xfs_super.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include "xfs_bit.h"
  20. #include "xfs_log.h"
  21. #include "xfs_clnt.h"
  22. #include "xfs_inum.h"
  23. #include "xfs_trans.h"
  24. #include "xfs_sb.h"
  25. #include "xfs_ag.h"
  26. #include "xfs_dir2.h"
  27. #include "xfs_alloc.h"
  28. #include "xfs_dmapi.h"
  29. #include "xfs_quota.h"
  30. #include "xfs_mount.h"
  31. #include "xfs_bmap_btree.h"
  32. #include "xfs_alloc_btree.h"
  33. #include "xfs_ialloc_btree.h"
  34. #include "xfs_dir2_sf.h"
  35. #include "xfs_attr_sf.h"
  36. #include "xfs_dinode.h"
  37. #include "xfs_inode.h"
  38. #include "xfs_btree.h"
  39. #include "xfs_ialloc.h"
  40. #include "xfs_bmap.h"
  41. #include "xfs_rtalloc.h"
  42. #include "xfs_error.h"
  43. #include "xfs_itable.h"
  44. #include "xfs_rw.h"
  45. #include "xfs_acl.h"
  46. #include "xfs_attr.h"
  47. #include "xfs_buf_item.h"
  48. #include "xfs_utils.h"
  49. #include "xfs_vnodeops.h"
  50. #include "xfs_vfsops.h"
  51. #include "xfs_version.h"
  52. #include <linux/namei.h>
  53. #include <linux/init.h>
  54. #include <linux/mount.h>
  55. #include <linux/mempool.h>
  56. #include <linux/writeback.h>
  57. #include <linux/kthread.h>
  58. #include <linux/freezer.h>
  59. static struct quotactl_ops xfs_quotactl_operations;
  60. static struct super_operations xfs_super_operations;
  61. static kmem_zone_t *xfs_vnode_zone;
  62. static kmem_zone_t *xfs_ioend_zone;
  63. mempool_t *xfs_ioend_pool;
  64. STATIC struct xfs_mount_args *
  65. xfs_args_allocate(
  66. struct super_block *sb,
  67. int silent)
  68. {
  69. struct xfs_mount_args *args;
  70. args = kmem_zalloc(sizeof(struct xfs_mount_args), KM_SLEEP);
  71. args->logbufs = args->logbufsize = -1;
  72. strncpy(args->fsname, sb->s_id, MAXNAMELEN);
  73. /* Copy the already-parsed mount(2) flags we're interested in */
  74. if (sb->s_flags & MS_DIRSYNC)
  75. args->flags |= XFSMNT_DIRSYNC;
  76. if (sb->s_flags & MS_SYNCHRONOUS)
  77. args->flags |= XFSMNT_WSYNC;
  78. if (silent)
  79. args->flags |= XFSMNT_QUIET;
  80. args->flags |= XFSMNT_32BITINODES;
  81. return args;
  82. }
  83. __uint64_t
  84. xfs_max_file_offset(
  85. unsigned int blockshift)
  86. {
  87. unsigned int pagefactor = 1;
  88. unsigned int bitshift = BITS_PER_LONG - 1;
  89. /* Figure out maximum filesize, on Linux this can depend on
  90. * the filesystem blocksize (on 32 bit platforms).
  91. * __block_prepare_write does this in an [unsigned] long...
  92. * page->index << (PAGE_CACHE_SHIFT - bbits)
  93. * So, for page sized blocks (4K on 32 bit platforms),
  94. * this wraps at around 8Tb (hence MAX_LFS_FILESIZE which is
  95. * (((u64)PAGE_CACHE_SIZE << (BITS_PER_LONG-1))-1)
  96. * but for smaller blocksizes it is less (bbits = log2 bsize).
  97. * Note1: get_block_t takes a long (implicit cast from above)
  98. * Note2: The Large Block Device (LBD and HAVE_SECTOR_T) patch
  99. * can optionally convert the [unsigned] long from above into
  100. * an [unsigned] long long.
  101. */
  102. #if BITS_PER_LONG == 32
  103. # if defined(CONFIG_LBD)
  104. ASSERT(sizeof(sector_t) == 8);
  105. pagefactor = PAGE_CACHE_SIZE;
  106. bitshift = BITS_PER_LONG;
  107. # else
  108. pagefactor = PAGE_CACHE_SIZE >> (PAGE_CACHE_SHIFT - blockshift);
  109. # endif
  110. #endif
  111. return (((__uint64_t)pagefactor) << bitshift) - 1;
  112. }
  113. STATIC_INLINE void
  114. xfs_set_inodeops(
  115. struct inode *inode)
  116. {
  117. switch (inode->i_mode & S_IFMT) {
  118. case S_IFREG:
  119. inode->i_op = &xfs_inode_operations;
  120. inode->i_fop = &xfs_file_operations;
  121. inode->i_mapping->a_ops = &xfs_address_space_operations;
  122. break;
  123. case S_IFDIR:
  124. inode->i_op = &xfs_dir_inode_operations;
  125. inode->i_fop = &xfs_dir_file_operations;
  126. break;
  127. case S_IFLNK:
  128. inode->i_op = &xfs_symlink_inode_operations;
  129. if (inode->i_blocks)
  130. inode->i_mapping->a_ops = &xfs_address_space_operations;
  131. break;
  132. default:
  133. inode->i_op = &xfs_inode_operations;
  134. init_special_inode(inode, inode->i_mode, inode->i_rdev);
  135. break;
  136. }
  137. }
  138. STATIC_INLINE void
  139. xfs_revalidate_inode(
  140. xfs_mount_t *mp,
  141. bhv_vnode_t *vp,
  142. xfs_inode_t *ip)
  143. {
  144. struct inode *inode = vn_to_inode(vp);
  145. inode->i_mode = ip->i_d.di_mode;
  146. inode->i_nlink = ip->i_d.di_nlink;
  147. inode->i_uid = ip->i_d.di_uid;
  148. inode->i_gid = ip->i_d.di_gid;
  149. switch (inode->i_mode & S_IFMT) {
  150. case S_IFBLK:
  151. case S_IFCHR:
  152. inode->i_rdev =
  153. MKDEV(sysv_major(ip->i_df.if_u2.if_rdev) & 0x1ff,
  154. sysv_minor(ip->i_df.if_u2.if_rdev));
  155. break;
  156. default:
  157. inode->i_rdev = 0;
  158. break;
  159. }
  160. inode->i_generation = ip->i_d.di_gen;
  161. i_size_write(inode, ip->i_d.di_size);
  162. inode->i_blocks =
  163. XFS_FSB_TO_BB(mp, ip->i_d.di_nblocks + ip->i_delayed_blks);
  164. inode->i_atime.tv_sec = ip->i_d.di_atime.t_sec;
  165. inode->i_atime.tv_nsec = ip->i_d.di_atime.t_nsec;
  166. inode->i_mtime.tv_sec = ip->i_d.di_mtime.t_sec;
  167. inode->i_mtime.tv_nsec = ip->i_d.di_mtime.t_nsec;
  168. inode->i_ctime.tv_sec = ip->i_d.di_ctime.t_sec;
  169. inode->i_ctime.tv_nsec = ip->i_d.di_ctime.t_nsec;
  170. if (ip->i_d.di_flags & XFS_DIFLAG_IMMUTABLE)
  171. inode->i_flags |= S_IMMUTABLE;
  172. else
  173. inode->i_flags &= ~S_IMMUTABLE;
  174. if (ip->i_d.di_flags & XFS_DIFLAG_APPEND)
  175. inode->i_flags |= S_APPEND;
  176. else
  177. inode->i_flags &= ~S_APPEND;
  178. if (ip->i_d.di_flags & XFS_DIFLAG_SYNC)
  179. inode->i_flags |= S_SYNC;
  180. else
  181. inode->i_flags &= ~S_SYNC;
  182. if (ip->i_d.di_flags & XFS_DIFLAG_NOATIME)
  183. inode->i_flags |= S_NOATIME;
  184. else
  185. inode->i_flags &= ~S_NOATIME;
  186. xfs_iflags_clear(ip, XFS_IMODIFIED);
  187. }
  188. void
  189. xfs_initialize_vnode(
  190. struct xfs_mount *mp,
  191. bhv_vnode_t *vp,
  192. struct xfs_inode *ip)
  193. {
  194. struct inode *inode = vn_to_inode(vp);
  195. if (!ip->i_vnode) {
  196. ip->i_vnode = vp;
  197. inode->i_private = ip;
  198. }
  199. /*
  200. * We need to set the ops vectors, and unlock the inode, but if
  201. * we have been called during the new inode create process, it is
  202. * too early to fill in the Linux inode. We will get called a
  203. * second time once the inode is properly set up, and then we can
  204. * finish our work.
  205. */
  206. if (ip->i_d.di_mode != 0 && (inode->i_state & I_NEW)) {
  207. xfs_revalidate_inode(mp, vp, ip);
  208. xfs_set_inodeops(inode);
  209. xfs_iflags_clear(ip, XFS_INEW);
  210. barrier();
  211. unlock_new_inode(inode);
  212. }
  213. }
  214. int
  215. xfs_blkdev_get(
  216. xfs_mount_t *mp,
  217. const char *name,
  218. struct block_device **bdevp)
  219. {
  220. int error = 0;
  221. *bdevp = open_bdev_excl(name, 0, mp);
  222. if (IS_ERR(*bdevp)) {
  223. error = PTR_ERR(*bdevp);
  224. printk("XFS: Invalid device [%s], error=%d\n", name, error);
  225. }
  226. return -error;
  227. }
  228. void
  229. xfs_blkdev_put(
  230. struct block_device *bdev)
  231. {
  232. if (bdev)
  233. close_bdev_excl(bdev);
  234. }
  235. /*
  236. * Try to write out the superblock using barriers.
  237. */
  238. STATIC int
  239. xfs_barrier_test(
  240. xfs_mount_t *mp)
  241. {
  242. xfs_buf_t *sbp = xfs_getsb(mp, 0);
  243. int error;
  244. XFS_BUF_UNDONE(sbp);
  245. XFS_BUF_UNREAD(sbp);
  246. XFS_BUF_UNDELAYWRITE(sbp);
  247. XFS_BUF_WRITE(sbp);
  248. XFS_BUF_UNASYNC(sbp);
  249. XFS_BUF_ORDERED(sbp);
  250. xfsbdstrat(mp, sbp);
  251. error = xfs_iowait(sbp);
  252. /*
  253. * Clear all the flags we set and possible error state in the
  254. * buffer. We only did the write to try out whether barriers
  255. * worked and shouldn't leave any traces in the superblock
  256. * buffer.
  257. */
  258. XFS_BUF_DONE(sbp);
  259. XFS_BUF_ERROR(sbp, 0);
  260. XFS_BUF_UNORDERED(sbp);
  261. xfs_buf_relse(sbp);
  262. return error;
  263. }
  264. void
  265. xfs_mountfs_check_barriers(xfs_mount_t *mp)
  266. {
  267. int error;
  268. if (mp->m_logdev_targp != mp->m_ddev_targp) {
  269. xfs_fs_cmn_err(CE_NOTE, mp,
  270. "Disabling barriers, not supported with external log device");
  271. mp->m_flags &= ~XFS_MOUNT_BARRIER;
  272. return;
  273. }
  274. if (mp->m_ddev_targp->bt_bdev->bd_disk->queue->ordered ==
  275. QUEUE_ORDERED_NONE) {
  276. xfs_fs_cmn_err(CE_NOTE, mp,
  277. "Disabling barriers, not supported by the underlying device");
  278. mp->m_flags &= ~XFS_MOUNT_BARRIER;
  279. return;
  280. }
  281. if (xfs_readonly_buftarg(mp->m_ddev_targp)) {
  282. xfs_fs_cmn_err(CE_NOTE, mp,
  283. "Disabling barriers, underlying device is readonly");
  284. mp->m_flags &= ~XFS_MOUNT_BARRIER;
  285. return;
  286. }
  287. error = xfs_barrier_test(mp);
  288. if (error) {
  289. xfs_fs_cmn_err(CE_NOTE, mp,
  290. "Disabling barriers, trial barrier write failed");
  291. mp->m_flags &= ~XFS_MOUNT_BARRIER;
  292. return;
  293. }
  294. }
  295. void
  296. xfs_blkdev_issue_flush(
  297. xfs_buftarg_t *buftarg)
  298. {
  299. blkdev_issue_flush(buftarg->bt_bdev, NULL);
  300. }
  301. STATIC struct inode *
  302. xfs_fs_alloc_inode(
  303. struct super_block *sb)
  304. {
  305. bhv_vnode_t *vp;
  306. vp = kmem_zone_alloc(xfs_vnode_zone, KM_SLEEP);
  307. if (unlikely(!vp))
  308. return NULL;
  309. return vn_to_inode(vp);
  310. }
  311. STATIC void
  312. xfs_fs_destroy_inode(
  313. struct inode *inode)
  314. {
  315. kmem_zone_free(xfs_vnode_zone, vn_from_inode(inode));
  316. }
  317. STATIC void
  318. xfs_fs_inode_init_once(
  319. kmem_zone_t *zonep,
  320. void *vnode)
  321. {
  322. inode_init_once(vn_to_inode((bhv_vnode_t *)vnode));
  323. }
  324. STATIC int
  325. xfs_init_zones(void)
  326. {
  327. xfs_vnode_zone = kmem_zone_init_flags(sizeof(bhv_vnode_t), "xfs_vnode",
  328. KM_ZONE_HWALIGN | KM_ZONE_RECLAIM |
  329. KM_ZONE_SPREAD,
  330. xfs_fs_inode_init_once);
  331. if (!xfs_vnode_zone)
  332. goto out;
  333. xfs_ioend_zone = kmem_zone_init(sizeof(xfs_ioend_t), "xfs_ioend");
  334. if (!xfs_ioend_zone)
  335. goto out_destroy_vnode_zone;
  336. xfs_ioend_pool = mempool_create_slab_pool(4 * MAX_BUF_PER_PAGE,
  337. xfs_ioend_zone);
  338. if (!xfs_ioend_pool)
  339. goto out_free_ioend_zone;
  340. return 0;
  341. out_free_ioend_zone:
  342. kmem_zone_destroy(xfs_ioend_zone);
  343. out_destroy_vnode_zone:
  344. kmem_zone_destroy(xfs_vnode_zone);
  345. out:
  346. return -ENOMEM;
  347. }
  348. STATIC void
  349. xfs_destroy_zones(void)
  350. {
  351. mempool_destroy(xfs_ioend_pool);
  352. kmem_zone_destroy(xfs_vnode_zone);
  353. kmem_zone_destroy(xfs_ioend_zone);
  354. }
  355. /*
  356. * Attempt to flush the inode, this will actually fail
  357. * if the inode is pinned, but we dirty the inode again
  358. * at the point when it is unpinned after a log write,
  359. * since this is when the inode itself becomes flushable.
  360. */
  361. STATIC int
  362. xfs_fs_write_inode(
  363. struct inode *inode,
  364. int sync)
  365. {
  366. int error = 0, flags = FLUSH_INODE;
  367. vn_trace_entry(XFS_I(inode), __FUNCTION__,
  368. (inst_t *)__return_address);
  369. if (sync) {
  370. filemap_fdatawait(inode->i_mapping);
  371. flags |= FLUSH_SYNC;
  372. }
  373. error = xfs_inode_flush(XFS_I(inode), flags);
  374. /*
  375. * if we failed to write out the inode then mark
  376. * it dirty again so we'll try again later.
  377. */
  378. if (error)
  379. mark_inode_dirty_sync(inode);
  380. return -error;
  381. }
  382. STATIC void
  383. xfs_fs_clear_inode(
  384. struct inode *inode)
  385. {
  386. xfs_inode_t *ip = XFS_I(inode);
  387. /*
  388. * ip can be null when xfs_iget_core calls xfs_idestroy if we
  389. * find an inode with di_mode == 0 but without IGET_CREATE set.
  390. */
  391. if (ip) {
  392. vn_trace_entry(ip, __FUNCTION__, (inst_t *)__return_address);
  393. XFS_STATS_INC(vn_rele);
  394. XFS_STATS_INC(vn_remove);
  395. XFS_STATS_INC(vn_reclaim);
  396. XFS_STATS_DEC(vn_active);
  397. xfs_inactive(ip);
  398. xfs_iflags_clear(ip, XFS_IMODIFIED);
  399. if (xfs_reclaim(ip))
  400. panic("%s: cannot reclaim 0x%p\n", __FUNCTION__, inode);
  401. }
  402. ASSERT(XFS_I(inode) == NULL);
  403. }
  404. /*
  405. * Enqueue a work item to be picked up by the vfs xfssyncd thread.
  406. * Doing this has two advantages:
  407. * - It saves on stack space, which is tight in certain situations
  408. * - It can be used (with care) as a mechanism to avoid deadlocks.
  409. * Flushing while allocating in a full filesystem requires both.
  410. */
  411. STATIC void
  412. xfs_syncd_queue_work(
  413. struct xfs_mount *mp,
  414. void *data,
  415. void (*syncer)(struct xfs_mount *, void *))
  416. {
  417. struct bhv_vfs_sync_work *work;
  418. work = kmem_alloc(sizeof(struct bhv_vfs_sync_work), KM_SLEEP);
  419. INIT_LIST_HEAD(&work->w_list);
  420. work->w_syncer = syncer;
  421. work->w_data = data;
  422. work->w_mount = mp;
  423. spin_lock(&mp->m_sync_lock);
  424. list_add_tail(&work->w_list, &mp->m_sync_list);
  425. spin_unlock(&mp->m_sync_lock);
  426. wake_up_process(mp->m_sync_task);
  427. }
  428. /*
  429. * Flush delayed allocate data, attempting to free up reserved space
  430. * from existing allocations. At this point a new allocation attempt
  431. * has failed with ENOSPC and we are in the process of scratching our
  432. * heads, looking about for more room...
  433. */
  434. STATIC void
  435. xfs_flush_inode_work(
  436. struct xfs_mount *mp,
  437. void *arg)
  438. {
  439. struct inode *inode = arg;
  440. filemap_flush(inode->i_mapping);
  441. iput(inode);
  442. }
  443. void
  444. xfs_flush_inode(
  445. xfs_inode_t *ip)
  446. {
  447. struct inode *inode = ip->i_vnode;
  448. igrab(inode);
  449. xfs_syncd_queue_work(ip->i_mount, inode, xfs_flush_inode_work);
  450. delay(msecs_to_jiffies(500));
  451. }
  452. /*
  453. * This is the "bigger hammer" version of xfs_flush_inode_work...
  454. * (IOW, "If at first you don't succeed, use a Bigger Hammer").
  455. */
  456. STATIC void
  457. xfs_flush_device_work(
  458. struct xfs_mount *mp,
  459. void *arg)
  460. {
  461. struct inode *inode = arg;
  462. sync_blockdev(mp->m_super->s_bdev);
  463. iput(inode);
  464. }
  465. void
  466. xfs_flush_device(
  467. xfs_inode_t *ip)
  468. {
  469. struct inode *inode = vn_to_inode(XFS_ITOV(ip));
  470. igrab(inode);
  471. xfs_syncd_queue_work(ip->i_mount, inode, xfs_flush_device_work);
  472. delay(msecs_to_jiffies(500));
  473. xfs_log_force(ip->i_mount, (xfs_lsn_t)0, XFS_LOG_FORCE|XFS_LOG_SYNC);
  474. }
  475. STATIC void
  476. xfs_sync_worker(
  477. struct xfs_mount *mp,
  478. void *unused)
  479. {
  480. int error;
  481. if (!(mp->m_flags & XFS_MOUNT_RDONLY))
  482. error = xfs_sync(mp, SYNC_FSDATA | SYNC_BDFLUSH | SYNC_ATTR |
  483. SYNC_REFCACHE | SYNC_SUPER);
  484. mp->m_sync_seq++;
  485. wake_up(&mp->m_wait_single_sync_task);
  486. }
  487. STATIC int
  488. xfssyncd(
  489. void *arg)
  490. {
  491. struct xfs_mount *mp = arg;
  492. long timeleft;
  493. bhv_vfs_sync_work_t *work, *n;
  494. LIST_HEAD (tmp);
  495. set_freezable();
  496. timeleft = xfs_syncd_centisecs * msecs_to_jiffies(10);
  497. for (;;) {
  498. timeleft = schedule_timeout_interruptible(timeleft);
  499. /* swsusp */
  500. try_to_freeze();
  501. if (kthread_should_stop() && list_empty(&mp->m_sync_list))
  502. break;
  503. spin_lock(&mp->m_sync_lock);
  504. /*
  505. * We can get woken by laptop mode, to do a sync -
  506. * that's the (only!) case where the list would be
  507. * empty with time remaining.
  508. */
  509. if (!timeleft || list_empty(&mp->m_sync_list)) {
  510. if (!timeleft)
  511. timeleft = xfs_syncd_centisecs *
  512. msecs_to_jiffies(10);
  513. INIT_LIST_HEAD(&mp->m_sync_work.w_list);
  514. list_add_tail(&mp->m_sync_work.w_list,
  515. &mp->m_sync_list);
  516. }
  517. list_for_each_entry_safe(work, n, &mp->m_sync_list, w_list)
  518. list_move(&work->w_list, &tmp);
  519. spin_unlock(&mp->m_sync_lock);
  520. list_for_each_entry_safe(work, n, &tmp, w_list) {
  521. (*work->w_syncer)(mp, work->w_data);
  522. list_del(&work->w_list);
  523. if (work == &mp->m_sync_work)
  524. continue;
  525. kmem_free(work, sizeof(struct bhv_vfs_sync_work));
  526. }
  527. }
  528. return 0;
  529. }
  530. STATIC void
  531. xfs_fs_put_super(
  532. struct super_block *sb)
  533. {
  534. struct xfs_mount *mp = XFS_M(sb);
  535. int error;
  536. kthread_stop(mp->m_sync_task);
  537. xfs_sync(mp, SYNC_ATTR | SYNC_DELWRI);
  538. error = xfs_unmount(mp, 0, NULL);
  539. if (error)
  540. printk("XFS: unmount got error=%d\n", error);
  541. }
  542. STATIC void
  543. xfs_fs_write_super(
  544. struct super_block *sb)
  545. {
  546. if (!(sb->s_flags & MS_RDONLY))
  547. xfs_sync(XFS_M(sb), SYNC_FSDATA);
  548. sb->s_dirt = 0;
  549. }
  550. STATIC int
  551. xfs_fs_sync_super(
  552. struct super_block *sb,
  553. int wait)
  554. {
  555. struct xfs_mount *mp = XFS_M(sb);
  556. int error;
  557. int flags;
  558. /*
  559. * Treat a sync operation like a freeze. This is to work
  560. * around a race in sync_inodes() which works in two phases
  561. * - an asynchronous flush, which can write out an inode
  562. * without waiting for file size updates to complete, and a
  563. * synchronous flush, which wont do anything because the
  564. * async flush removed the inode's dirty flag. Also
  565. * sync_inodes() will not see any files that just have
  566. * outstanding transactions to be flushed because we don't
  567. * dirty the Linux inode until after the transaction I/O
  568. * completes.
  569. */
  570. if (wait || unlikely(sb->s_frozen == SB_FREEZE_WRITE)) {
  571. /*
  572. * First stage of freeze - no more writers will make progress
  573. * now we are here, so we flush delwri and delalloc buffers
  574. * here, then wait for all I/O to complete. Data is frozen at
  575. * that point. Metadata is not frozen, transactions can still
  576. * occur here so don't bother flushing the buftarg (i.e
  577. * SYNC_QUIESCE) because it'll just get dirty again.
  578. */
  579. flags = SYNC_DATA_QUIESCE;
  580. } else
  581. flags = SYNC_FSDATA;
  582. error = xfs_sync(mp, flags);
  583. sb->s_dirt = 0;
  584. if (unlikely(laptop_mode)) {
  585. int prev_sync_seq = mp->m_sync_seq;
  586. /*
  587. * The disk must be active because we're syncing.
  588. * We schedule xfssyncd now (now that the disk is
  589. * active) instead of later (when it might not be).
  590. */
  591. wake_up_process(mp->m_sync_task);
  592. /*
  593. * We have to wait for the sync iteration to complete.
  594. * If we don't, the disk activity caused by the sync
  595. * will come after the sync is completed, and that
  596. * triggers another sync from laptop mode.
  597. */
  598. wait_event(mp->m_wait_single_sync_task,
  599. mp->m_sync_seq != prev_sync_seq);
  600. }
  601. return -error;
  602. }
  603. STATIC int
  604. xfs_fs_statfs(
  605. struct dentry *dentry,
  606. struct kstatfs *statp)
  607. {
  608. return -xfs_statvfs(XFS_M(dentry->d_sb), statp,
  609. vn_from_inode(dentry->d_inode));
  610. }
  611. STATIC int
  612. xfs_fs_remount(
  613. struct super_block *sb,
  614. int *flags,
  615. char *options)
  616. {
  617. struct xfs_mount *mp = XFS_M(sb);
  618. struct xfs_mount_args *args = xfs_args_allocate(sb, 0);
  619. int error;
  620. error = xfs_parseargs(mp, options, args, 1);
  621. if (!error)
  622. error = xfs_mntupdate(mp, flags, args);
  623. kmem_free(args, sizeof(*args));
  624. return -error;
  625. }
  626. STATIC void
  627. xfs_fs_lockfs(
  628. struct super_block *sb)
  629. {
  630. xfs_freeze(XFS_M(sb));
  631. }
  632. STATIC int
  633. xfs_fs_show_options(
  634. struct seq_file *m,
  635. struct vfsmount *mnt)
  636. {
  637. return -xfs_showargs(XFS_M(mnt->mnt_sb), m);
  638. }
  639. STATIC int
  640. xfs_fs_quotasync(
  641. struct super_block *sb,
  642. int type)
  643. {
  644. return -XFS_QM_QUOTACTL(XFS_M(sb), Q_XQUOTASYNC, 0, NULL);
  645. }
  646. STATIC int
  647. xfs_fs_getxstate(
  648. struct super_block *sb,
  649. struct fs_quota_stat *fqs)
  650. {
  651. return -XFS_QM_QUOTACTL(XFS_M(sb), Q_XGETQSTAT, 0, (caddr_t)fqs);
  652. }
  653. STATIC int
  654. xfs_fs_setxstate(
  655. struct super_block *sb,
  656. unsigned int flags,
  657. int op)
  658. {
  659. return -XFS_QM_QUOTACTL(XFS_M(sb), op, 0, (caddr_t)&flags);
  660. }
  661. STATIC int
  662. xfs_fs_getxquota(
  663. struct super_block *sb,
  664. int type,
  665. qid_t id,
  666. struct fs_disk_quota *fdq)
  667. {
  668. return -XFS_QM_QUOTACTL(XFS_M(sb),
  669. (type == USRQUOTA) ? Q_XGETQUOTA :
  670. ((type == GRPQUOTA) ? Q_XGETGQUOTA :
  671. Q_XGETPQUOTA), id, (caddr_t)fdq);
  672. }
  673. STATIC int
  674. xfs_fs_setxquota(
  675. struct super_block *sb,
  676. int type,
  677. qid_t id,
  678. struct fs_disk_quota *fdq)
  679. {
  680. return -XFS_QM_QUOTACTL(XFS_M(sb),
  681. (type == USRQUOTA) ? Q_XSETQLIM :
  682. ((type == GRPQUOTA) ? Q_XSETGQLIM :
  683. Q_XSETPQLIM), id, (caddr_t)fdq);
  684. }
  685. STATIC int
  686. xfs_fs_fill_super(
  687. struct super_block *sb,
  688. void *data,
  689. int silent)
  690. {
  691. struct inode *rootvp;
  692. struct xfs_mount *mp = NULL;
  693. struct xfs_mount_args *args = xfs_args_allocate(sb, silent);
  694. struct kstatfs statvfs;
  695. int error;
  696. mp = xfs_mount_init();
  697. INIT_LIST_HEAD(&mp->m_sync_list);
  698. spin_lock_init(&mp->m_sync_lock);
  699. init_waitqueue_head(&mp->m_wait_single_sync_task);
  700. mp->m_super = sb;
  701. sb->s_fs_info = mp;
  702. if (sb->s_flags & MS_RDONLY)
  703. mp->m_flags |= XFS_MOUNT_RDONLY;
  704. error = xfs_parseargs(mp, (char *)data, args, 0);
  705. if (error)
  706. goto fail_vfsop;
  707. sb_min_blocksize(sb, BBSIZE);
  708. sb->s_export_op = &xfs_export_operations;
  709. sb->s_qcop = &xfs_quotactl_operations;
  710. sb->s_op = &xfs_super_operations;
  711. error = xfs_mount(mp, args, NULL);
  712. if (error)
  713. goto fail_vfsop;
  714. error = xfs_statvfs(mp, &statvfs, NULL);
  715. if (error)
  716. goto fail_unmount;
  717. sb->s_dirt = 1;
  718. sb->s_magic = statvfs.f_type;
  719. sb->s_blocksize = statvfs.f_bsize;
  720. sb->s_blocksize_bits = ffs(statvfs.f_bsize) - 1;
  721. sb->s_maxbytes = xfs_max_file_offset(sb->s_blocksize_bits);
  722. sb->s_time_gran = 1;
  723. set_posix_acl_flag(sb);
  724. error = xfs_root(mp, &rootvp);
  725. if (error)
  726. goto fail_unmount;
  727. sb->s_root = d_alloc_root(vn_to_inode(rootvp));
  728. if (!sb->s_root) {
  729. error = ENOMEM;
  730. goto fail_vnrele;
  731. }
  732. if (is_bad_inode(sb->s_root->d_inode)) {
  733. error = EINVAL;
  734. goto fail_vnrele;
  735. }
  736. mp->m_sync_work.w_syncer = xfs_sync_worker;
  737. mp->m_sync_work.w_mount = mp;
  738. mp->m_sync_task = kthread_run(xfssyncd, mp, "xfssyncd");
  739. if (IS_ERR(mp->m_sync_task)) {
  740. error = -PTR_ERR(mp->m_sync_task);
  741. goto fail_vnrele;
  742. }
  743. vn_trace_exit(XFS_I(sb->s_root->d_inode), __FUNCTION__,
  744. (inst_t *)__return_address);
  745. kmem_free(args, sizeof(*args));
  746. return 0;
  747. fail_vnrele:
  748. if (sb->s_root) {
  749. dput(sb->s_root);
  750. sb->s_root = NULL;
  751. } else {
  752. VN_RELE(rootvp);
  753. }
  754. fail_unmount:
  755. xfs_unmount(mp, 0, NULL);
  756. fail_vfsop:
  757. kmem_free(args, sizeof(*args));
  758. return -error;
  759. }
  760. STATIC int
  761. xfs_fs_get_sb(
  762. struct file_system_type *fs_type,
  763. int flags,
  764. const char *dev_name,
  765. void *data,
  766. struct vfsmount *mnt)
  767. {
  768. return get_sb_bdev(fs_type, flags, dev_name, data, xfs_fs_fill_super,
  769. mnt);
  770. }
  771. static struct super_operations xfs_super_operations = {
  772. .alloc_inode = xfs_fs_alloc_inode,
  773. .destroy_inode = xfs_fs_destroy_inode,
  774. .write_inode = xfs_fs_write_inode,
  775. .clear_inode = xfs_fs_clear_inode,
  776. .put_super = xfs_fs_put_super,
  777. .write_super = xfs_fs_write_super,
  778. .sync_fs = xfs_fs_sync_super,
  779. .write_super_lockfs = xfs_fs_lockfs,
  780. .statfs = xfs_fs_statfs,
  781. .remount_fs = xfs_fs_remount,
  782. .show_options = xfs_fs_show_options,
  783. };
  784. static struct quotactl_ops xfs_quotactl_operations = {
  785. .quota_sync = xfs_fs_quotasync,
  786. .get_xstate = xfs_fs_getxstate,
  787. .set_xstate = xfs_fs_setxstate,
  788. .get_xquota = xfs_fs_getxquota,
  789. .set_xquota = xfs_fs_setxquota,
  790. };
  791. static struct file_system_type xfs_fs_type = {
  792. .owner = THIS_MODULE,
  793. .name = "xfs",
  794. .get_sb = xfs_fs_get_sb,
  795. .kill_sb = kill_block_super,
  796. .fs_flags = FS_REQUIRES_DEV,
  797. };
  798. STATIC int __init
  799. init_xfs_fs( void )
  800. {
  801. int error;
  802. static char message[] __initdata = KERN_INFO \
  803. XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled\n";
  804. printk(message);
  805. ktrace_init(64);
  806. error = xfs_init_zones();
  807. if (error < 0)
  808. goto undo_zones;
  809. error = xfs_buf_init();
  810. if (error < 0)
  811. goto undo_buffers;
  812. vn_init();
  813. xfs_init();
  814. uuid_init();
  815. vfs_initquota();
  816. error = register_filesystem(&xfs_fs_type);
  817. if (error)
  818. goto undo_register;
  819. return 0;
  820. undo_register:
  821. xfs_buf_terminate();
  822. undo_buffers:
  823. xfs_destroy_zones();
  824. undo_zones:
  825. return error;
  826. }
  827. STATIC void __exit
  828. exit_xfs_fs( void )
  829. {
  830. vfs_exitquota();
  831. unregister_filesystem(&xfs_fs_type);
  832. xfs_cleanup();
  833. xfs_buf_terminate();
  834. xfs_destroy_zones();
  835. ktrace_uninit();
  836. }
  837. module_init(init_xfs_fs);
  838. module_exit(exit_xfs_fs);
  839. MODULE_AUTHOR("Silicon Graphics, Inc.");
  840. MODULE_DESCRIPTION(XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled");
  841. MODULE_LICENSE("GPL");