aops.c 47 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907
  1. /* -*- mode: c; c-basic-offset: 8; -*-
  2. * vim: noexpandtab sw=8 ts=8 sts=0:
  3. *
  4. * Copyright (C) 2002, 2004 Oracle. All rights reserved.
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2 of the License, or (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public
  17. * License along with this program; if not, write to the
  18. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  19. * Boston, MA 021110-1307, USA.
  20. */
  21. #include <linux/fs.h>
  22. #include <linux/slab.h>
  23. #include <linux/highmem.h>
  24. #include <linux/pagemap.h>
  25. #include <asm/byteorder.h>
  26. #include <linux/swap.h>
  27. #include <linux/pipe_fs_i.h>
  28. #define MLOG_MASK_PREFIX ML_FILE_IO
  29. #include <cluster/masklog.h>
  30. #include "ocfs2.h"
  31. #include "alloc.h"
  32. #include "aops.h"
  33. #include "dlmglue.h"
  34. #include "extent_map.h"
  35. #include "file.h"
  36. #include "inode.h"
  37. #include "journal.h"
  38. #include "suballoc.h"
  39. #include "super.h"
  40. #include "symlink.h"
  41. #include "buffer_head_io.h"
  42. static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
  43. struct buffer_head *bh_result, int create)
  44. {
  45. int err = -EIO;
  46. int status;
  47. struct ocfs2_dinode *fe = NULL;
  48. struct buffer_head *bh = NULL;
  49. struct buffer_head *buffer_cache_bh = NULL;
  50. struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
  51. void *kaddr;
  52. mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
  53. (unsigned long long)iblock, bh_result, create);
  54. BUG_ON(ocfs2_inode_is_fast_symlink(inode));
  55. if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
  56. mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
  57. (unsigned long long)iblock);
  58. goto bail;
  59. }
  60. status = ocfs2_read_block(OCFS2_SB(inode->i_sb),
  61. OCFS2_I(inode)->ip_blkno,
  62. &bh, OCFS2_BH_CACHED, inode);
  63. if (status < 0) {
  64. mlog_errno(status);
  65. goto bail;
  66. }
  67. fe = (struct ocfs2_dinode *) bh->b_data;
  68. if (!OCFS2_IS_VALID_DINODE(fe)) {
  69. mlog(ML_ERROR, "Invalid dinode #%llu: signature = %.*s\n",
  70. (unsigned long long)le64_to_cpu(fe->i_blkno), 7,
  71. fe->i_signature);
  72. goto bail;
  73. }
  74. if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
  75. le32_to_cpu(fe->i_clusters))) {
  76. mlog(ML_ERROR, "block offset is outside the allocated size: "
  77. "%llu\n", (unsigned long long)iblock);
  78. goto bail;
  79. }
  80. /* We don't use the page cache to create symlink data, so if
  81. * need be, copy it over from the buffer cache. */
  82. if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
  83. u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
  84. iblock;
  85. buffer_cache_bh = sb_getblk(osb->sb, blkno);
  86. if (!buffer_cache_bh) {
  87. mlog(ML_ERROR, "couldn't getblock for symlink!\n");
  88. goto bail;
  89. }
  90. /* we haven't locked out transactions, so a commit
  91. * could've happened. Since we've got a reference on
  92. * the bh, even if it commits while we're doing the
  93. * copy, the data is still good. */
  94. if (buffer_jbd(buffer_cache_bh)
  95. && ocfs2_inode_is_new(inode)) {
  96. kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
  97. if (!kaddr) {
  98. mlog(ML_ERROR, "couldn't kmap!\n");
  99. goto bail;
  100. }
  101. memcpy(kaddr + (bh_result->b_size * iblock),
  102. buffer_cache_bh->b_data,
  103. bh_result->b_size);
  104. kunmap_atomic(kaddr, KM_USER0);
  105. set_buffer_uptodate(bh_result);
  106. }
  107. brelse(buffer_cache_bh);
  108. }
  109. map_bh(bh_result, inode->i_sb,
  110. le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
  111. err = 0;
  112. bail:
  113. if (bh)
  114. brelse(bh);
  115. mlog_exit(err);
  116. return err;
  117. }
  118. static int ocfs2_get_block(struct inode *inode, sector_t iblock,
  119. struct buffer_head *bh_result, int create)
  120. {
  121. int err = 0;
  122. unsigned int ext_flags;
  123. u64 p_blkno, past_eof;
  124. struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
  125. mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
  126. (unsigned long long)iblock, bh_result, create);
  127. if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
  128. mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
  129. inode, inode->i_ino);
  130. if (S_ISLNK(inode->i_mode)) {
  131. /* this always does I/O for some reason. */
  132. err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
  133. goto bail;
  134. }
  135. err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, NULL,
  136. &ext_flags);
  137. if (err) {
  138. mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
  139. "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
  140. (unsigned long long)p_blkno);
  141. goto bail;
  142. }
  143. /*
  144. * ocfs2 never allocates in this function - the only time we
  145. * need to use BH_New is when we're extending i_size on a file
  146. * system which doesn't support holes, in which case BH_New
  147. * allows block_prepare_write() to zero.
  148. */
  149. mlog_bug_on_msg(create && p_blkno == 0 && ocfs2_sparse_alloc(osb),
  150. "ino %lu, iblock %llu\n", inode->i_ino,
  151. (unsigned long long)iblock);
  152. /* Treat the unwritten extent as a hole for zeroing purposes. */
  153. if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
  154. map_bh(bh_result, inode->i_sb, p_blkno);
  155. if (!ocfs2_sparse_alloc(osb)) {
  156. if (p_blkno == 0) {
  157. err = -EIO;
  158. mlog(ML_ERROR,
  159. "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
  160. (unsigned long long)iblock,
  161. (unsigned long long)p_blkno,
  162. (unsigned long long)OCFS2_I(inode)->ip_blkno);
  163. mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
  164. dump_stack();
  165. }
  166. past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
  167. mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
  168. (unsigned long long)past_eof);
  169. if (create && (iblock >= past_eof))
  170. set_buffer_new(bh_result);
  171. }
  172. bail:
  173. if (err < 0)
  174. err = -EIO;
  175. mlog_exit(err);
  176. return err;
  177. }
  178. int ocfs2_read_inline_data(struct inode *inode, struct page *page,
  179. struct buffer_head *di_bh)
  180. {
  181. void *kaddr;
  182. unsigned int size;
  183. struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
  184. if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
  185. ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
  186. (unsigned long long)OCFS2_I(inode)->ip_blkno);
  187. return -EROFS;
  188. }
  189. size = i_size_read(inode);
  190. if (size > PAGE_CACHE_SIZE ||
  191. size > ocfs2_max_inline_data(inode->i_sb)) {
  192. ocfs2_error(inode->i_sb,
  193. "Inode %llu has with inline data has bad size: %u",
  194. (unsigned long long)OCFS2_I(inode)->ip_blkno, size);
  195. return -EROFS;
  196. }
  197. kaddr = kmap_atomic(page, KM_USER0);
  198. if (size)
  199. memcpy(kaddr, di->id2.i_data.id_data, size);
  200. /* Clear the remaining part of the page */
  201. memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
  202. flush_dcache_page(page);
  203. kunmap_atomic(kaddr, KM_USER0);
  204. SetPageUptodate(page);
  205. return 0;
  206. }
  207. static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
  208. {
  209. int ret;
  210. struct buffer_head *di_bh = NULL;
  211. struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
  212. BUG_ON(!PageLocked(page));
  213. BUG_ON(!OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL);
  214. ret = ocfs2_read_block(osb, OCFS2_I(inode)->ip_blkno, &di_bh,
  215. OCFS2_BH_CACHED, inode);
  216. if (ret) {
  217. mlog_errno(ret);
  218. goto out;
  219. }
  220. ret = ocfs2_read_inline_data(inode, page, di_bh);
  221. out:
  222. unlock_page(page);
  223. brelse(di_bh);
  224. return ret;
  225. }
  226. static int ocfs2_readpage(struct file *file, struct page *page)
  227. {
  228. struct inode *inode = page->mapping->host;
  229. struct ocfs2_inode_info *oi = OCFS2_I(inode);
  230. loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
  231. int ret, unlock = 1;
  232. mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0));
  233. ret = ocfs2_meta_lock_with_page(inode, NULL, 0, page);
  234. if (ret != 0) {
  235. if (ret == AOP_TRUNCATED_PAGE)
  236. unlock = 0;
  237. mlog_errno(ret);
  238. goto out;
  239. }
  240. if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
  241. ret = AOP_TRUNCATED_PAGE;
  242. goto out_meta_unlock;
  243. }
  244. /*
  245. * i_size might have just been updated as we grabed the meta lock. We
  246. * might now be discovering a truncate that hit on another node.
  247. * block_read_full_page->get_block freaks out if it is asked to read
  248. * beyond the end of a file, so we check here. Callers
  249. * (generic_file_read, vm_ops->fault) are clever enough to check i_size
  250. * and notice that the page they just read isn't needed.
  251. *
  252. * XXX sys_readahead() seems to get that wrong?
  253. */
  254. if (start >= i_size_read(inode)) {
  255. zero_user_page(page, 0, PAGE_SIZE, KM_USER0);
  256. SetPageUptodate(page);
  257. ret = 0;
  258. goto out_alloc;
  259. }
  260. ret = ocfs2_data_lock_with_page(inode, 0, page);
  261. if (ret != 0) {
  262. if (ret == AOP_TRUNCATED_PAGE)
  263. unlock = 0;
  264. mlog_errno(ret);
  265. goto out_alloc;
  266. }
  267. if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
  268. ret = ocfs2_readpage_inline(inode, page);
  269. else
  270. ret = block_read_full_page(page, ocfs2_get_block);
  271. unlock = 0;
  272. ocfs2_data_unlock(inode, 0);
  273. out_alloc:
  274. up_read(&OCFS2_I(inode)->ip_alloc_sem);
  275. out_meta_unlock:
  276. ocfs2_meta_unlock(inode, 0);
  277. out:
  278. if (unlock)
  279. unlock_page(page);
  280. mlog_exit(ret);
  281. return ret;
  282. }
  283. /* Note: Because we don't support holes, our allocation has
  284. * already happened (allocation writes zeros to the file data)
  285. * so we don't have to worry about ordered writes in
  286. * ocfs2_writepage.
  287. *
  288. * ->writepage is called during the process of invalidating the page cache
  289. * during blocked lock processing. It can't block on any cluster locks
  290. * to during block mapping. It's relying on the fact that the block
  291. * mapping can't have disappeared under the dirty pages that it is
  292. * being asked to write back.
  293. */
  294. static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
  295. {
  296. int ret;
  297. mlog_entry("(0x%p)\n", page);
  298. ret = block_write_full_page(page, ocfs2_get_block, wbc);
  299. mlog_exit(ret);
  300. return ret;
  301. }
  302. /*
  303. * This is called from ocfs2_write_zero_page() which has handled it's
  304. * own cluster locking and has ensured allocation exists for those
  305. * blocks to be written.
  306. */
  307. int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page,
  308. unsigned from, unsigned to)
  309. {
  310. int ret;
  311. ret = block_prepare_write(page, from, to, ocfs2_get_block);
  312. return ret;
  313. }
  314. /* Taken from ext3. We don't necessarily need the full blown
  315. * functionality yet, but IMHO it's better to cut and paste the whole
  316. * thing so we can avoid introducing our own bugs (and easily pick up
  317. * their fixes when they happen) --Mark */
  318. int walk_page_buffers( handle_t *handle,
  319. struct buffer_head *head,
  320. unsigned from,
  321. unsigned to,
  322. int *partial,
  323. int (*fn)( handle_t *handle,
  324. struct buffer_head *bh))
  325. {
  326. struct buffer_head *bh;
  327. unsigned block_start, block_end;
  328. unsigned blocksize = head->b_size;
  329. int err, ret = 0;
  330. struct buffer_head *next;
  331. for ( bh = head, block_start = 0;
  332. ret == 0 && (bh != head || !block_start);
  333. block_start = block_end, bh = next)
  334. {
  335. next = bh->b_this_page;
  336. block_end = block_start + blocksize;
  337. if (block_end <= from || block_start >= to) {
  338. if (partial && !buffer_uptodate(bh))
  339. *partial = 1;
  340. continue;
  341. }
  342. err = (*fn)(handle, bh);
  343. if (!ret)
  344. ret = err;
  345. }
  346. return ret;
  347. }
  348. handle_t *ocfs2_start_walk_page_trans(struct inode *inode,
  349. struct page *page,
  350. unsigned from,
  351. unsigned to)
  352. {
  353. struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
  354. handle_t *handle = NULL;
  355. int ret = 0;
  356. handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
  357. if (!handle) {
  358. ret = -ENOMEM;
  359. mlog_errno(ret);
  360. goto out;
  361. }
  362. if (ocfs2_should_order_data(inode)) {
  363. ret = walk_page_buffers(handle,
  364. page_buffers(page),
  365. from, to, NULL,
  366. ocfs2_journal_dirty_data);
  367. if (ret < 0)
  368. mlog_errno(ret);
  369. }
  370. out:
  371. if (ret) {
  372. if (handle)
  373. ocfs2_commit_trans(osb, handle);
  374. handle = ERR_PTR(ret);
  375. }
  376. return handle;
  377. }
  378. static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
  379. {
  380. sector_t status;
  381. u64 p_blkno = 0;
  382. int err = 0;
  383. struct inode *inode = mapping->host;
  384. mlog_entry("(block = %llu)\n", (unsigned long long)block);
  385. /* We don't need to lock journal system files, since they aren't
  386. * accessed concurrently from multiple nodes.
  387. */
  388. if (!INODE_JOURNAL(inode)) {
  389. err = ocfs2_meta_lock(inode, NULL, 0);
  390. if (err) {
  391. if (err != -ENOENT)
  392. mlog_errno(err);
  393. goto bail;
  394. }
  395. down_read(&OCFS2_I(inode)->ip_alloc_sem);
  396. }
  397. if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
  398. err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
  399. NULL);
  400. if (!INODE_JOURNAL(inode)) {
  401. up_read(&OCFS2_I(inode)->ip_alloc_sem);
  402. ocfs2_meta_unlock(inode, 0);
  403. }
  404. if (err) {
  405. mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
  406. (unsigned long long)block);
  407. mlog_errno(err);
  408. goto bail;
  409. }
  410. bail:
  411. status = err ? 0 : p_blkno;
  412. mlog_exit((int)status);
  413. return status;
  414. }
  415. /*
  416. * TODO: Make this into a generic get_blocks function.
  417. *
  418. * From do_direct_io in direct-io.c:
  419. * "So what we do is to permit the ->get_blocks function to populate
  420. * bh.b_size with the size of IO which is permitted at this offset and
  421. * this i_blkbits."
  422. *
  423. * This function is called directly from get_more_blocks in direct-io.c.
  424. *
  425. * called like this: dio->get_blocks(dio->inode, fs_startblk,
  426. * fs_count, map_bh, dio->rw == WRITE);
  427. */
  428. static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
  429. struct buffer_head *bh_result, int create)
  430. {
  431. int ret;
  432. u64 p_blkno, inode_blocks, contig_blocks;
  433. unsigned int ext_flags;
  434. unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
  435. unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
  436. /* This function won't even be called if the request isn't all
  437. * nicely aligned and of the right size, so there's no need
  438. * for us to check any of that. */
  439. inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
  440. /*
  441. * Any write past EOF is not allowed because we'd be extending.
  442. */
  443. if (create && (iblock + max_blocks) > inode_blocks) {
  444. ret = -EIO;
  445. goto bail;
  446. }
  447. /* This figures out the size of the next contiguous block, and
  448. * our logical offset */
  449. ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
  450. &contig_blocks, &ext_flags);
  451. if (ret) {
  452. mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
  453. (unsigned long long)iblock);
  454. ret = -EIO;
  455. goto bail;
  456. }
  457. if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)) && !p_blkno) {
  458. ocfs2_error(inode->i_sb,
  459. "Inode %llu has a hole at block %llu\n",
  460. (unsigned long long)OCFS2_I(inode)->ip_blkno,
  461. (unsigned long long)iblock);
  462. ret = -EROFS;
  463. goto bail;
  464. }
  465. /*
  466. * get_more_blocks() expects us to describe a hole by clearing
  467. * the mapped bit on bh_result().
  468. *
  469. * Consider an unwritten extent as a hole.
  470. */
  471. if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
  472. map_bh(bh_result, inode->i_sb, p_blkno);
  473. else {
  474. /*
  475. * ocfs2_prepare_inode_for_write() should have caught
  476. * the case where we'd be filling a hole and triggered
  477. * a buffered write instead.
  478. */
  479. if (create) {
  480. ret = -EIO;
  481. mlog_errno(ret);
  482. goto bail;
  483. }
  484. clear_buffer_mapped(bh_result);
  485. }
  486. /* make sure we don't map more than max_blocks blocks here as
  487. that's all the kernel will handle at this point. */
  488. if (max_blocks < contig_blocks)
  489. contig_blocks = max_blocks;
  490. bh_result->b_size = contig_blocks << blocksize_bits;
  491. bail:
  492. return ret;
  493. }
  494. /*
  495. * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
  496. * particularly interested in the aio/dio case. Like the core uses
  497. * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
  498. * truncation on another.
  499. */
  500. static void ocfs2_dio_end_io(struct kiocb *iocb,
  501. loff_t offset,
  502. ssize_t bytes,
  503. void *private)
  504. {
  505. struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
  506. int level;
  507. /* this io's submitter should not have unlocked this before we could */
  508. BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
  509. ocfs2_iocb_clear_rw_locked(iocb);
  510. level = ocfs2_iocb_rw_locked_level(iocb);
  511. if (!level)
  512. up_read(&inode->i_alloc_sem);
  513. ocfs2_rw_unlock(inode, level);
  514. }
  515. /*
  516. * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
  517. * from ext3. PageChecked() bits have been removed as OCFS2 does not
  518. * do journalled data.
  519. */
  520. static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
  521. {
  522. journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
  523. journal_invalidatepage(journal, page, offset);
  524. }
  525. static int ocfs2_releasepage(struct page *page, gfp_t wait)
  526. {
  527. journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
  528. if (!page_has_buffers(page))
  529. return 0;
  530. return journal_try_to_free_buffers(journal, page, wait);
  531. }
  532. static ssize_t ocfs2_direct_IO(int rw,
  533. struct kiocb *iocb,
  534. const struct iovec *iov,
  535. loff_t offset,
  536. unsigned long nr_segs)
  537. {
  538. struct file *file = iocb->ki_filp;
  539. struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
  540. int ret;
  541. mlog_entry_void();
  542. /*
  543. * Fallback to buffered I/O if we see an inode without
  544. * extents.
  545. */
  546. if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
  547. return 0;
  548. if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) {
  549. /*
  550. * We get PR data locks even for O_DIRECT. This
  551. * allows concurrent O_DIRECT I/O but doesn't let
  552. * O_DIRECT with extending and buffered zeroing writes
  553. * race. If they did race then the buffered zeroing
  554. * could be written back after the O_DIRECT I/O. It's
  555. * one thing to tell people not to mix buffered and
  556. * O_DIRECT writes, but expecting them to understand
  557. * that file extension is also an implicit buffered
  558. * write is too much. By getting the PR we force
  559. * writeback of the buffered zeroing before
  560. * proceeding.
  561. */
  562. ret = ocfs2_data_lock(inode, 0);
  563. if (ret < 0) {
  564. mlog_errno(ret);
  565. goto out;
  566. }
  567. ocfs2_data_unlock(inode, 0);
  568. }
  569. ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
  570. inode->i_sb->s_bdev, iov, offset,
  571. nr_segs,
  572. ocfs2_direct_IO_get_blocks,
  573. ocfs2_dio_end_io);
  574. out:
  575. mlog_exit(ret);
  576. return ret;
  577. }
  578. static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
  579. u32 cpos,
  580. unsigned int *start,
  581. unsigned int *end)
  582. {
  583. unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
  584. if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
  585. unsigned int cpp;
  586. cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
  587. cluster_start = cpos % cpp;
  588. cluster_start = cluster_start << osb->s_clustersize_bits;
  589. cluster_end = cluster_start + osb->s_clustersize;
  590. }
  591. BUG_ON(cluster_start > PAGE_SIZE);
  592. BUG_ON(cluster_end > PAGE_SIZE);
  593. if (start)
  594. *start = cluster_start;
  595. if (end)
  596. *end = cluster_end;
  597. }
  598. /*
  599. * 'from' and 'to' are the region in the page to avoid zeroing.
  600. *
  601. * If pagesize > clustersize, this function will avoid zeroing outside
  602. * of the cluster boundary.
  603. *
  604. * from == to == 0 is code for "zero the entire cluster region"
  605. */
  606. static void ocfs2_clear_page_regions(struct page *page,
  607. struct ocfs2_super *osb, u32 cpos,
  608. unsigned from, unsigned to)
  609. {
  610. void *kaddr;
  611. unsigned int cluster_start, cluster_end;
  612. ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
  613. kaddr = kmap_atomic(page, KM_USER0);
  614. if (from || to) {
  615. if (from > cluster_start)
  616. memset(kaddr + cluster_start, 0, from - cluster_start);
  617. if (to < cluster_end)
  618. memset(kaddr + to, 0, cluster_end - to);
  619. } else {
  620. memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
  621. }
  622. kunmap_atomic(kaddr, KM_USER0);
  623. }
  624. /*
  625. * Some of this taken from block_prepare_write(). We already have our
  626. * mapping by now though, and the entire write will be allocating or
  627. * it won't, so not much need to use BH_New.
  628. *
  629. * This will also skip zeroing, which is handled externally.
  630. */
  631. int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
  632. struct inode *inode, unsigned int from,
  633. unsigned int to, int new)
  634. {
  635. int ret = 0;
  636. struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
  637. unsigned int block_end, block_start;
  638. unsigned int bsize = 1 << inode->i_blkbits;
  639. if (!page_has_buffers(page))
  640. create_empty_buffers(page, bsize, 0);
  641. head = page_buffers(page);
  642. for (bh = head, block_start = 0; bh != head || !block_start;
  643. bh = bh->b_this_page, block_start += bsize) {
  644. block_end = block_start + bsize;
  645. clear_buffer_new(bh);
  646. /*
  647. * Ignore blocks outside of our i/o range -
  648. * they may belong to unallocated clusters.
  649. */
  650. if (block_start >= to || block_end <= from) {
  651. if (PageUptodate(page))
  652. set_buffer_uptodate(bh);
  653. continue;
  654. }
  655. /*
  656. * For an allocating write with cluster size >= page
  657. * size, we always write the entire page.
  658. */
  659. if (new)
  660. set_buffer_new(bh);
  661. if (!buffer_mapped(bh)) {
  662. map_bh(bh, inode->i_sb, *p_blkno);
  663. unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
  664. }
  665. if (PageUptodate(page)) {
  666. if (!buffer_uptodate(bh))
  667. set_buffer_uptodate(bh);
  668. } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
  669. !buffer_new(bh) &&
  670. (block_start < from || block_end > to)) {
  671. ll_rw_block(READ, 1, &bh);
  672. *wait_bh++=bh;
  673. }
  674. *p_blkno = *p_blkno + 1;
  675. }
  676. /*
  677. * If we issued read requests - let them complete.
  678. */
  679. while(wait_bh > wait) {
  680. wait_on_buffer(*--wait_bh);
  681. if (!buffer_uptodate(*wait_bh))
  682. ret = -EIO;
  683. }
  684. if (ret == 0 || !new)
  685. return ret;
  686. /*
  687. * If we get -EIO above, zero out any newly allocated blocks
  688. * to avoid exposing stale data.
  689. */
  690. bh = head;
  691. block_start = 0;
  692. do {
  693. block_end = block_start + bsize;
  694. if (block_end <= from)
  695. goto next_bh;
  696. if (block_start >= to)
  697. break;
  698. zero_user_page(page, block_start, bh->b_size, KM_USER0);
  699. set_buffer_uptodate(bh);
  700. mark_buffer_dirty(bh);
  701. next_bh:
  702. block_start = block_end;
  703. bh = bh->b_this_page;
  704. } while (bh != head);
  705. return ret;
  706. }
  707. #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
  708. #define OCFS2_MAX_CTXT_PAGES 1
  709. #else
  710. #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
  711. #endif
  712. #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
  713. /*
  714. * Describe the state of a single cluster to be written to.
  715. */
  716. struct ocfs2_write_cluster_desc {
  717. u32 c_cpos;
  718. u32 c_phys;
  719. /*
  720. * Give this a unique field because c_phys eventually gets
  721. * filled.
  722. */
  723. unsigned c_new;
  724. unsigned c_unwritten;
  725. };
  726. static inline int ocfs2_should_zero_cluster(struct ocfs2_write_cluster_desc *d)
  727. {
  728. return d->c_new || d->c_unwritten;
  729. }
  730. struct ocfs2_write_ctxt {
  731. /* Logical cluster position / len of write */
  732. u32 w_cpos;
  733. u32 w_clen;
  734. struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
  735. /*
  736. * This is true if page_size > cluster_size.
  737. *
  738. * It triggers a set of special cases during write which might
  739. * have to deal with allocating writes to partial pages.
  740. */
  741. unsigned int w_large_pages;
  742. /*
  743. * Pages involved in this write.
  744. *
  745. * w_target_page is the page being written to by the user.
  746. *
  747. * w_pages is an array of pages which always contains
  748. * w_target_page, and in the case of an allocating write with
  749. * page_size < cluster size, it will contain zero'd and mapped
  750. * pages adjacent to w_target_page which need to be written
  751. * out in so that future reads from that region will get
  752. * zero's.
  753. */
  754. struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
  755. unsigned int w_num_pages;
  756. struct page *w_target_page;
  757. /*
  758. * ocfs2_write_end() uses this to know what the real range to
  759. * write in the target should be.
  760. */
  761. unsigned int w_target_from;
  762. unsigned int w_target_to;
  763. /*
  764. * We could use journal_current_handle() but this is cleaner,
  765. * IMHO -Mark
  766. */
  767. handle_t *w_handle;
  768. struct buffer_head *w_di_bh;
  769. struct ocfs2_cached_dealloc_ctxt w_dealloc;
  770. };
  771. void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
  772. {
  773. int i;
  774. for(i = 0; i < num_pages; i++) {
  775. if (pages[i]) {
  776. unlock_page(pages[i]);
  777. mark_page_accessed(pages[i]);
  778. page_cache_release(pages[i]);
  779. }
  780. }
  781. }
  782. static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
  783. {
  784. ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
  785. brelse(wc->w_di_bh);
  786. kfree(wc);
  787. }
  788. static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
  789. struct ocfs2_super *osb, loff_t pos,
  790. unsigned len, struct buffer_head *di_bh)
  791. {
  792. u32 cend;
  793. struct ocfs2_write_ctxt *wc;
  794. wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
  795. if (!wc)
  796. return -ENOMEM;
  797. wc->w_cpos = pos >> osb->s_clustersize_bits;
  798. cend = (pos + len - 1) >> osb->s_clustersize_bits;
  799. wc->w_clen = cend - wc->w_cpos + 1;
  800. get_bh(di_bh);
  801. wc->w_di_bh = di_bh;
  802. if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
  803. wc->w_large_pages = 1;
  804. else
  805. wc->w_large_pages = 0;
  806. ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
  807. *wcp = wc;
  808. return 0;
  809. }
  810. /*
  811. * If a page has any new buffers, zero them out here, and mark them uptodate
  812. * and dirty so they'll be written out (in order to prevent uninitialised
  813. * block data from leaking). And clear the new bit.
  814. */
  815. static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
  816. {
  817. unsigned int block_start, block_end;
  818. struct buffer_head *head, *bh;
  819. BUG_ON(!PageLocked(page));
  820. if (!page_has_buffers(page))
  821. return;
  822. bh = head = page_buffers(page);
  823. block_start = 0;
  824. do {
  825. block_end = block_start + bh->b_size;
  826. if (buffer_new(bh)) {
  827. if (block_end > from && block_start < to) {
  828. if (!PageUptodate(page)) {
  829. unsigned start, end;
  830. start = max(from, block_start);
  831. end = min(to, block_end);
  832. zero_user_page(page, start, end - start, KM_USER0);
  833. set_buffer_uptodate(bh);
  834. }
  835. clear_buffer_new(bh);
  836. mark_buffer_dirty(bh);
  837. }
  838. }
  839. block_start = block_end;
  840. bh = bh->b_this_page;
  841. } while (bh != head);
  842. }
  843. /*
  844. * Only called when we have a failure during allocating write to write
  845. * zero's to the newly allocated region.
  846. */
  847. static void ocfs2_write_failure(struct inode *inode,
  848. struct ocfs2_write_ctxt *wc,
  849. loff_t user_pos, unsigned user_len)
  850. {
  851. int i;
  852. unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
  853. to = user_pos + user_len;
  854. struct page *tmppage;
  855. ocfs2_zero_new_buffers(wc->w_target_page, from, to);
  856. for(i = 0; i < wc->w_num_pages; i++) {
  857. tmppage = wc->w_pages[i];
  858. if (ocfs2_should_order_data(inode))
  859. walk_page_buffers(wc->w_handle, page_buffers(tmppage),
  860. from, to, NULL,
  861. ocfs2_journal_dirty_data);
  862. block_commit_write(tmppage, from, to);
  863. }
  864. }
  865. static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
  866. struct ocfs2_write_ctxt *wc,
  867. struct page *page, u32 cpos,
  868. loff_t user_pos, unsigned user_len,
  869. int new)
  870. {
  871. int ret;
  872. unsigned int map_from = 0, map_to = 0;
  873. unsigned int cluster_start, cluster_end;
  874. unsigned int user_data_from = 0, user_data_to = 0;
  875. ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
  876. &cluster_start, &cluster_end);
  877. if (page == wc->w_target_page) {
  878. map_from = user_pos & (PAGE_CACHE_SIZE - 1);
  879. map_to = map_from + user_len;
  880. if (new)
  881. ret = ocfs2_map_page_blocks(page, p_blkno, inode,
  882. cluster_start, cluster_end,
  883. new);
  884. else
  885. ret = ocfs2_map_page_blocks(page, p_blkno, inode,
  886. map_from, map_to, new);
  887. if (ret) {
  888. mlog_errno(ret);
  889. goto out;
  890. }
  891. user_data_from = map_from;
  892. user_data_to = map_to;
  893. if (new) {
  894. map_from = cluster_start;
  895. map_to = cluster_end;
  896. }
  897. } else {
  898. /*
  899. * If we haven't allocated the new page yet, we
  900. * shouldn't be writing it out without copying user
  901. * data. This is likely a math error from the caller.
  902. */
  903. BUG_ON(!new);
  904. map_from = cluster_start;
  905. map_to = cluster_end;
  906. ret = ocfs2_map_page_blocks(page, p_blkno, inode,
  907. cluster_start, cluster_end, new);
  908. if (ret) {
  909. mlog_errno(ret);
  910. goto out;
  911. }
  912. }
  913. /*
  914. * Parts of newly allocated pages need to be zero'd.
  915. *
  916. * Above, we have also rewritten 'to' and 'from' - as far as
  917. * the rest of the function is concerned, the entire cluster
  918. * range inside of a page needs to be written.
  919. *
  920. * We can skip this if the page is up to date - it's already
  921. * been zero'd from being read in as a hole.
  922. */
  923. if (new && !PageUptodate(page))
  924. ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
  925. cpos, user_data_from, user_data_to);
  926. flush_dcache_page(page);
  927. out:
  928. return ret;
  929. }
  930. /*
  931. * This function will only grab one clusters worth of pages.
  932. */
  933. static int ocfs2_grab_pages_for_write(struct address_space *mapping,
  934. struct ocfs2_write_ctxt *wc,
  935. u32 cpos, loff_t user_pos, int new,
  936. struct page *mmap_page)
  937. {
  938. int ret = 0, i;
  939. unsigned long start, target_index, index;
  940. struct inode *inode = mapping->host;
  941. target_index = user_pos >> PAGE_CACHE_SHIFT;
  942. /*
  943. * Figure out how many pages we'll be manipulating here. For
  944. * non allocating write, we just change the one
  945. * page. Otherwise, we'll need a whole clusters worth.
  946. */
  947. if (new) {
  948. wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
  949. start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
  950. } else {
  951. wc->w_num_pages = 1;
  952. start = target_index;
  953. }
  954. for(i = 0; i < wc->w_num_pages; i++) {
  955. index = start + i;
  956. if (index == target_index && mmap_page) {
  957. /*
  958. * ocfs2_pagemkwrite() is a little different
  959. * and wants us to directly use the page
  960. * passed in.
  961. */
  962. lock_page(mmap_page);
  963. if (mmap_page->mapping != mapping) {
  964. unlock_page(mmap_page);
  965. /*
  966. * Sanity check - the locking in
  967. * ocfs2_pagemkwrite() should ensure
  968. * that this code doesn't trigger.
  969. */
  970. ret = -EINVAL;
  971. mlog_errno(ret);
  972. goto out;
  973. }
  974. page_cache_get(mmap_page);
  975. wc->w_pages[i] = mmap_page;
  976. } else {
  977. wc->w_pages[i] = find_or_create_page(mapping, index,
  978. GFP_NOFS);
  979. if (!wc->w_pages[i]) {
  980. ret = -ENOMEM;
  981. mlog_errno(ret);
  982. goto out;
  983. }
  984. }
  985. if (index == target_index)
  986. wc->w_target_page = wc->w_pages[i];
  987. }
  988. out:
  989. return ret;
  990. }
  991. /*
  992. * Prepare a single cluster for write one cluster into the file.
  993. */
  994. static int ocfs2_write_cluster(struct address_space *mapping,
  995. u32 phys, unsigned int unwritten,
  996. struct ocfs2_alloc_context *data_ac,
  997. struct ocfs2_alloc_context *meta_ac,
  998. struct ocfs2_write_ctxt *wc, u32 cpos,
  999. loff_t user_pos, unsigned user_len)
  1000. {
  1001. int ret, i, new, should_zero = 0;
  1002. u64 v_blkno, p_blkno;
  1003. struct inode *inode = mapping->host;
  1004. new = phys == 0 ? 1 : 0;
  1005. if (new || unwritten)
  1006. should_zero = 1;
  1007. if (new) {
  1008. u32 tmp_pos;
  1009. /*
  1010. * This is safe to call with the page locks - it won't take
  1011. * any additional semaphores or cluster locks.
  1012. */
  1013. tmp_pos = cpos;
  1014. ret = ocfs2_do_extend_allocation(OCFS2_SB(inode->i_sb), inode,
  1015. &tmp_pos, 1, 0, wc->w_di_bh,
  1016. wc->w_handle, data_ac,
  1017. meta_ac, NULL);
  1018. /*
  1019. * This shouldn't happen because we must have already
  1020. * calculated the correct meta data allocation required. The
  1021. * internal tree allocation code should know how to increase
  1022. * transaction credits itself.
  1023. *
  1024. * If need be, we could handle -EAGAIN for a
  1025. * RESTART_TRANS here.
  1026. */
  1027. mlog_bug_on_msg(ret == -EAGAIN,
  1028. "Inode %llu: EAGAIN return during allocation.\n",
  1029. (unsigned long long)OCFS2_I(inode)->ip_blkno);
  1030. if (ret < 0) {
  1031. mlog_errno(ret);
  1032. goto out;
  1033. }
  1034. } else if (unwritten) {
  1035. ret = ocfs2_mark_extent_written(inode, wc->w_di_bh,
  1036. wc->w_handle, cpos, 1, phys,
  1037. meta_ac, &wc->w_dealloc);
  1038. if (ret < 0) {
  1039. mlog_errno(ret);
  1040. goto out;
  1041. }
  1042. }
  1043. if (should_zero)
  1044. v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
  1045. else
  1046. v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
  1047. /*
  1048. * The only reason this should fail is due to an inability to
  1049. * find the extent added.
  1050. */
  1051. ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
  1052. NULL);
  1053. if (ret < 0) {
  1054. ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
  1055. "at logical block %llu",
  1056. (unsigned long long)OCFS2_I(inode)->ip_blkno,
  1057. (unsigned long long)v_blkno);
  1058. goto out;
  1059. }
  1060. BUG_ON(p_blkno == 0);
  1061. for(i = 0; i < wc->w_num_pages; i++) {
  1062. int tmpret;
  1063. tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
  1064. wc->w_pages[i], cpos,
  1065. user_pos, user_len,
  1066. should_zero);
  1067. if (tmpret) {
  1068. mlog_errno(tmpret);
  1069. if (ret == 0)
  1070. tmpret = ret;
  1071. }
  1072. }
  1073. /*
  1074. * We only have cleanup to do in case of allocating write.
  1075. */
  1076. if (ret && new)
  1077. ocfs2_write_failure(inode, wc, user_pos, user_len);
  1078. out:
  1079. return ret;
  1080. }
  1081. static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
  1082. struct ocfs2_alloc_context *data_ac,
  1083. struct ocfs2_alloc_context *meta_ac,
  1084. struct ocfs2_write_ctxt *wc,
  1085. loff_t pos, unsigned len)
  1086. {
  1087. int ret, i;
  1088. loff_t cluster_off;
  1089. unsigned int local_len = len;
  1090. struct ocfs2_write_cluster_desc *desc;
  1091. struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
  1092. for (i = 0; i < wc->w_clen; i++) {
  1093. desc = &wc->w_desc[i];
  1094. /*
  1095. * We have to make sure that the total write passed in
  1096. * doesn't extend past a single cluster.
  1097. */
  1098. local_len = len;
  1099. cluster_off = pos & (osb->s_clustersize - 1);
  1100. if ((cluster_off + local_len) > osb->s_clustersize)
  1101. local_len = osb->s_clustersize - cluster_off;
  1102. ret = ocfs2_write_cluster(mapping, desc->c_phys,
  1103. desc->c_unwritten, data_ac, meta_ac,
  1104. wc, desc->c_cpos, pos, local_len);
  1105. if (ret) {
  1106. mlog_errno(ret);
  1107. goto out;
  1108. }
  1109. len -= local_len;
  1110. pos += local_len;
  1111. }
  1112. ret = 0;
  1113. out:
  1114. return ret;
  1115. }
  1116. /*
  1117. * ocfs2_write_end() wants to know which parts of the target page it
  1118. * should complete the write on. It's easiest to compute them ahead of
  1119. * time when a more complete view of the write is available.
  1120. */
  1121. static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
  1122. struct ocfs2_write_ctxt *wc,
  1123. loff_t pos, unsigned len, int alloc)
  1124. {
  1125. struct ocfs2_write_cluster_desc *desc;
  1126. wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
  1127. wc->w_target_to = wc->w_target_from + len;
  1128. if (alloc == 0)
  1129. return;
  1130. /*
  1131. * Allocating write - we may have different boundaries based
  1132. * on page size and cluster size.
  1133. *
  1134. * NOTE: We can no longer compute one value from the other as
  1135. * the actual write length and user provided length may be
  1136. * different.
  1137. */
  1138. if (wc->w_large_pages) {
  1139. /*
  1140. * We only care about the 1st and last cluster within
  1141. * our range and whether they should be zero'd or not. Either
  1142. * value may be extended out to the start/end of a
  1143. * newly allocated cluster.
  1144. */
  1145. desc = &wc->w_desc[0];
  1146. if (ocfs2_should_zero_cluster(desc))
  1147. ocfs2_figure_cluster_boundaries(osb,
  1148. desc->c_cpos,
  1149. &wc->w_target_from,
  1150. NULL);
  1151. desc = &wc->w_desc[wc->w_clen - 1];
  1152. if (ocfs2_should_zero_cluster(desc))
  1153. ocfs2_figure_cluster_boundaries(osb,
  1154. desc->c_cpos,
  1155. NULL,
  1156. &wc->w_target_to);
  1157. } else {
  1158. wc->w_target_from = 0;
  1159. wc->w_target_to = PAGE_CACHE_SIZE;
  1160. }
  1161. }
  1162. /*
  1163. * Populate each single-cluster write descriptor in the write context
  1164. * with information about the i/o to be done.
  1165. *
  1166. * Returns the number of clusters that will have to be allocated, as
  1167. * well as a worst case estimate of the number of extent records that
  1168. * would have to be created during a write to an unwritten region.
  1169. */
  1170. static int ocfs2_populate_write_desc(struct inode *inode,
  1171. struct ocfs2_write_ctxt *wc,
  1172. unsigned int *clusters_to_alloc,
  1173. unsigned int *extents_to_split)
  1174. {
  1175. int ret;
  1176. struct ocfs2_write_cluster_desc *desc;
  1177. unsigned int num_clusters = 0;
  1178. unsigned int ext_flags = 0;
  1179. u32 phys = 0;
  1180. int i;
  1181. *clusters_to_alloc = 0;
  1182. *extents_to_split = 0;
  1183. for (i = 0; i < wc->w_clen; i++) {
  1184. desc = &wc->w_desc[i];
  1185. desc->c_cpos = wc->w_cpos + i;
  1186. if (num_clusters == 0) {
  1187. /*
  1188. * Need to look up the next extent record.
  1189. */
  1190. ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
  1191. &num_clusters, &ext_flags);
  1192. if (ret) {
  1193. mlog_errno(ret);
  1194. goto out;
  1195. }
  1196. /*
  1197. * Assume worst case - that we're writing in
  1198. * the middle of the extent.
  1199. *
  1200. * We can assume that the write proceeds from
  1201. * left to right, in which case the extent
  1202. * insert code is smart enough to coalesce the
  1203. * next splits into the previous records created.
  1204. */
  1205. if (ext_flags & OCFS2_EXT_UNWRITTEN)
  1206. *extents_to_split = *extents_to_split + 2;
  1207. } else if (phys) {
  1208. /*
  1209. * Only increment phys if it doesn't describe
  1210. * a hole.
  1211. */
  1212. phys++;
  1213. }
  1214. desc->c_phys = phys;
  1215. if (phys == 0) {
  1216. desc->c_new = 1;
  1217. *clusters_to_alloc = *clusters_to_alloc + 1;
  1218. }
  1219. if (ext_flags & OCFS2_EXT_UNWRITTEN)
  1220. desc->c_unwritten = 1;
  1221. num_clusters--;
  1222. }
  1223. ret = 0;
  1224. out:
  1225. return ret;
  1226. }
  1227. static int ocfs2_write_begin_inline(struct address_space *mapping,
  1228. struct inode *inode,
  1229. struct ocfs2_write_ctxt *wc)
  1230. {
  1231. int ret;
  1232. struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
  1233. struct page *page;
  1234. handle_t *handle;
  1235. struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
  1236. page = find_or_create_page(mapping, 0, GFP_NOFS);
  1237. if (!page) {
  1238. ret = -ENOMEM;
  1239. mlog_errno(ret);
  1240. goto out;
  1241. }
  1242. /*
  1243. * If we don't set w_num_pages then this page won't get unlocked
  1244. * and freed on cleanup of the write context.
  1245. */
  1246. wc->w_pages[0] = wc->w_target_page = page;
  1247. wc->w_num_pages = 1;
  1248. handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
  1249. if (IS_ERR(handle)) {
  1250. ret = PTR_ERR(handle);
  1251. mlog_errno(ret);
  1252. goto out;
  1253. }
  1254. ret = ocfs2_journal_access(handle, inode, wc->w_di_bh,
  1255. OCFS2_JOURNAL_ACCESS_WRITE);
  1256. if (ret) {
  1257. ocfs2_commit_trans(osb, handle);
  1258. mlog_errno(ret);
  1259. goto out;
  1260. }
  1261. if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
  1262. ocfs2_set_inode_data_inline(inode, di);
  1263. if (!PageUptodate(page)) {
  1264. ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
  1265. if (ret) {
  1266. ocfs2_commit_trans(osb, handle);
  1267. goto out;
  1268. }
  1269. }
  1270. wc->w_handle = handle;
  1271. out:
  1272. return ret;
  1273. }
  1274. int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
  1275. {
  1276. struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
  1277. if (new_size < le16_to_cpu(di->id2.i_data.id_count))
  1278. return 1;
  1279. return 0;
  1280. }
  1281. static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
  1282. struct inode *inode, loff_t pos,
  1283. unsigned len, struct page *mmap_page,
  1284. struct ocfs2_write_ctxt *wc)
  1285. {
  1286. int ret, written = 0;
  1287. loff_t end = pos + len;
  1288. struct ocfs2_inode_info *oi = OCFS2_I(inode);
  1289. mlog(0, "Inode %llu, write of %u bytes at off %llu. features: 0x%x\n",
  1290. (unsigned long long)oi->ip_blkno, len, (unsigned long long)pos,
  1291. oi->ip_dyn_features);
  1292. /*
  1293. * Handle inodes which already have inline data 1st.
  1294. */
  1295. if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
  1296. if (mmap_page == NULL &&
  1297. ocfs2_size_fits_inline_data(wc->w_di_bh, end))
  1298. goto do_inline_write;
  1299. /*
  1300. * The write won't fit - we have to give this inode an
  1301. * inline extent list now.
  1302. */
  1303. ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
  1304. if (ret)
  1305. mlog_errno(ret);
  1306. goto out;
  1307. }
  1308. /*
  1309. * Check whether the inode can accept inline data.
  1310. */
  1311. if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
  1312. return 0;
  1313. /*
  1314. * Check whether the write can fit.
  1315. */
  1316. if (mmap_page || end > ocfs2_max_inline_data(inode->i_sb))
  1317. return 0;
  1318. do_inline_write:
  1319. ret = ocfs2_write_begin_inline(mapping, inode, wc);
  1320. if (ret) {
  1321. mlog_errno(ret);
  1322. goto out;
  1323. }
  1324. /*
  1325. * This signals to the caller that the data can be written
  1326. * inline.
  1327. */
  1328. written = 1;
  1329. out:
  1330. return written ? written : ret;
  1331. }
  1332. /*
  1333. * This function only does anything for file systems which can't
  1334. * handle sparse files.
  1335. *
  1336. * What we want to do here is fill in any hole between the current end
  1337. * of allocation and the end of our write. That way the rest of the
  1338. * write path can treat it as an non-allocating write, which has no
  1339. * special case code for sparse/nonsparse files.
  1340. */
  1341. static int ocfs2_expand_nonsparse_inode(struct inode *inode, loff_t pos,
  1342. unsigned len,
  1343. struct ocfs2_write_ctxt *wc)
  1344. {
  1345. int ret;
  1346. struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
  1347. loff_t newsize = pos + len;
  1348. if (ocfs2_sparse_alloc(osb))
  1349. return 0;
  1350. if (newsize <= i_size_read(inode))
  1351. return 0;
  1352. ret = ocfs2_extend_no_holes(inode, newsize, newsize - len);
  1353. if (ret)
  1354. mlog_errno(ret);
  1355. return ret;
  1356. }
  1357. int ocfs2_write_begin_nolock(struct address_space *mapping,
  1358. loff_t pos, unsigned len, unsigned flags,
  1359. struct page **pagep, void **fsdata,
  1360. struct buffer_head *di_bh, struct page *mmap_page)
  1361. {
  1362. int ret, credits = OCFS2_INODE_UPDATE_CREDITS;
  1363. unsigned int clusters_to_alloc, extents_to_split;
  1364. struct ocfs2_write_ctxt *wc;
  1365. struct inode *inode = mapping->host;
  1366. struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
  1367. struct ocfs2_dinode *di;
  1368. struct ocfs2_alloc_context *data_ac = NULL;
  1369. struct ocfs2_alloc_context *meta_ac = NULL;
  1370. handle_t *handle;
  1371. ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
  1372. if (ret) {
  1373. mlog_errno(ret);
  1374. return ret;
  1375. }
  1376. if (ocfs2_supports_inline_data(osb)) {
  1377. ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
  1378. mmap_page, wc);
  1379. if (ret == 1) {
  1380. ret = 0;
  1381. goto success;
  1382. }
  1383. if (ret < 0) {
  1384. mlog_errno(ret);
  1385. goto out;
  1386. }
  1387. }
  1388. ret = ocfs2_expand_nonsparse_inode(inode, pos, len, wc);
  1389. if (ret) {
  1390. mlog_errno(ret);
  1391. goto out;
  1392. }
  1393. ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
  1394. &extents_to_split);
  1395. if (ret) {
  1396. mlog_errno(ret);
  1397. goto out;
  1398. }
  1399. di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
  1400. /*
  1401. * We set w_target_from, w_target_to here so that
  1402. * ocfs2_write_end() knows which range in the target page to
  1403. * write out. An allocation requires that we write the entire
  1404. * cluster range.
  1405. */
  1406. if (clusters_to_alloc || extents_to_split) {
  1407. /*
  1408. * XXX: We are stretching the limits of
  1409. * ocfs2_lock_allocators(). It greatly over-estimates
  1410. * the work to be done.
  1411. */
  1412. ret = ocfs2_lock_allocators(inode, di, clusters_to_alloc,
  1413. extents_to_split, &data_ac, &meta_ac);
  1414. if (ret) {
  1415. mlog_errno(ret);
  1416. goto out;
  1417. }
  1418. credits = ocfs2_calc_extend_credits(inode->i_sb, di,
  1419. clusters_to_alloc);
  1420. }
  1421. ocfs2_set_target_boundaries(osb, wc, pos, len,
  1422. clusters_to_alloc + extents_to_split);
  1423. handle = ocfs2_start_trans(osb, credits);
  1424. if (IS_ERR(handle)) {
  1425. ret = PTR_ERR(handle);
  1426. mlog_errno(ret);
  1427. goto out;
  1428. }
  1429. wc->w_handle = handle;
  1430. /*
  1431. * We don't want this to fail in ocfs2_write_end(), so do it
  1432. * here.
  1433. */
  1434. ret = ocfs2_journal_access(handle, inode, wc->w_di_bh,
  1435. OCFS2_JOURNAL_ACCESS_WRITE);
  1436. if (ret) {
  1437. mlog_errno(ret);
  1438. goto out_commit;
  1439. }
  1440. /*
  1441. * Fill our page array first. That way we've grabbed enough so
  1442. * that we can zero and flush if we error after adding the
  1443. * extent.
  1444. */
  1445. ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos,
  1446. clusters_to_alloc + extents_to_split,
  1447. mmap_page);
  1448. if (ret) {
  1449. mlog_errno(ret);
  1450. goto out_commit;
  1451. }
  1452. ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
  1453. len);
  1454. if (ret) {
  1455. mlog_errno(ret);
  1456. goto out_commit;
  1457. }
  1458. if (data_ac)
  1459. ocfs2_free_alloc_context(data_ac);
  1460. if (meta_ac)
  1461. ocfs2_free_alloc_context(meta_ac);
  1462. success:
  1463. *pagep = wc->w_target_page;
  1464. *fsdata = wc;
  1465. return 0;
  1466. out_commit:
  1467. ocfs2_commit_trans(osb, handle);
  1468. out:
  1469. ocfs2_free_write_ctxt(wc);
  1470. if (data_ac)
  1471. ocfs2_free_alloc_context(data_ac);
  1472. if (meta_ac)
  1473. ocfs2_free_alloc_context(meta_ac);
  1474. return ret;
  1475. }
  1476. static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
  1477. loff_t pos, unsigned len, unsigned flags,
  1478. struct page **pagep, void **fsdata)
  1479. {
  1480. int ret;
  1481. struct buffer_head *di_bh = NULL;
  1482. struct inode *inode = mapping->host;
  1483. ret = ocfs2_meta_lock(inode, &di_bh, 1);
  1484. if (ret) {
  1485. mlog_errno(ret);
  1486. return ret;
  1487. }
  1488. /*
  1489. * Take alloc sem here to prevent concurrent lookups. That way
  1490. * the mapping, zeroing and tree manipulation within
  1491. * ocfs2_write() will be safe against ->readpage(). This
  1492. * should also serve to lock out allocation from a shared
  1493. * writeable region.
  1494. */
  1495. down_write(&OCFS2_I(inode)->ip_alloc_sem);
  1496. ret = ocfs2_data_lock(inode, 1);
  1497. if (ret) {
  1498. mlog_errno(ret);
  1499. goto out_fail;
  1500. }
  1501. ret = ocfs2_write_begin_nolock(mapping, pos, len, flags, pagep,
  1502. fsdata, di_bh, NULL);
  1503. if (ret) {
  1504. mlog_errno(ret);
  1505. goto out_fail_data;
  1506. }
  1507. brelse(di_bh);
  1508. return 0;
  1509. out_fail_data:
  1510. ocfs2_data_unlock(inode, 1);
  1511. out_fail:
  1512. up_write(&OCFS2_I(inode)->ip_alloc_sem);
  1513. brelse(di_bh);
  1514. ocfs2_meta_unlock(inode, 1);
  1515. return ret;
  1516. }
  1517. static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
  1518. unsigned len, unsigned *copied,
  1519. struct ocfs2_dinode *di,
  1520. struct ocfs2_write_ctxt *wc)
  1521. {
  1522. void *kaddr;
  1523. if (unlikely(*copied < len)) {
  1524. if (!PageUptodate(wc->w_target_page)) {
  1525. *copied = 0;
  1526. return;
  1527. }
  1528. }
  1529. kaddr = kmap_atomic(wc->w_target_page, KM_USER0);
  1530. memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
  1531. kunmap_atomic(kaddr, KM_USER0);
  1532. mlog(0, "Data written to inode at offset %llu. "
  1533. "id_count = %u, copied = %u, i_dyn_features = 0x%x\n",
  1534. (unsigned long long)pos, *copied,
  1535. le16_to_cpu(di->id2.i_data.id_count),
  1536. le16_to_cpu(di->i_dyn_features));
  1537. }
  1538. int ocfs2_write_end_nolock(struct address_space *mapping,
  1539. loff_t pos, unsigned len, unsigned copied,
  1540. struct page *page, void *fsdata)
  1541. {
  1542. int i;
  1543. unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
  1544. struct inode *inode = mapping->host;
  1545. struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
  1546. struct ocfs2_write_ctxt *wc = fsdata;
  1547. struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
  1548. handle_t *handle = wc->w_handle;
  1549. struct page *tmppage;
  1550. if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
  1551. ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
  1552. goto out_write_size;
  1553. }
  1554. if (unlikely(copied < len)) {
  1555. if (!PageUptodate(wc->w_target_page))
  1556. copied = 0;
  1557. ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
  1558. start+len);
  1559. }
  1560. flush_dcache_page(wc->w_target_page);
  1561. for(i = 0; i < wc->w_num_pages; i++) {
  1562. tmppage = wc->w_pages[i];
  1563. if (tmppage == wc->w_target_page) {
  1564. from = wc->w_target_from;
  1565. to = wc->w_target_to;
  1566. BUG_ON(from > PAGE_CACHE_SIZE ||
  1567. to > PAGE_CACHE_SIZE ||
  1568. to < from);
  1569. } else {
  1570. /*
  1571. * Pages adjacent to the target (if any) imply
  1572. * a hole-filling write in which case we want
  1573. * to flush their entire range.
  1574. */
  1575. from = 0;
  1576. to = PAGE_CACHE_SIZE;
  1577. }
  1578. if (ocfs2_should_order_data(inode))
  1579. walk_page_buffers(wc->w_handle, page_buffers(tmppage),
  1580. from, to, NULL,
  1581. ocfs2_journal_dirty_data);
  1582. block_commit_write(tmppage, from, to);
  1583. }
  1584. out_write_size:
  1585. pos += copied;
  1586. if (pos > inode->i_size) {
  1587. i_size_write(inode, pos);
  1588. mark_inode_dirty(inode);
  1589. }
  1590. inode->i_blocks = ocfs2_inode_sector_count(inode);
  1591. di->i_size = cpu_to_le64((u64)i_size_read(inode));
  1592. inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  1593. di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
  1594. di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
  1595. ocfs2_journal_dirty(handle, wc->w_di_bh);
  1596. ocfs2_commit_trans(osb, handle);
  1597. ocfs2_run_deallocs(osb, &wc->w_dealloc);
  1598. ocfs2_free_write_ctxt(wc);
  1599. return copied;
  1600. }
  1601. static int ocfs2_write_end(struct file *file, struct address_space *mapping,
  1602. loff_t pos, unsigned len, unsigned copied,
  1603. struct page *page, void *fsdata)
  1604. {
  1605. int ret;
  1606. struct inode *inode = mapping->host;
  1607. ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
  1608. ocfs2_data_unlock(inode, 1);
  1609. up_write(&OCFS2_I(inode)->ip_alloc_sem);
  1610. ocfs2_meta_unlock(inode, 1);
  1611. return ret;
  1612. }
  1613. const struct address_space_operations ocfs2_aops = {
  1614. .readpage = ocfs2_readpage,
  1615. .writepage = ocfs2_writepage,
  1616. .write_begin = ocfs2_write_begin,
  1617. .write_end = ocfs2_write_end,
  1618. .bmap = ocfs2_bmap,
  1619. .sync_page = block_sync_page,
  1620. .direct_IO = ocfs2_direct_IO,
  1621. .invalidatepage = ocfs2_invalidatepage,
  1622. .releasepage = ocfs2_releasepage,
  1623. .migratepage = buffer_migrate_page,
  1624. };