urb.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605
  1. #include <linux/module.h>
  2. #include <linux/string.h>
  3. #include <linux/bitops.h>
  4. #include <linux/slab.h>
  5. #include <linux/init.h>
  6. #include <linux/log2.h>
  7. #include <linux/usb.h>
  8. #include <linux/wait.h>
  9. #include "hcd.h"
  10. #define to_urb(d) container_of(d, struct urb, kref)
  11. static void urb_destroy(struct kref *kref)
  12. {
  13. struct urb *urb = to_urb(kref);
  14. if (urb->transfer_flags & URB_FREE_BUFFER)
  15. kfree(urb->transfer_buffer);
  16. kfree(urb);
  17. }
  18. /**
  19. * usb_init_urb - initializes a urb so that it can be used by a USB driver
  20. * @urb: pointer to the urb to initialize
  21. *
  22. * Initializes a urb so that the USB subsystem can use it properly.
  23. *
  24. * If a urb is created with a call to usb_alloc_urb() it is not
  25. * necessary to call this function. Only use this if you allocate the
  26. * space for a struct urb on your own. If you call this function, be
  27. * careful when freeing the memory for your urb that it is no longer in
  28. * use by the USB core.
  29. *
  30. * Only use this function if you _really_ understand what you are doing.
  31. */
  32. void usb_init_urb(struct urb *urb)
  33. {
  34. if (urb) {
  35. memset(urb, 0, sizeof(*urb));
  36. kref_init(&urb->kref);
  37. INIT_LIST_HEAD(&urb->anchor_list);
  38. }
  39. }
  40. /**
  41. * usb_alloc_urb - creates a new urb for a USB driver to use
  42. * @iso_packets: number of iso packets for this urb
  43. * @mem_flags: the type of memory to allocate, see kmalloc() for a list of
  44. * valid options for this.
  45. *
  46. * Creates an urb for the USB driver to use, initializes a few internal
  47. * structures, incrementes the usage counter, and returns a pointer to it.
  48. *
  49. * If no memory is available, NULL is returned.
  50. *
  51. * If the driver want to use this urb for interrupt, control, or bulk
  52. * endpoints, pass '0' as the number of iso packets.
  53. *
  54. * The driver must call usb_free_urb() when it is finished with the urb.
  55. */
  56. struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags)
  57. {
  58. struct urb *urb;
  59. urb = kmalloc(sizeof(struct urb) +
  60. iso_packets * sizeof(struct usb_iso_packet_descriptor),
  61. mem_flags);
  62. if (!urb) {
  63. err("alloc_urb: kmalloc failed");
  64. return NULL;
  65. }
  66. usb_init_urb(urb);
  67. return urb;
  68. }
  69. /**
  70. * usb_free_urb - frees the memory used by a urb when all users of it are finished
  71. * @urb: pointer to the urb to free, may be NULL
  72. *
  73. * Must be called when a user of a urb is finished with it. When the last user
  74. * of the urb calls this function, the memory of the urb is freed.
  75. *
  76. * Note: The transfer buffer associated with the urb is not freed, that must be
  77. * done elsewhere.
  78. */
  79. void usb_free_urb(struct urb *urb)
  80. {
  81. if (urb)
  82. kref_put(&urb->kref, urb_destroy);
  83. }
  84. /**
  85. * usb_get_urb - increments the reference count of the urb
  86. * @urb: pointer to the urb to modify, may be NULL
  87. *
  88. * This must be called whenever a urb is transferred from a device driver to a
  89. * host controller driver. This allows proper reference counting to happen
  90. * for urbs.
  91. *
  92. * A pointer to the urb with the incremented reference counter is returned.
  93. */
  94. struct urb * usb_get_urb(struct urb *urb)
  95. {
  96. if (urb)
  97. kref_get(&urb->kref);
  98. return urb;
  99. }
  100. /**
  101. * usb_anchor_urb - anchors an URB while it is processed
  102. * @urb: pointer to the urb to anchor
  103. * @anchor: pointer to the anchor
  104. *
  105. * This can be called to have access to URBs which are to be executed
  106. * without bothering to track them
  107. */
  108. void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor)
  109. {
  110. unsigned long flags;
  111. spin_lock_irqsave(&anchor->lock, flags);
  112. usb_get_urb(urb);
  113. list_add_tail(&urb->anchor_list, &anchor->urb_list);
  114. urb->anchor = anchor;
  115. spin_unlock_irqrestore(&anchor->lock, flags);
  116. }
  117. EXPORT_SYMBOL_GPL(usb_anchor_urb);
  118. /**
  119. * usb_unanchor_urb - unanchors an URB
  120. * @urb: pointer to the urb to anchor
  121. *
  122. * Call this to stop the system keeping track of this URB
  123. */
  124. void usb_unanchor_urb(struct urb *urb)
  125. {
  126. unsigned long flags;
  127. struct usb_anchor *anchor;
  128. if (!urb)
  129. return;
  130. anchor = urb->anchor;
  131. if (!anchor)
  132. return;
  133. spin_lock_irqsave(&anchor->lock, flags);
  134. if (unlikely(anchor != urb->anchor)) {
  135. /* we've lost the race to another thread */
  136. spin_unlock_irqrestore(&anchor->lock, flags);
  137. return;
  138. }
  139. urb->anchor = NULL;
  140. list_del(&urb->anchor_list);
  141. spin_unlock_irqrestore(&anchor->lock, flags);
  142. usb_put_urb(urb);
  143. if (list_empty(&anchor->urb_list))
  144. wake_up(&anchor->wait);
  145. }
  146. EXPORT_SYMBOL_GPL(usb_unanchor_urb);
  147. /*-------------------------------------------------------------------*/
  148. /**
  149. * usb_submit_urb - issue an asynchronous transfer request for an endpoint
  150. * @urb: pointer to the urb describing the request
  151. * @mem_flags: the type of memory to allocate, see kmalloc() for a list
  152. * of valid options for this.
  153. *
  154. * This submits a transfer request, and transfers control of the URB
  155. * describing that request to the USB subsystem. Request completion will
  156. * be indicated later, asynchronously, by calling the completion handler.
  157. * The three types of completion are success, error, and unlink
  158. * (a software-induced fault, also called "request cancellation").
  159. *
  160. * URBs may be submitted in interrupt context.
  161. *
  162. * The caller must have correctly initialized the URB before submitting
  163. * it. Functions such as usb_fill_bulk_urb() and usb_fill_control_urb() are
  164. * available to ensure that most fields are correctly initialized, for
  165. * the particular kind of transfer, although they will not initialize
  166. * any transfer flags.
  167. *
  168. * Successful submissions return 0; otherwise this routine returns a
  169. * negative error number. If the submission is successful, the complete()
  170. * callback from the URB will be called exactly once, when the USB core and
  171. * Host Controller Driver (HCD) are finished with the URB. When the completion
  172. * function is called, control of the URB is returned to the device
  173. * driver which issued the request. The completion handler may then
  174. * immediately free or reuse that URB.
  175. *
  176. * With few exceptions, USB device drivers should never access URB fields
  177. * provided by usbcore or the HCD until its complete() is called.
  178. * The exceptions relate to periodic transfer scheduling. For both
  179. * interrupt and isochronous urbs, as part of successful URB submission
  180. * urb->interval is modified to reflect the actual transfer period used
  181. * (normally some power of two units). And for isochronous urbs,
  182. * urb->start_frame is modified to reflect when the URB's transfers were
  183. * scheduled to start. Not all isochronous transfer scheduling policies
  184. * will work, but most host controller drivers should easily handle ISO
  185. * queues going from now until 10-200 msec into the future.
  186. *
  187. * For control endpoints, the synchronous usb_control_msg() call is
  188. * often used (in non-interrupt context) instead of this call.
  189. * That is often used through convenience wrappers, for the requests
  190. * that are standardized in the USB 2.0 specification. For bulk
  191. * endpoints, a synchronous usb_bulk_msg() call is available.
  192. *
  193. * Request Queuing:
  194. *
  195. * URBs may be submitted to endpoints before previous ones complete, to
  196. * minimize the impact of interrupt latencies and system overhead on data
  197. * throughput. With that queuing policy, an endpoint's queue would never
  198. * be empty. This is required for continuous isochronous data streams,
  199. * and may also be required for some kinds of interrupt transfers. Such
  200. * queuing also maximizes bandwidth utilization by letting USB controllers
  201. * start work on later requests before driver software has finished the
  202. * completion processing for earlier (successful) requests.
  203. *
  204. * As of Linux 2.6, all USB endpoint transfer queues support depths greater
  205. * than one. This was previously a HCD-specific behavior, except for ISO
  206. * transfers. Non-isochronous endpoint queues are inactive during cleanup
  207. * after faults (transfer errors or cancellation).
  208. *
  209. * Reserved Bandwidth Transfers:
  210. *
  211. * Periodic transfers (interrupt or isochronous) are performed repeatedly,
  212. * using the interval specified in the urb. Submitting the first urb to
  213. * the endpoint reserves the bandwidth necessary to make those transfers.
  214. * If the USB subsystem can't allocate sufficient bandwidth to perform
  215. * the periodic request, submitting such a periodic request should fail.
  216. *
  217. * Device drivers must explicitly request that repetition, by ensuring that
  218. * some URB is always on the endpoint's queue (except possibly for short
  219. * periods during completion callacks). When there is no longer an urb
  220. * queued, the endpoint's bandwidth reservation is canceled. This means
  221. * drivers can use their completion handlers to ensure they keep bandwidth
  222. * they need, by reinitializing and resubmitting the just-completed urb
  223. * until the driver longer needs that periodic bandwidth.
  224. *
  225. * Memory Flags:
  226. *
  227. * The general rules for how to decide which mem_flags to use
  228. * are the same as for kmalloc. There are four
  229. * different possible values; GFP_KERNEL, GFP_NOFS, GFP_NOIO and
  230. * GFP_ATOMIC.
  231. *
  232. * GFP_NOFS is not ever used, as it has not been implemented yet.
  233. *
  234. * GFP_ATOMIC is used when
  235. * (a) you are inside a completion handler, an interrupt, bottom half,
  236. * tasklet or timer, or
  237. * (b) you are holding a spinlock or rwlock (does not apply to
  238. * semaphores), or
  239. * (c) current->state != TASK_RUNNING, this is the case only after
  240. * you've changed it.
  241. *
  242. * GFP_NOIO is used in the block io path and error handling of storage
  243. * devices.
  244. *
  245. * All other situations use GFP_KERNEL.
  246. *
  247. * Some more specific rules for mem_flags can be inferred, such as
  248. * (1) start_xmit, timeout, and receive methods of network drivers must
  249. * use GFP_ATOMIC (they are called with a spinlock held);
  250. * (2) queuecommand methods of scsi drivers must use GFP_ATOMIC (also
  251. * called with a spinlock held);
  252. * (3) If you use a kernel thread with a network driver you must use
  253. * GFP_NOIO, unless (b) or (c) apply;
  254. * (4) after you have done a down() you can use GFP_KERNEL, unless (b) or (c)
  255. * apply or your are in a storage driver's block io path;
  256. * (5) USB probe and disconnect can use GFP_KERNEL unless (b) or (c) apply; and
  257. * (6) changing firmware on a running storage or net device uses
  258. * GFP_NOIO, unless b) or c) apply
  259. *
  260. */
  261. int usb_submit_urb(struct urb *urb, gfp_t mem_flags)
  262. {
  263. int xfertype, max;
  264. struct usb_device *dev;
  265. struct usb_host_endpoint *ep;
  266. int is_out;
  267. if (!urb || urb->hcpriv || !urb->complete)
  268. return -EINVAL;
  269. if (!(dev = urb->dev) || dev->state < USB_STATE_DEFAULT)
  270. return -ENODEV;
  271. /* For now, get the endpoint from the pipe. Eventually drivers
  272. * will be required to set urb->ep directly and we will eliminate
  273. * urb->pipe.
  274. */
  275. ep = (usb_pipein(urb->pipe) ? dev->ep_in : dev->ep_out)
  276. [usb_pipeendpoint(urb->pipe)];
  277. if (!ep)
  278. return -ENOENT;
  279. urb->ep = ep;
  280. urb->status = -EINPROGRESS;
  281. urb->actual_length = 0;
  282. /* Lots of sanity checks, so HCDs can rely on clean data
  283. * and don't need to duplicate tests
  284. */
  285. xfertype = usb_endpoint_type(&ep->desc);
  286. if (xfertype == USB_ENDPOINT_XFER_CONTROL) {
  287. struct usb_ctrlrequest *setup =
  288. (struct usb_ctrlrequest *) urb->setup_packet;
  289. if (!setup)
  290. return -ENOEXEC;
  291. is_out = !(setup->bRequestType & USB_DIR_IN) ||
  292. !setup->wLength;
  293. } else {
  294. is_out = usb_endpoint_dir_out(&ep->desc);
  295. }
  296. /* Cache the direction for later use */
  297. urb->transfer_flags = (urb->transfer_flags & ~URB_DIR_MASK) |
  298. (is_out ? URB_DIR_OUT : URB_DIR_IN);
  299. if (xfertype != USB_ENDPOINT_XFER_CONTROL &&
  300. dev->state < USB_STATE_CONFIGURED)
  301. return -ENODEV;
  302. max = le16_to_cpu(ep->desc.wMaxPacketSize);
  303. if (max <= 0) {
  304. dev_dbg(&dev->dev,
  305. "bogus endpoint ep%d%s in %s (bad maxpacket %d)\n",
  306. usb_endpoint_num(&ep->desc), is_out ? "out" : "in",
  307. __FUNCTION__, max);
  308. return -EMSGSIZE;
  309. }
  310. /* periodic transfers limit size per frame/uframe,
  311. * but drivers only control those sizes for ISO.
  312. * while we're checking, initialize return status.
  313. */
  314. if (xfertype == USB_ENDPOINT_XFER_ISOC) {
  315. int n, len;
  316. /* "high bandwidth" mode, 1-3 packets/uframe? */
  317. if (dev->speed == USB_SPEED_HIGH) {
  318. int mult = 1 + ((max >> 11) & 0x03);
  319. max &= 0x07ff;
  320. max *= mult;
  321. }
  322. if (urb->number_of_packets <= 0)
  323. return -EINVAL;
  324. for (n = 0; n < urb->number_of_packets; n++) {
  325. len = urb->iso_frame_desc[n].length;
  326. if (len < 0 || len > max)
  327. return -EMSGSIZE;
  328. urb->iso_frame_desc[n].status = -EXDEV;
  329. urb->iso_frame_desc[n].actual_length = 0;
  330. }
  331. }
  332. /* the I/O buffer must be mapped/unmapped, except when length=0 */
  333. if (urb->transfer_buffer_length < 0)
  334. return -EMSGSIZE;
  335. #ifdef DEBUG
  336. /* stuff that drivers shouldn't do, but which shouldn't
  337. * cause problems in HCDs if they get it wrong.
  338. */
  339. {
  340. unsigned int orig_flags = urb->transfer_flags;
  341. unsigned int allowed;
  342. /* enforce simple/standard policy */
  343. allowed = (URB_NO_TRANSFER_DMA_MAP | URB_NO_SETUP_DMA_MAP |
  344. URB_NO_INTERRUPT | URB_DIR_MASK);
  345. switch (xfertype) {
  346. case USB_ENDPOINT_XFER_BULK:
  347. if (is_out)
  348. allowed |= URB_ZERO_PACKET;
  349. /* FALLTHROUGH */
  350. case USB_ENDPOINT_XFER_CONTROL:
  351. allowed |= URB_NO_FSBR; /* only affects UHCI */
  352. /* FALLTHROUGH */
  353. default: /* all non-iso endpoints */
  354. if (!is_out)
  355. allowed |= URB_SHORT_NOT_OK;
  356. break;
  357. case USB_ENDPOINT_XFER_ISOC:
  358. allowed |= URB_ISO_ASAP;
  359. break;
  360. }
  361. urb->transfer_flags &= allowed;
  362. /* fail if submitter gave bogus flags */
  363. if (urb->transfer_flags != orig_flags) {
  364. err("BOGUS urb flags, %x --> %x",
  365. orig_flags, urb->transfer_flags);
  366. return -EINVAL;
  367. }
  368. }
  369. #endif
  370. /*
  371. * Force periodic transfer intervals to be legal values that are
  372. * a power of two (so HCDs don't need to).
  373. *
  374. * FIXME want bus->{intr,iso}_sched_horizon values here. Each HC
  375. * supports different values... this uses EHCI/UHCI defaults (and
  376. * EHCI can use smaller non-default values).
  377. */
  378. switch (xfertype) {
  379. case USB_ENDPOINT_XFER_ISOC:
  380. case USB_ENDPOINT_XFER_INT:
  381. /* too small? */
  382. if (urb->interval <= 0)
  383. return -EINVAL;
  384. /* too big? */
  385. switch (dev->speed) {
  386. case USB_SPEED_HIGH: /* units are microframes */
  387. // NOTE usb handles 2^15
  388. if (urb->interval > (1024 * 8))
  389. urb->interval = 1024 * 8;
  390. max = 1024 * 8;
  391. break;
  392. case USB_SPEED_FULL: /* units are frames/msec */
  393. case USB_SPEED_LOW:
  394. if (xfertype == USB_ENDPOINT_XFER_INT) {
  395. if (urb->interval > 255)
  396. return -EINVAL;
  397. // NOTE ohci only handles up to 32
  398. max = 128;
  399. } else {
  400. if (urb->interval > 1024)
  401. urb->interval = 1024;
  402. // NOTE usb and ohci handle up to 2^15
  403. max = 1024;
  404. }
  405. break;
  406. default:
  407. return -EINVAL;
  408. }
  409. /* Round down to a power of 2, no more than max */
  410. urb->interval = min(max, 1 << ilog2(urb->interval));
  411. }
  412. return usb_hcd_submit_urb(urb, mem_flags);
  413. }
  414. /*-------------------------------------------------------------------*/
  415. /**
  416. * usb_unlink_urb - abort/cancel a transfer request for an endpoint
  417. * @urb: pointer to urb describing a previously submitted request,
  418. * may be NULL
  419. *
  420. * This routine cancels an in-progress request. URBs complete only once
  421. * per submission, and may be canceled only once per submission.
  422. * Successful cancellation means termination of @urb will be expedited
  423. * and the completion handler will be called with a status code
  424. * indicating that the request has been canceled (rather than any other
  425. * code).
  426. *
  427. * This request is always asynchronous. Success is indicated by
  428. * returning -EINPROGRESS, at which time the URB will probably not yet
  429. * have been given back to the device driver. When it is eventually
  430. * called, the completion function will see @urb->status == -ECONNRESET.
  431. * Failure is indicated by usb_unlink_urb() returning any other value.
  432. * Unlinking will fail when @urb is not currently "linked" (i.e., it was
  433. * never submitted, or it was unlinked before, or the hardware is already
  434. * finished with it), even if the completion handler has not yet run.
  435. *
  436. * Unlinking and Endpoint Queues:
  437. *
  438. * [The behaviors and guarantees described below do not apply to virtual
  439. * root hubs but only to endpoint queues for physical USB devices.]
  440. *
  441. * Host Controller Drivers (HCDs) place all the URBs for a particular
  442. * endpoint in a queue. Normally the queue advances as the controller
  443. * hardware processes each request. But when an URB terminates with an
  444. * error its queue generally stops (see below), at least until that URB's
  445. * completion routine returns. It is guaranteed that a stopped queue
  446. * will not restart until all its unlinked URBs have been fully retired,
  447. * with their completion routines run, even if that's not until some time
  448. * after the original completion handler returns. The same behavior and
  449. * guarantee apply when an URB terminates because it was unlinked.
  450. *
  451. * Bulk and interrupt endpoint queues are guaranteed to stop whenever an
  452. * URB terminates with any sort of error, including -ECONNRESET, -ENOENT,
  453. * and -EREMOTEIO. Control endpoint queues behave the same way except
  454. * that they are not guaranteed to stop for -EREMOTEIO errors. Queues
  455. * for isochronous endpoints are treated differently, because they must
  456. * advance at fixed rates. Such queues do not stop when an URB
  457. * encounters an error or is unlinked. An unlinked isochronous URB may
  458. * leave a gap in the stream of packets; it is undefined whether such
  459. * gaps can be filled in.
  460. *
  461. * Note that early termination of an URB because a short packet was
  462. * received will generate a -EREMOTEIO error if and only if the
  463. * URB_SHORT_NOT_OK flag is set. By setting this flag, USB device
  464. * drivers can build deep queues for large or complex bulk transfers
  465. * and clean them up reliably after any sort of aborted transfer by
  466. * unlinking all pending URBs at the first fault.
  467. *
  468. * When a control URB terminates with an error other than -EREMOTEIO, it
  469. * is quite likely that the status stage of the transfer will not take
  470. * place.
  471. */
  472. int usb_unlink_urb(struct urb *urb)
  473. {
  474. if (!urb)
  475. return -EINVAL;
  476. if (!urb->dev)
  477. return -ENODEV;
  478. if (!urb->ep)
  479. return -EIDRM;
  480. return usb_hcd_unlink_urb(urb, -ECONNRESET);
  481. }
  482. /**
  483. * usb_kill_urb - cancel a transfer request and wait for it to finish
  484. * @urb: pointer to URB describing a previously submitted request,
  485. * may be NULL
  486. *
  487. * This routine cancels an in-progress request. It is guaranteed that
  488. * upon return all completion handlers will have finished and the URB
  489. * will be totally idle and available for reuse. These features make
  490. * this an ideal way to stop I/O in a disconnect() callback or close()
  491. * function. If the request has not already finished or been unlinked
  492. * the completion handler will see urb->status == -ENOENT.
  493. *
  494. * While the routine is running, attempts to resubmit the URB will fail
  495. * with error -EPERM. Thus even if the URB's completion handler always
  496. * tries to resubmit, it will not succeed and the URB will become idle.
  497. *
  498. * This routine may not be used in an interrupt context (such as a bottom
  499. * half or a completion handler), or when holding a spinlock, or in other
  500. * situations where the caller can't schedule().
  501. */
  502. void usb_kill_urb(struct urb *urb)
  503. {
  504. static DEFINE_MUTEX(reject_mutex);
  505. might_sleep();
  506. if (!(urb && urb->dev && urb->ep))
  507. return;
  508. mutex_lock(&reject_mutex);
  509. ++urb->reject;
  510. mutex_unlock(&reject_mutex);
  511. usb_hcd_unlink_urb(urb, -ENOENT);
  512. wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
  513. mutex_lock(&reject_mutex);
  514. --urb->reject;
  515. mutex_unlock(&reject_mutex);
  516. }
  517. /**
  518. * usb_kill_anchored_urbs - cancel transfer requests en masse
  519. * @anchor: anchor the requests are bound to
  520. *
  521. * this allows all outstanding URBs to be killed starting
  522. * from the back of the queue
  523. */
  524. void usb_kill_anchored_urbs(struct usb_anchor *anchor)
  525. {
  526. struct urb *victim;
  527. spin_lock_irq(&anchor->lock);
  528. while (!list_empty(&anchor->urb_list)) {
  529. victim = list_entry(anchor->urb_list.prev, struct urb, anchor_list);
  530. /* we must make sure the URB isn't freed before we kill it*/
  531. usb_get_urb(victim);
  532. spin_unlock_irq(&anchor->lock);
  533. /* this will unanchor the URB */
  534. usb_kill_urb(victim);
  535. usb_put_urb(victim);
  536. spin_lock_irq(&anchor->lock);
  537. }
  538. spin_unlock_irq(&anchor->lock);
  539. }
  540. EXPORT_SYMBOL_GPL(usb_kill_anchored_urbs);
  541. /**
  542. * usb_wait_anchor_empty_timeout - wait for an anchor to be unused
  543. * @anchor: the anchor you want to become unused
  544. * @timeout: how long you are willing to wait in milliseconds
  545. *
  546. * Call this is you want to be sure all an anchor's
  547. * URBs have finished
  548. */
  549. int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
  550. unsigned int timeout)
  551. {
  552. return wait_event_timeout(anchor->wait, list_empty(&anchor->urb_list),
  553. msecs_to_jiffies(timeout));
  554. }
  555. EXPORT_SYMBOL_GPL(usb_wait_anchor_empty_timeout);
  556. EXPORT_SYMBOL(usb_init_urb);
  557. EXPORT_SYMBOL(usb_alloc_urb);
  558. EXPORT_SYMBOL(usb_free_urb);
  559. EXPORT_SYMBOL(usb_get_urb);
  560. EXPORT_SYMBOL(usb_submit_urb);
  561. EXPORT_SYMBOL(usb_unlink_urb);
  562. EXPORT_SYMBOL(usb_kill_urb);