ehci-q.c 31 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121
  1. /*
  2. * Copyright (C) 2001-2004 by David Brownell
  3. *
  4. * This program is free software; you can redistribute it and/or modify it
  5. * under the terms of the GNU General Public License as published by the
  6. * Free Software Foundation; either version 2 of the License, or (at your
  7. * option) any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful, but
  10. * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  11. * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
  12. * for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software Foundation,
  16. * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  17. */
  18. /* this file is part of ehci-hcd.c */
  19. /*-------------------------------------------------------------------------*/
  20. /*
  21. * EHCI hardware queue manipulation ... the core. QH/QTD manipulation.
  22. *
  23. * Control, bulk, and interrupt traffic all use "qh" lists. They list "qtd"
  24. * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
  25. * buffers needed for the larger number). We use one QH per endpoint, queue
  26. * multiple urbs (all three types) per endpoint. URBs may need several qtds.
  27. *
  28. * ISO traffic uses "ISO TD" (itd, and sitd) records, and (along with
  29. * interrupts) needs careful scheduling. Performance improvements can be
  30. * an ongoing challenge. That's in "ehci-sched.c".
  31. *
  32. * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
  33. * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
  34. * (b) special fields in qh entries or (c) split iso entries. TTs will
  35. * buffer low/full speed data so the host collects it at high speed.
  36. */
  37. /*-------------------------------------------------------------------------*/
  38. /* fill a qtd, returning how much of the buffer we were able to queue up */
  39. static int
  40. qtd_fill(struct ehci_hcd *ehci, struct ehci_qtd *qtd, dma_addr_t buf,
  41. size_t len, int token, int maxpacket)
  42. {
  43. int i, count;
  44. u64 addr = buf;
  45. /* one buffer entry per 4K ... first might be short or unaligned */
  46. qtd->hw_buf[0] = cpu_to_hc32(ehci, (u32)addr);
  47. qtd->hw_buf_hi[0] = cpu_to_hc32(ehci, (u32)(addr >> 32));
  48. count = 0x1000 - (buf & 0x0fff); /* rest of that page */
  49. if (likely (len < count)) /* ... iff needed */
  50. count = len;
  51. else {
  52. buf += 0x1000;
  53. buf &= ~0x0fff;
  54. /* per-qtd limit: from 16K to 20K (best alignment) */
  55. for (i = 1; count < len && i < 5; i++) {
  56. addr = buf;
  57. qtd->hw_buf[i] = cpu_to_hc32(ehci, (u32)addr);
  58. qtd->hw_buf_hi[i] = cpu_to_hc32(ehci,
  59. (u32)(addr >> 32));
  60. buf += 0x1000;
  61. if ((count + 0x1000) < len)
  62. count += 0x1000;
  63. else
  64. count = len;
  65. }
  66. /* short packets may only terminate transfers */
  67. if (count != len)
  68. count -= (count % maxpacket);
  69. }
  70. qtd->hw_token = cpu_to_hc32(ehci, (count << 16) | token);
  71. qtd->length = count;
  72. return count;
  73. }
  74. /*-------------------------------------------------------------------------*/
  75. static inline void
  76. qh_update (struct ehci_hcd *ehci, struct ehci_qh *qh, struct ehci_qtd *qtd)
  77. {
  78. /* writes to an active overlay are unsafe */
  79. BUG_ON(qh->qh_state != QH_STATE_IDLE);
  80. qh->hw_qtd_next = QTD_NEXT(ehci, qtd->qtd_dma);
  81. qh->hw_alt_next = EHCI_LIST_END(ehci);
  82. /* Except for control endpoints, we make hardware maintain data
  83. * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
  84. * and set the pseudo-toggle in udev. Only usb_clear_halt() will
  85. * ever clear it.
  86. */
  87. if (!(qh->hw_info1 & cpu_to_hc32(ehci, 1 << 14))) {
  88. unsigned is_out, epnum;
  89. is_out = !(qtd->hw_token & cpu_to_hc32(ehci, 1 << 8));
  90. epnum = (hc32_to_cpup(ehci, &qh->hw_info1) >> 8) & 0x0f;
  91. if (unlikely (!usb_gettoggle (qh->dev, epnum, is_out))) {
  92. qh->hw_token &= ~cpu_to_hc32(ehci, QTD_TOGGLE);
  93. usb_settoggle (qh->dev, epnum, is_out, 1);
  94. }
  95. }
  96. /* HC must see latest qtd and qh data before we clear ACTIVE+HALT */
  97. wmb ();
  98. qh->hw_token &= cpu_to_hc32(ehci, QTD_TOGGLE | QTD_STS_PING);
  99. }
  100. /* if it weren't for a common silicon quirk (writing the dummy into the qh
  101. * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
  102. * recovery (including urb dequeue) would need software changes to a QH...
  103. */
  104. static void
  105. qh_refresh (struct ehci_hcd *ehci, struct ehci_qh *qh)
  106. {
  107. struct ehci_qtd *qtd;
  108. if (list_empty (&qh->qtd_list))
  109. qtd = qh->dummy;
  110. else {
  111. qtd = list_entry (qh->qtd_list.next,
  112. struct ehci_qtd, qtd_list);
  113. /* first qtd may already be partially processed */
  114. if (cpu_to_hc32(ehci, qtd->qtd_dma) == qh->hw_current)
  115. qtd = NULL;
  116. }
  117. if (qtd)
  118. qh_update (ehci, qh, qtd);
  119. }
  120. /*-------------------------------------------------------------------------*/
  121. static int qtd_copy_status (
  122. struct ehci_hcd *ehci,
  123. struct urb *urb,
  124. size_t length,
  125. u32 token
  126. )
  127. {
  128. int status = -EINPROGRESS;
  129. /* count IN/OUT bytes, not SETUP (even short packets) */
  130. if (likely (QTD_PID (token) != 2))
  131. urb->actual_length += length - QTD_LENGTH (token);
  132. /* don't modify error codes */
  133. if (unlikely(urb->unlinked))
  134. return status;
  135. /* force cleanup after short read; not always an error */
  136. if (unlikely (IS_SHORT_READ (token)))
  137. status = -EREMOTEIO;
  138. /* serious "can't proceed" faults reported by the hardware */
  139. if (token & QTD_STS_HALT) {
  140. if (token & QTD_STS_BABBLE) {
  141. /* FIXME "must" disable babbling device's port too */
  142. status = -EOVERFLOW;
  143. } else if (token & QTD_STS_MMF) {
  144. /* fs/ls interrupt xfer missed the complete-split */
  145. status = -EPROTO;
  146. } else if (token & QTD_STS_DBE) {
  147. status = (QTD_PID (token) == 1) /* IN ? */
  148. ? -ENOSR /* hc couldn't read data */
  149. : -ECOMM; /* hc couldn't write data */
  150. } else if (token & QTD_STS_XACT) {
  151. /* timeout, bad crc, wrong PID, etc; retried */
  152. if (QTD_CERR (token))
  153. status = -EPIPE;
  154. else {
  155. ehci_dbg (ehci, "devpath %s ep%d%s 3strikes\n",
  156. urb->dev->devpath,
  157. usb_pipeendpoint (urb->pipe),
  158. usb_pipein (urb->pipe) ? "in" : "out");
  159. status = -EPROTO;
  160. }
  161. /* CERR nonzero + no errors + halt --> stall */
  162. } else if (QTD_CERR (token))
  163. status = -EPIPE;
  164. else /* unknown */
  165. status = -EPROTO;
  166. ehci_vdbg (ehci,
  167. "dev%d ep%d%s qtd token %08x --> status %d\n",
  168. usb_pipedevice (urb->pipe),
  169. usb_pipeendpoint (urb->pipe),
  170. usb_pipein (urb->pipe) ? "in" : "out",
  171. token, status);
  172. /* if async CSPLIT failed, try cleaning out the TT buffer */
  173. if (status != -EPIPE
  174. && urb->dev->tt && !usb_pipeint (urb->pipe)
  175. && ((token & QTD_STS_MMF) != 0
  176. || QTD_CERR(token) == 0)
  177. && (!ehci_is_TDI(ehci)
  178. || urb->dev->tt->hub !=
  179. ehci_to_hcd(ehci)->self.root_hub)) {
  180. #ifdef DEBUG
  181. struct usb_device *tt = urb->dev->tt->hub;
  182. dev_dbg (&tt->dev,
  183. "clear tt buffer port %d, a%d ep%d t%08x\n",
  184. urb->dev->ttport, urb->dev->devnum,
  185. usb_pipeendpoint (urb->pipe), token);
  186. #endif /* DEBUG */
  187. usb_hub_tt_clear_buffer (urb->dev, urb->pipe);
  188. }
  189. }
  190. return status;
  191. }
  192. static void
  193. ehci_urb_done(struct ehci_hcd *ehci, struct urb *urb, int status)
  194. __releases(ehci->lock)
  195. __acquires(ehci->lock)
  196. {
  197. if (likely (urb->hcpriv != NULL)) {
  198. struct ehci_qh *qh = (struct ehci_qh *) urb->hcpriv;
  199. /* S-mask in a QH means it's an interrupt urb */
  200. if ((qh->hw_info2 & cpu_to_hc32(ehci, QH_SMASK)) != 0) {
  201. /* ... update hc-wide periodic stats (for usbfs) */
  202. ehci_to_hcd(ehci)->self.bandwidth_int_reqs--;
  203. }
  204. qh_put (qh);
  205. }
  206. if (unlikely(urb->unlinked)) {
  207. COUNT(ehci->stats.unlink);
  208. } else {
  209. if (likely(status == -EINPROGRESS))
  210. status = 0;
  211. COUNT(ehci->stats.complete);
  212. }
  213. #ifdef EHCI_URB_TRACE
  214. ehci_dbg (ehci,
  215. "%s %s urb %p ep%d%s status %d len %d/%d\n",
  216. __FUNCTION__, urb->dev->devpath, urb,
  217. usb_pipeendpoint (urb->pipe),
  218. usb_pipein (urb->pipe) ? "in" : "out",
  219. status,
  220. urb->actual_length, urb->transfer_buffer_length);
  221. #endif
  222. /* complete() can reenter this HCD */
  223. usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
  224. spin_unlock (&ehci->lock);
  225. usb_hcd_giveback_urb(ehci_to_hcd(ehci), urb, status);
  226. spin_lock (&ehci->lock);
  227. }
  228. static void start_unlink_async (struct ehci_hcd *ehci, struct ehci_qh *qh);
  229. static void unlink_async (struct ehci_hcd *ehci, struct ehci_qh *qh);
  230. static void intr_deschedule (struct ehci_hcd *ehci, struct ehci_qh *qh);
  231. static int qh_schedule (struct ehci_hcd *ehci, struct ehci_qh *qh);
  232. /*
  233. * Process and free completed qtds for a qh, returning URBs to drivers.
  234. * Chases up to qh->hw_current. Returns number of completions called,
  235. * indicating how much "real" work we did.
  236. */
  237. static unsigned
  238. qh_completions (struct ehci_hcd *ehci, struct ehci_qh *qh)
  239. {
  240. struct ehci_qtd *last = NULL, *end = qh->dummy;
  241. struct list_head *entry, *tmp;
  242. int last_status = -EINPROGRESS;
  243. int stopped;
  244. unsigned count = 0;
  245. int do_status = 0;
  246. u8 state;
  247. u32 halt = HALT_BIT(ehci);
  248. if (unlikely (list_empty (&qh->qtd_list)))
  249. return count;
  250. /* completions (or tasks on other cpus) must never clobber HALT
  251. * till we've gone through and cleaned everything up, even when
  252. * they add urbs to this qh's queue or mark them for unlinking.
  253. *
  254. * NOTE: unlinking expects to be done in queue order.
  255. */
  256. state = qh->qh_state;
  257. qh->qh_state = QH_STATE_COMPLETING;
  258. stopped = (state == QH_STATE_IDLE);
  259. /* remove de-activated QTDs from front of queue.
  260. * after faults (including short reads), cleanup this urb
  261. * then let the queue advance.
  262. * if queue is stopped, handles unlinks.
  263. */
  264. list_for_each_safe (entry, tmp, &qh->qtd_list) {
  265. struct ehci_qtd *qtd;
  266. struct urb *urb;
  267. u32 token = 0;
  268. int qtd_status;
  269. qtd = list_entry (entry, struct ehci_qtd, qtd_list);
  270. urb = qtd->urb;
  271. /* clean up any state from previous QTD ...*/
  272. if (last) {
  273. if (likely (last->urb != urb)) {
  274. ehci_urb_done(ehci, last->urb, last_status);
  275. count++;
  276. }
  277. ehci_qtd_free (ehci, last);
  278. last = NULL;
  279. last_status = -EINPROGRESS;
  280. }
  281. /* ignore urbs submitted during completions we reported */
  282. if (qtd == end)
  283. break;
  284. /* hardware copies qtd out of qh overlay */
  285. rmb ();
  286. token = hc32_to_cpu(ehci, qtd->hw_token);
  287. /* always clean up qtds the hc de-activated */
  288. if ((token & QTD_STS_ACTIVE) == 0) {
  289. if ((token & QTD_STS_HALT) != 0) {
  290. stopped = 1;
  291. /* magic dummy for some short reads; qh won't advance.
  292. * that silicon quirk can kick in with this dummy too.
  293. */
  294. } else if (IS_SHORT_READ (token)
  295. && !(qtd->hw_alt_next
  296. & EHCI_LIST_END(ehci))) {
  297. stopped = 1;
  298. goto halt;
  299. }
  300. /* stop scanning when we reach qtds the hc is using */
  301. } else if (likely (!stopped
  302. && HC_IS_RUNNING (ehci_to_hcd(ehci)->state))) {
  303. break;
  304. } else {
  305. stopped = 1;
  306. if (unlikely (!HC_IS_RUNNING (ehci_to_hcd(ehci)->state)))
  307. last_status = -ESHUTDOWN;
  308. /* ignore active urbs unless some previous qtd
  309. * for the urb faulted (including short read) or
  310. * its urb was canceled. we may patch qh or qtds.
  311. */
  312. if (likely(last_status == -EINPROGRESS &&
  313. !urb->unlinked))
  314. continue;
  315. /* issue status after short control reads */
  316. if (unlikely (do_status != 0)
  317. && QTD_PID (token) == 0 /* OUT */) {
  318. do_status = 0;
  319. continue;
  320. }
  321. /* token in overlay may be most current */
  322. if (state == QH_STATE_IDLE
  323. && cpu_to_hc32(ehci, qtd->qtd_dma)
  324. == qh->hw_current)
  325. token = hc32_to_cpu(ehci, qh->hw_token);
  326. /* force halt for unlinked or blocked qh, so we'll
  327. * patch the qh later and so that completions can't
  328. * activate it while we "know" it's stopped.
  329. */
  330. if ((halt & qh->hw_token) == 0) {
  331. halt:
  332. qh->hw_token |= halt;
  333. wmb ();
  334. }
  335. }
  336. /* remove it from the queue */
  337. qtd_status = qtd_copy_status(ehci, urb, qtd->length, token);
  338. if (unlikely(qtd_status == -EREMOTEIO)) {
  339. do_status = (!urb->unlinked &&
  340. usb_pipecontrol(urb->pipe));
  341. qtd_status = 0;
  342. }
  343. if (likely(last_status == -EINPROGRESS))
  344. last_status = qtd_status;
  345. if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
  346. last = list_entry (qtd->qtd_list.prev,
  347. struct ehci_qtd, qtd_list);
  348. last->hw_next = qtd->hw_next;
  349. }
  350. list_del (&qtd->qtd_list);
  351. last = qtd;
  352. }
  353. /* last urb's completion might still need calling */
  354. if (likely (last != NULL)) {
  355. ehci_urb_done(ehci, last->urb, last_status);
  356. count++;
  357. ehci_qtd_free (ehci, last);
  358. }
  359. /* restore original state; caller must unlink or relink */
  360. qh->qh_state = state;
  361. /* be sure the hardware's done with the qh before refreshing
  362. * it after fault cleanup, or recovering from silicon wrongly
  363. * overlaying the dummy qtd (which reduces DMA chatter).
  364. */
  365. if (stopped != 0 || qh->hw_qtd_next == EHCI_LIST_END(ehci)) {
  366. switch (state) {
  367. case QH_STATE_IDLE:
  368. qh_refresh(ehci, qh);
  369. break;
  370. case QH_STATE_LINKED:
  371. /* should be rare for periodic transfers,
  372. * except maybe high bandwidth ...
  373. */
  374. if ((cpu_to_hc32(ehci, QH_SMASK)
  375. & qh->hw_info2) != 0) {
  376. intr_deschedule (ehci, qh);
  377. (void) qh_schedule (ehci, qh);
  378. } else
  379. unlink_async (ehci, qh);
  380. break;
  381. /* otherwise, unlink already started */
  382. }
  383. }
  384. return count;
  385. }
  386. /*-------------------------------------------------------------------------*/
  387. // high bandwidth multiplier, as encoded in highspeed endpoint descriptors
  388. #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
  389. // ... and packet size, for any kind of endpoint descriptor
  390. #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
  391. /*
  392. * reverse of qh_urb_transaction: free a list of TDs.
  393. * used for cleanup after errors, before HC sees an URB's TDs.
  394. */
  395. static void qtd_list_free (
  396. struct ehci_hcd *ehci,
  397. struct urb *urb,
  398. struct list_head *qtd_list
  399. ) {
  400. struct list_head *entry, *temp;
  401. list_for_each_safe (entry, temp, qtd_list) {
  402. struct ehci_qtd *qtd;
  403. qtd = list_entry (entry, struct ehci_qtd, qtd_list);
  404. list_del (&qtd->qtd_list);
  405. ehci_qtd_free (ehci, qtd);
  406. }
  407. }
  408. /*
  409. * create a list of filled qtds for this URB; won't link into qh.
  410. */
  411. static struct list_head *
  412. qh_urb_transaction (
  413. struct ehci_hcd *ehci,
  414. struct urb *urb,
  415. struct list_head *head,
  416. gfp_t flags
  417. ) {
  418. struct ehci_qtd *qtd, *qtd_prev;
  419. dma_addr_t buf;
  420. int len, maxpacket;
  421. int is_input;
  422. u32 token;
  423. /*
  424. * URBs map to sequences of QTDs: one logical transaction
  425. */
  426. qtd = ehci_qtd_alloc (ehci, flags);
  427. if (unlikely (!qtd))
  428. return NULL;
  429. list_add_tail (&qtd->qtd_list, head);
  430. qtd->urb = urb;
  431. token = QTD_STS_ACTIVE;
  432. token |= (EHCI_TUNE_CERR << 10);
  433. /* for split transactions, SplitXState initialized to zero */
  434. len = urb->transfer_buffer_length;
  435. is_input = usb_pipein (urb->pipe);
  436. if (usb_pipecontrol (urb->pipe)) {
  437. /* SETUP pid */
  438. qtd_fill(ehci, qtd, urb->setup_dma,
  439. sizeof (struct usb_ctrlrequest),
  440. token | (2 /* "setup" */ << 8), 8);
  441. /* ... and always at least one more pid */
  442. token ^= QTD_TOGGLE;
  443. qtd_prev = qtd;
  444. qtd = ehci_qtd_alloc (ehci, flags);
  445. if (unlikely (!qtd))
  446. goto cleanup;
  447. qtd->urb = urb;
  448. qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
  449. list_add_tail (&qtd->qtd_list, head);
  450. /* for zero length DATA stages, STATUS is always IN */
  451. if (len == 0)
  452. token |= (1 /* "in" */ << 8);
  453. }
  454. /*
  455. * data transfer stage: buffer setup
  456. */
  457. buf = urb->transfer_dma;
  458. if (is_input)
  459. token |= (1 /* "in" */ << 8);
  460. /* else it's already initted to "out" pid (0 << 8) */
  461. maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
  462. /*
  463. * buffer gets wrapped in one or more qtds;
  464. * last one may be "short" (including zero len)
  465. * and may serve as a control status ack
  466. */
  467. for (;;) {
  468. int this_qtd_len;
  469. this_qtd_len = qtd_fill(ehci, qtd, buf, len, token, maxpacket);
  470. len -= this_qtd_len;
  471. buf += this_qtd_len;
  472. if (is_input)
  473. qtd->hw_alt_next = ehci->async->hw_alt_next;
  474. /* qh makes control packets use qtd toggle; maybe switch it */
  475. if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
  476. token ^= QTD_TOGGLE;
  477. if (likely (len <= 0))
  478. break;
  479. qtd_prev = qtd;
  480. qtd = ehci_qtd_alloc (ehci, flags);
  481. if (unlikely (!qtd))
  482. goto cleanup;
  483. qtd->urb = urb;
  484. qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
  485. list_add_tail (&qtd->qtd_list, head);
  486. }
  487. /* unless the bulk/interrupt caller wants a chance to clean
  488. * up after short reads, hc should advance qh past this urb
  489. */
  490. if (likely ((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
  491. || usb_pipecontrol (urb->pipe)))
  492. qtd->hw_alt_next = EHCI_LIST_END(ehci);
  493. /*
  494. * control requests may need a terminating data "status" ack;
  495. * bulk ones may need a terminating short packet (zero length).
  496. */
  497. if (likely (urb->transfer_buffer_length != 0)) {
  498. int one_more = 0;
  499. if (usb_pipecontrol (urb->pipe)) {
  500. one_more = 1;
  501. token ^= 0x0100; /* "in" <--> "out" */
  502. token |= QTD_TOGGLE; /* force DATA1 */
  503. } else if (usb_pipebulk (urb->pipe)
  504. && (urb->transfer_flags & URB_ZERO_PACKET)
  505. && !(urb->transfer_buffer_length % maxpacket)) {
  506. one_more = 1;
  507. }
  508. if (one_more) {
  509. qtd_prev = qtd;
  510. qtd = ehci_qtd_alloc (ehci, flags);
  511. if (unlikely (!qtd))
  512. goto cleanup;
  513. qtd->urb = urb;
  514. qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
  515. list_add_tail (&qtd->qtd_list, head);
  516. /* never any data in such packets */
  517. qtd_fill(ehci, qtd, 0, 0, token, 0);
  518. }
  519. }
  520. /* by default, enable interrupt on urb completion */
  521. if (likely (!(urb->transfer_flags & URB_NO_INTERRUPT)))
  522. qtd->hw_token |= cpu_to_hc32(ehci, QTD_IOC);
  523. return head;
  524. cleanup:
  525. qtd_list_free (ehci, urb, head);
  526. return NULL;
  527. }
  528. /*-------------------------------------------------------------------------*/
  529. // Would be best to create all qh's from config descriptors,
  530. // when each interface/altsetting is established. Unlink
  531. // any previous qh and cancel its urbs first; endpoints are
  532. // implicitly reset then (data toggle too).
  533. // That'd mean updating how usbcore talks to HCDs. (2.7?)
  534. /*
  535. * Each QH holds a qtd list; a QH is used for everything except iso.
  536. *
  537. * For interrupt urbs, the scheduler must set the microframe scheduling
  538. * mask(s) each time the QH gets scheduled. For highspeed, that's
  539. * just one microframe in the s-mask. For split interrupt transactions
  540. * there are additional complications: c-mask, maybe FSTNs.
  541. */
  542. static struct ehci_qh *
  543. qh_make (
  544. struct ehci_hcd *ehci,
  545. struct urb *urb,
  546. gfp_t flags
  547. ) {
  548. struct ehci_qh *qh = ehci_qh_alloc (ehci, flags);
  549. u32 info1 = 0, info2 = 0;
  550. int is_input, type;
  551. int maxp = 0;
  552. if (!qh)
  553. return qh;
  554. /*
  555. * init endpoint/device data for this QH
  556. */
  557. info1 |= usb_pipeendpoint (urb->pipe) << 8;
  558. info1 |= usb_pipedevice (urb->pipe) << 0;
  559. is_input = usb_pipein (urb->pipe);
  560. type = usb_pipetype (urb->pipe);
  561. maxp = usb_maxpacket (urb->dev, urb->pipe, !is_input);
  562. /* Compute interrupt scheduling parameters just once, and save.
  563. * - allowing for high bandwidth, how many nsec/uframe are used?
  564. * - split transactions need a second CSPLIT uframe; same question
  565. * - splits also need a schedule gap (for full/low speed I/O)
  566. * - qh has a polling interval
  567. *
  568. * For control/bulk requests, the HC or TT handles these.
  569. */
  570. if (type == PIPE_INTERRUPT) {
  571. qh->usecs = NS_TO_US (usb_calc_bus_time (USB_SPEED_HIGH, is_input, 0,
  572. hb_mult (maxp) * max_packet (maxp)));
  573. qh->start = NO_FRAME;
  574. if (urb->dev->speed == USB_SPEED_HIGH) {
  575. qh->c_usecs = 0;
  576. qh->gap_uf = 0;
  577. qh->period = urb->interval >> 3;
  578. if (qh->period == 0 && urb->interval != 1) {
  579. /* NOTE interval 2 or 4 uframes could work.
  580. * But interval 1 scheduling is simpler, and
  581. * includes high bandwidth.
  582. */
  583. dbg ("intr period %d uframes, NYET!",
  584. urb->interval);
  585. goto done;
  586. }
  587. } else {
  588. struct usb_tt *tt = urb->dev->tt;
  589. int think_time;
  590. /* gap is f(FS/LS transfer times) */
  591. qh->gap_uf = 1 + usb_calc_bus_time (urb->dev->speed,
  592. is_input, 0, maxp) / (125 * 1000);
  593. /* FIXME this just approximates SPLIT/CSPLIT times */
  594. if (is_input) { // SPLIT, gap, CSPLIT+DATA
  595. qh->c_usecs = qh->usecs + HS_USECS (0);
  596. qh->usecs = HS_USECS (1);
  597. } else { // SPLIT+DATA, gap, CSPLIT
  598. qh->usecs += HS_USECS (1);
  599. qh->c_usecs = HS_USECS (0);
  600. }
  601. think_time = tt ? tt->think_time : 0;
  602. qh->tt_usecs = NS_TO_US (think_time +
  603. usb_calc_bus_time (urb->dev->speed,
  604. is_input, 0, max_packet (maxp)));
  605. qh->period = urb->interval;
  606. }
  607. }
  608. /* support for tt scheduling, and access to toggles */
  609. qh->dev = urb->dev;
  610. /* using TT? */
  611. switch (urb->dev->speed) {
  612. case USB_SPEED_LOW:
  613. info1 |= (1 << 12); /* EPS "low" */
  614. /* FALL THROUGH */
  615. case USB_SPEED_FULL:
  616. /* EPS 0 means "full" */
  617. if (type != PIPE_INTERRUPT)
  618. info1 |= (EHCI_TUNE_RL_TT << 28);
  619. if (type == PIPE_CONTROL) {
  620. info1 |= (1 << 27); /* for TT */
  621. info1 |= 1 << 14; /* toggle from qtd */
  622. }
  623. info1 |= maxp << 16;
  624. info2 |= (EHCI_TUNE_MULT_TT << 30);
  625. /* Some Freescale processors have an erratum in which the
  626. * port number in the queue head was 0..N-1 instead of 1..N.
  627. */
  628. if (ehci_has_fsl_portno_bug(ehci))
  629. info2 |= (urb->dev->ttport-1) << 23;
  630. else
  631. info2 |= urb->dev->ttport << 23;
  632. /* set the address of the TT; for TDI's integrated
  633. * root hub tt, leave it zeroed.
  634. */
  635. if (!ehci_is_TDI(ehci)
  636. || urb->dev->tt->hub !=
  637. ehci_to_hcd(ehci)->self.root_hub)
  638. info2 |= urb->dev->tt->hub->devnum << 16;
  639. /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */
  640. break;
  641. case USB_SPEED_HIGH: /* no TT involved */
  642. info1 |= (2 << 12); /* EPS "high" */
  643. if (type == PIPE_CONTROL) {
  644. info1 |= (EHCI_TUNE_RL_HS << 28);
  645. info1 |= 64 << 16; /* usb2 fixed maxpacket */
  646. info1 |= 1 << 14; /* toggle from qtd */
  647. info2 |= (EHCI_TUNE_MULT_HS << 30);
  648. } else if (type == PIPE_BULK) {
  649. info1 |= (EHCI_TUNE_RL_HS << 28);
  650. info1 |= 512 << 16; /* usb2 fixed maxpacket */
  651. info2 |= (EHCI_TUNE_MULT_HS << 30);
  652. } else { /* PIPE_INTERRUPT */
  653. info1 |= max_packet (maxp) << 16;
  654. info2 |= hb_mult (maxp) << 30;
  655. }
  656. break;
  657. default:
  658. dbg ("bogus dev %p speed %d", urb->dev, urb->dev->speed);
  659. done:
  660. qh_put (qh);
  661. return NULL;
  662. }
  663. /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */
  664. /* init as live, toggle clear, advance to dummy */
  665. qh->qh_state = QH_STATE_IDLE;
  666. qh->hw_info1 = cpu_to_hc32(ehci, info1);
  667. qh->hw_info2 = cpu_to_hc32(ehci, info2);
  668. usb_settoggle (urb->dev, usb_pipeendpoint (urb->pipe), !is_input, 1);
  669. qh_refresh (ehci, qh);
  670. return qh;
  671. }
  672. /*-------------------------------------------------------------------------*/
  673. /* move qh (and its qtds) onto async queue; maybe enable queue. */
  674. static void qh_link_async (struct ehci_hcd *ehci, struct ehci_qh *qh)
  675. {
  676. __hc32 dma = QH_NEXT(ehci, qh->qh_dma);
  677. struct ehci_qh *head;
  678. /* (re)start the async schedule? */
  679. head = ehci->async;
  680. timer_action_done (ehci, TIMER_ASYNC_OFF);
  681. if (!head->qh_next.qh) {
  682. u32 cmd = ehci_readl(ehci, &ehci->regs->command);
  683. if (!(cmd & CMD_ASE)) {
  684. /* in case a clear of CMD_ASE didn't take yet */
  685. (void)handshake(ehci, &ehci->regs->status,
  686. STS_ASS, 0, 150);
  687. cmd |= CMD_ASE | CMD_RUN;
  688. ehci_writel(ehci, cmd, &ehci->regs->command);
  689. ehci_to_hcd(ehci)->state = HC_STATE_RUNNING;
  690. /* posted write need not be known to HC yet ... */
  691. }
  692. }
  693. /* clear halt and/or toggle; and maybe recover from silicon quirk */
  694. if (qh->qh_state == QH_STATE_IDLE)
  695. qh_refresh (ehci, qh);
  696. /* splice right after start */
  697. qh->qh_next = head->qh_next;
  698. qh->hw_next = head->hw_next;
  699. wmb ();
  700. head->qh_next.qh = qh;
  701. head->hw_next = dma;
  702. qh->qh_state = QH_STATE_LINKED;
  703. /* qtd completions reported later by interrupt */
  704. }
  705. /*-------------------------------------------------------------------------*/
  706. /*
  707. * For control/bulk/interrupt, return QH with these TDs appended.
  708. * Allocates and initializes the QH if necessary.
  709. * Returns null if it can't allocate a QH it needs to.
  710. * If the QH has TDs (urbs) already, that's great.
  711. */
  712. static struct ehci_qh *qh_append_tds (
  713. struct ehci_hcd *ehci,
  714. struct urb *urb,
  715. struct list_head *qtd_list,
  716. int epnum,
  717. void **ptr
  718. )
  719. {
  720. struct ehci_qh *qh = NULL;
  721. u32 qh_addr_mask = cpu_to_hc32(ehci, 0x7f);
  722. qh = (struct ehci_qh *) *ptr;
  723. if (unlikely (qh == NULL)) {
  724. /* can't sleep here, we have ehci->lock... */
  725. qh = qh_make (ehci, urb, GFP_ATOMIC);
  726. *ptr = qh;
  727. }
  728. if (likely (qh != NULL)) {
  729. struct ehci_qtd *qtd;
  730. if (unlikely (list_empty (qtd_list)))
  731. qtd = NULL;
  732. else
  733. qtd = list_entry (qtd_list->next, struct ehci_qtd,
  734. qtd_list);
  735. /* control qh may need patching ... */
  736. if (unlikely (epnum == 0)) {
  737. /* usb_reset_device() briefly reverts to address 0 */
  738. if (usb_pipedevice (urb->pipe) == 0)
  739. qh->hw_info1 &= ~qh_addr_mask;
  740. }
  741. /* just one way to queue requests: swap with the dummy qtd.
  742. * only hc or qh_refresh() ever modify the overlay.
  743. */
  744. if (likely (qtd != NULL)) {
  745. struct ehci_qtd *dummy;
  746. dma_addr_t dma;
  747. __hc32 token;
  748. /* to avoid racing the HC, use the dummy td instead of
  749. * the first td of our list (becomes new dummy). both
  750. * tds stay deactivated until we're done, when the
  751. * HC is allowed to fetch the old dummy (4.10.2).
  752. */
  753. token = qtd->hw_token;
  754. qtd->hw_token = HALT_BIT(ehci);
  755. wmb ();
  756. dummy = qh->dummy;
  757. dma = dummy->qtd_dma;
  758. *dummy = *qtd;
  759. dummy->qtd_dma = dma;
  760. list_del (&qtd->qtd_list);
  761. list_add (&dummy->qtd_list, qtd_list);
  762. __list_splice (qtd_list, qh->qtd_list.prev);
  763. ehci_qtd_init(ehci, qtd, qtd->qtd_dma);
  764. qh->dummy = qtd;
  765. /* hc must see the new dummy at list end */
  766. dma = qtd->qtd_dma;
  767. qtd = list_entry (qh->qtd_list.prev,
  768. struct ehci_qtd, qtd_list);
  769. qtd->hw_next = QTD_NEXT(ehci, dma);
  770. /* let the hc process these next qtds */
  771. wmb ();
  772. dummy->hw_token = token;
  773. urb->hcpriv = qh_get (qh);
  774. }
  775. }
  776. return qh;
  777. }
  778. /*-------------------------------------------------------------------------*/
  779. static int
  780. submit_async (
  781. struct ehci_hcd *ehci,
  782. struct urb *urb,
  783. struct list_head *qtd_list,
  784. gfp_t mem_flags
  785. ) {
  786. struct ehci_qtd *qtd;
  787. int epnum;
  788. unsigned long flags;
  789. struct ehci_qh *qh = NULL;
  790. int rc;
  791. qtd = list_entry (qtd_list->next, struct ehci_qtd, qtd_list);
  792. epnum = urb->ep->desc.bEndpointAddress;
  793. #ifdef EHCI_URB_TRACE
  794. ehci_dbg (ehci,
  795. "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
  796. __FUNCTION__, urb->dev->devpath, urb,
  797. epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out",
  798. urb->transfer_buffer_length,
  799. qtd, urb->ep->hcpriv);
  800. #endif
  801. spin_lock_irqsave (&ehci->lock, flags);
  802. if (unlikely(!test_bit(HCD_FLAG_HW_ACCESSIBLE,
  803. &ehci_to_hcd(ehci)->flags))) {
  804. rc = -ESHUTDOWN;
  805. goto done;
  806. }
  807. rc = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
  808. if (unlikely(rc))
  809. goto done;
  810. qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv);
  811. if (unlikely(qh == NULL)) {
  812. usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
  813. rc = -ENOMEM;
  814. goto done;
  815. }
  816. /* Control/bulk operations through TTs don't need scheduling,
  817. * the HC and TT handle it when the TT has a buffer ready.
  818. */
  819. if (likely (qh->qh_state == QH_STATE_IDLE))
  820. qh_link_async (ehci, qh_get (qh));
  821. done:
  822. spin_unlock_irqrestore (&ehci->lock, flags);
  823. if (unlikely (qh == NULL))
  824. qtd_list_free (ehci, urb, qtd_list);
  825. return rc;
  826. }
  827. /*-------------------------------------------------------------------------*/
  828. /* the async qh for the qtds being reclaimed are now unlinked from the HC */
  829. static void end_unlink_async (struct ehci_hcd *ehci)
  830. {
  831. struct ehci_qh *qh = ehci->reclaim;
  832. struct ehci_qh *next;
  833. timer_action_done (ehci, TIMER_IAA_WATCHDOG);
  834. // qh->hw_next = cpu_to_hc32(qh->qh_dma);
  835. qh->qh_state = QH_STATE_IDLE;
  836. qh->qh_next.qh = NULL;
  837. qh_put (qh); // refcount from reclaim
  838. /* other unlink(s) may be pending (in QH_STATE_UNLINK_WAIT) */
  839. next = qh->reclaim;
  840. ehci->reclaim = next;
  841. ehci->reclaim_ready = 0;
  842. qh->reclaim = NULL;
  843. qh_completions (ehci, qh);
  844. if (!list_empty (&qh->qtd_list)
  845. && HC_IS_RUNNING (ehci_to_hcd(ehci)->state))
  846. qh_link_async (ehci, qh);
  847. else {
  848. qh_put (qh); // refcount from async list
  849. /* it's not free to turn the async schedule on/off; leave it
  850. * active but idle for a while once it empties.
  851. */
  852. if (HC_IS_RUNNING (ehci_to_hcd(ehci)->state)
  853. && ehci->async->qh_next.qh == NULL)
  854. timer_action (ehci, TIMER_ASYNC_OFF);
  855. }
  856. if (next) {
  857. ehci->reclaim = NULL;
  858. start_unlink_async (ehci, next);
  859. }
  860. }
  861. /* makes sure the async qh will become idle */
  862. /* caller must own ehci->lock */
  863. static void start_unlink_async (struct ehci_hcd *ehci, struct ehci_qh *qh)
  864. {
  865. int cmd = ehci_readl(ehci, &ehci->regs->command);
  866. struct ehci_qh *prev;
  867. #ifdef DEBUG
  868. assert_spin_locked(&ehci->lock);
  869. if (ehci->reclaim
  870. || (qh->qh_state != QH_STATE_LINKED
  871. && qh->qh_state != QH_STATE_UNLINK_WAIT)
  872. )
  873. BUG ();
  874. #endif
  875. /* stop async schedule right now? */
  876. if (unlikely (qh == ehci->async)) {
  877. /* can't get here without STS_ASS set */
  878. if (ehci_to_hcd(ehci)->state != HC_STATE_HALT
  879. && !ehci->reclaim) {
  880. /* ... and CMD_IAAD clear */
  881. ehci_writel(ehci, cmd & ~CMD_ASE,
  882. &ehci->regs->command);
  883. wmb ();
  884. // handshake later, if we need to
  885. timer_action_done (ehci, TIMER_ASYNC_OFF);
  886. }
  887. return;
  888. }
  889. qh->qh_state = QH_STATE_UNLINK;
  890. ehci->reclaim = qh = qh_get (qh);
  891. prev = ehci->async;
  892. while (prev->qh_next.qh != qh)
  893. prev = prev->qh_next.qh;
  894. prev->hw_next = qh->hw_next;
  895. prev->qh_next = qh->qh_next;
  896. wmb ();
  897. if (unlikely (ehci_to_hcd(ehci)->state == HC_STATE_HALT)) {
  898. /* if (unlikely (qh->reclaim != 0))
  899. * this will recurse, probably not much
  900. */
  901. end_unlink_async (ehci);
  902. return;
  903. }
  904. ehci->reclaim_ready = 0;
  905. cmd |= CMD_IAAD;
  906. ehci_writel(ehci, cmd, &ehci->regs->command);
  907. (void)ehci_readl(ehci, &ehci->regs->command);
  908. timer_action (ehci, TIMER_IAA_WATCHDOG);
  909. }
  910. /*-------------------------------------------------------------------------*/
  911. static void scan_async (struct ehci_hcd *ehci)
  912. {
  913. struct ehci_qh *qh;
  914. enum ehci_timer_action action = TIMER_IO_WATCHDOG;
  915. if (!++(ehci->stamp))
  916. ehci->stamp++;
  917. timer_action_done (ehci, TIMER_ASYNC_SHRINK);
  918. rescan:
  919. qh = ehci->async->qh_next.qh;
  920. if (likely (qh != NULL)) {
  921. do {
  922. /* clean any finished work for this qh */
  923. if (!list_empty (&qh->qtd_list)
  924. && qh->stamp != ehci->stamp) {
  925. int temp;
  926. /* unlinks could happen here; completion
  927. * reporting drops the lock. rescan using
  928. * the latest schedule, but don't rescan
  929. * qhs we already finished (no looping).
  930. */
  931. qh = qh_get (qh);
  932. qh->stamp = ehci->stamp;
  933. temp = qh_completions (ehci, qh);
  934. qh_put (qh);
  935. if (temp != 0) {
  936. goto rescan;
  937. }
  938. }
  939. /* unlink idle entries, reducing HC PCI usage as well
  940. * as HCD schedule-scanning costs. delay for any qh
  941. * we just scanned, there's a not-unusual case that it
  942. * doesn't stay idle for long.
  943. * (plus, avoids some kind of re-activation race.)
  944. */
  945. if (list_empty (&qh->qtd_list)) {
  946. if (qh->stamp == ehci->stamp)
  947. action = TIMER_ASYNC_SHRINK;
  948. else if (!ehci->reclaim
  949. && qh->qh_state == QH_STATE_LINKED)
  950. start_unlink_async (ehci, qh);
  951. }
  952. qh = qh->qh_next.qh;
  953. } while (qh);
  954. }
  955. if (action == TIMER_ASYNC_SHRINK)
  956. timer_action (ehci, TIMER_ASYNC_SHRINK);
  957. }