_idle_type idle,
  2032. int *sd_idle, cpumask_t *cpus, int *balance)
  2033. {
  2034. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2035. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2036. unsigned long max_pull;
  2037. unsigned long busiest_load_per_task, busiest_nr_running;
  2038. unsigned long this_load_per_task, this_nr_running;
  2039. int load_idx, group_imb = 0;
  2040. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2041. int power_savings_balance = 1;
  2042. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2043. unsigned long min_nr_running = ULONG_MAX;
  2044. struct sched_group *group_min = NULL, *group_leader = NULL;
  2045. #endif
  2046. max_load = this_load = total_load = total_pwr = 0;
  2047. busiest_load_per_task = busiest_nr_running = 0;
  2048. this_load_per_task = this_nr_running = 0;
  2049. if (idle == CPU_NOT_IDLE)
  2050. load_idx = sd->busy_idx;
  2051. else if (idle == CPU_NEWLY_IDLE)
  2052. load_idx = sd->newidle_idx;
  2053. else
  2054. load_idx = sd->idle_idx;
  2055. do {
  2056. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2057. int local_group;
  2058. int i;
  2059. int __group_imb = 0;
  2060. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2061. unsigned long sum_nr_running, sum_weighted_load;
  2062. local_group = cpu_isset(this_cpu, group->cpumask);
  2063. if (local_group)
  2064. balance_cpu = first_cpu(group->cpumask);
  2065. /* Tally up the load of all CPUs in the group */
  2066. sum_weighted_load = sum_nr_running = avg_load = 0;
  2067. max_cpu_load = 0;
  2068. min_cpu_load = ~0UL;
  2069. for_each_cpu_mask(i, group->cpumask) {
  2070. struct rq *rq;
  2071. if (!cpu_isset(i, *cpus))
  2072. continue;
  2073. rq = cpu_rq(i);
  2074. if (*sd_idle && rq->nr_running)
  2075. *sd_idle = 0;
  2076. /* Bias balancing toward cpus of our domain */
  2077. if (local_group) {
  2078. if (idle_cpu(i) && !first_idle_cpu) {
  2079. first_idle_cpu = 1;
  2080. balance_cpu = i;
  2081. }
  2082. load = target_load(i, load_idx);
  2083. } else {
  2084. load = source_load(i, load_idx);
  2085. if (load > max_cpu_load)
  2086. max_cpu_load = load;
  2087. if (min_cpu_load > load)
  2088. min_cpu_load = load;
  2089. }
  2090. avg_load += load;
  2091. sum_nr_running += rq->nr_running;
  2092. sum_weighted_load += weighted_cpuload(i);
  2093. }
  2094. /*
  2095. * First idle cpu or the first cpu(busiest) in this sched group
  2096. * is eligible for doing load balancing at this and above
  2097. * domains. In the newly idle case, we will allow all the cpu's
  2098. * to do the newly idle load balance.
  2099. */
  2100. if (idle != CPU_NEWLY_IDLE && local_group &&
  2101. balance_cpu != this_cpu && balance) {
  2102. *balance = 0;
  2103. goto ret;
  2104. }
  2105. total_load += avg_load;
  2106. total_pwr += group->__cpu_power;
  2107. /* Adjust by relative CPU power of the group */
  2108. avg_load = sg_div_cpu_power(group,
  2109. avg_load * SCHED_LOAD_SCALE);
  2110. if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
  2111. __group_imb = 1;
  2112. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2113. if (local_group) {
  2114. this_load = avg_load;
  2115. this = group;
  2116. this_nr_running = sum_nr_running;
  2117. this_load_per_task = sum_weighted_load;
  2118. } else if (avg_load > max_load &&
  2119. (sum_nr_running > group_capacity || __group_imb)) {
  2120. max_load = avg_load;
  2121. busiest = group;
  2122. busiest_nr_running = sum_nr_running;
  2123. busiest_load_per_task = sum_weighted_load;
  2124. group_imb = __group_imb;
  2125. }
  2126. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2127. /*
  2128. * Busy processors will not participate in power savings
  2129. * balance.
  2130. */
  2131. if (idle == CPU_NOT_IDLE ||
  2132. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2133. goto group_next;
  2134. /*
  2135. * If the local group is idle or completely loaded
  2136. * no need to do power savings balance at this domain
  2137. */
  2138. if (local_group && (this_nr_running >= group_capacity ||
  2139. !this_nr_running))
  2140. power_savings_balance = 0;
  2141. /*
  2142. * If a group is already running at full capacity or idle,
  2143. * don't include that group in power savings calculations
  2144. */
  2145. if (!power_savings_balance || sum_nr_running >= group_capacity
  2146. || !sum_nr_running)
  2147. goto group_next;
  2148. /*
  2149. * Calculate the group which has the least non-idle load.
  2150. * This is the group from where we need to pick up the load
  2151. * for saving power
  2152. */
  2153. if ((sum_nr_running < min_nr_running) ||
  2154. (sum_nr_running == min_nr_running &&
  2155. first_cpu(group->cpumask) <
  2156. first_cpu(group_min->cpumask))) {
  2157. group_min = group;
  2158. min_nr_running = sum_nr_running;
  2159. min_load_per_task = sum_weighted_load /
  2160. sum_nr_running;
  2161. }
  2162. /*
  2163. * Calculate the group which is almost near its
  2164. * capacity but still has some space to pick up some load
  2165. * from other group and save more power
  2166. */
  2167. if (sum_nr_running <= group_capacity - 1) {
  2168. if (sum_nr_running > leader_nr_running ||
  2169. (sum_nr_running == leader_nr_running &&
  2170. first_cpu(group->cpumask) >
  2171. first_cpu(group_leader->cpumask))) {
  2172. group_leader = group;
  2173. leader_nr_running = sum_nr_running;
  2174. }
  2175. }
  2176. group_next:
  2177. #endif
  2178. group = group->next;
  2179. } while (group != sd->groups);
  2180. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2181. goto out_balanced;
  2182. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2183. if (this_load >= avg_load ||
  2184. 100*max_load <= sd->imbalance_pct*this_load)
  2185. goto out_balanced;
  2186. busiest_load_per_task /= busiest_nr_running;
  2187. if (group_imb)
  2188. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2189. /*
  2190. * We're trying to get all the cpus to the average_load, so we don't
  2191. * want to push ourselves above the average load, nor do we wish to
  2192. * reduce the max loaded cpu below the average load, as either of these
  2193. * actions would just result in more rebalancing later, and ping-pong
  2194. * tasks around. Thus we look for the minimum possible imbalance.
  2195. * Negative imbalances (*we* are more loaded than anyone else) will
  2196. * be counted as no imbalance for these purposes -- we can't fix that
  2197. * by pulling tasks to us. Be careful of negative numbers as they'll
  2198. * appear as very large values with unsigned longs.
  2199. */
  2200. if (max_load <= busiest_load_per_task)
  2201. goto out_balanced;
  2202. /*
  2203. * In the presence of smp nice balancing, certain scenarios can have
  2204. * max load less than avg load(as we skip the groups at or below
  2205. * its cpu_power, while calculating max_load..)
  2206. */
  2207. if (max_load < avg_load) {
  2208. *imbalance = 0;
  2209. goto small_imbalance;
  2210. }
  2211. /* Don't want to pull so many tasks that a group would go idle */
  2212. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2213. /* How much load to actually move to equalise the imbalance */
  2214. *imbalance = min(max_pull * busiest->__cpu_power,
  2215. (avg_load - this_load) * this->__cpu_power)
  2216. / SCHED_LOAD_SCALE;
  2217. /*
  2218. * if *imbalance is less than the average load per runnable task
  2219. * there is no gaurantee that any tasks will be moved so we'll have
  2220. * a think about bumping its value to force at least one task to be
  2221. * moved
  2222. */
  2223. if (*imbalance < busiest_load_per_task) {
  2224. unsigned long tmp, pwr_now, pwr_move;
  2225. unsigned int imbn;
  2226. small_imbalance:
  2227. pwr_move = pwr_now = 0;
  2228. imbn = 2;
  2229. if (this_nr_running) {
  2230. this_load_per_task /= this_nr_running;
  2231. if (busiest_load_per_task > this_load_per_task)
  2232. imbn = 1;
  2233. } else
  2234. this_load_per_task = SCHED_LOAD_SCALE;
  2235. if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
  2236. busiest_load_per_task * imbn) {
  2237. *imbalance = busiest_load_per_task;
  2238. return busiest;
  2239. }
  2240. /*
  2241. * OK, we don't have enough imbalance to justify moving tasks,
  2242. * however we may be able to increase total CPU power used by
  2243. * moving them.
  2244. */
  2245. pwr_now += busiest->__cpu_power *
  2246. min(busiest_load_per_task, max_load);
  2247. pwr_now += this->__cpu_power *
  2248. min(this_load_per_task, this_load);
  2249. pwr_now /= SCHED_LOAD_SCALE;
  2250. /* Amount of load we'd subtract */
  2251. tmp = sg_div_cpu_power(busiest,
  2252. busiest_load_per_task * SCHED_LOAD_SCALE);
  2253. if (max_load > tmp)
  2254. pwr_move += busiest->__cpu_power *
  2255. min(busiest_load_per_task, max_load - tmp);
  2256. /* Amount of load we'd add */
  2257. if (max_load * busiest->__cpu_power <
  2258. busiest_load_per_task * SCHED_LOAD_SCALE)
  2259. tmp = sg_div_cpu_power(this,
  2260. max_load * busiest->__cpu_power);
  2261. else
  2262. tmp = sg_div_cpu_power(this,
  2263. busiest_load_per_task * SCHED_LOAD_SCALE);
  2264. pwr_move += this->__cpu_power *
  2265. min(this_load_per_task, this_load + tmp);
  2266. pwr_move /= SCHED_LOAD_SCALE;
  2267. /* Move if we gain throughput */
  2268. if (pwr_move > pwr_now)
  2269. *imbalance = busiest_load_per_task;
  2270. }
  2271. return busiest;
  2272. out_balanced:
  2273. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2274. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2275. goto ret;
  2276. if (this == group_leader && group_leader != group_min) {
  2277. *imbalance = min_load_per_task;
  2278. return group_min;
  2279. }
  2280. #endif
  2281. ret:
  2282. *imbalance = 0;
  2283. return NULL;
  2284. }
  2285. /*
  2286. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2287. */
  2288. static struct rq *
  2289. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2290. unsigned long imbalance, cpumask_t *cpus)
  2291. {
  2292. struct rq *busiest = NULL, *rq;
  2293. unsigned long max_load = 0;
  2294. int i;
  2295. for_each_cpu_mask(i, group->cpumask) {
  2296. unsigned long wl;
  2297. if (!cpu_isset(i, *cpus))
  2298. continue;
  2299. rq = cpu_rq(i);
  2300. wl = weighted_cpuload(i);
  2301. if (rq->nr_running == 1 && wl > imbalance)
  2302. continue;
  2303. if (wl > max_load) {
  2304. max_load = wl;
  2305. busiest = rq;
  2306. }
  2307. }
  2308. return busiest;
  2309. }
  2310. /*
  2311. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2312. * so long as it is large enough.
  2313. */
  2314. #define MAX_PINNED_INTERVAL 512
  2315. /*
  2316. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2317. * tasks if there is an imbalance.
  2318. */
  2319. static int load_balance(int this_cpu, struct rq *this_rq,
  2320. struct sched_domain *sd, enum cpu_idle_type idle,
  2321. int *balance)
  2322. {
  2323. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2324. struct sched_group *group;
  2325. unsigned long imbalance;
  2326. struct rq *busiest;
  2327. cpumask_t cpus = CPU_MASK_ALL;
  2328. unsigned long flags;
  2329. /*
  2330. * When power savings policy is enabled for the parent domain, idle
  2331. * sibling can pick up load irrespective of busy siblings. In this case,
  2332. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2333. * portraying it as CPU_NOT_IDLE.
  2334. */
  2335. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2336. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2337. sd_idle = 1;
  2338. schedstat_inc(sd, lb_count[idle]);
  2339. redo:
  2340. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2341. &cpus, balance);
  2342. if (*balance == 0)
  2343. goto out_balanced;
  2344. if (!group) {
  2345. schedstat_inc(sd, lb_nobusyg[idle]);
  2346. goto out_balanced;
  2347. }
  2348. busiest = find_busiest_queue(group, idle, imbalance, &cpus);
  2349. if (!busiest) {
  2350. schedstat_inc(sd, lb_nobusyq[idle]);
  2351. goto out_balanced;
  2352. }
  2353. BUG_ON(busiest == this_rq);
  2354. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2355. ld_moved = 0;
  2356. if (busiest->nr_running > 1) {
  2357. /*
  2358. * Attempt to move tasks. If find_busiest_group has found
  2359. * an imbalance but busiest->nr_running <= 1, the group is
  2360. * still unbalanced. ld_moved simply stays zero, so it is
  2361. * correctly treated as an imbalance.
  2362. */
  2363. local_irq_save(flags);
  2364. double_rq_lock(this_rq, busiest);
  2365. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2366. imbalance, sd, idle, &all_pinned);
  2367. double_rq_unlock(this_rq, busiest);
  2368. local_irq_restore(flags);
  2369. /*
  2370. * some other cpu did the load balance for us.
  2371. */
  2372. if (ld_moved && this_cpu != smp_processor_id())
  2373. resched_cpu(this_cpu);
  2374. /* All tasks on this runqueue were pinned by CPU affinity */
  2375. if (unlikely(all_pinned)) {
  2376. cpu_clear(cpu_of(busiest), cpus);
  2377. if (!cpus_empty(cpus))
  2378. goto redo;
  2379. goto out_balanced;
  2380. }
  2381. }
  2382. if (!ld_moved) {
  2383. schedstat_inc(sd, lb_failed[idle]);
  2384. sd->nr_balance_failed++;
  2385. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2386. spin_lock_irqsave(&busiest->lock, flags);
  2387. /* don't kick the migration_thread, if the curr
  2388. * task on busiest cpu can't be moved to this_cpu
  2389. */
  2390. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2391. spin_unlock_irqrestore(&busiest->lock, flags);
  2392. all_pinned = 1;
  2393. goto out_one_pinned;
  2394. }
  2395. if (!busiest->active_balance) {
  2396. busiest->active_balance = 1;
  2397. busiest->push_cpu = this_cpu;
  2398. active_balance = 1;
  2399. }
  2400. spin_unlock_irqrestore(&busiest->lock, flags);
  2401. if (active_balance)
  2402. wake_up_process(busiest->migration_thread);
  2403. /*
  2404. * We've kicked active balancing, reset the failure
  2405. * counter.
  2406. */
  2407. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2408. }
  2409. } else
  2410. sd->nr_balance_failed = 0;
  2411. if (likely(!active_balance)) {
  2412. /* We were unbalanced, so reset the balancing interval */
  2413. sd->balance_interval = sd->min_interval;
  2414. } else {
  2415. /*
  2416. * If we've begun active balancing, start to back off. This
  2417. * case may not be covered by the all_pinned logic if there
  2418. * is only 1 task on the busy runqueue (because we don't call
  2419. * move_tasks).
  2420. */
  2421. if (sd->balance_interval < sd->max_interval)
  2422. sd->balance_interval *= 2;
  2423. }
  2424. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2425. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2426. return -1;
  2427. return ld_moved;
  2428. out_balanced:
  2429. schedstat_inc(sd, lb_balanced[idle]);
  2430. sd->nr_balance_failed = 0;
  2431. out_one_pinned:
  2432. /* tune up the balancing interval */
  2433. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2434. (sd->balance_interval < sd->max_interval))
  2435. sd->balance_interval *= 2;
  2436. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2437. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2438. return -1;
  2439. return 0;
  2440. }
  2441. /*
  2442. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2443. * tasks if there is an imbalance.
  2444. *
  2445. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  2446. * this_rq is locked.
  2447. */
  2448. static int
  2449. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  2450. {
  2451. struct sched_group *group;
  2452. struct rq *busiest = NULL;
  2453. unsigned long imbalance;
  2454. int ld_moved = 0;
  2455. int sd_idle = 0;
  2456. int all_pinned = 0;
  2457. cpumask_t cpus = CPU_MASK_ALL;
  2458. /*
  2459. * When power savings policy is enabled for the parent domain, idle
  2460. * sibling can pick up load irrespective of busy siblings. In this case,
  2461. * let the state of idle sibling percolate up as IDLE, instead of
  2462. * portraying it as CPU_NOT_IDLE.
  2463. */
  2464. if (sd->flags & SD_SHARE_CPUPOWER &&
  2465. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2466. sd_idle = 1;
  2467. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  2468. redo:
  2469. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  2470. &sd_idle, &cpus, NULL);
  2471. if (!group) {
  2472. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  2473. goto out_balanced;
  2474. }
  2475. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
  2476. &cpus);
  2477. if (!busiest) {
  2478. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  2479. goto out_balanced;
  2480. }
  2481. BUG_ON(busiest == this_rq);
  2482. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  2483. ld_moved = 0;
  2484. if (busiest->nr_running > 1) {
  2485. /* Attempt to move tasks */
  2486. double_lock_balance(this_rq, busiest);
  2487. /* this_rq->clock is already updated */
  2488. update_rq_clock(busiest);
  2489. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2490. imbalance, sd, CPU_NEWLY_IDLE,
  2491. &all_pinned);
  2492. spin_unlock(&busiest->lock);
  2493. if (unlikely(all_pinned)) {
  2494. cpu_clear(cpu_of(busiest), cpus);
  2495. if (!cpus_empty(cpus))
  2496. goto redo;
  2497. }
  2498. }
  2499. if (!ld_moved) {
  2500. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  2501. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2502. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2503. return -1;
  2504. } else
  2505. sd->nr_balance_failed = 0;
  2506. return ld_moved;
  2507. out_balanced:
  2508. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  2509. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2510. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2511. return -1;
  2512. sd->nr_balance_failed = 0;
  2513. return 0;
  2514. }
  2515. /*
  2516. * idle_balance is called by schedule() if this_cpu is about to become
  2517. * idle. Attempts to pull tasks from other CPUs.
  2518. */
  2519. static void idle_balance(int this_cpu, struct rq *this_rq)
  2520. {
  2521. struct sched_domain *sd;
  2522. int pulled_task = -1;
  2523. unsigned long next_balance = jiffies + HZ;
  2524. for_each_domain(this_cpu, sd) {
  2525. unsigned long interval;
  2526. if (!(sd->flags & SD_LOAD_BALANCE))
  2527. continue;
  2528. if (sd->flags & SD_BALANCE_NEWIDLE)
  2529. /* If we've pulled tasks over stop searching: */
  2530. pulled_task = load_balance_newidle(this_cpu,
  2531. this_rq, sd);
  2532. interval = msecs_to_jiffies(sd->balance_interval);
  2533. if (time_after(next_balance, sd->last_balance + interval))
  2534. next_balance = sd->last_balance + interval;
  2535. if (pulled_task)
  2536. break;
  2537. }
  2538. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2539. /*
  2540. * We are going idle. next_balance may be set based on
  2541. * a busy processor. So reset next_balance.
  2542. */
  2543. this_rq->next_balance = next_balance;
  2544. }
  2545. }
  2546. /*
  2547. * active_load_balance is run by migration threads. It pushes running tasks
  2548. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  2549. * running on each physical CPU where possible, and avoids physical /
  2550. * logical imbalances.
  2551. *
  2552. * Called with busiest_rq locked.
  2553. */
  2554. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  2555. {
  2556. int target_cpu = busiest_rq->push_cpu;
  2557. struct sched_domain *sd;
  2558. struct rq *target_rq;
  2559. /* Is there any task to move? */
  2560. if (busiest_rq->nr_running <= 1)
  2561. return;
  2562. target_rq = cpu_rq(target_cpu);
  2563. /*
  2564. * This condition is "impossible", if it occurs
  2565. * we need to fix it. Originally reported by
  2566. * Bjorn Helgaas on a 128-cpu setup.
  2567. */
  2568. BUG_ON(busiest_rq == target_rq);
  2569. /* move a task from busiest_rq to target_rq */
  2570. double_lock_balance(busiest_rq, target_rq);
  2571. update_rq_clock(busiest_rq);
  2572. update_rq_clock(target_rq);
  2573. /* Search for an sd spanning us and the target CPU. */
  2574. for_each_domain(target_cpu, sd) {
  2575. if ((sd->flags & SD_LOAD_BALANCE) &&
  2576. cpu_isset(busiest_cpu, sd->span))
  2577. break;
  2578. }
  2579. if (likely(sd)) {
  2580. schedstat_inc(sd, alb_count);
  2581. if (move_one_task(target_rq, target_cpu, busiest_rq,
  2582. sd, CPU_IDLE))
  2583. schedstat_inc(sd, alb_pushed);
  2584. else
  2585. schedstat_inc(sd, alb_failed);
  2586. }
  2587. spin_unlock(&target_rq->lock);
  2588. }
  2589. #ifdef CONFIG_NO_HZ
  2590. static struct {
  2591. atomic_t load_balancer;
  2592. cpumask_t cpu_mask;
  2593. } nohz ____cacheline_aligned = {
  2594. .load_balancer = ATOMIC_INIT(-1),
  2595. .cpu_mask = CPU_MASK_NONE,
  2596. };
  2597. /*
  2598. * This routine will try to nominate the ilb (idle load balancing)
  2599. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  2600. * load balancing on behalf of all those cpus. If all the cpus in the system
  2601. * go into this tickless mode, then there will be no ilb owner (as there is
  2602. * no need for one) and all the cpus will sleep till the next wakeup event
  2603. * arrives...
  2604. *
  2605. * For the ilb owner, tick is not stopped. And this tick will be used
  2606. * for idle load balancing. ilb owner will still be part of
  2607. * nohz.cpu_mask..
  2608. *
  2609. * While stopping the tick, this cpu will become the ilb owner if there
  2610. * is no other owner. And will be the owner till that cpu becomes busy
  2611. * or if all cpus in the system stop their ticks at which point
  2612. * there is no need for ilb owner.
  2613. *
  2614. * When the ilb owner becomes busy, it nominates another owner, during the
  2615. * next busy scheduler_tick()
  2616. */
  2617. int select_nohz_load_balancer(int stop_tick)
  2618. {
  2619. int cpu = smp_processor_id();
  2620. if (stop_tick) {
  2621. cpu_set(cpu, nohz.cpu_mask);
  2622. cpu_rq(cpu)->in_nohz_recently = 1;
  2623. /*
  2624. * If we are going offline and still the leader, give up!
  2625. */
  2626. if (cpu_is_offline(cpu) &&
  2627. atomic_read(&nohz.load_balancer) == cpu) {
  2628. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2629. BUG();
  2630. return 0;
  2631. }
  2632. /* time for ilb owner also to sleep */
  2633. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2634. if (atomic_read(&nohz.load_balancer) == cpu)
  2635. atomic_set(&nohz.load_balancer, -1);
  2636. return 0;
  2637. }
  2638. if (atomic_read(&nohz.load_balancer) == -1) {
  2639. /* make me the ilb owner */
  2640. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  2641. return 1;
  2642. } else if (atomic_read(&nohz.load_balancer) == cpu)
  2643. return 1;
  2644. } else {
  2645. if (!cpu_isset(cpu, nohz.cpu_mask))
  2646. return 0;
  2647. cpu_clear(cpu, nohz.cpu_mask);
  2648. if (atomic_read(&nohz.load_balancer) == cpu)
  2649. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2650. BUG();
  2651. }
  2652. return 0;
  2653. }
  2654. #endif
  2655. static DEFINE_SPINLOCK(balancing);
  2656. /*
  2657. * It checks each scheduling domain to see if it is due to be balanced,
  2658. * and initiates a balancing operation if so.
  2659. *
  2660. * Balancing parameters are set up in arch_init_sched_domains.
  2661. */
  2662. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  2663. {
  2664. int balance = 1;
  2665. struct rq *rq = cpu_rq(cpu);
  2666. unsigned long interval;
  2667. struct sched_domain *sd;
  2668. /* Earliest time when we have to do rebalance again */
  2669. unsigned long next_balance = jiffies + 60*HZ;
  2670. int update_next_balance = 0;
  2671. for_each_domain(cpu, sd) {
  2672. if (!(sd->flags & SD_LOAD_BALANCE))
  2673. continue;
  2674. interval = sd->balance_interval;
  2675. if (idle != CPU_IDLE)
  2676. interval *= sd->busy_factor;
  2677. /* scale ms to jiffies */
  2678. interval = msecs_to_jiffies(interval);
  2679. if (unlikely(!interval))
  2680. interval = 1;
  2681. if (interval > HZ*NR_CPUS/10)
  2682. interval = HZ*NR_CPUS/10;
  2683. if (sd->flags & SD_SERIALIZE) {
  2684. if (!spin_trylock(&balancing))
  2685. goto out;
  2686. }
  2687. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  2688. if (load_balance(cpu, rq, sd, idle, &balance)) {
  2689. /*
  2690. * We've pulled tasks over so either we're no
  2691. * longer idle, or one of our SMT siblings is
  2692. * not idle.
  2693. */
  2694. idle = CPU_NOT_IDLE;
  2695. }
  2696. sd->last_balance = jiffies;
  2697. }
  2698. if (sd->flags & SD_SERIALIZE)
  2699. spin_unlock(&balancing);
  2700. out:
  2701. if (time_after(next_balance, sd->last_balance + interval)) {
  2702. next_balance = sd->last_balance + interval;
  2703. update_next_balance = 1;
  2704. }
  2705. /*
  2706. * Stop the load balance at this level. There is another
  2707. * CPU in our sched group which is doing load balancing more
  2708. * actively.
  2709. */
  2710. if (!balance)
  2711. break;
  2712. }
  2713. /*
  2714. * next_balance will be updated only when there is a need.
  2715. * When the cpu is attached to null domain for ex, it will not be
  2716. * updated.
  2717. */
  2718. if (likely(update_next_balance))
  2719. rq->next_balance = next_balance;
  2720. }
  2721. /*
  2722. * run_rebalance_domains is triggered when needed from the scheduler tick.
  2723. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  2724. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  2725. */
  2726. static void run_rebalance_domains(struct softirq_action *h)
  2727. {
  2728. int this_cpu = smp_processor_id();
  2729. struct rq *this_rq = cpu_rq(this_cpu);
  2730. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  2731. CPU_IDLE : CPU_NOT_IDLE;
  2732. rebalance_domains(this_cpu, idle);
  2733. #ifdef CONFIG_NO_HZ
  2734. /*
  2735. * If this cpu is the owner for idle load balancing, then do the
  2736. * balancing on behalf of the other idle cpus whose ticks are
  2737. * stopped.
  2738. */
  2739. if (this_rq->idle_at_tick &&
  2740. atomic_read(&nohz.load_balancer) == this_cpu) {
  2741. cpumask_t cpus = nohz.cpu_mask;
  2742. struct rq *rq;
  2743. int balance_cpu;
  2744. cpu_clear(this_cpu, cpus);
  2745. for_each_cpu_mask(balance_cpu, cpus) {
  2746. /*
  2747. * If this cpu gets work to do, stop the load balancing
  2748. * work being done for other cpus. Next load
  2749. * balancing owner will pick it up.
  2750. */
  2751. if (need_resched())
  2752. break;
  2753. rebalance_domains(balance_cpu, CPU_IDLE);
  2754. rq = cpu_rq(balance_cpu);
  2755. if (time_after(this_rq->next_balance, rq->next_balance))
  2756. this_rq->next_balance = rq->next_balance;
  2757. }
  2758. }
  2759. #endif
  2760. }
  2761. /*
  2762. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  2763. *
  2764. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  2765. * idle load balancing owner or decide to stop the periodic load balancing,
  2766. * if the whole system is idle.
  2767. */
  2768. static inline void trigger_load_balance(struct rq *rq, int cpu)
  2769. {
  2770. #ifdef CONFIG_NO_HZ
  2771. /*
  2772. * If we were in the nohz mode recently and busy at the current
  2773. * scheduler tick, then check if we need to nominate new idle
  2774. * load balancer.
  2775. */
  2776. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  2777. rq->in_nohz_recently = 0;
  2778. if (atomic_read(&nohz.load_balancer) == cpu) {
  2779. cpu_clear(cpu, nohz.cpu_mask);
  2780. atomic_set(&nohz.load_balancer, -1);
  2781. }
  2782. if (atomic_read(&nohz.load_balancer) == -1) {
  2783. /*
  2784. * simple selection for now: Nominate the
  2785. * first cpu in the nohz list to be the next
  2786. * ilb owner.
  2787. *
  2788. * TBD: Traverse the sched domains and nominate
  2789. * the nearest cpu in the nohz.cpu_mask.
  2790. */
  2791. int ilb = first_cpu(nohz.cpu_mask);
  2792. if (ilb != NR_CPUS)
  2793. resched_cpu(ilb);
  2794. }
  2795. }
  2796. /*
  2797. * If this cpu is idle and doing idle load balancing for all the
  2798. * cpus with ticks stopped, is it time for that to stop?
  2799. */
  2800. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  2801. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2802. resched_cpu(cpu);
  2803. return;
  2804. }
  2805. /*
  2806. * If this cpu is idle and the idle load balancing is done by
  2807. * someone else, then no need raise the SCHED_SOFTIRQ
  2808. */
  2809. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  2810. cpu_isset(cpu, nohz.cpu_mask))
  2811. return;
  2812. #endif
  2813. if (time_after_eq(jiffies, rq->next_balance))
  2814. raise_softirq(SCHED_SOFTIRQ);
  2815. }
  2816. #else /* CONFIG_SMP */
  2817. /*
  2818. * on UP we do not need to balance between CPUs:
  2819. */
  2820. static inline void idle_balance(int cpu, struct rq *rq)
  2821. {
  2822. }
  2823. /* Avoid "used but not defined" warning on UP */
  2824. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2825. unsigned long max_nr_move, unsigned long max_load_move,
  2826. struct sched_domain *sd, enum cpu_idle_type idle,
  2827. int *all_pinned, unsigned long *load_moved,
  2828. int *this_best_prio, struct rq_iterator *iterator)
  2829. {
  2830. *load_moved = 0;
  2831. return 0;
  2832. }
  2833. #endif
  2834. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2835. EXPORT_PER_CPU_SYMBOL(kstat);
  2836. /*
  2837. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  2838. * that have not yet been banked in case the task is currently running.
  2839. */
  2840. unsigned long long task_sched_runtime(struct task_struct *p)
  2841. {
  2842. unsigned long flags;
  2843. u64 ns, delta_exec;
  2844. struct rq *rq;
  2845. rq = task_rq_lock(p, &flags);
  2846. ns = p->se.sum_exec_runtime;
  2847. if (rq->curr == p) {
  2848. update_rq_clock(rq);
  2849. delta_exec = rq->clock - p->se.exec_start;
  2850. if ((s64)delta_exec > 0)
  2851. ns += delta_exec;
  2852. }
  2853. task_rq_unlock(rq, &flags);
  2854. return ns;
  2855. }
  2856. /*
  2857. * Account user cpu time to a process.
  2858. * @p: the process that the cpu time gets accounted to
  2859. * @cputime: the cpu time spent in user space since the last update
  2860. */
  2861. void account_user_time(struct task_struct *p, cputime_t cputime)
  2862. {
  2863. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2864. cputime64_t tmp;
  2865. struct rq *rq = this_rq();
  2866. p->utime = cputime_add(p->utime, cputime);
  2867. if (p != rq->idle)
  2868. cpuacct_charge(p, cputime);
  2869. /* Add user time to cpustat. */
  2870. tmp = cputime_to_cputime64(cputime);
  2871. if (TASK_NICE(p) > 0)
  2872. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2873. else
  2874. cpustat->user = cputime64_add(cpustat->user, tmp);
  2875. }
  2876. /*
  2877. * Account guest cpu time to a process.
  2878. * @p: the process that the cpu time gets accounted to
  2879. * @cputime: the cpu time spent in virtual machine since the last update
  2880. */
  2881. void account_guest_time(struct task_struct *p, cputime_t cputime)
  2882. {
  2883. cputime64_t tmp;
  2884. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2885. tmp = cputime_to_cputime64(cputime);
  2886. p->utime = cputime_add(p->utime, cputime);
  2887. p->gtime = cputime_add(p->gtime, cputime);
  2888. cpustat->user = cputime64_add(cpustat->user, tmp);
  2889. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  2890. }
  2891. /*
  2892. * Account scaled user cpu time to a process.
  2893. * @p: the process that the cpu time gets accounted to
  2894. * @cputime: the cpu time spent in user space since the last update
  2895. */
  2896. void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
  2897. {
  2898. p->utimescaled = cputime_add(p->utimescaled, cputime);
  2899. }
  2900. /*
  2901. * Account system cpu time to a process.
  2902. * @p: the process that the cpu time gets accounted to
  2903. * @hardirq_offset: the offset to subtract from hardirq_count()
  2904. * @cputime: the cpu time spent in kernel space since the last update
  2905. */
  2906. void account_system_time(struct task_struct *p, int hardirq_offset,
  2907. cputime_t cputime)
  2908. {
  2909. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2910. struct rq *rq = this_rq();
  2911. cputime64_t tmp;
  2912. if (p->flags & PF_VCPU) {
  2913. account_guest_time(p, cputime);
  2914. p->flags &= ~PF_VCPU;
  2915. return;
  2916. }
  2917. p->stime = cputime_add(p->stime, cputime);
  2918. /* Add system time to cpustat. */
  2919. tmp = cputime_to_cputime64(cputime);
  2920. if (hardirq_count() - hardirq_offset)
  2921. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2922. else if (softirq_count())
  2923. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2924. else if (p != rq->idle) {
  2925. cpustat->system = cputime64_add(cpustat->system, tmp);
  2926. cpuacct_charge(p, cputime);
  2927. } else if (atomic_read(&rq->nr_iowait) > 0)
  2928. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2929. else
  2930. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2931. /* Account for system time used */
  2932. acct_update_integrals(p);
  2933. }
  2934. /*
  2935. * Account scaled system cpu time to a process.
  2936. * @p: the process that the cpu time gets accounted to
  2937. * @hardirq_offset: the offset to subtract from hardirq_count()
  2938. * @cputime: the cpu time spent in kernel space since the last update
  2939. */
  2940. void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
  2941. {
  2942. p->stimescaled = cputime_add(p->stimescaled, cputime);
  2943. }
  2944. /*
  2945. * Account for involuntary wait time.
  2946. * @p: the process from which the cpu time has been stolen
  2947. * @steal: the cpu time spent in involuntary wait
  2948. */
  2949. void account_steal_time(struct task_struct *p, cputime_t steal)
  2950. {
  2951. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2952. cputime64_t tmp = cputime_to_cputime64(steal);
  2953. struct rq *rq = this_rq();
  2954. if (p == rq->idle) {
  2955. p->stime = cputime_add(p->stime, steal);
  2956. if (atomic_read(&rq->nr_iowait) > 0)
  2957. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2958. else
  2959. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2960. } else {
  2961. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  2962. cpuacct_charge(p, -tmp);
  2963. }
  2964. }
  2965. /*
  2966. * This function gets called by the timer code, with HZ frequency.
  2967. * We call it with interrupts disabled.
  2968. *
  2969. * It also gets called by the fork code, when changing the parent's
  2970. * timeslices.
  2971. */
  2972. void scheduler_tick(void)
  2973. {
  2974. int cpu = smp_processor_id();
  2975. struct rq *rq = cpu_rq(cpu);
  2976. struct task_struct *curr = rq->curr;
  2977. u64 next_tick = rq->tick_timestamp + TICK_NSEC;
  2978. spin_lock(&rq->lock);
  2979. __update_rq_clock(rq);
  2980. /*
  2981. * Let rq->clock advance by at least TICK_NSEC:
  2982. */
  2983. if (unlikely(rq->clock < next_tick))
  2984. rq->clock = next_tick;
  2985. rq->tick_timestamp = rq->clock;
  2986. update_cpu_load(rq);
  2987. if (curr != rq->idle) /* FIXME: needed? */
  2988. curr->sched_class->task_tick(rq, curr);
  2989. spin_unlock(&rq->lock);
  2990. #ifdef CONFIG_SMP
  2991. rq->idle_at_tick = idle_cpu(cpu);
  2992. trigger_load_balance(rq, cpu);
  2993. #endif
  2994. }
  2995. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  2996. void fastcall add_preempt_count(int val)
  2997. {
  2998. /*
  2999. * Underflow?
  3000. */
  3001. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3002. return;
  3003. preempt_count() += val;
  3004. /*
  3005. * Spinlock count overflowing soon?
  3006. */
  3007. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3008. PREEMPT_MASK - 10);
  3009. }
  3010. EXPORT_SYMBOL(add_preempt_count);
  3011. void fastcall sub_preempt_count(int val)
  3012. {
  3013. /*
  3014. * Underflow?
  3015. */
  3016. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3017. return;
  3018. /*
  3019. * Is the spinlock portion underflowing?
  3020. */
  3021. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3022. !(preempt_count() & PREEMPT_MASK)))
  3023. return;
  3024. preempt_count() -= val;
  3025. }
  3026. EXPORT_SYMBOL(sub_preempt_count);
  3027. #endif
  3028. /*
  3029. * Print scheduling while atomic bug:
  3030. */
  3031. static noinline void __schedule_bug(struct task_struct *prev)
  3032. {
  3033. printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
  3034. prev->comm, preempt_count(), task_pid_nr(prev));
  3035. debug_show_held_locks(prev);
  3036. if (irqs_disabled())
  3037. print_irqtrace_events(prev);
  3038. dump_stack();
  3039. }
  3040. /*
  3041. * Various schedule()-time debugging checks and statistics:
  3042. */
  3043. static inline void schedule_debug(struct task_struct *prev)
  3044. {
  3045. /*
  3046. * Test if we are atomic. Since do_exit() needs to call into
  3047. * schedule() atomically, we ignore that path for now.
  3048. * Otherwise, whine if we are scheduling when we should not be.
  3049. */
  3050. if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
  3051. __schedule_bug(prev);
  3052. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3053. schedstat_inc(this_rq(), sched_count);
  3054. #ifdef CONFIG_SCHEDSTATS
  3055. if (unlikely(prev->lock_depth >= 0)) {
  3056. schedstat_inc(this_rq(), bkl_count);
  3057. schedstat_inc(prev, sched_info.bkl_count);
  3058. }
  3059. #endif
  3060. }
  3061. /*
  3062. * Pick up the highest-prio task:
  3063. */
  3064. static inline struct task_struct *
  3065. pick_next_task(struct rq *rq, struct task_struct *prev)
  3066. {
  3067. const struct sched_class *class;
  3068. struct task_struct *p;
  3069. /*
  3070. * Optimization: we know that if all tasks are in
  3071. * the fair class we can call that function directly:
  3072. */
  3073. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3074. p = fair_sched_class.pick_next_task(rq);
  3075. if (likely(p))
  3076. return p;
  3077. }
  3078. class = sched_class_highest;
  3079. for ( ; ; ) {
  3080. p = class->pick_next_task(rq);
  3081. if (p)
  3082. return p;
  3083. /*
  3084. * Will never be NULL as the idle class always
  3085. * returns a non-NULL p:
  3086. */
  3087. class = class->next;
  3088. }
  3089. }
  3090. /*
  3091. * schedule() is the main scheduler function.
  3092. */
  3093. asmlinkage void __sched schedule(void)
  3094. {
  3095. struct task_struct *prev, *next;
  3096. long *switch_count;
  3097. struct rq *rq;
  3098. int cpu;
  3099. need_resched:
  3100. preempt_disable();
  3101. cpu = smp_processor_id();
  3102. rq = cpu_rq(cpu);
  3103. rcu_qsctr_inc(cpu);
  3104. prev = rq->curr;
  3105. switch_count = &prev->nivcsw;
  3106. release_kernel_lock(prev);
  3107. need_resched_nonpreemptible:
  3108. schedule_debug(prev);
  3109. /*
  3110. * Do the rq-clock update outside the rq lock:
  3111. */
  3112. local_irq_disable();
  3113. __update_rq_clock(rq);
  3114. spin_lock(&rq->lock);
  3115. clear_tsk_need_resched(prev);
  3116. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3117. if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
  3118. unlikely(signal_pending(prev)))) {
  3119. prev->state = TASK_RUNNING;
  3120. } else {
  3121. deactivate_task(rq, prev, 1);
  3122. }
  3123. switch_count = &prev->nvcsw;
  3124. }
  3125. if (unlikely(!rq->nr_running))
  3126. idle_balance(cpu, rq);
  3127. prev->sched_class->put_prev_task(rq, prev);
  3128. next = pick_next_task(rq, prev);
  3129. sched_info_switch(prev, next);
  3130. if (likely(prev != next)) {
  3131. rq->nr_switches++;
  3132. rq->curr = next;
  3133. ++*switch_count;
  3134. context_switch(rq, prev, next); /* unlocks the rq */
  3135. } else
  3136. spin_unlock_irq(&rq->lock);
  3137. if (unlikely(reacquire_kernel_lock(current) < 0)) {
  3138. cpu = smp_processor_id();
  3139. rq = cpu_rq(cpu);
  3140. goto need_resched_nonpreemptible;
  3141. }
  3142. preempt_enable_no_resched();
  3143. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3144. goto need_resched;
  3145. }
  3146. EXPORT_SYMBOL(schedule);
  3147. #ifdef CONFIG_PREEMPT
  3148. /*
  3149. * this is the entry point to schedule() from in-kernel preemption
  3150. * off of preempt_enable. Kernel preemptions off return from interrupt
  3151. * occur there and call schedule directly.
  3152. */
  3153. asmlinkage void __sched preempt_schedule(void)
  3154. {
  3155. struct thread_info *ti = current_thread_info();
  3156. #ifdef CONFIG_PREEMPT_BKL
  3157. struct task_struct *task = current;
  3158. int saved_lock_depth;
  3159. #endif
  3160. /*
  3161. * If there is a non-zero preempt_count or interrupts are disabled,
  3162. * we do not want to preempt the current task. Just return..
  3163. */
  3164. if (likely(ti->preempt_count || irqs_disabled()))
  3165. return;
  3166. do {
  3167. add_preempt_count(PREEMPT_ACTIVE);
  3168. /*
  3169. * We keep the big kernel semaphore locked, but we
  3170. * clear ->lock_depth so that schedule() doesnt
  3171. * auto-release the semaphore:
  3172. */
  3173. #ifdef CONFIG_PREEMPT_BKL
  3174. saved_lock_depth = task->lock_depth;
  3175. task->lock_depth = -1;
  3176. #endif
  3177. schedule();
  3178. #ifdef CONFIG_PREEMPT_BKL
  3179. task->lock_depth = saved_lock_depth;
  3180. #endif
  3181. sub_preempt_count(PREEMPT_ACTIVE);
  3182. /*
  3183. * Check again in case we missed a preemption opportunity
  3184. * between schedule and now.
  3185. */
  3186. barrier();
  3187. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3188. }
  3189. EXPORT_SYMBOL(preempt_schedule);
  3190. /*
  3191. * this is the entry point to schedule() from kernel preemption
  3192. * off of irq context.
  3193. * Note, that this is called and return with irqs disabled. This will
  3194. * protect us against recursive calling from irq.
  3195. */
  3196. asmlinkage void __sched preempt_schedule_irq(void)
  3197. {
  3198. struct thread_info *ti = current_thread_info();
  3199. #ifdef CONFIG_PREEMPT_BKL
  3200. struct task_struct *task = current;
  3201. int saved_lock_depth;
  3202. #endif
  3203. /* Catch callers which need to be fixed */
  3204. BUG_ON(ti->preempt_count || !irqs_disabled());
  3205. do {
  3206. add_preempt_count(PREEMPT_ACTIVE);
  3207. /*
  3208. * We keep the big kernel semaphore locked, but we
  3209. * clear ->lock_depth so that schedule() doesnt
  3210. * auto-release the semaphore:
  3211. */
  3212. #ifdef CONFIG_PREEMPT_BKL
  3213. saved_lock_depth = task->lock_depth;
  3214. task->lock_depth = -1;
  3215. #endif
  3216. local_irq_enable();
  3217. schedule();
  3218. local_irq_disable();
  3219. #ifdef CONFIG_PREEMPT_BKL
  3220. task->lock_depth = saved_lock_depth;
  3221. #endif
  3222. sub_preempt_count(PREEMPT_ACTIVE);
  3223. /*
  3224. * Check again in case we missed a preemption opportunity
  3225. * between schedule and now.
  3226. */
  3227. barrier();
  3228. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3229. }
  3230. #endif /* CONFIG_PREEMPT */
  3231. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3232. void *key)
  3233. {
  3234. return try_to_wake_up(curr->private, mode, sync);
  3235. }
  3236. EXPORT_SYMBOL(default_wake_function);
  3237. /*
  3238. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3239. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3240. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3241. *
  3242. * There are circumstances in which we can try to wake a task which has already
  3243. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3244. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3245. */
  3246. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3247. int nr_exclusive, int sync, void *key)
  3248. {
  3249. wait_queue_t *curr, *next;
  3250. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3251. unsigned flags = curr->flags;
  3252. if (curr->func(curr, mode, sync, key) &&
  3253. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3254. break;
  3255. }
  3256. }
  3257. /**
  3258. * __wake_up - wake up threads blocked on a waitqueue.
  3259. * @q: the waitqueue
  3260. * @mode: which threads
  3261. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3262. * @key: is directly passed to the wakeup function
  3263. */
  3264. void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
  3265. int nr_exclusive, void *key)
  3266. {
  3267. unsigned long flags;
  3268. spin_lock_irqsave(&q->lock, flags);
  3269. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3270. spin_unlock_irqrestore(&q->lock, flags);
  3271. }
  3272. EXPORT_SYMBOL(__wake_up);
  3273. /*
  3274. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3275. */
  3276. void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3277. {
  3278. __wake_up_common(q, mode, 1, 0, NULL);
  3279. }
  3280. /**
  3281. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3282. * @q: the waitqueue
  3283. * @mode: which threads
  3284. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3285. *
  3286. * The sync wakeup differs that the waker knows that it will schedule
  3287. * away soon, so while the target thread will be woken up, it will not
  3288. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3289. * with each other. This can prevent needless bouncing between CPUs.
  3290. *
  3291. * On UP it can prevent extra preemption.
  3292. */
  3293. void fastcall
  3294. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3295. {
  3296. unsigned long flags;
  3297. int sync = 1;
  3298. if (unlikely(!q))
  3299. return;
  3300. if (unlikely(!nr_exclusive))
  3301. sync = 0;
  3302. spin_lock_irqsave(&q->lock, flags);
  3303. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3304. spin_unlock_irqrestore(&q->lock, flags);
  3305. }
  3306. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3307. void fastcall complete(struct completion *x)
  3308. {
  3309. unsigned long flags;
  3310. spin_lock_irqsave(&x->wait.lock, flags);
  3311. x->done++;
  3312. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3313. 1, 0, NULL);
  3314. spin_unlock_irqrestore(&x->wait.lock, flags);
  3315. }
  3316. EXPORT_SYMBOL(complete);
  3317. void fastcall complete_all(struct completion *x)
  3318. {
  3319. unsigned long flags;
  3320. spin_lock_irqsave(&x->wait.lock, flags);
  3321. x->done += UINT_MAX/2;
  3322. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3323. 0, 0, NULL);
  3324. spin_unlock_irqrestore(&x->wait.lock, flags);
  3325. }
  3326. EXPORT_SYMBOL(complete_all);
  3327. static inline long __sched
  3328. do_wait_for_common(struct completion *x, long timeout, int state)
  3329. {
  3330. if (!x->done) {
  3331. DECLARE_WAITQUEUE(wait, current);
  3332. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3333. __add_wait_queue_tail(&x->wait, &wait);
  3334. do {
  3335. if (state == TASK_INTERRUPTIBLE &&
  3336. signal_pending(current)) {
  3337. __remove_wait_queue(&x->wait, &wait);
  3338. return -ERESTARTSYS;
  3339. }
  3340. __set_current_state(state);
  3341. spin_unlock_irq(&x->wait.lock);
  3342. timeout = schedule_timeout(timeout);
  3343. spin_lock_irq(&x->wait.lock);
  3344. if (!timeout) {
  3345. __remove_wait_queue(&x->wait, &wait);
  3346. return timeout;
  3347. }
  3348. } while (!x->done);
  3349. __remove_wait_queue(&x->wait, &wait);
  3350. }
  3351. x->done--;
  3352. return timeout;
  3353. }
  3354. static long __sched
  3355. wait_for_common(struct completion *x, long timeout, int state)
  3356. {
  3357. might_sleep();
  3358. spin_lock_irq(&x->wait.lock);
  3359. timeout = do_wait_for_common(x, timeout, state);
  3360. spin_unlock_irq(&x->wait.lock);
  3361. return timeout;
  3362. }
  3363. void fastcall __sched wait_for_completion(struct completion *x)
  3364. {
  3365. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3366. }
  3367. EXPORT_SYMBOL(wait_for_completion);
  3368. unsigned long fastcall __sched
  3369. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3370. {
  3371. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3372. }
  3373. EXPORT_SYMBOL(wait_for_completion_timeout);
  3374. int __sched wait_for_completion_interruptible(struct completion *x)
  3375. {
  3376. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3377. if (t == -ERESTARTSYS)
  3378. return t;
  3379. return 0;
  3380. }
  3381. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3382. unsigned long fastcall __sched
  3383. wait_for_completion_interruptible_timeout(struct completion *x,
  3384. unsigned long timeout)
  3385. {
  3386. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3387. }
  3388. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3389. static long __sched
  3390. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3391. {
  3392. unsigned long flags;
  3393. wait_queue_t wait;
  3394. init_waitqueue_entry(&wait, current);
  3395. __set_current_state(state);
  3396. spin_lock_irqsave(&q->lock, flags);
  3397. __add_wait_queue(q, &wait);
  3398. spin_unlock(&q->lock);
  3399. timeout = schedule_timeout(timeout);
  3400. spin_lock_irq(&q->lock);
  3401. __remove_wait_queue(q, &wait);
  3402. spin_unlock_irqrestore(&q->lock, flags);
  3403. return timeout;
  3404. }
  3405. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3406. {
  3407. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3408. }
  3409. EXPORT_SYMBOL(interruptible_sleep_on);
  3410. long __sched
  3411. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3412. {
  3413. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3414. }
  3415. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3416. void __sched sleep_on(wait_queue_head_t *q)
  3417. {
  3418. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3419. }
  3420. EXPORT_SYMBOL(sleep_on);
  3421. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3422. {
  3423. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3424. }
  3425. EXPORT_SYMBOL(sleep_on_timeout);
  3426. #ifdef CONFIG_RT_MUTEXES
  3427. /*
  3428. * rt_mutex_setprio - set the current priority of a task
  3429. * @p: task
  3430. * @prio: prio value (kernel-internal form)
  3431. *
  3432. * This function changes the 'effective' priority of a task. It does
  3433. * not touch ->normal_prio like __setscheduler().
  3434. *
  3435. * Used by the rt_mutex code to implement priority inheritance logic.
  3436. */
  3437. void rt_mutex_setprio(struct task_struct *p, int prio)
  3438. {
  3439. unsigned long flags;
  3440. int oldprio, on_rq, running;
  3441. struct rq *rq;
  3442. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3443. rq = task_rq_lock(p, &flags);
  3444. update_rq_clock(rq);
  3445. oldprio = p->prio;
  3446. on_rq = p->se.on_rq;
  3447. running = task_running(rq, p);
  3448. if (on_rq) {
  3449. dequeue_task(rq, p, 0);
  3450. if (running)
  3451. p->sched_class->put_prev_task(rq, p);
  3452. }
  3453. if (rt_prio(prio))
  3454. p->sched_class = &rt_sched_class;
  3455. else
  3456. p->sched_class = &fair_sched_class;
  3457. p->prio = prio;
  3458. if (on_rq) {
  3459. if (running)
  3460. p->sched_class->set_curr_task(rq);
  3461. enqueue_task(rq, p, 0);
  3462. /*
  3463. * Reschedule if we are currently running on this runqueue and
  3464. * our priority decreased, or if we are not currently running on
  3465. * this runqueue and our priority is higher than the current's
  3466. */
  3467. if (running) {
  3468. if (p->prio > oldprio)
  3469. resched_task(rq->curr);
  3470. } else {
  3471. check_preempt_curr(rq, p);
  3472. }
  3473. }
  3474. task_rq_unlock(rq, &flags);
  3475. }
  3476. #endif
  3477. void set_user_nice(struct task_struct *p, long nice)
  3478. {
  3479. int old_prio, delta, on_rq;
  3480. unsigned long flags;
  3481. struct rq *rq;
  3482. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3483. return;
  3484. /*
  3485. * We have to be careful, if called from sys_setpriority(),
  3486. * the task might be in the middle of scheduling on another CPU.
  3487. */
  3488. rq = task_rq_lock(p, &flags);
  3489. update_rq_clock(rq);
  3490. /*
  3491. * The RT priorities are set via sched_setscheduler(), but we still
  3492. * allow the 'normal' nice value to be set - but as expected
  3493. * it wont have any effect on scheduling until the task is
  3494. * SCHED_FIFO/SCHED_RR:
  3495. */
  3496. if (task_has_rt_policy(p)) {
  3497. p->static_prio = NICE_TO_PRIO(nice);
  3498. goto out_unlock;
  3499. }
  3500. on_rq = p->se.on_rq;
  3501. if (on_rq) {
  3502. dequeue_task(rq, p, 0);
  3503. dec_load(rq, p);
  3504. }
  3505. p->static_prio = NICE_TO_PRIO(nice);
  3506. set_load_weight(p);
  3507. old_prio = p->prio;
  3508. p->prio = effective_prio(p);
  3509. delta = p->prio - old_prio;
  3510. if (on_rq) {
  3511. enqueue_task(rq, p, 0);
  3512. inc_load(rq, p);
  3513. /*
  3514. * If the task increased its priority or is running and
  3515. * lowered its priority, then reschedule its CPU:
  3516. */
  3517. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3518. resched_task(rq->curr);
  3519. }
  3520. out_unlock:
  3521. task_rq_unlock(rq, &flags);
  3522. }
  3523. EXPORT_SYMBOL(set_user_nice);
  3524. /*
  3525. * can_nice - check if a task can reduce its nice value
  3526. * @p: task
  3527. * @nice: nice value
  3528. */
  3529. int can_nice(const struct task_struct *p, const int nice)
  3530. {
  3531. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3532. int nice_rlim = 20 - nice;
  3533. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  3534. capable(CAP_SYS_NICE));
  3535. }
  3536. #ifdef __ARCH_WANT_SYS_NICE
  3537. /*
  3538. * sys_nice - change the priority of the current process.
  3539. * @increment: priority increment
  3540. *
  3541. * sys_setpriority is a more generic, but much slower function that
  3542. * does similar things.
  3543. */
  3544. asmlinkage long sys_nice(int increment)
  3545. {
  3546. long nice, retval;
  3547. /*
  3548. * Setpriority might change our priority at the same moment.
  3549. * We don't have to worry. Conceptually one call occurs first
  3550. * and we have a single winner.
  3551. */
  3552. if (increment < -40)
  3553. increment = -40;
  3554. if (increment > 40)
  3555. increment = 40;
  3556. nice = PRIO_TO_NICE(current->static_prio) + increment;
  3557. if (nice < -20)
  3558. nice = -20;
  3559. if (nice > 19)
  3560. nice = 19;
  3561. if (increment < 0 && !can_nice(current, nice))
  3562. return -EPERM;
  3563. retval = security_task_setnice(current, nice);
  3564. if (retval)
  3565. return retval;
  3566. set_user_nice(current, nice);
  3567. return 0;
  3568. }
  3569. #endif
  3570. /**
  3571. * task_prio - return the priority value of a given task.
  3572. * @p: the task in question.
  3573. *
  3574. * This is the priority value as seen by users in /proc.
  3575. * RT tasks are offset by -200. Normal tasks are centered
  3576. * around 0, value goes from -16 to +15.
  3577. */
  3578. int task_prio(const struct task_struct *p)
  3579. {
  3580. return p->prio - MAX_RT_PRIO;
  3581. }
  3582. /**
  3583. * task_nice - return the nice value of a given task.
  3584. * @p: the task in question.
  3585. */
  3586. int task_nice(const struct task_struct *p)
  3587. {
  3588. return TASK_NICE(p);
  3589. }
  3590. EXPORT_SYMBOL_GPL(task_nice);
  3591. /**
  3592. * idle_cpu - is a given cpu idle currently?
  3593. * @cpu: the processor in question.
  3594. */
  3595. int idle_cpu(int cpu)
  3596. {
  3597. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3598. }
  3599. /**
  3600. * idle_task - return the idle task for a given cpu.
  3601. * @cpu: the processor in question.
  3602. */
  3603. struct task_struct *idle_task(int cpu)
  3604. {
  3605. return cpu_rq(cpu)->idle;
  3606. }
  3607. /**
  3608. * find_process_by_pid - find a process with a matching PID value.
  3609. * @pid: the pid in question.
  3610. */
  3611. static struct task_struct *find_process_by_pid(pid_t pid)
  3612. {
  3613. return pid ? find_task_by_vpid(pid) : current;
  3614. }
  3615. /* Actually do priority change: must hold rq lock. */
  3616. static void
  3617. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3618. {
  3619. BUG_ON(p->se.on_rq);
  3620. p->policy = policy;
  3621. switch (p->policy) {
  3622. case SCHED_NORMAL:
  3623. case SCHED_BATCH:
  3624. case SCHED_IDLE:
  3625. p->sched_class = &fair_sched_class;
  3626. break;
  3627. case SCHED_FIFO:
  3628. case SCHED_RR:
  3629. p->sched_class = &rt_sched_class;
  3630. break;
  3631. }
  3632. p->rt_priority = prio;
  3633. p->normal_prio = normal_prio(p);
  3634. /* we are holding p->pi_lock already */
  3635. p->prio = rt_mutex_getprio(p);
  3636. set_load_weight(p);
  3637. }
  3638. /**
  3639. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3640. * @p: the task in question.
  3641. * @policy: new policy.
  3642. * @param: structure containing the new RT priority.
  3643. *
  3644. * NOTE that the task may be already dead.
  3645. */
  3646. int sched_setscheduler(struct task_struct *p, int policy,
  3647. struct sched_param *param)
  3648. {
  3649. int retval, oldprio, oldpolicy = -1, on_rq, running;
  3650. unsigned long flags;
  3651. struct rq *rq;
  3652. /* may grab non-irq protected spin_locks */
  3653. BUG_ON(in_interrupt());
  3654. recheck:
  3655. /* double check policy once rq lock held */
  3656. if (policy < 0)
  3657. policy = oldpolicy = p->policy;
  3658. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3659. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3660. policy != SCHED_IDLE)
  3661. return -EINVAL;
  3662. /*
  3663. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3664. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3665. * SCHED_BATCH and SCHED_IDLE is 0.
  3666. */
  3667. if (param->sched_priority < 0 ||
  3668. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3669. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3670. return -EINVAL;
  3671. if (rt_policy(policy) != (param->sched_priority != 0))
  3672. return -EINVAL;
  3673. /*
  3674. * Allow unprivileged RT tasks to decrease priority:
  3675. */
  3676. if (!capable(CAP_SYS_NICE)) {
  3677. if (rt_policy(policy)) {
  3678. unsigned long rlim_rtprio;
  3679. if (!lock_task_sighand(p, &flags))
  3680. return -ESRCH;
  3681. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  3682. unlock_task_sighand(p, &flags);
  3683. /* can't set/change the rt policy */
  3684. if (policy != p->policy && !rlim_rtprio)
  3685. return -EPERM;
  3686. /* can't increase priority */
  3687. if (param->sched_priority > p->rt_priority &&
  3688. param->sched_priority > rlim_rtprio)
  3689. return -EPERM;
  3690. }
  3691. /*
  3692. * Like positive nice levels, dont allow tasks to
  3693. * move out of SCHED_IDLE either:
  3694. */
  3695. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  3696. return -EPERM;
  3697. /* can't change other user's priorities */
  3698. if ((current->euid != p->euid) &&
  3699. (current->euid != p->uid))
  3700. return -EPERM;
  3701. }
  3702. retval = security_task_setscheduler(p, policy, param);
  3703. if (retval)
  3704. return retval;
  3705. /*
  3706. * make sure no PI-waiters arrive (or leave) while we are
  3707. * changing the priority of the task:
  3708. */
  3709. spin_lock_irqsave(&p->pi_lock, flags);
  3710. /*
  3711. * To be able to change p->policy safely, the apropriate
  3712. * runqueue lock must be held.
  3713. */
  3714. rq = __task_rq_lock(p);
  3715. /* recheck policy now with rq lock held */
  3716. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3717. policy = oldpolicy = -1;
  3718. __task_rq_unlock(rq);
  3719. spin_unlock_irqrestore(&p->pi_lock, flags);
  3720. goto recheck;
  3721. }
  3722. update_rq_clock(rq);
  3723. on_rq = p->se.on_rq;
  3724. running = task_running(rq, p);
  3725. if (on_rq) {
  3726. deactivate_task(rq, p, 0);
  3727. if (running)
  3728. p->sched_class->put_prev_task(rq, p);
  3729. }
  3730. oldprio = p->prio;
  3731. __setscheduler(rq, p, policy, param->sched_priority);
  3732. if (on_rq) {
  3733. if (running)
  3734. p->sched_class->set_curr_task(rq);
  3735. activate_task(rq, p, 0);
  3736. /*
  3737. * Reschedule if we are currently running on this runqueue and
  3738. * our priority decreased, or if we are not currently running on
  3739. * this runqueue and our priority is higher than the current's
  3740. */
  3741. if (running) {
  3742. if (p->prio > oldprio)
  3743. resched_task(rq->curr);
  3744. } else {
  3745. check_preempt_curr(rq, p);
  3746. }
  3747. }
  3748. __task_rq_unlock(rq);
  3749. spin_unlock_irqrestore(&p->pi_lock, flags);
  3750. rt_mutex_adjust_pi(p);
  3751. return 0;
  3752. }
  3753. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3754. static int
  3755. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3756. {
  3757. struct sched_param lparam;
  3758. struct task_struct *p;
  3759. int retval;
  3760. if (!param || pid < 0)
  3761. return -EINVAL;
  3762. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3763. return -EFAULT;
  3764. rcu_read_lock();
  3765. retval = -ESRCH;
  3766. p = find_process_by_pid(pid);
  3767. if (p != NULL)
  3768. retval = sched_setscheduler(p, policy, &lparam);
  3769. rcu_read_unlock();
  3770. return retval;
  3771. }
  3772. /**
  3773. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3774. * @pid: the pid in question.
  3775. * @policy: new policy.
  3776. * @param: structure containing the new RT priority.
  3777. */
  3778. asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
  3779. struct sched_param __user *param)
  3780. {
  3781. /* negative values for policy are not valid */
  3782. if (policy < 0)
  3783. return -EINVAL;
  3784. return do_sched_setscheduler(pid, policy, param);
  3785. }
  3786. /**
  3787. * sys_sched_setparam - set/change the RT priority of a thread
  3788. * @pid: the pid in question.
  3789. * @param: structure containing the new RT priority.
  3790. */
  3791. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  3792. {
  3793. return do_sched_setscheduler(pid, -1, param);
  3794. }
  3795. /**
  3796. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3797. * @pid: the pid in question.
  3798. */
  3799. asmlinkage long sys_sched_getscheduler(pid_t pid)
  3800. {
  3801. struct task_struct *p;
  3802. int retval;
  3803. if (pid < 0)
  3804. return -EINVAL;
  3805. retval = -ESRCH;
  3806. read_lock(&tasklist_lock);
  3807. p = find_process_by_pid(pid);
  3808. if (p) {
  3809. retval = security_task_getscheduler(p);
  3810. if (!retval)
  3811. retval = p->policy;
  3812. }
  3813. read_unlock(&tasklist_lock);
  3814. return retval;
  3815. }
  3816. /**
  3817. * sys_sched_getscheduler - get the RT priority of a thread
  3818. * @pid: the pid in question.
  3819. * @param: structure containing the RT priority.
  3820. */
  3821. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  3822. {
  3823. struct sched_param lp;
  3824. struct task_struct *p;
  3825. int retval;
  3826. if (!param || pid < 0)
  3827. return -EINVAL;
  3828. read_lock(&tasklist_lock);
  3829. p = find_process_by_pid(pid);
  3830. retval = -ESRCH;
  3831. if (!p)
  3832. goto out_unlock;
  3833. retval = security_task_getscheduler(p);
  3834. if (retval)
  3835. goto out_unlock;
  3836. lp.sched_priority = p->rt_priority;
  3837. read_unlock(&tasklist_lock);
  3838. /*
  3839. * This one might sleep, we cannot do it with a spinlock held ...
  3840. */
  3841. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3842. return retval;
  3843. out_unlock:
  3844. read_unlock(&tasklist_lock);
  3845. return retval;
  3846. }
  3847. long sched_setaffinity(pid_t pid, cpumask_t new_mask)
  3848. {
  3849. cpumask_t cpus_allowed;
  3850. struct task_struct *p;
  3851. int retval;
  3852. mutex_lock(&sched_hotcpu_mutex);
  3853. read_lock(&tasklist_lock);
  3854. p = find_process_by_pid(pid);
  3855. if (!p) {
  3856. read_unlock(&tasklist_lock);
  3857. mutex_unlock(&sched_hotcpu_mutex);
  3858. return -ESRCH;
  3859. }
  3860. /*
  3861. * It is not safe to call set_cpus_allowed with the
  3862. * tasklist_lock held. We will bump the task_struct's
  3863. * usage count and then drop tasklist_lock.
  3864. */
  3865. get_task_struct(p);
  3866. read_unlock(&tasklist_lock);
  3867. retval = -EPERM;
  3868. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  3869. !capable(CAP_SYS_NICE))
  3870. goto out_unlock;
  3871. retval = security_task_setscheduler(p, 0, NULL);
  3872. if (retval)
  3873. goto out_unlock;
  3874. cpus_allowed = cpuset_cpus_allowed(p);
  3875. cpus_and(new_mask, new_mask, cpus_allowed);
  3876. again:
  3877. retval = set_cpus_allowed(p, new_mask);
  3878. if (!retval) {
  3879. cpus_allowed = cpuset_cpus_allowed(p);
  3880. if (!cpus_subset(new_mask, cpus_allowed)) {
  3881. /*
  3882. * We must have raced with a concurrent cpuset
  3883. * update. Just reset the cpus_allowed to the
  3884. * cpuset's cpus_allowed
  3885. */
  3886. new_mask = cpus_allowed;
  3887. goto again;
  3888. }
  3889. }
  3890. out_unlock:
  3891. put_task_struct(p);
  3892. mutex_unlock(&sched_hotcpu_mutex);
  3893. return retval;
  3894. }
  3895. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3896. cpumask_t *new_mask)
  3897. {
  3898. if (len < sizeof(cpumask_t)) {
  3899. memset(new_mask, 0, sizeof(cpumask_t));
  3900. } else if (len > sizeof(cpumask_t)) {
  3901. len = sizeof(cpumask_t);
  3902. }
  3903. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3904. }
  3905. /**
  3906. * sys_sched_setaffinity - set the cpu affinity of a process
  3907. * @pid: pid of the process
  3908. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3909. * @user_mask_ptr: user-space pointer to the new cpu mask
  3910. */
  3911. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  3912. unsigned long __user *user_mask_ptr)
  3913. {
  3914. cpumask_t new_mask;
  3915. int retval;
  3916. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  3917. if (retval)
  3918. return retval;
  3919. return sched_setaffinity(pid, new_mask);
  3920. }
  3921. /*
  3922. * Represents all cpu's present in the system
  3923. * In systems capable of hotplug, this map could dynamically grow
  3924. * as new cpu's are detected in the system via any platform specific
  3925. * method, such as ACPI for e.g.
  3926. */
  3927. cpumask_t cpu_present_map __read_mostly;
  3928. EXPORT_SYMBOL(cpu_present_map);
  3929. #ifndef CONFIG_SMP
  3930. cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
  3931. EXPORT_SYMBOL(cpu_online_map);
  3932. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
  3933. EXPORT_SYMBOL(cpu_possible_map);
  3934. #endif
  3935. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  3936. {
  3937. struct task_struct *p;
  3938. int retval;
  3939. mutex_lock(&sched_hotcpu_mutex);
  3940. read_lock(&tasklist_lock);
  3941. retval = -ESRCH;
  3942. p = find_process_by_pid(pid);
  3943. if (!p)
  3944. goto out_unlock;
  3945. retval = security_task_getscheduler(p);
  3946. if (retval)
  3947. goto out_unlock;
  3948. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  3949. out_unlock:
  3950. read_unlock(&tasklist_lock);
  3951. mutex_unlock(&sched_hotcpu_mutex);
  3952. return retval;
  3953. }
  3954. /**
  3955. * sys_sched_getaffinity - get the cpu affinity of a process
  3956. * @pid: pid of the process
  3957. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3958. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3959. */
  3960. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  3961. unsigned long __user *user_mask_ptr)
  3962. {
  3963. int ret;
  3964. cpumask_t mask;
  3965. if (len < sizeof(cpumask_t))
  3966. return -EINVAL;
  3967. ret = sched_getaffinity(pid, &mask);
  3968. if (ret < 0)
  3969. return ret;
  3970. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  3971. return -EFAULT;
  3972. return sizeof(cpumask_t);
  3973. }
  3974. /**
  3975. * sys_sched_yield - yield the current processor to other threads.
  3976. *
  3977. * This function yields the current CPU to other tasks. If there are no
  3978. * other threads running on this CPU then this function will return.
  3979. */
  3980. asmlinkage long sys_sched_yield(void)
  3981. {
  3982. struct rq *rq = this_rq_lock();
  3983. schedstat_inc(rq, yld_count);
  3984. current->sched_class->yield_task(rq);
  3985. /*
  3986. * Since we are going to call schedule() anyway, there's
  3987. * no need to preempt or enable interrupts:
  3988. */
  3989. __release(rq->lock);
  3990. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  3991. _raw_spin_unlock(&rq->lock);
  3992. preempt_enable_no_resched();
  3993. schedule();
  3994. return 0;
  3995. }
  3996. static void __cond_resched(void)
  3997. {
  3998. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  3999. __might_sleep(__FILE__, __LINE__);
  4000. #endif
  4001. /*
  4002. * The BKS might be reacquired before we have dropped
  4003. * PREEMPT_ACTIVE, which could trigger a second
  4004. * cond_resched() call.
  4005. */
  4006. do {
  4007. add_preempt_count(PREEMPT_ACTIVE);
  4008. schedule();
  4009. sub_preempt_count(PREEMPT_ACTIVE);
  4010. } while (need_resched());
  4011. }
  4012. int __sched cond_resched(void)
  4013. {
  4014. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4015. system_state == SYSTEM_RUNNING) {
  4016. __cond_resched();
  4017. return 1;
  4018. }
  4019. return 0;
  4020. }
  4021. EXPORT_SYMBOL(cond_resched);
  4022. /*
  4023. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4024. * call schedule, and on return reacquire the lock.
  4025. *
  4026. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4027. * operations here to prevent schedule() from being called twice (once via
  4028. * spin_unlock(), once by hand).
  4029. */
  4030. int cond_resched_lock(spinlock_t *lock)
  4031. {
  4032. int ret = 0;
  4033. if (need_lockbreak(lock)) {
  4034. spin_unlock(lock);
  4035. cpu_relax();
  4036. ret = 1;
  4037. spin_lock(lock);
  4038. }
  4039. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4040. spin_release(&lock->dep_map, 1, _THIS_IP_);
  4041. _raw_spin_unlock(lock);
  4042. preempt_enable_no_resched();
  4043. __cond_resched();
  4044. ret = 1;
  4045. spin_lock(lock);
  4046. }
  4047. return ret;
  4048. }
  4049. EXPORT_SYMBOL(cond_resched_lock);
  4050. int __sched cond_resched_softirq(void)
  4051. {
  4052. BUG_ON(!in_softirq());
  4053. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4054. local_bh_enable();
  4055. __cond_resched();
  4056. local_bh_disable();
  4057. return 1;
  4058. }
  4059. return 0;
  4060. }
  4061. EXPORT_SYMBOL(cond_resched_softirq);
  4062. /**
  4063. * yield - yield the current processor to other threads.
  4064. *
  4065. * This is a shortcut for kernel-space yielding - it marks the
  4066. * thread runnable and calls sys_sched_yield().
  4067. */
  4068. void __sched yield(void)
  4069. {
  4070. set_current_state(TASK_RUNNING);
  4071. sys_sched_yield();
  4072. }
  4073. EXPORT_SYMBOL(yield);
  4074. /*
  4075. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4076. * that process accounting knows that this is a task in IO wait state.
  4077. *
  4078. * But don't do that if it is a deliberate, throttling IO wait (this task
  4079. * has set its backing_dev_info: the queue against which it should throttle)
  4080. */
  4081. void __sched io_schedule(void)
  4082. {
  4083. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4084. delayacct_blkio_start();
  4085. atomic_inc(&rq->nr_iowait);
  4086. schedule();
  4087. atomic_dec(&rq->nr_iowait);
  4088. delayacct_blkio_end();
  4089. }
  4090. EXPORT_SYMBOL(io_schedule);
  4091. long __sched io_schedule_timeout(long timeout)
  4092. {
  4093. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4094. long ret;
  4095. delayacct_blkio_start();
  4096. atomic_inc(&rq->nr_iowait);
  4097. ret = schedule_timeout(timeout);
  4098. atomic_dec(&rq->nr_iowait);
  4099. delayacct_blkio_end();
  4100. return ret;
  4101. }
  4102. /**
  4103. * sys_sched_get_priority_max - return maximum RT priority.
  4104. * @policy: scheduling class.
  4105. *
  4106. * this syscall returns the maximum rt_priority that can be used
  4107. * by a given scheduling class.
  4108. */
  4109. asmlinkage long sys_sched_get_priority_max(int policy)
  4110. {
  4111. int ret = -EINVAL;
  4112. switch (policy) {
  4113. case SCHED_FIFO:
  4114. case SCHED_RR:
  4115. ret = MAX_USER_RT_PRIO-1;
  4116. break;
  4117. case SCHED_NORMAL:
  4118. case SCHED_BATCH:
  4119. case SCHED_IDLE:
  4120. ret = 0;
  4121. break;
  4122. }
  4123. return ret;
  4124. }
  4125. /**
  4126. * sys_sched_get_priority_min - return minimum RT priority.
  4127. * @policy: scheduling class.
  4128. *
  4129. * this syscall returns the minimum rt_priority that can be used
  4130. * by a given scheduling class.
  4131. */
  4132. asmlinkage long sys_sched_get_priority_min(int policy)
  4133. {
  4134. int ret = -EINVAL;
  4135. switch (policy) {
  4136. case SCHED_FIFO:
  4137. case SCHED_RR:
  4138. ret = 1;
  4139. break;
  4140. case SCHED_NORMAL:
  4141. case SCHED_BATCH:
  4142. case SCHED_IDLE:
  4143. ret = 0;
  4144. }
  4145. return ret;
  4146. }
  4147. /**
  4148. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4149. * @pid: pid of the process.
  4150. * @interval: userspace pointer to the timeslice value.
  4151. *
  4152. * this syscall writes the default timeslice value of a given process
  4153. * into the user-space timespec buffer. A value of '0' means infinity.
  4154. */
  4155. asmlinkage
  4156. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4157. {
  4158. struct task_struct *p;
  4159. unsigned int time_slice;
  4160. int retval;
  4161. struct timespec t;
  4162. if (pid < 0)
  4163. return -EINVAL;
  4164. retval = -ESRCH;
  4165. read_lock(&tasklist_lock);
  4166. p = find_process_by_pid(pid);
  4167. if (!p)
  4168. goto out_unlock;
  4169. retval = security_task_getscheduler(p);
  4170. if (retval)
  4171. goto out_unlock;
  4172. if (p->policy == SCHED_FIFO)
  4173. time_slice = 0;
  4174. else if (p->policy == SCHED_RR)
  4175. time_slice = DEF_TIMESLICE;
  4176. else {
  4177. struct sched_entity *se = &p->se;
  4178. unsigned long flags;
  4179. struct rq *rq;
  4180. rq = task_rq_lock(p, &flags);
  4181. time_slice = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
  4182. task_rq_unlock(rq, &flags);
  4183. }
  4184. read_unlock(&tasklist_lock);
  4185. jiffies_to_timespec(time_slice, &t);
  4186. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4187. return retval;
  4188. out_unlock:
  4189. read_unlock(&tasklist_lock);
  4190. return retval;
  4191. }
  4192. static const char stat_nam[] = "RSDTtZX";
  4193. static void show_task(struct task_struct *p)
  4194. {
  4195. unsigned long free = 0;
  4196. unsigned state;
  4197. state = p->state ? __ffs(p->state) + 1 : 0;
  4198. printk(KERN_INFO "%-13.13s %c", p->comm,
  4199. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4200. #if BITS_PER_LONG == 32
  4201. if (state == TASK_RUNNING)
  4202. printk(KERN_CONT " running ");
  4203. else
  4204. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4205. #else
  4206. if (state == TASK_RUNNING)
  4207. printk(KERN_CONT " running task ");
  4208. else
  4209. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4210. #endif
  4211. #ifdef CONFIG_DEBUG_STACK_USAGE
  4212. {
  4213. unsigned long *n = end_of_stack(p);
  4214. while (!*n)
  4215. n++;
  4216. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4217. }
  4218. #endif
  4219. printk(KERN_CONT "%5lu %5d %6d\n", free,
  4220. task_pid_nr(p), task_pid_nr(p->parent));
  4221. if (state != TASK_RUNNING)
  4222. show_stack(p, NULL);
  4223. }
  4224. void show_state_filter(unsigned long state_filter)
  4225. {
  4226. struct task_struct *g, *p;
  4227. #if BITS_PER_LONG == 32
  4228. printk(KERN_INFO
  4229. " task PC stack pid father\n");
  4230. #else
  4231. printk(KERN_INFO
  4232. " task PC stack pid father\n");
  4233. #endif
  4234. read_lock(&tasklist_lock);
  4235. do_each_thread(g, p) {
  4236. /*
  4237. * reset the NMI-timeout, listing all files on a slow
  4238. * console might take alot of time:
  4239. */
  4240. touch_nmi_watchdog();
  4241. if (!state_filter || (p->state & state_filter))
  4242. show_task(p);
  4243. } while_each_thread(g, p);
  4244. touch_all_softlockup_watchdogs();
  4245. #ifdef CONFIG_SCHED_DEBUG
  4246. sysrq_sched_debug_show();
  4247. #endif
  4248. read_unlock(&tasklist_lock);
  4249. /*
  4250. * Only show locks if all tasks are dumped:
  4251. */
  4252. if (state_filter == -1)
  4253. debug_show_all_locks();
  4254. }
  4255. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4256. {
  4257. idle->sched_class = &idle_sched_class;
  4258. }
  4259. /**
  4260. * init_idle - set up an idle thread for a given CPU
  4261. * @idle: task in question
  4262. * @cpu: cpu the idle task belongs to
  4263. *
  4264. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4265. * flag, to make booting more robust.
  4266. */
  4267. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4268. {
  4269. struct rq *rq = cpu_rq(cpu);
  4270. unsigned long flags;
  4271. __sched_fork(idle);
  4272. idle->se.exec_start = sched_clock();
  4273. idle->prio = idle->normal_prio = MAX_PRIO;
  4274. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4275. __set_task_cpu(idle, cpu);
  4276. spin_lock_irqsave(&rq->lock, flags);
  4277. rq->curr = rq->idle = idle;
  4278. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4279. idle->oncpu = 1;
  4280. #endif
  4281. spin_unlock_irqrestore(&rq->lock, flags);
  4282. /* Set the preempt count _outside_ the spinlocks! */
  4283. #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
  4284. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4285. #else
  4286. task_thread_info(idle)->preempt_count = 0;
  4287. #endif
  4288. /*
  4289. * The idle tasks have their own, simple scheduling class:
  4290. */
  4291. idle->sched_class = &idle_sched_class;
  4292. }
  4293. /*
  4294. * In a system that switches off the HZ timer nohz_cpu_mask
  4295. * indicates which cpus entered this state. This is used
  4296. * in the rcu update to wait only for active cpus. For system
  4297. * which do not switch off the HZ timer nohz_cpu_mask should
  4298. * always be CPU_MASK_NONE.
  4299. */
  4300. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4301. #ifdef CONFIG_SMP
  4302. /*
  4303. * This is how migration works:
  4304. *
  4305. * 1) we queue a struct migration_req structure in the source CPU's
  4306. * runqueue and wake up that CPU's migration thread.
  4307. * 2) we down() the locked semaphore => thread blocks.
  4308. * 3) migration thread wakes up (implicitly it forces the migrated
  4309. * thread off the CPU)
  4310. * 4) it gets the migration request and checks whether the migrated
  4311. * task is still in the wrong runqueue.
  4312. * 5) if it's in the wrong runqueue then the migration thread removes
  4313. * it and puts it into the right queue.
  4314. * 6) migration thread up()s the semaphore.
  4315. * 7) we wake up and the migration is done.
  4316. */
  4317. /*
  4318. * Change a given task's CPU affinity. Migrate the thread to a
  4319. * proper CPU and schedule it away if the CPU it's executing on
  4320. * is removed from the allowed bitmask.
  4321. *
  4322. * NOTE: the caller must have a valid reference to the task, the
  4323. * task must not exit() & deallocate itself prematurely. The
  4324. * call is not atomic; no spinlocks may be held.
  4325. */
  4326. int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
  4327. {
  4328. struct migration_req req;
  4329. unsigned long flags;
  4330. struct rq *rq;
  4331. int ret = 0;
  4332. rq = task_rq_lock(p, &flags);
  4333. if (!cpus_intersects(new_mask, cpu_online_map)) {
  4334. ret = -EINVAL;
  4335. goto out;
  4336. }
  4337. p->cpus_allowed = new_mask;
  4338. /* Can the task run on the task's current CPU? If so, we're done */
  4339. if (cpu_isset(task_cpu(p), new_mask))
  4340. goto out;
  4341. if (migrate_task(p, any_online_cpu(new_mask), &req)) {
  4342. /* Need help from migration thread: drop lock and wait. */
  4343. task_rq_unlock(rq, &flags);
  4344. wake_up_process(rq->migration_thread);
  4345. wait_for_completion(&req.done);
  4346. tlb_migrate_finish(p->mm);
  4347. return 0;
  4348. }
  4349. out:
  4350. task_rq_unlock(rq, &flags);
  4351. return ret;
  4352. }
  4353. EXPORT_SYMBOL_GPL(set_cpus_allowed);
  4354. /*
  4355. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4356. * this because either it can't run here any more (set_cpus_allowed()
  4357. * away from this CPU, or CPU going down), or because we're
  4358. * attempting to rebalance this task on exec (sched_exec).
  4359. *
  4360. * So we race with normal scheduler movements, but that's OK, as long
  4361. * as the task is no longer on this CPU.
  4362. *
  4363. * Returns non-zero if task was successfully migrated.
  4364. */
  4365. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4366. {
  4367. struct rq *rq_dest, *rq_src;
  4368. int ret = 0, on_rq;
  4369. if (unlikely(cpu_is_offline(dest_cpu)))
  4370. return ret;
  4371. rq_src = cpu_rq(src_cpu);
  4372. rq_dest = cpu_rq(dest_cpu);
  4373. double_rq_lock(rq_src, rq_dest);
  4374. /* Already moved. */
  4375. if (task_cpu(p) != src_cpu)
  4376. goto out;
  4377. /* Affinity changed (again). */
  4378. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4379. goto out;
  4380. on_rq = p->se.on_rq;
  4381. if (on_rq)
  4382. deactivate_task(rq_src, p, 0);
  4383. set_task_cpu(p, dest_cpu);
  4384. if (on_rq) {
  4385. activate_task(rq_dest, p, 0);
  4386. check_preempt_curr(rq_dest, p);
  4387. }
  4388. ret = 1;
  4389. out:
  4390. double_rq_unlock(rq_src, rq_dest);
  4391. return ret;
  4392. }
  4393. /*
  4394. * migration_thread - this is a highprio system thread that performs
  4395. * thread migration by bumping thread off CPU then 'pushing' onto
  4396. * another runqueue.
  4397. */
  4398. static int migration_thread(void *data)
  4399. {
  4400. int cpu = (long)data;
  4401. struct rq *rq;
  4402. rq = cpu_rq(cpu);
  4403. BUG_ON(rq->migration_thread != current);
  4404. set_current_state(TASK_INTERRUPTIBLE);
  4405. while (!kthread_should_stop()) {
  4406. struct migration_req *req;
  4407. struct list_head *head;
  4408. spin_lock_irq(&rq->lock);
  4409. if (cpu_is_offline(cpu)) {
  4410. spin_unlock_irq(&rq->lock);
  4411. goto wait_to_die;
  4412. }
  4413. if (rq->active_balance) {
  4414. active_load_balance(rq, cpu);
  4415. rq->active_balance = 0;
  4416. }
  4417. head = &rq->migration_queue;
  4418. if (list_empty(head)) {
  4419. spin_unlock_irq(&rq->lock);
  4420. schedule();
  4421. set_current_state(TASK_INTERRUPTIBLE);
  4422. continue;
  4423. }
  4424. req = list_entry(head->next, struct migration_req, list);
  4425. list_del_init(head->next);
  4426. spin_unlock(&rq->lock);
  4427. __migrate_task(req->task, cpu, req->dest_cpu);
  4428. local_irq_enable();
  4429. complete(&req->done);
  4430. }
  4431. __set_current_state(TASK_RUNNING);
  4432. return 0;
  4433. wait_to_die:
  4434. /* Wait for kthread_stop */
  4435. set_current_state(TASK_INTERRUPTIBLE);
  4436. while (!kthread_should_stop()) {
  4437. schedule();
  4438. set_current_state(TASK_INTERRUPTIBLE);
  4439. }
  4440. __set_current_state(TASK_RUNNING);
  4441. return 0;
  4442. }
  4443. #ifdef CONFIG_HOTPLUG_CPU
  4444. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  4445. {
  4446. int ret;
  4447. local_irq_disable();
  4448. ret = __migrate_task(p, src_cpu, dest_cpu);
  4449. local_irq_enable();
  4450. return ret;
  4451. }
  4452. /*
  4453. * Figure out where task on dead CPU should go, use force if necessary.
  4454. * NOTE: interrupts should be disabled by the caller
  4455. */
  4456. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4457. {
  4458. unsigned long flags;
  4459. cpumask_t mask;
  4460. struct rq *rq;
  4461. int dest_cpu;
  4462. do {
  4463. /* On same node? */
  4464. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  4465. cpus_and(mask, mask, p->cpus_allowed);
  4466. dest_cpu = any_online_cpu(mask);
  4467. /* On any allowed CPU? */
  4468. if (dest_cpu == NR_CPUS)
  4469. dest_cpu = any_online_cpu(p->cpus_allowed);
  4470. /* No more Mr. Nice Guy. */
  4471. if (dest_cpu == NR_CPUS) {
  4472. cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
  4473. /*
  4474. * Try to stay on the same cpuset, where the
  4475. * current cpuset may be a subset of all cpus.
  4476. * The cpuset_cpus_allowed_locked() variant of
  4477. * cpuset_cpus_allowed() will not block. It must be
  4478. * called within calls to cpuset_lock/cpuset_unlock.
  4479. */
  4480. rq = task_rq_lock(p, &flags);
  4481. p->cpus_allowed = cpus_allowed;
  4482. dest_cpu = any_online_cpu(p->cpus_allowed);
  4483. task_rq_unlock(rq, &flags);
  4484. /*
  4485. * Don't tell them about moving exiting tasks or
  4486. * kernel threads (both mm NULL), since they never
  4487. * leave kernel.
  4488. */
  4489. if (p->mm && printk_ratelimit())
  4490. printk(KERN_INFO "process %d (%s) no "
  4491. "longer affine to cpu%d\n",
  4492. task_pid_nr(p), p->comm, dead_cpu);
  4493. }
  4494. } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
  4495. }
  4496. /*
  4497. * While a dead CPU has no uninterruptible tasks queued at this point,
  4498. * it might still have a nonzero ->nr_uninterruptible counter, because
  4499. * for performance reasons the counter is not stricly tracking tasks to
  4500. * their home CPUs. So we just add the counter to another CPU's counter,
  4501. * to keep the global sum constant after CPU-down:
  4502. */
  4503. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4504. {
  4505. struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
  4506. unsigned long flags;
  4507. local_irq_save(flags);
  4508. double_rq_lock(rq_src, rq_dest);
  4509. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4510. rq_src->nr_uninterruptible = 0;
  4511. double_rq_unlock(rq_src, rq_dest);
  4512. local_irq_restore(flags);
  4513. }
  4514. /* Run through task list and migrate tasks from the dead cpu. */
  4515. static void migrate_live_tasks(int src_cpu)
  4516. {
  4517. struct task_struct *p, *t;
  4518. read_lock(&tasklist_lock);
  4519. do_each_thread(t, p) {
  4520. if (p == current)
  4521. continue;
  4522. if (task_cpu(p) == src_cpu)
  4523. move_task_off_dead_cpu(src_cpu, p);
  4524. } while_each_thread(t, p);
  4525. read_unlock(&tasklist_lock);
  4526. }
  4527. /*
  4528. * activate_idle_task - move idle task to the _front_ of runqueue.
  4529. */
  4530. static void activate_idle_task(struct task_struct *p, struct rq *rq)
  4531. {
  4532. update_rq_clock(rq);
  4533. if (p->state == TASK_UNINTERRUPTIBLE)
  4534. rq->nr_uninterruptible--;
  4535. enqueue_task(rq, p, 0);
  4536. inc_nr_running(p, rq);
  4537. }
  4538. /*
  4539. * Schedules idle task to be the next runnable task on current CPU.
  4540. * It does so by boosting its priority to highest possible and adding it to
  4541. * the _front_ of the runqueue. Used by CPU offline code.
  4542. */
  4543. void sched_idle_next(void)
  4544. {
  4545. int this_cpu = smp_processor_id();
  4546. struct rq *rq = cpu_rq(this_cpu);
  4547. struct task_struct *p = rq->idle;
  4548. unsigned long flags;
  4549. /* cpu has to be offline */
  4550. BUG_ON(cpu_online(this_cpu));
  4551. /*
  4552. * Strictly not necessary since rest of the CPUs are stopped by now
  4553. * and interrupts disabled on the current cpu.
  4554. */
  4555. spin_lock_irqsave(&rq->lock, flags);
  4556. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4557. /* Add idle task to the _front_ of its priority queue: */
  4558. activate_idle_task(p, rq);
  4559. spin_unlock_irqrestore(&rq->lock, flags);
  4560. }
  4561. /*
  4562. * Ensures that the idle task is using init_mm right before its cpu goes
  4563. * offline.
  4564. */
  4565. void idle_task_exit(void)
  4566. {
  4567. struct mm_struct *mm = current->active_mm;
  4568. BUG_ON(cpu_online(smp_processor_id()));
  4569. if (mm != &init_mm)
  4570. switch_mm(mm, &init_mm, current);
  4571. mmdrop(mm);
  4572. }
  4573. /* called under rq->lock with disabled interrupts */
  4574. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4575. {
  4576. struct rq *rq = cpu_rq(dead_cpu);
  4577. /* Must be exiting, otherwise would be on tasklist. */
  4578. BUG_ON(!p->exit_state);
  4579. /* Cannot have done final schedule yet: would have vanished. */
  4580. BUG_ON(p->state == TASK_DEAD);
  4581. get_task_struct(p);
  4582. /*
  4583. * Drop lock around migration; if someone else moves it,
  4584. * that's OK. No task can be added to this CPU, so iteration is
  4585. * fine.
  4586. */
  4587. spin_unlock_irq(&rq->lock);
  4588. move_task_off_dead_cpu(dead_cpu, p);
  4589. spin_lock_irq(&rq->lock);
  4590. put_task_struct(p);
  4591. }
  4592. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4593. static void migrate_dead_tasks(unsigned int dead_cpu)
  4594. {
  4595. struct rq *rq = cpu_rq(dead_cpu);
  4596. struct task_struct *next;
  4597. for ( ; ; ) {
  4598. if (!rq->nr_running)
  4599. break;
  4600. update_rq_clock(rq);
  4601. next = pick_next_task(rq, rq->curr);
  4602. if (!next)
  4603. break;
  4604. migrate_dead(dead_cpu, next);
  4605. }
  4606. }
  4607. #endif /* CONFIG_HOTPLUG_CPU */
  4608. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4609. static struct ctl_table sd_ctl_dir[] = {
  4610. {
  4611. .procname = "sched_domain",
  4612. .mode = 0555,
  4613. },
  4614. {0,},
  4615. };
  4616. static struct ctl_table sd_ctl_root[] = {
  4617. {
  4618. .ctl_name = CTL_KERN,
  4619. .procname = "kernel",
  4620. .mode = 0555,
  4621. .child = sd_ctl_dir,
  4622. },
  4623. {0,},
  4624. };
  4625. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4626. {
  4627. struct ctl_table *entry =
  4628. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4629. return entry;
  4630. }
  4631. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4632. {
  4633. struct ctl_table *entry;
  4634. /*
  4635. * In the intermediate directories, both the child directory and
  4636. * procname are dynamically allocated and could fail but the mode
  4637. * will always be set. In the lowest directory the names are
  4638. * static strings and all have proc handlers.
  4639. */
  4640. for (entry = *tablep; entry->mode; entry++) {
  4641. if (entry->child)
  4642. sd_free_ctl_entry(&entry->child);
  4643. if (entry->proc_handler == NULL)
  4644. kfree(entry->procname);
  4645. }
  4646. kfree(*tablep);
  4647. *tablep = NULL;
  4648. }
  4649. static void
  4650. set_table_entry(struct ctl_table *entry,
  4651. const char *procname, void *data, int maxlen,
  4652. mode_t mode, proc_handler *proc_handler)
  4653. {
  4654. entry->procname = procname;
  4655. entry->data = data;
  4656. entry->maxlen = maxlen;
  4657. entry->mode = mode;
  4658. entry->proc_handler = proc_handler;
  4659. }
  4660. static struct ctl_table *
  4661. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4662. {
  4663. struct ctl_table *table = sd_alloc_ctl_entry(12);
  4664. if (table == NULL)
  4665. return NULL;
  4666. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4667. sizeof(long), 0644, proc_doulongvec_minmax);
  4668. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4669. sizeof(long), 0644, proc_doulongvec_minmax);
  4670. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4671. sizeof(int), 0644, proc_dointvec_minmax);
  4672. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4673. sizeof(int), 0644, proc_dointvec_minmax);
  4674. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4675. sizeof(int), 0644, proc_dointvec_minmax);
  4676. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4677. sizeof(int), 0644, proc_dointvec_minmax);
  4678. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4679. sizeof(int), 0644, proc_dointvec_minmax);
  4680. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4681. sizeof(int), 0644, proc_dointvec_minmax);
  4682. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4683. sizeof(int), 0644, proc_dointvec_minmax);
  4684. set_table_entry(&table[9], "cache_nice_tries",
  4685. &sd->cache_nice_tries,
  4686. sizeof(int), 0644, proc_dointvec_minmax);
  4687. set_table_entry(&table[10], "flags", &sd->flags,
  4688. sizeof(int), 0644, proc_dointvec_minmax);
  4689. /* &table[11] is terminator */
  4690. return table;
  4691. }
  4692. static ctl_table * sd_alloc_ctl_cpu_table(int cpu)
  4693. {
  4694. struct ctl_table *entry, *table;
  4695. struct sched_domain *sd;
  4696. int domain_num = 0, i;
  4697. char buf[32];
  4698. for_each_domain(cpu, sd)
  4699. domain_num++;
  4700. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4701. if (table == NULL)
  4702. return NULL;
  4703. i = 0;
  4704. for_each_domain(cpu, sd) {
  4705. snprintf(buf, 32, "domain%d", i);
  4706. entry->procname = kstrdup(buf, GFP_KERNEL);
  4707. entry->mode = 0555;
  4708. entry->child = sd_alloc_ctl_domain_table(sd);
  4709. entry++;
  4710. i++;
  4711. }
  4712. return table;
  4713. }
  4714. static struct ctl_table_header *sd_sysctl_header;
  4715. static void register_sched_domain_sysctl(void)
  4716. {
  4717. int i, cpu_num = num_online_cpus();
  4718. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4719. char buf[32];
  4720. if (entry == NULL)
  4721. return;
  4722. sd_ctl_dir[0].child = entry;
  4723. for_each_online_cpu(i) {
  4724. snprintf(buf, 32, "cpu%d", i);
  4725. entry->procname = kstrdup(buf, GFP_KERNEL);
  4726. entry->mode = 0555;
  4727. entry->child = sd_alloc_ctl_cpu_table(i);
  4728. entry++;
  4729. }
  4730. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4731. }
  4732. static void unregister_sched_domain_sysctl(void)
  4733. {
  4734. unregister_sysctl_table(sd_sysctl_header);
  4735. sd_sysctl_header = NULL;
  4736. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4737. }
  4738. #else
  4739. static void register_sched_domain_sysctl(void)
  4740. {
  4741. }
  4742. static void unregister_sched_domain_sysctl(void)
  4743. {
  4744. }
  4745. #endif
  4746. /*
  4747. * migration_call - callback that gets triggered when a CPU is added.
  4748. * Here we can start up the necessary migration thread for the new CPU.
  4749. */
  4750. static int __cpuinit
  4751. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4752. {
  4753. struct task_struct *p;
  4754. int cpu = (long)hcpu;
  4755. unsigned long flags;
  4756. struct rq *rq;
  4757. switch (action) {
  4758. case CPU_LOCK_ACQUIRE:
  4759. mutex_lock(&sched_hotcpu_mutex);
  4760. break;
  4761. case CPU_UP_PREPARE:
  4762. case CPU_UP_PREPARE_FROZEN:
  4763. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  4764. if (IS_ERR(p))
  4765. return NOTIFY_BAD;
  4766. kthread_bind(p, cpu);
  4767. /* Must be high prio: stop_machine expects to yield to it. */
  4768. rq = task_rq_lock(p, &flags);
  4769. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4770. task_rq_unlock(rq, &flags);
  4771. cpu_rq(cpu)->migration_thread = p;
  4772. break;
  4773. case CPU_ONLINE:
  4774. case CPU_ONLINE_FROZEN:
  4775. /* Strictly unnecessary, as first user will wake it. */
  4776. wake_up_process(cpu_rq(cpu)->migration_thread);
  4777. break;
  4778. #ifdef CONFIG_HOTPLUG_CPU
  4779. case CPU_UP_CANCELED:
  4780. case CPU_UP_CANCELED_FROZEN:
  4781. if (!cpu_rq(cpu)->migration_thread)
  4782. break;
  4783. /* Unbind it from offline cpu so it can run. Fall thru. */
  4784. kthread_bind(cpu_rq(cpu)->migration_thread,
  4785. any_online_cpu(cpu_online_map));
  4786. kthread_stop(cpu_rq(cpu)->migration_thread);
  4787. cpu_rq(cpu)->migration_thread = NULL;
  4788. break;
  4789. case CPU_DEAD:
  4790. case CPU_DEAD_FROZEN:
  4791. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  4792. migrate_live_tasks(cpu);
  4793. rq = cpu_rq(cpu);
  4794. kthread_stop(rq->migration_thread);
  4795. rq->migration_thread = NULL;
  4796. /* Idle task back to normal (off runqueue, low prio) */
  4797. spin_lock_irq(&rq->lock);
  4798. update_rq_clock(rq);
  4799. deactivate_task(rq, rq->idle, 0);
  4800. rq->idle->static_prio = MAX_PRIO;
  4801. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  4802. rq->idle->sched_class = &idle_sched_class;
  4803. migrate_dead_tasks(cpu);
  4804. spin_unlock_irq(&rq->lock);
  4805. cpuset_unlock();
  4806. migrate_nr_uninterruptible(rq);
  4807. BUG_ON(rq->nr_running != 0);
  4808. /* No need to migrate the tasks: it was best-effort if
  4809. * they didn't take sched_hotcpu_mutex. Just wake up
  4810. * the requestors. */
  4811. spin_lock_irq(&rq->lock);
  4812. while (!list_empty(&rq->migration_queue)) {
  4813. struct migration_req *req;
  4814. req = list_entry(rq->migration_queue.next,
  4815. struct migration_req, list);
  4816. list_del_init(&req->list);
  4817. complete(&req->done);
  4818. }
  4819. spin_unlock_irq(&rq->lock);
  4820. break;
  4821. #endif
  4822. case CPU_LOCK_RELEASE:
  4823. mutex_unlock(&sched_hotcpu_mutex);
  4824. break;
  4825. }
  4826. return NOTIFY_OK;
  4827. }
  4828. /* Register at highest priority so that task migration (migrate_all_tasks)
  4829. * happens before everything else.
  4830. */
  4831. static struct notifier_block __cpuinitdata migration_notifier = {
  4832. .notifier_call = migration_call,
  4833. .priority = 10
  4834. };
  4835. int __init migration_init(void)
  4836. {
  4837. void *cpu = (void *)(long)smp_processor_id();
  4838. int err;
  4839. /* Start one for the boot CPU: */
  4840. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4841. BUG_ON(err == NOTIFY_BAD);
  4842. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4843. register_cpu_notifier(&migration_notifier);
  4844. return 0;
  4845. }
  4846. #endif
  4847. #ifdef CONFIG_SMP
  4848. /* Number of possible processor ids */
  4849. int nr_cpu_ids __read_mostly = NR_CPUS;
  4850. EXPORT_SYMBOL(nr_cpu_ids);
  4851. #ifdef CONFIG_SCHED_DEBUG
  4852. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4853. {
  4854. int level = 0;
  4855. if (!sd) {
  4856. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4857. return;
  4858. }
  4859. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4860. do {
  4861. int i;
  4862. char str[NR_CPUS];
  4863. struct sched_group *group = sd->groups;
  4864. cpumask_t groupmask;
  4865. cpumask_scnprintf(str, NR_CPUS, sd->span);
  4866. cpus_clear(groupmask);
  4867. printk(KERN_DEBUG);
  4868. for (i = 0; i < level + 1; i++)
  4869. printk(" ");
  4870. printk("domain %d: ", level);
  4871. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4872. printk("does not load-balance\n");
  4873. if (sd->parent)
  4874. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4875. " has parent");
  4876. break;
  4877. }
  4878. printk("span %s\n", str);
  4879. if (!cpu_isset(cpu, sd->span))
  4880. printk(KERN_ERR "ERROR: domain->span does not contain "
  4881. "CPU%d\n", cpu);
  4882. if (!cpu_isset(cpu, group->cpumask))
  4883. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4884. " CPU%d\n", cpu);
  4885. printk(KERN_DEBUG);
  4886. for (i = 0; i < level + 2; i++)
  4887. printk(" ");
  4888. printk("groups:");
  4889. do {
  4890. if (!group) {
  4891. printk("\n");
  4892. printk(KERN_ERR "ERROR: group is NULL\n");
  4893. break;
  4894. }
  4895. if (!group->__cpu_power) {
  4896. printk(KERN_CONT "\n");
  4897. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4898. "set\n");
  4899. break;
  4900. }
  4901. if (!cpus_weight(group->cpumask)) {
  4902. printk(KERN_CONT "\n");
  4903. printk(KERN_ERR "ERROR: empty group\n");
  4904. break;
  4905. }
  4906. if (cpus_intersects(groupmask, group->cpumask)) {
  4907. printk(KERN_CONT "\n");
  4908. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4909. break;
  4910. }
  4911. cpus_or(groupmask, groupmask, group->cpumask);
  4912. cpumask_scnprintf(str, NR_CPUS, group->cpumask);
  4913. printk(KERN_CONT " %s", str);
  4914. group = group->next;
  4915. } while (group != sd->groups);
  4916. printk(KERN_CONT "\n");
  4917. if (!cpus_equal(sd->span, groupmask))
  4918. printk(KERN_ERR "ERROR: groups don't span "
  4919. "domain->span\n");
  4920. level++;
  4921. sd = sd->parent;
  4922. if (!sd)
  4923. continue;
  4924. if (!cpus_subset(groupmask, sd->span))
  4925. printk(KERN_ERR "ERROR: parent span is not a superset "
  4926. "of domain->span\n");
  4927. } while (sd);
  4928. }
  4929. #else
  4930. # define sched_domain_debug(sd, cpu) do { } while (0)
  4931. #endif
  4932. static int sd_degenerate(struct sched_domain *sd)
  4933. {
  4934. if (cpus_weight(sd->span) == 1)
  4935. return 1;
  4936. /* Following flags need at least 2 groups */
  4937. if (sd->flags & (SD_LOAD_BALANCE |
  4938. SD_BALANCE_NEWIDLE |
  4939. SD_BALANCE_FORK |
  4940. SD_BALANCE_EXEC |
  4941. SD_SHARE_CPUPOWER |
  4942. SD_SHARE_PKG_RESOURCES)) {
  4943. if (sd->groups != sd->groups->next)
  4944. return 0;
  4945. }
  4946. /* Following flags don't use groups */
  4947. if (sd->flags & (SD_WAKE_IDLE |
  4948. SD_WAKE_AFFINE |
  4949. SD_WAKE_BALANCE))
  4950. return 0;
  4951. return 1;
  4952. }
  4953. static int
  4954. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4955. {
  4956. unsigned long cflags = sd->flags, pflags = parent->flags;
  4957. if (sd_degenerate(parent))
  4958. return 1;
  4959. if (!cpus_equal(sd->span, parent->span))
  4960. return 0;
  4961. /* Does parent contain flags not in child? */
  4962. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  4963. if (cflags & SD_WAKE_AFFINE)
  4964. pflags &= ~SD_WAKE_BALANCE;
  4965. /* Flags needing groups don't count if only 1 group in parent */
  4966. if (parent->groups == parent->groups->next) {
  4967. pflags &= ~(SD_LOAD_BALANCE |
  4968. SD_BALANCE_NEWIDLE |
  4969. SD_BALANCE_FORK |
  4970. SD_BALANCE_EXEC |
  4971. SD_SHARE_CPUPOWER |
  4972. SD_SHARE_PKG_RESOURCES);
  4973. }
  4974. if (~cflags & pflags)
  4975. return 0;
  4976. return 1;
  4977. }
  4978. /*
  4979. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4980. * hold the hotplug lock.
  4981. */
  4982. static void cpu_attach_domain(struct sched_domain *sd, int cpu)
  4983. {
  4984. struct rq *rq = cpu_rq(cpu);
  4985. struct sched_domain *tmp;
  4986. /* Remove the sched domains which do not contribute to scheduling. */
  4987. for (tmp = sd; tmp; tmp = tmp->parent) {
  4988. struct sched_domain *parent = tmp->parent;
  4989. if (!parent)
  4990. break;
  4991. if (sd_parent_degenerate(tmp, parent)) {
  4992. tmp->parent = parent->parent;
  4993. if (parent->parent)
  4994. parent->parent->child = tmp;
  4995. }
  4996. }
  4997. if (sd && sd_degenerate(sd)) {
  4998. sd = sd->parent;
  4999. if (sd)
  5000. sd->child = NULL;
  5001. }
  5002. sched_domain_debug(sd, cpu);
  5003. rcu_assign_pointer(rq->sd, sd);
  5004. }
  5005. /* cpus with isolated domains */
  5006. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  5007. /* Setup the mask of cpus configured for isolated domains */
  5008. static int __init isolated_cpu_setup(char *str)
  5009. {
  5010. int ints[NR_CPUS], i;
  5011. str = get_options(str, ARRAY_SIZE(ints), ints);
  5012. cpus_clear(cpu_isolated_map);
  5013. for (i = 1; i <= ints[0]; i++)
  5014. if (ints[i] < NR_CPUS)
  5015. cpu_set(ints[i], cpu_isolated_map);
  5016. return 1;
  5017. }
  5018. __setup("isolcpus=", isolated_cpu_setup);
  5019. /*
  5020. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5021. * to a function which identifies what group(along with sched group) a CPU
  5022. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  5023. * (due to the fact that we keep track of groups covered with a cpumask_t).
  5024. *
  5025. * init_sched_build_groups will build a circular linked list of the groups
  5026. * covered by the given span, and will set each group's ->cpumask correctly,
  5027. * and ->cpu_power to 0.
  5028. */
  5029. static void
  5030. init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
  5031. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  5032. struct sched_group **sg))
  5033. {
  5034. struct sched_group *first = NULL, *last = NULL;
  5035. cpumask_t covered = CPU_MASK_NONE;
  5036. int i;
  5037. for_each_cpu_mask(i, span) {
  5038. struct sched_group *sg;
  5039. int group = group_fn(i, cpu_map, &sg);
  5040. int j;
  5041. if (cpu_isset(i, covered))
  5042. continue;
  5043. sg->cpumask = CPU_MASK_NONE;
  5044. sg->__cpu_power = 0;
  5045. for_each_cpu_mask(j, span) {
  5046. if (group_fn(j, cpu_map, NULL) != group)
  5047. continue;
  5048. cpu_set(j, covered);
  5049. cpu_set(j, sg->cpumask);
  5050. }
  5051. if (!first)
  5052. first = sg;
  5053. if (last)
  5054. last->next = sg;
  5055. last = sg;
  5056. }
  5057. last->next = first;
  5058. }
  5059. #define SD_NODES_PER_DOMAIN 16
  5060. #ifdef CONFIG_NUMA
  5061. /**
  5062. * find_next_best_node - find the next node to include in a sched_domain
  5063. * @node: node whose sched_domain we're building
  5064. * @used_nodes: nodes already in the sched_domain
  5065. *
  5066. * Find the next node to include in a given scheduling domain. Simply
  5067. * finds the closest node not already in the @used_nodes map.
  5068. *
  5069. * Should use nodemask_t.
  5070. */
  5071. static int find_next_best_node(int node, unsigned long *used_nodes)
  5072. {
  5073. int i, n, val, min_val, best_node = 0;
  5074. min_val = INT_MAX;
  5075. for (i = 0; i < MAX_NUMNODES; i++) {
  5076. /* Start at @node */
  5077. n = (node + i) % MAX_NUMNODES;
  5078. if (!nr_cpus_node(n))
  5079. continue;
  5080. /* Skip already used nodes */
  5081. if (test_bit(n, used_nodes))
  5082. continue;
  5083. /* Simple min distance search */
  5084. val = node_distance(node, n);
  5085. if (val < min_val) {
  5086. min_val = val;
  5087. best_node = n;
  5088. }
  5089. }
  5090. set_bit(best_node, used_nodes);
  5091. return best_node;
  5092. }
  5093. /**
  5094. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5095. * @node: node whose cpumask we're constructing
  5096. * @size: number of nodes to include in this span
  5097. *
  5098. * Given a node, construct a good cpumask for its sched_domain to span. It
  5099. * should be one that prevents unnecessary balancing, but also spreads tasks
  5100. * out optimally.
  5101. */
  5102. static cpumask_t sched_domain_node_span(int node)
  5103. {
  5104. DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
  5105. cpumask_t span, nodemask;
  5106. int i;
  5107. cpus_clear(span);
  5108. bitmap_zero(used_nodes, MAX_NUMNODES);
  5109. nodemask = node_to_cpumask(node);
  5110. cpus_or(span, span, nodemask);
  5111. set_bit(node, used_nodes);
  5112. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5113. int next_node = find_next_best_node(node, used_nodes);
  5114. nodemask = node_to_cpumask(next_node);
  5115. cpus_or(span, span, nodemask);
  5116. }
  5117. return span;
  5118. }
  5119. #endif
  5120. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5121. /*
  5122. * SMT sched-domains:
  5123. */
  5124. #ifdef CONFIG_SCHED_SMT
  5125. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  5126. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  5127. static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
  5128. struct sched_group **sg)
  5129. {
  5130. if (sg)
  5131. *sg = &per_cpu(sched_group_cpus, cpu);
  5132. return cpu;
  5133. }
  5134. #endif
  5135. /*
  5136. * multi-core sched-domains:
  5137. */
  5138. #ifdef CONFIG_SCHED_MC
  5139. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5140. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  5141. #endif
  5142. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5143. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
  5144. struct sched_group **sg)
  5145. {
  5146. int group;
  5147. cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
  5148. cpus_and(mask, mask, *cpu_map);
  5149. group = first_cpu(mask);
  5150. if (sg)
  5151. *sg = &per_cpu(sched_group_core, group);
  5152. return group;
  5153. }
  5154. #elif defined(CONFIG_SCHED_MC)
  5155. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
  5156. struct sched_group **sg)
  5157. {
  5158. if (sg)
  5159. *sg = &per_cpu(sched_group_core, cpu);
  5160. return cpu;
  5161. }
  5162. #endif
  5163. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5164. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  5165. static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
  5166. struct sched_group **sg)
  5167. {
  5168. int group;
  5169. #ifdef CONFIG_SCHED_MC
  5170. cpumask_t mask = cpu_coregroup_map(cpu);
  5171. cpus_and(mask, mask, *cpu_map);
  5172. group = first_cpu(mask);
  5173. #elif defined(CONFIG_SCHED_SMT)
  5174. cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
  5175. cpus_and(mask, mask, *cpu_map);
  5176. group = first_cpu(mask);
  5177. #else
  5178. group = cpu;
  5179. #endif
  5180. if (sg)
  5181. *sg = &per_cpu(sched_group_phys, group);
  5182. return group;
  5183. }
  5184. #ifdef CONFIG_NUMA
  5185. /*
  5186. * The init_sched_build_groups can't handle what we want to do with node
  5187. * groups, so roll our own. Now each node has its own list of groups which
  5188. * gets dynamically allocated.
  5189. */
  5190. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5191. static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
  5192. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5193. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  5194. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  5195. struct sched_group **sg)
  5196. {
  5197. cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
  5198. int group;
  5199. cpus_and(nodemask, nodemask, *cpu_map);
  5200. group = first_cpu(nodemask);
  5201. if (sg)
  5202. *sg = &per_cpu(sched_group_allnodes, group);
  5203. return group;
  5204. }
  5205. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5206. {
  5207. struct sched_group *sg = group_head;
  5208. int j;
  5209. if (!sg)
  5210. return;
  5211. do {
  5212. for_each_cpu_mask(j, sg->cpumask) {
  5213. struct sched_domain *sd;
  5214. sd = &per_cpu(phys_domains, j);
  5215. if (j != first_cpu(sd->groups->cpumask)) {
  5216. /*
  5217. * Only add "power" once for each
  5218. * physical package.
  5219. */
  5220. continue;
  5221. }
  5222. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  5223. }
  5224. sg = sg->next;
  5225. } while (sg != group_head);
  5226. }
  5227. #endif
  5228. #ifdef CONFIG_NUMA
  5229. /* Free memory allocated for various sched_group structures */
  5230. static void free_sched_groups(const cpumask_t *cpu_map)
  5231. {
  5232. int cpu, i;
  5233. for_each_cpu_mask(cpu, *cpu_map) {
  5234. struct sched_group **sched_group_nodes
  5235. = sched_group_nodes_bycpu[cpu];
  5236. if (!sched_group_nodes)
  5237. continue;
  5238. for (i = 0; i < MAX_NUMNODES; i++) {
  5239. cpumask_t nodemask = node_to_cpumask(i);
  5240. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5241. cpus_and(nodemask, nodemask, *cpu_map);
  5242. if (cpus_empty(nodemask))
  5243. continue;
  5244. if (sg == NULL)
  5245. continue;
  5246. sg = sg->next;
  5247. next_sg:
  5248. oldsg = sg;
  5249. sg = sg->next;
  5250. kfree(oldsg);
  5251. if (oldsg != sched_group_nodes[i])
  5252. goto next_sg;
  5253. }
  5254. kfree(sched_group_nodes);
  5255. sched_group_nodes_bycpu[cpu] = NULL;
  5256. }
  5257. }
  5258. #else
  5259. static void free_sched_groups(const cpumask_t *cpu_map)
  5260. {
  5261. }
  5262. #endif
  5263. /*
  5264. * Initialize sched groups cpu_power.
  5265. *
  5266. * cpu_power indicates the capacity of sched group, which is used while
  5267. * distributing the load between different sched groups in a sched domain.
  5268. * Typically cpu_power for all the groups in a sched domain will be same unless
  5269. * there are asymmetries in the topology. If there are asymmetries, group
  5270. * having more cpu_power will pickup more load compared to the group having
  5271. * less cpu_power.
  5272. *
  5273. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  5274. * the maximum number of tasks a group can handle in the presence of other idle
  5275. * or lightly loaded groups in the same sched domain.
  5276. */
  5277. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5278. {
  5279. struct sched_domain *child;
  5280. struct sched_group *group;
  5281. WARN_ON(!sd || !sd->groups);
  5282. if (cpu != first_cpu(sd->groups->cpumask))
  5283. return;
  5284. child = sd->child;
  5285. sd->groups->__cpu_power = 0;
  5286. /*
  5287. * For perf policy, if the groups in child domain share resources
  5288. * (for example cores sharing some portions of the cache hierarchy
  5289. * or SMT), then set this domain groups cpu_power such that each group
  5290. * can handle only one task, when there are other idle groups in the
  5291. * same sched domain.
  5292. */
  5293. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  5294. (child->flags &
  5295. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  5296. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  5297. return;
  5298. }
  5299. /*
  5300. * add cpu_power of each child group to this groups cpu_power
  5301. */
  5302. group = child->groups;
  5303. do {
  5304. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  5305. group = group->next;
  5306. } while (group != child->groups);
  5307. }
  5308. /*
  5309. * Build sched domains for a given set of cpus and attach the sched domains
  5310. * to the individual cpus
  5311. */
  5312. static int build_sched_domains(const cpumask_t *cpu_map)
  5313. {
  5314. int i;
  5315. #ifdef CONFIG_NUMA
  5316. struct sched_group **sched_group_nodes = NULL;
  5317. int sd_allnodes = 0;
  5318. /*
  5319. * Allocate the per-node list of sched groups
  5320. */
  5321. sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
  5322. GFP_KERNEL);
  5323. if (!sched_group_nodes) {
  5324. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5325. return -ENOMEM;
  5326. }
  5327. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  5328. #endif
  5329. /*
  5330. * Set up domains for cpus specified by the cpu_map.
  5331. */
  5332. for_each_cpu_mask(i, *cpu_map) {
  5333. struct sched_domain *sd = NULL, *p;
  5334. cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
  5335. cpus_and(nodemask, nodemask, *cpu_map);
  5336. #ifdef CONFIG_NUMA
  5337. if (cpus_weight(*cpu_map) >
  5338. SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
  5339. sd = &per_cpu(allnodes_domains, i);
  5340. *sd = SD_ALLNODES_INIT;
  5341. sd->span = *cpu_map;
  5342. cpu_to_allnodes_group(i, cpu_map, &sd->groups);
  5343. p = sd;
  5344. sd_allnodes = 1;
  5345. } else
  5346. p = NULL;
  5347. sd = &per_cpu(node_domains, i);
  5348. *sd = SD_NODE_INIT;
  5349. sd->span = sched_domain_node_span(cpu_to_node(i));
  5350. sd->parent = p;
  5351. if (p)
  5352. p->child = sd;
  5353. cpus_and(sd->span, sd->span, *cpu_map);
  5354. #endif
  5355. p = sd;
  5356. sd = &per_cpu(phys_domains, i);
  5357. *sd = SD_CPU_INIT;
  5358. sd->span = nodemask;
  5359. sd->parent = p;
  5360. if (p)
  5361. p->child = sd;
  5362. cpu_to_phys_group(i, cpu_map, &sd->groups);
  5363. #ifdef CONFIG_SCHED_MC
  5364. p = sd;
  5365. sd = &per_cpu(core_domains, i);
  5366. *sd = SD_MC_INIT;
  5367. sd->span = cpu_coregroup_map(i);
  5368. cpus_and(sd->span, sd->span, *cpu_map);
  5369. sd->parent = p;
  5370. p->child = sd;
  5371. cpu_to_core_group(i, cpu_map, &sd->groups);
  5372. #endif
  5373. #ifdef CONFIG_SCHED_SMT
  5374. p = sd;
  5375. sd = &per_cpu(cpu_domains, i);
  5376. *sd = SD_SIBLING_INIT;
  5377. sd->span = per_cpu(cpu_sibling_map, i);
  5378. cpus_and(sd->span, sd->span, *cpu_map);
  5379. sd->parent = p;
  5380. p->child = sd;
  5381. cpu_to_cpu_group(i, cpu_map, &sd->groups);
  5382. #endif
  5383. }
  5384. #ifdef CONFIG_SCHED_SMT
  5385. /* Set up CPU (sibling) groups */
  5386. for_each_cpu_mask(i, *cpu_map) {
  5387. cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
  5388. cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
  5389. if (i != first_cpu(this_sibling_map))
  5390. continue;
  5391. init_sched_build_groups(this_sibling_map, cpu_map,
  5392. &cpu_to_cpu_group);
  5393. }
  5394. #endif
  5395. #ifdef CONFIG_SCHED_MC
  5396. /* Set up multi-core groups */
  5397. for_each_cpu_mask(i, *cpu_map) {
  5398. cpumask_t this_core_map = cpu_coregroup_map(i);
  5399. cpus_and(this_core_map, this_core_map, *cpu_map);
  5400. if (i != first_cpu(this_core_map))
  5401. continue;
  5402. init_sched_build_groups(this_core_map, cpu_map,
  5403. &cpu_to_core_group);
  5404. }
  5405. #endif
  5406. /* Set up physical groups */
  5407. for (i = 0; i < MAX_NUMNODES; i++) {
  5408. cpumask_t nodemask = node_to_cpumask(i);
  5409. cpus_and(nodemask, nodemask, *cpu_map);
  5410. if (cpus_empty(nodemask))
  5411. continue;
  5412. init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
  5413. }
  5414. #ifdef CONFIG_NUMA
  5415. /* Set up node groups */
  5416. if (sd_allnodes)
  5417. init_sched_build_groups(*cpu_map, cpu_map,
  5418. &cpu_to_allnodes_group);
  5419. for (i = 0; i < MAX_NUMNODES; i++) {
  5420. /* Set up node groups */
  5421. struct sched_group *sg, *prev;
  5422. cpumask_t nodemask = node_to_cpumask(i);
  5423. cpumask_t domainspan;
  5424. cpumask_t covered = CPU_MASK_NONE;
  5425. int j;
  5426. cpus_and(nodemask, nodemask, *cpu_map);
  5427. if (cpus_empty(nodemask)) {
  5428. sched_group_nodes[i] = NULL;
  5429. continue;
  5430. }
  5431. domainspan = sched_domain_node_span(i);
  5432. cpus_and(domainspan, domainspan, *cpu_map);
  5433. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  5434. if (!sg) {
  5435. printk(KERN_WARNING "Can not alloc domain group for "
  5436. "node %d\n", i);
  5437. goto error;
  5438. }
  5439. sched_group_nodes[i] = sg;
  5440. for_each_cpu_mask(j, nodemask) {
  5441. struct sched_domain *sd;
  5442. sd = &per_cpu(node_domains, j);
  5443. sd->groups = sg;
  5444. }
  5445. sg->__cpu_power = 0;
  5446. sg->cpumask = nodemask;
  5447. sg->next = sg;
  5448. cpus_or(covered, covered, nodemask);
  5449. prev = sg;
  5450. for (j = 0; j < MAX_NUMNODES; j++) {
  5451. cpumask_t tmp, notcovered;
  5452. int n = (i + j) % MAX_NUMNODES;
  5453. cpus_complement(notcovered, covered);
  5454. cpus_and(tmp, notcovered, *cpu_map);
  5455. cpus_and(tmp, tmp, domainspan);
  5456. if (cpus_empty(tmp))
  5457. break;
  5458. nodemask = node_to_cpumask(n);
  5459. cpus_and(tmp, tmp, nodemask);
  5460. if (cpus_empty(tmp))
  5461. continue;
  5462. sg = kmalloc_node(sizeof(struct sched_group),
  5463. GFP_KERNEL, i);
  5464. if (!sg) {
  5465. printk(KERN_WARNING
  5466. "Can not alloc domain group for node %d\n", j);
  5467. goto error;
  5468. }
  5469. sg->__cpu_power = 0;
  5470. sg->cpumask = tmp;
  5471. sg->next = prev->next;
  5472. cpus_or(covered, covered, tmp);
  5473. prev->next = sg;
  5474. prev = sg;
  5475. }
  5476. }
  5477. #endif
  5478. /* Calculate CPU power for physical packages and nodes */
  5479. #ifdef CONFIG_SCHED_SMT
  5480. for_each_cpu_mask(i, *cpu_map) {
  5481. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  5482. init_sched_groups_power(i, sd);
  5483. }
  5484. #endif
  5485. #ifdef CONFIG_SCHED_MC
  5486. for_each_cpu_mask(i, *cpu_map) {
  5487. struct sched_domain *sd = &per_cpu(core_domains, i);
  5488. init_sched_groups_power(i, sd);
  5489. }
  5490. #endif
  5491. for_each_cpu_mask(i, *cpu_map) {
  5492. struct sched_domain *sd = &per_cpu(phys_domains, i);
  5493. init_sched_groups_power(i, sd);
  5494. }
  5495. #ifdef CONFIG_NUMA
  5496. for (i = 0; i < MAX_NUMNODES; i++)
  5497. init_numa_sched_groups_power(sched_group_nodes[i]);
  5498. if (sd_allnodes) {
  5499. struct sched_group *sg;
  5500. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
  5501. init_numa_sched_groups_power(sg);
  5502. }
  5503. #endif
  5504. /* Attach the domains */
  5505. for_each_cpu_mask(i, *cpu_map) {
  5506. struct sched_domain *sd;
  5507. #ifdef CONFIG_SCHED_SMT
  5508. sd = &per_cpu(cpu_domains, i);
  5509. #elif defined(CONFIG_SCHED_MC)
  5510. sd = &per_cpu(core_domains, i);
  5511. #else
  5512. sd = &per_cpu(phys_domains, i);
  5513. #endif
  5514. cpu_attach_domain(sd, i);
  5515. }
  5516. return 0;
  5517. #ifdef CONFIG_NUMA
  5518. error:
  5519. free_sched_groups(cpu_map);
  5520. return -ENOMEM;
  5521. #endif
  5522. }
  5523. static cpumask_t *doms_cur; /* current sched domains */
  5524. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5525. /*
  5526. * Special case: If a kmalloc of a doms_cur partition (array of
  5527. * cpumask_t) fails, then fallback to a single sched domain,
  5528. * as determined by the single cpumask_t fallback_doms.
  5529. */
  5530. static cpumask_t fallback_doms;
  5531. /*
  5532. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5533. * For now this just excludes isolated cpus, but could be used to
  5534. * exclude other special cases in the future.
  5535. */
  5536. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  5537. {
  5538. ndoms_cur = 1;
  5539. doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  5540. if (!doms_cur)
  5541. doms_cur = &fallback_doms;
  5542. cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
  5543. register_sched_domain_sysctl();
  5544. return build_sched_domains(doms_cur);
  5545. }
  5546. static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
  5547. {
  5548. free_sched_groups(cpu_map);
  5549. }
  5550. /*
  5551. * Detach sched domains from a group of cpus specified in cpu_map
  5552. * These cpus will now be attached to the NULL domain
  5553. */
  5554. static void detach_destroy_domains(const cpumask_t *cpu_map)
  5555. {
  5556. int i;
  5557. unregister_sched_domain_sysctl();
  5558. for_each_cpu_mask(i, *cpu_map)
  5559. cpu_attach_domain(NULL, i);
  5560. synchronize_sched();
  5561. arch_destroy_sched_domains(cpu_map);
  5562. }
  5563. /*
  5564. * Partition sched domains as specified by the 'ndoms_new'
  5565. * cpumasks in the array doms_new[] of cpumasks. This compares
  5566. * doms_new[] to the current sched domain partitioning, doms_cur[].
  5567. * It destroys each deleted domain and builds each new domain.
  5568. *
  5569. * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
  5570. * The masks don't intersect (don't overlap.) We should setup one
  5571. * sched domain for each mask. CPUs not in any of the cpumasks will
  5572. * not be load balanced. If the same cpumask appears both in the
  5573. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  5574. * it as it is.
  5575. *
  5576. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  5577. * ownership of it and will kfree it when done with it. If the caller
  5578. * failed the kmalloc call, then it can pass in doms_new == NULL,
  5579. * and partition_sched_domains() will fallback to the single partition
  5580. * 'fallback_doms'.
  5581. *
  5582. * Call with hotplug lock held
  5583. */
  5584. void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
  5585. {
  5586. int i, j;
  5587. if (doms_new == NULL) {
  5588. ndoms_new = 1;
  5589. doms_new = &fallback_doms;
  5590. cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
  5591. }
  5592. /* Destroy deleted domains */
  5593. for (i = 0; i < ndoms_cur; i++) {
  5594. for (j = 0; j < ndoms_new; j++) {
  5595. if (cpus_equal(doms_cur[i], doms_new[j]))
  5596. goto match1;
  5597. }
  5598. /* no match - a current sched domain not in new doms_new[] */
  5599. detach_destroy_domains(doms_cur + i);
  5600. match1:
  5601. ;
  5602. }
  5603. /* Build new domains */
  5604. for (i = 0; i < ndoms_new; i++) {
  5605. for (j = 0; j < ndoms_cur; j++) {
  5606. if (cpus_equal(doms_new[i], doms_cur[j]))
  5607. goto match2;
  5608. }
  5609. /* no match - add a new doms_new */
  5610. build_sched_domains(doms_new + i);
  5611. match2:
  5612. ;
  5613. }
  5614. /* Remember the new sched domains */
  5615. if (doms_cur != &fallback_doms)
  5616. kfree(doms_cur);
  5617. doms_cur = doms_new;
  5618. ndoms_cur = ndoms_new;
  5619. }
  5620. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  5621. static int arch_reinit_sched_domains(void)
  5622. {
  5623. int err;
  5624. mutex_lock(&sched_hotcpu_mutex);
  5625. detach_destroy_domains(&cpu_online_map);
  5626. err = arch_init_sched_domains(&cpu_online_map);
  5627. mutex_unlock(&sched_hotcpu_mutex);
  5628. return err;
  5629. }
  5630. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  5631. {
  5632. int ret;
  5633. if (buf[0] != '0' && buf[0] != '1')
  5634. return -EINVAL;
  5635. if (smt)
  5636. sched_smt_power_savings = (buf[0] == '1');
  5637. else
  5638. sched_mc_power_savings = (buf[0] == '1');
  5639. ret = arch_reinit_sched_domains();
  5640. return ret ? ret : count;
  5641. }
  5642. #ifdef CONFIG_SCHED_MC
  5643. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  5644. {
  5645. return sprintf(page, "%u\n", sched_mc_power_savings);
  5646. }
  5647. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  5648. const char *buf, size_t count)
  5649. {
  5650. return sched_power_savings_store(buf, count, 0);
  5651. }
  5652. static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  5653. sched_mc_power_savings_store);
  5654. #endif
  5655. #ifdef CONFIG_SCHED_SMT
  5656. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  5657. {
  5658. return sprintf(page, "%u\n", sched_smt_power_savings);
  5659. }
  5660. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  5661. const char *buf, size_t count)
  5662. {
  5663. return sched_power_savings_store(buf, count, 1);
  5664. }
  5665. static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  5666. sched_smt_power_savings_store);
  5667. #endif
  5668. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  5669. {
  5670. int err = 0;
  5671. #ifdef CONFIG_SCHED_SMT
  5672. if (smt_capable())
  5673. err = sysfs_create_file(&cls->kset.kobj,
  5674. &attr_sched_smt_power_savings.attr);
  5675. #endif
  5676. #ifdef CONFIG_SCHED_MC
  5677. if (!err && mc_capable())
  5678. err = sysfs_create_file(&cls->kset.kobj,
  5679. &attr_sched_mc_power_savings.attr);
  5680. #endif
  5681. return err;
  5682. }
  5683. #endif
  5684. /*
  5685. * Force a reinitialization of the sched domains hierarchy. The domains
  5686. * and groups cannot be updated in place without racing with the balancing
  5687. * code, so we temporarily attach all running cpus to the NULL domain
  5688. * which will prevent rebalancing while the sched domains are recalculated.
  5689. */
  5690. static int update_sched_domains(struct notifier_block *nfb,
  5691. unsigned long action, void *hcpu)
  5692. {
  5693. switch (action) {
  5694. case CPU_UP_PREPARE:
  5695. case CPU_UP_PREPARE_FROZEN:
  5696. case CPU_DOWN_PREPARE:
  5697. case CPU_DOWN_PREPARE_FROZEN:
  5698. detach_destroy_domains(&cpu_online_map);
  5699. return NOTIFY_OK;
  5700. case CPU_UP_CANCELED:
  5701. case CPU_UP_CANCELED_FROZEN:
  5702. case CPU_DOWN_FAILED:
  5703. case CPU_DOWN_FAILED_FROZEN:
  5704. case CPU_ONLINE:
  5705. case CPU_ONLINE_FROZEN:
  5706. case CPU_DEAD:
  5707. case CPU_DEAD_FROZEN:
  5708. /*
  5709. * Fall through and re-initialise the domains.
  5710. */
  5711. break;
  5712. default:
  5713. return NOTIFY_DONE;
  5714. }
  5715. /* The hotplug lock is already held by cpu_up/cpu_down */
  5716. arch_init_sched_domains(&cpu_online_map);
  5717. return NOTIFY_OK;
  5718. }
  5719. void __init sched_init_smp(void)
  5720. {
  5721. cpumask_t non_isolated_cpus;
  5722. mutex_lock(&sched_hotcpu_mutex);
  5723. arch_init_sched_domains(&cpu_online_map);
  5724. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  5725. if (cpus_empty(non_isolated_cpus))
  5726. cpu_set(smp_processor_id(), non_isolated_cpus);
  5727. mutex_unlock(&sched_hotcpu_mutex);
  5728. /* XXX: Theoretical race here - CPU may be hotplugged now */
  5729. hotcpu_notifier(update_sched_domains, 0);
  5730. /* Move init over to a non-isolated CPU */
  5731. if (set_cpus_allowed(current, non_isolated_cpus) < 0)
  5732. BUG();
  5733. }
  5734. #else
  5735. void __init sched_init_smp(void)
  5736. {
  5737. }
  5738. #endif /* CONFIG_SMP */
  5739. int in_sched_functions(unsigned long addr)
  5740. {
  5741. /* Linker adds these: start and end of __sched functions */
  5742. extern char __sched_text_start[], __sched_text_end[];
  5743. return in_lock_functions(addr) ||
  5744. (addr >= (unsigned long)__sched_text_start
  5745. && addr < (unsigned long)__sched_text_end);
  5746. }
  5747. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  5748. {
  5749. cfs_rq->tasks_timeline = RB_ROOT;
  5750. #ifdef CONFIG_FAIR_GROUP_SCHED
  5751. cfs_rq->rq = rq;
  5752. #endif
  5753. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  5754. }
  5755. void __init sched_init(void)
  5756. {
  5757. int highest_cpu = 0;
  5758. int i, j;
  5759. for_each_possible_cpu(i) {
  5760. struct rt_prio_array *array;
  5761. struct rq *rq;
  5762. rq = cpu_rq(i);
  5763. spin_lock_init(&rq->lock);
  5764. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  5765. rq->nr_running = 0;
  5766. rq->clock = 1;
  5767. init_cfs_rq(&rq->cfs, rq);
  5768. #ifdef CONFIG_FAIR_GROUP_SCHED
  5769. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5770. {
  5771. struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
  5772. struct sched_entity *se =
  5773. &per_cpu(init_sched_entity, i);
  5774. init_cfs_rq_p[i] = cfs_rq;
  5775. init_cfs_rq(cfs_rq, rq);
  5776. cfs_rq->tg = &init_task_group;
  5777. list_add(&cfs_rq->leaf_cfs_rq_list,
  5778. &rq->leaf_cfs_rq_list);
  5779. init_sched_entity_p[i] = se;
  5780. se->cfs_rq = &rq->cfs;
  5781. se->my_q = cfs_rq;
  5782. se->load.weight = init_task_group_load;
  5783. se->load.inv_weight =
  5784. div64_64(1ULL<<32, init_task_group_load);
  5785. se->parent = NULL;
  5786. }
  5787. init_task_group.shares = init_task_group_load;
  5788. spin_lock_init(&init_task_group.lock);
  5789. #endif
  5790. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5791. rq->cpu_load[j] = 0;
  5792. #ifdef CONFIG_SMP
  5793. rq->sd = NULL;
  5794. rq->active_balance = 0;
  5795. rq->next_balance = jiffies;
  5796. rq->push_cpu = 0;
  5797. rq->cpu = i;
  5798. rq->migration_thread = NULL;
  5799. INIT_LIST_HEAD(&rq->migration_queue);
  5800. #endif
  5801. atomic_set(&rq->nr_iowait, 0);
  5802. array = &rq->rt.active;
  5803. for (j = 0; j < MAX_RT_PRIO; j++) {
  5804. INIT_LIST_HEAD(array->queue + j);
  5805. __clear_bit(j, array->bitmap);
  5806. }
  5807. highest_cpu = i;
  5808. /* delimiter for bitsearch: */
  5809. __set_bit(MAX_RT_PRIO, array->bitmap);
  5810. }
  5811. set_load_weight(&init_task);
  5812. #ifdef CONFIG_PREEMPT_NOTIFIERS
  5813. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  5814. #endif
  5815. #ifdef CONFIG_SMP
  5816. nr_cpu_ids = highest_cpu + 1;
  5817. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  5818. #endif
  5819. #ifdef CONFIG_RT_MUTEXES
  5820. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  5821. #endif
  5822. /*
  5823. * The boot idle thread does lazy MMU switching as well:
  5824. */
  5825. atomic_inc(&init_mm.mm_count);
  5826. enter_lazy_tlb(&init_mm, current);
  5827. /*
  5828. * Make us the idle thread. Technically, schedule() should not be
  5829. * called from this thread, however somewhere below it might be,
  5830. * but because we are the idle thread, we just pick up running again
  5831. * when this runqueue becomes "idle".
  5832. */
  5833. init_idle(current, smp_processor_id());
  5834. /*
  5835. * During early bootup we pretend to be a normal task:
  5836. */
  5837. current->sched_class = &fair_sched_class;
  5838. }
  5839. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  5840. void __might_sleep(char *file, int line)
  5841. {
  5842. #ifdef in_atomic
  5843. static unsigned long prev_jiffy; /* ratelimiting */
  5844. if ((in_atomic() || irqs_disabled()) &&
  5845. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  5846. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5847. return;
  5848. prev_jiffy = jiffies;
  5849. printk(KERN_ERR "BUG: sleeping function called from invalid"
  5850. " context at %s:%d\n", file, line);
  5851. printk("in_atomic():%d, irqs_disabled():%d\n",
  5852. in_atomic(), irqs_disabled());
  5853. debug_show_held_locks(current);
  5854. if (irqs_disabled())
  5855. print_irqtrace_events(current);
  5856. dump_stack();
  5857. }
  5858. #endif
  5859. }
  5860. EXPORT_SYMBOL(__might_sleep);
  5861. #endif
  5862. #ifdef CONFIG_MAGIC_SYSRQ
  5863. static void normalize_task(struct rq *rq, struct task_struct *p)
  5864. {
  5865. int on_rq;
  5866. update_rq_clock(rq);
  5867. on_rq = p->se.on_rq;
  5868. if (on_rq)
  5869. deactivate_task(rq, p, 0);
  5870. __setscheduler(rq, p, SCHED_NORMAL, 0);
  5871. if (on_rq) {
  5872. activate_task(rq, p, 0);
  5873. resched_task(rq->curr);
  5874. }
  5875. }
  5876. void normalize_rt_tasks(void)
  5877. {
  5878. struct task_struct *g, *p;
  5879. unsigned long flags;
  5880. struct rq *rq;
  5881. read_lock_irq(&tasklist_lock);
  5882. do_each_thread(g, p) {
  5883. /*
  5884. * Only normalize user tasks:
  5885. */
  5886. if (!p->mm)
  5887. continue;
  5888. p->se.exec_start = 0;
  5889. #ifdef CONFIG_SCHEDSTATS
  5890. p->se.wait_start = 0;
  5891. p->se.sleep_start = 0;
  5892. p->se.block_start = 0;
  5893. #endif
  5894. task_rq(p)->clock = 0;
  5895. if (!rt_task(p)) {
  5896. /*
  5897. * Renice negative nice level userspace
  5898. * tasks back to 0:
  5899. */
  5900. if (TASK_NICE(p) < 0 && p->mm)
  5901. set_user_nice(p, 0);
  5902. continue;
  5903. }
  5904. spin_lock_irqsave(&p->pi_lock, flags);
  5905. rq = __task_rq_lock(p);
  5906. normalize_task(rq, p);
  5907. __task_rq_unlock(rq);
  5908. spin_unlock_irqrestore(&p->pi_lock, flags);
  5909. } while_each_thread(g, p);
  5910. read_unlock_irq(&tasklist_lock);
  5911. }
  5912. #endif /* CONFIG_MAGIC_SYSRQ */
  5913. #ifdef CONFIG_IA64
  5914. /*
  5915. * These functions are only useful for the IA64 MCA handling.
  5916. *
  5917. * They can only be called when the whole system has been
  5918. * stopped - every CPU needs to be quiescent, and no scheduling
  5919. * activity can take place. Using them for anything else would
  5920. * be a serious bug, and as a result, they aren't even visible
  5921. * under any other configuration.
  5922. */
  5923. /**
  5924. * curr_task - return the current task for a given cpu.
  5925. * @cpu: the processor in question.
  5926. *
  5927. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5928. */
  5929. struct task_struct *curr_task(int cpu)
  5930. {
  5931. return cpu_curr(cpu);
  5932. }
  5933. /**
  5934. * set_curr_task - set the current task for a given cpu.
  5935. * @cpu: the processor in question.
  5936. * @p: the task pointer to set.
  5937. *
  5938. * Description: This function must only be used when non-maskable interrupts
  5939. * are serviced on a separate stack. It allows the architecture to switch the
  5940. * notion of the current task on a cpu in a non-blocking manner. This function
  5941. * must be called with all CPU's synchronized, and interrupts disabled, the
  5942. * and caller must save the original value of the current task (see
  5943. * curr_task() above) and restore that value before reenabling interrupts and
  5944. * re-starting the system.
  5945. *
  5946. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5947. */
  5948. void set_curr_task(int cpu, struct task_struct *p)
  5949. {
  5950. cpu_curr(cpu) = p;
  5951. }
  5952. #endif
  5953. #ifdef CONFIG_FAIR_GROUP_SCHED
  5954. /* allocate runqueue etc for a new task group */
  5955. struct task_group *sched_create_group(void)
  5956. {
  5957. struct task_group *tg;
  5958. struct cfs_rq *cfs_rq;
  5959. struct sched_entity *se;
  5960. struct rq *rq;
  5961. int i;
  5962. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  5963. if (!tg)
  5964. return ERR_PTR(-ENOMEM);
  5965. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
  5966. if (!tg->cfs_rq)
  5967. goto err;
  5968. tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
  5969. if (!tg->se)
  5970. goto err;
  5971. for_each_possible_cpu(i) {
  5972. rq = cpu_rq(i);
  5973. cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
  5974. cpu_to_node(i));
  5975. if (!cfs_rq)
  5976. goto err;
  5977. se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
  5978. cpu_to_node(i));
  5979. if (!se)
  5980. goto err;
  5981. memset(cfs_rq, 0, sizeof(struct cfs_rq));
  5982. memset(se, 0, sizeof(struct sched_entity));
  5983. tg->cfs_rq[i] = cfs_rq;
  5984. init_cfs_rq(cfs_rq, rq);
  5985. cfs_rq->tg = tg;
  5986. tg->se[i] = se;
  5987. se->cfs_rq = &rq->cfs;
  5988. se->my_q = cfs_rq;
  5989. se->load.weight = NICE_0_LOAD;
  5990. se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
  5991. se->parent = NULL;
  5992. }
  5993. for_each_possible_cpu(i) {
  5994. rq = cpu_rq(i);
  5995. cfs_rq = tg->cfs_rq[i];
  5996. list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  5997. }
  5998. tg->shares = NICE_0_LOAD;
  5999. spin_lock_init(&tg->lock);
  6000. return tg;
  6001. err:
  6002. for_each_possible_cpu(i) {
  6003. if (tg->cfs_rq)
  6004. kfree(tg->cfs_rq[i]);
  6005. if (tg->se)
  6006. kfree(tg->se[i]);
  6007. }
  6008. kfree(tg->cfs_rq);
  6009. kfree(tg->se);
  6010. kfree(tg);
  6011. return ERR_PTR(-ENOMEM);
  6012. }
  6013. /* rcu callback to free various structures associated with a task group */
  6014. static void free_sched_group(struct rcu_head *rhp)
  6015. {
  6016. struct cfs_rq *cfs_rq = container_of(rhp, struct cfs_rq, rcu);
  6017. struct task_group *tg = cfs_rq->tg;
  6018. struct sched_entity *se;
  6019. int i;
  6020. /* now it should be safe to free those cfs_rqs */
  6021. for_each_possible_cpu(i) {
  6022. cfs_rq = tg->cfs_rq[i];
  6023. kfree(cfs_rq);
  6024. se = tg->se[i];
  6025. kfree(se);
  6026. }
  6027. kfree(tg->cfs_rq);
  6028. kfree(tg->se);
  6029. kfree(tg);
  6030. }
  6031. /* Destroy runqueue etc associated with a task group */
  6032. void sched_destroy_group(struct task_group *tg)
  6033. {
  6034. struct cfs_rq *cfs_rq;
  6035. int i;
  6036. for_each_possible_cpu(i) {
  6037. cfs_rq = tg->cfs_rq[i];
  6038. list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
  6039. }
  6040. cfs_rq = tg->cfs_rq[0];
  6041. /* wait for possible concurrent references to cfs_rqs complete */
  6042. call_rcu(&cfs_rq->rcu, free_sched_group);
  6043. }
  6044. /* change task's runqueue when it moves between groups.
  6045. * The caller of this function should have put the task in its new group
  6046. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6047. * reflect its new group.
  6048. */
  6049. void sched_move_task(struct task_struct *tsk)
  6050. {
  6051. int on_rq, running;
  6052. unsigned long flags;
  6053. struct rq *rq;
  6054. rq = task_rq_lock(tsk, &flags);
  6055. if (tsk->sched_class != &fair_sched_class)
  6056. goto done;
  6057. update_rq_clock(rq);
  6058. running = task_running(rq, tsk);
  6059. on_rq = tsk->se.on_rq;
  6060. if (on_rq) {
  6061. dequeue_task(rq, tsk, 0);
  6062. if (unlikely(running))
  6063. tsk->sched_class->put_prev_task(rq, tsk);
  6064. }
  6065. set_task_cfs_rq(tsk);
  6066. if (on_rq) {
  6067. if (unlikely(running))
  6068. tsk->sched_class->set_curr_task(rq);
  6069. enqueue_task(rq, tsk, 0);
  6070. }
  6071. done:
  6072. task_rq_unlock(rq, &flags);
  6073. }
  6074. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  6075. {
  6076. struct cfs_rq *cfs_rq = se->cfs_rq;
  6077. struct rq *rq = cfs_rq->rq;
  6078. int on_rq;
  6079. spin_lock_irq(&rq->lock);
  6080. on_rq = se->on_rq;
  6081. if (on_rq)
  6082. dequeue_entity(cfs_rq, se, 0);
  6083. se->load.weight = shares;
  6084. se->load.inv_weight = div64_64((1ULL<<32), shares);
  6085. if (on_rq)
  6086. enqueue_entity(cfs_rq, se, 0);
  6087. spin_unlock_irq(&rq->lock);
  6088. }
  6089. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  6090. {
  6091. int i;
  6092. spin_lock(&tg->lock);
  6093. if (tg->shares == shares)
  6094. goto done;
  6095. tg->shares = shares;
  6096. for_each_possible_cpu(i)
  6097. set_se_shares(tg->se[i], shares);
  6098. done:
  6099. spin_unlock(&tg->lock);
  6100. return 0;
  6101. }
  6102. unsigned long sched_group_shares(struct task_group *tg)
  6103. {
  6104. return tg->shares;
  6105. }
  6106. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6107. #ifdef CONFIG_FAIR_CGROUP_SCHED
  6108. /* return corresponding task_group object of a cgroup */
  6109. static inline struct task_group *cgroup_tg(struct cgroup *cont)
  6110. {
  6111. return container_of(cgroup_subsys_state(cont, cpu_cgroup_subsys_id),
  6112. struct task_group, css);
  6113. }
  6114. static struct cgroup_subsys_state *
  6115. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
  6116. {
  6117. struct task_group *tg;
  6118. if (!cont->parent) {
  6119. /* This is early initialization for the top cgroup */
  6120. init_task_group.css.cgroup = cont;
  6121. return &init_task_group.css;
  6122. }
  6123. /* we support only 1-level deep hierarchical scheduler atm */
  6124. if (cont->parent->parent)
  6125. return ERR_PTR(-EINVAL);
  6126. tg = sched_create_group();
  6127. if (IS_ERR(tg))
  6128. return ERR_PTR(-ENOMEM);
  6129. /* Bind the cgroup to task_group object we just created */
  6130. tg->css.cgroup = cont;
  6131. return &tg->css;
  6132. }
  6133. static void cpu_cgroup_destroy(struct cgroup_subsys *ss,
  6134. struct cgroup *cont)
  6135. {
  6136. struct task_group *tg = cgroup_tg(cont);
  6137. sched_destroy_group(tg);
  6138. }
  6139. static int cpu_cgroup_can_attach(struct cgroup_subsys *ss,
  6140. struct cgroup *cont, struct task_struct *tsk)
  6141. {
  6142. /* We don't support RT-tasks being in separate groups */
  6143. if (tsk->sched_class != &fair_sched_class)
  6144. return -EINVAL;
  6145. return 0;
  6146. }
  6147. static void
  6148. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cont,
  6149. struct cgroup *old_cont, struct task_struct *tsk)
  6150. {
  6151. sched_move_task(tsk);
  6152. }
  6153. static ssize_t cpu_shares_write(struct cgroup *cont, struct cftype *cftype,
  6154. struct file *file, const char __user *userbuf,
  6155. size_t nbytes, loff_t *ppos)
  6156. {
  6157. unsigned long shareval;
  6158. struct task_group *tg = cgroup_tg(cont);
  6159. char buffer[2*sizeof(unsigned long) + 1];
  6160. int rc;
  6161. if (nbytes > 2*sizeof(unsigned long)) /* safety check */
  6162. return -E2BIG;
  6163. if (copy_from_user(buffer, userbuf, nbytes))
  6164. return -EFAULT;
  6165. buffer[nbytes] = 0; /* nul-terminate */
  6166. shareval = simple_strtoul(buffer, NULL, 10);
  6167. rc = sched_group_set_shares(tg, shareval);
  6168. return (rc < 0 ? rc : nbytes);
  6169. }
  6170. static u64 cpu_shares_read_uint(struct cgroup *cont, struct cftype *cft)
  6171. {
  6172. struct task_group *tg = cgroup_tg(cont);
  6173. return (u64) tg->shares;
  6174. }
  6175. static struct cftype cpu_shares = {
  6176. .name = "shares",
  6177. .read_uint = cpu_shares_read_uint,
  6178. .write = cpu_shares_write,
  6179. };
  6180. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  6181. {
  6182. return cgroup_add_file(cont, ss, &cpu_shares);
  6183. }
  6184. struct cgroup_subsys cpu_cgroup_subsys = {
  6185. .name = "cpu",
  6186. .create = cpu_cgroup_create,
  6187. .destroy = cpu_cgroup_destroy,
  6188. .can_attach = cpu_cgroup_can_attach,
  6189. .attach = cpu_cgroup_attach,
  6190. .populate = cpu_cgroup_populate,
  6191. .subsys_id = cpu_cgroup_subsys_id,
  6192. .early_init = 1,
  6193. };
  6194. #endif /* CONFIG_FAIR_CGROUP_SCHED */