pxa2xx_spi.c 42 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640
  1. /*
  2. * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; either version 2 of the License, or
  7. * (at your option) any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software
  16. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  17. */
  18. #include <linux/init.h>
  19. #include <linux/module.h>
  20. #include <linux/device.h>
  21. #include <linux/ioport.h>
  22. #include <linux/errno.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/dma-mapping.h>
  26. #include <linux/spi/spi.h>
  27. #include <linux/workqueue.h>
  28. #include <linux/delay.h>
  29. #include <asm/io.h>
  30. #include <asm/irq.h>
  31. #include <asm/hardware.h>
  32. #include <asm/delay.h>
  33. #include <asm/dma.h>
  34. #include <asm/arch/hardware.h>
  35. #include <asm/arch/pxa-regs.h>
  36. #include <asm/arch/pxa2xx_spi.h>
  37. MODULE_AUTHOR("Stephen Street");
  38. MODULE_DESCRIPTION("PXA2xx SSP SPI Contoller");
  39. MODULE_LICENSE("GPL");
  40. #define MAX_BUSES 3
  41. #define DMA_INT_MASK (DCSR_ENDINTR | DCSR_STARTINTR | DCSR_BUSERR)
  42. #define RESET_DMA_CHANNEL (DCSR_NODESC | DMA_INT_MASK)
  43. #define IS_DMA_ALIGNED(x) (((u32)(x)&0x07)==0)
  44. /* for testing SSCR1 changes that require SSP restart, basically
  45. * everything except the service and interrupt enables */
  46. #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_EBCEI | SSCR1_SCFR \
  47. | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
  48. | SSCR1_RWOT | SSCR1_TRAIL | SSCR1_PINTE \
  49. | SSCR1_STRF | SSCR1_EFWR |SSCR1_RFT \
  50. | SSCR1_TFT | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  51. #define DEFINE_SSP_REG(reg, off) \
  52. static inline u32 read_##reg(void *p) { return __raw_readl(p + (off)); } \
  53. static inline void write_##reg(u32 v, void *p) { __raw_writel(v, p + (off)); }
  54. DEFINE_SSP_REG(SSCR0, 0x00)
  55. DEFINE_SSP_REG(SSCR1, 0x04)
  56. DEFINE_SSP_REG(SSSR, 0x08)
  57. DEFINE_SSP_REG(SSITR, 0x0c)
  58. DEFINE_SSP_REG(SSDR, 0x10)
  59. DEFINE_SSP_REG(SSTO, 0x28)
  60. DEFINE_SSP_REG(SSPSP, 0x2c)
  61. #define START_STATE ((void*)0)
  62. #define RUNNING_STATE ((void*)1)
  63. #define DONE_STATE ((void*)2)
  64. #define ERROR_STATE ((void*)-1)
  65. #define QUEUE_RUNNING 0
  66. #define QUEUE_STOPPED 1
  67. struct driver_data {
  68. /* Driver model hookup */
  69. struct platform_device *pdev;
  70. /* SPI framework hookup */
  71. enum pxa_ssp_type ssp_type;
  72. struct spi_master *master;
  73. /* PXA hookup */
  74. struct pxa2xx_spi_master *master_info;
  75. /* DMA setup stuff */
  76. int rx_channel;
  77. int tx_channel;
  78. u32 *null_dma_buf;
  79. /* SSP register addresses */
  80. void *ioaddr;
  81. u32 ssdr_physical;
  82. /* SSP masks*/
  83. u32 dma_cr1;
  84. u32 int_cr1;
  85. u32 clear_sr;
  86. u32 mask_sr;
  87. /* Driver message queue */
  88. struct workqueue_struct *workqueue;
  89. struct work_struct pump_messages;
  90. spinlock_t lock;
  91. struct list_head queue;
  92. int busy;
  93. int run;
  94. /* Message Transfer pump */
  95. struct tasklet_struct pump_transfers;
  96. /* Current message transfer state info */
  97. struct spi_message* cur_msg;
  98. struct spi_transfer* cur_transfer;
  99. struct chip_data *cur_chip;
  100. size_t len;
  101. void *tx;
  102. void *tx_end;
  103. void *rx;
  104. void *rx_end;
  105. int dma_mapped;
  106. dma_addr_t rx_dma;
  107. dma_addr_t tx_dma;
  108. size_t rx_map_len;
  109. size_t tx_map_len;
  110. u8 n_bytes;
  111. u32 dma_width;
  112. int cs_change;
  113. int (*write)(struct driver_data *drv_data);
  114. int (*read)(struct driver_data *drv_data);
  115. irqreturn_t (*transfer_handler)(struct driver_data *drv_data);
  116. void (*cs_control)(u32 command);
  117. };
  118. struct chip_data {
  119. u32 cr0;
  120. u32 cr1;
  121. u32 psp;
  122. u32 timeout;
  123. u8 n_bytes;
  124. u32 dma_width;
  125. u32 dma_burst_size;
  126. u32 threshold;
  127. u32 dma_threshold;
  128. u8 enable_dma;
  129. u8 bits_per_word;
  130. u32 speed_hz;
  131. int (*write)(struct driver_data *drv_data);
  132. int (*read)(struct driver_data *drv_data);
  133. void (*cs_control)(u32 command);
  134. };
  135. static void pump_messages(struct work_struct *work);
  136. static int flush(struct driver_data *drv_data)
  137. {
  138. unsigned long limit = loops_per_jiffy << 1;
  139. void *reg = drv_data->ioaddr;
  140. do {
  141. while (read_SSSR(reg) & SSSR_RNE) {
  142. read_SSDR(reg);
  143. }
  144. } while ((read_SSSR(reg) & SSSR_BSY) && limit--);
  145. write_SSSR(SSSR_ROR, reg);
  146. return limit;
  147. }
  148. static void null_cs_control(u32 command)
  149. {
  150. }
  151. static int null_writer(struct driver_data *drv_data)
  152. {
  153. void *reg = drv_data->ioaddr;
  154. u8 n_bytes = drv_data->n_bytes;
  155. if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
  156. || (drv_data->tx == drv_data->tx_end))
  157. return 0;
  158. write_SSDR(0, reg);
  159. drv_data->tx += n_bytes;
  160. return 1;
  161. }
  162. static int null_reader(struct driver_data *drv_data)
  163. {
  164. void *reg = drv_data->ioaddr;
  165. u8 n_bytes = drv_data->n_bytes;
  166. while ((read_SSSR(reg) & SSSR_RNE)
  167. && (drv_data->rx < drv_data->rx_end)) {
  168. read_SSDR(reg);
  169. drv_data->rx += n_bytes;
  170. }
  171. return drv_data->rx == drv_data->rx_end;
  172. }
  173. static int u8_writer(struct driver_data *drv_data)
  174. {
  175. void *reg = drv_data->ioaddr;
  176. if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
  177. || (drv_data->tx == drv_data->tx_end))
  178. return 0;
  179. write_SSDR(*(u8 *)(drv_data->tx), reg);
  180. ++drv_data->tx;
  181. return 1;
  182. }
  183. static int u8_reader(struct driver_data *drv_data)
  184. {
  185. void *reg = drv_data->ioaddr;
  186. while ((read_SSSR(reg) & SSSR_RNE)
  187. && (drv_data->rx < drv_data->rx_end)) {
  188. *(u8 *)(drv_data->rx) = read_SSDR(reg);
  189. ++drv_data->rx;
  190. }
  191. return drv_data->rx == drv_data->rx_end;
  192. }
  193. static int u16_writer(struct driver_data *drv_data)
  194. {
  195. void *reg = drv_data->ioaddr;
  196. if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
  197. || (drv_data->tx == drv_data->tx_end))
  198. return 0;
  199. write_SSDR(*(u16 *)(drv_data->tx), reg);
  200. drv_data->tx += 2;
  201. return 1;
  202. }
  203. static int u16_reader(struct driver_data *drv_data)
  204. {
  205. void *reg = drv_data->ioaddr;
  206. while ((read_SSSR(reg) & SSSR_RNE)
  207. && (drv_data->rx < drv_data->rx_end)) {
  208. *(u16 *)(drv_data->rx) = read_SSDR(reg);
  209. drv_data->rx += 2;
  210. }
  211. return drv_data->rx == drv_data->rx_end;
  212. }
  213. static int u32_writer(struct driver_data *drv_data)
  214. {
  215. void *reg = drv_data->ioaddr;
  216. if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
  217. || (drv_data->tx == drv_data->tx_end))
  218. return 0;
  219. write_SSDR(*(u32 *)(drv_data->tx), reg);
  220. drv_data->tx += 4;
  221. return 1;
  222. }
  223. static int u32_reader(struct driver_data *drv_data)
  224. {
  225. void *reg = drv_data->ioaddr;
  226. while ((read_SSSR(reg) & SSSR_RNE)
  227. && (drv_data->rx < drv_data->rx_end)) {
  228. *(u32 *)(drv_data->rx) = read_SSDR(reg);
  229. drv_data->rx += 4;
  230. }
  231. return drv_data->rx == drv_data->rx_end;
  232. }
  233. static void *next_transfer(struct driver_data *drv_data)
  234. {
  235. struct spi_message *msg = drv_data->cur_msg;
  236. struct spi_transfer *trans = drv_data->cur_transfer;
  237. /* Move to next transfer */
  238. if (trans->transfer_list.next != &msg->transfers) {
  239. drv_data->cur_transfer =
  240. list_entry(trans->transfer_list.next,
  241. struct spi_transfer,
  242. transfer_list);
  243. return RUNNING_STATE;
  244. } else
  245. return DONE_STATE;
  246. }
  247. static int map_dma_buffers(struct driver_data *drv_data)
  248. {
  249. struct spi_message *msg = drv_data->cur_msg;
  250. struct device *dev = &msg->spi->dev;
  251. if (!drv_data->cur_chip->enable_dma)
  252. return 0;
  253. if (msg->is_dma_mapped)
  254. return drv_data->rx_dma && drv_data->tx_dma;
  255. if (!IS_DMA_ALIGNED(drv_data->rx) || !IS_DMA_ALIGNED(drv_data->tx))
  256. return 0;
  257. /* Modify setup if rx buffer is null */
  258. if (drv_data->rx == NULL) {
  259. *drv_data->null_dma_buf = 0;
  260. drv_data->rx = drv_data->null_dma_buf;
  261. drv_data->rx_map_len = 4;
  262. } else
  263. drv_data->rx_map_len = drv_data->len;
  264. /* Modify setup if tx buffer is null */
  265. if (drv_data->tx == NULL) {
  266. *drv_data->null_dma_buf = 0;
  267. drv_data->tx = drv_data->null_dma_buf;
  268. drv_data->tx_map_len = 4;
  269. } else
  270. drv_data->tx_map_len = drv_data->len;
  271. /* Stream map the rx buffer */
  272. drv_data->rx_dma = dma_map_single(dev, drv_data->rx,
  273. drv_data->rx_map_len,
  274. DMA_FROM_DEVICE);
  275. if (dma_mapping_error(drv_data->rx_dma))
  276. return 0;
  277. /* Stream map the tx buffer */
  278. drv_data->tx_dma = dma_map_single(dev, drv_data->tx,
  279. drv_data->tx_map_len,
  280. DMA_TO_DEVICE);
  281. if (dma_mapping_error(drv_data->tx_dma)) {
  282. dma_unmap_single(dev, drv_data->rx_dma,
  283. drv_data->rx_map_len, DMA_FROM_DEVICE);
  284. return 0;
  285. }
  286. return 1;
  287. }
  288. static void unmap_dma_buffers(struct driver_data *drv_data)
  289. {
  290. struct device *dev;
  291. if (!drv_data->dma_mapped)
  292. return;
  293. if (!drv_data->cur_msg->is_dma_mapped) {
  294. dev = &drv_data->cur_msg->spi->dev;
  295. dma_unmap_single(dev, drv_data->rx_dma,
  296. drv_data->rx_map_len, DMA_FROM_DEVICE);
  297. dma_unmap_single(dev, drv_data->tx_dma,
  298. drv_data->tx_map_len, DMA_TO_DEVICE);
  299. }
  300. drv_data->dma_mapped = 0;
  301. }
  302. /* caller already set message->status; dma and pio irqs are blocked */
  303. static void giveback(struct driver_data *drv_data)
  304. {
  305. struct spi_transfer* last_transfer;
  306. unsigned long flags;
  307. struct spi_message *msg;
  308. spin_lock_irqsave(&drv_data->lock, flags);
  309. msg = drv_data->cur_msg;
  310. drv_data->cur_msg = NULL;
  311. drv_data->cur_transfer = NULL;
  312. drv_data->cur_chip = NULL;
  313. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  314. spin_unlock_irqrestore(&drv_data->lock, flags);
  315. last_transfer = list_entry(msg->transfers.prev,
  316. struct spi_transfer,
  317. transfer_list);
  318. if (!last_transfer->cs_change)
  319. drv_data->cs_control(PXA2XX_CS_DEASSERT);
  320. msg->state = NULL;
  321. if (msg->complete)
  322. msg->complete(msg->context);
  323. }
  324. static int wait_ssp_rx_stall(void *ioaddr)
  325. {
  326. unsigned long limit = loops_per_jiffy << 1;
  327. while ((read_SSSR(ioaddr) & SSSR_BSY) && limit--)
  328. cpu_relax();
  329. return limit;
  330. }
  331. static int wait_dma_channel_stop(int channel)
  332. {
  333. unsigned long limit = loops_per_jiffy << 1;
  334. while (!(DCSR(channel) & DCSR_STOPSTATE) && limit--)
  335. cpu_relax();
  336. return limit;
  337. }
  338. void dma_error_stop(struct driver_data *drv_data, const char *msg)
  339. {
  340. void *reg = drv_data->ioaddr;
  341. /* Stop and reset */
  342. DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
  343. DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
  344. write_SSSR(drv_data->clear_sr, reg);
  345. write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
  346. if (drv_data->ssp_type != PXA25x_SSP)
  347. write_SSTO(0, reg);
  348. flush(drv_data);
  349. write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
  350. unmap_dma_buffers(drv_data);
  351. dev_err(&drv_data->pdev->dev, "%s\n", msg);
  352. drv_data->cur_msg->state = ERROR_STATE;
  353. tasklet_schedule(&drv_data->pump_transfers);
  354. }
  355. static void dma_transfer_complete(struct driver_data *drv_data)
  356. {
  357. void *reg = drv_data->ioaddr;
  358. struct spi_message *msg = drv_data->cur_msg;
  359. /* Clear and disable interrupts on SSP and DMA channels*/
  360. write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
  361. write_SSSR(drv_data->clear_sr, reg);
  362. DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
  363. DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
  364. if (wait_dma_channel_stop(drv_data->rx_channel) == 0)
  365. dev_err(&drv_data->pdev->dev,
  366. "dma_handler: dma rx channel stop failed\n");
  367. if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
  368. dev_err(&drv_data->pdev->dev,
  369. "dma_transfer: ssp rx stall failed\n");
  370. unmap_dma_buffers(drv_data);
  371. /* update the buffer pointer for the amount completed in dma */
  372. drv_data->rx += drv_data->len -
  373. (DCMD(drv_data->rx_channel) & DCMD_LENGTH);
  374. /* read trailing data from fifo, it does not matter how many
  375. * bytes are in the fifo just read until buffer is full
  376. * or fifo is empty, which ever occurs first */
  377. drv_data->read(drv_data);
  378. /* return count of what was actually read */
  379. msg->actual_length += drv_data->len -
  380. (drv_data->rx_end - drv_data->rx);
  381. /* Release chip select if requested, transfer delays are
  382. * handled in pump_transfers */
  383. if (drv_data->cs_change)
  384. drv_data->cs_control(PXA2XX_CS_DEASSERT);
  385. /* Move to next transfer */
  386. msg->state = next_transfer(drv_data);
  387. /* Schedule transfer tasklet */
  388. tasklet_schedule(&drv_data->pump_transfers);
  389. }
  390. static void dma_handler(int channel, void *data)
  391. {
  392. struct driver_data *drv_data = data;
  393. u32 irq_status = DCSR(channel) & DMA_INT_MASK;
  394. if (irq_status & DCSR_BUSERR) {
  395. if (channel == drv_data->tx_channel)
  396. dma_error_stop(drv_data,
  397. "dma_handler: "
  398. "bad bus address on tx channel");
  399. else
  400. dma_error_stop(drv_data,
  401. "dma_handler: "
  402. "bad bus address on rx channel");
  403. return;
  404. }
  405. /* PXA255x_SSP has no timeout interrupt, wait for tailing bytes */
  406. if ((channel == drv_data->tx_channel)
  407. && (irq_status & DCSR_ENDINTR)
  408. && (drv_data->ssp_type == PXA25x_SSP)) {
  409. /* Wait for rx to stall */
  410. if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
  411. dev_err(&drv_data->pdev->dev,
  412. "dma_handler: ssp rx stall failed\n");
  413. /* finish this transfer, start the next */
  414. dma_transfer_complete(drv_data);
  415. }
  416. }
  417. static irqreturn_t dma_transfer(struct driver_data *drv_data)
  418. {
  419. u32 irq_status;
  420. void *reg = drv_data->ioaddr;
  421. irq_status = read_SSSR(reg) & drv_data->mask_sr;
  422. if (irq_status & SSSR_ROR) {
  423. dma_error_stop(drv_data, "dma_transfer: fifo overrun");
  424. return IRQ_HANDLED;
  425. }
  426. /* Check for false positive timeout */
  427. if ((irq_status & SSSR_TINT)
  428. && (DCSR(drv_data->tx_channel) & DCSR_RUN)) {
  429. write_SSSR(SSSR_TINT, reg);
  430. return IRQ_HANDLED;
  431. }
  432. if (irq_status & SSSR_TINT || drv_data->rx == drv_data->rx_end) {
  433. /* Clear and disable timeout interrupt, do the rest in
  434. * dma_transfer_complete */
  435. if (drv_data->ssp_type != PXA25x_SSP)
  436. write_SSTO(0, reg);
  437. /* finish this transfer, start the next */
  438. dma_transfer_complete(drv_data);
  439. return IRQ_HANDLED;
  440. }
  441. /* Opps problem detected */
  442. return IRQ_NONE;
  443. }
  444. static void int_error_stop(struct driver_data *drv_data, const char* msg)
  445. {
  446. void *reg = drv_data->ioaddr;
  447. /* Stop and reset SSP */
  448. write_SSSR(drv_data->clear_sr, reg);
  449. write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
  450. if (drv_data->ssp_type != PXA25x_SSP)
  451. write_SSTO(0, reg);
  452. flush(drv_data);
  453. write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
  454. dev_err(&drv_data->pdev->dev, "%s\n", msg);
  455. drv_data->cur_msg->state = ERROR_STATE;
  456. tasklet_schedule(&drv_data->pump_transfers);
  457. }
  458. static void int_transfer_complete(struct driver_data *drv_data)
  459. {
  460. void *reg = drv_data->ioaddr;
  461. /* Stop SSP */
  462. write_SSSR(drv_data->clear_sr, reg);
  463. write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
  464. if (drv_data->ssp_type != PXA25x_SSP)
  465. write_SSTO(0, reg);
  466. /* Update total byte transfered return count actual bytes read */
  467. drv_data->cur_msg->actual_length += drv_data->len -
  468. (drv_data->rx_end - drv_data->rx);
  469. /* Release chip select if requested, transfer delays are
  470. * handled in pump_transfers */
  471. if (drv_data->cs_change)
  472. drv_data->cs_control(PXA2XX_CS_DEASSERT);
  473. /* Move to next transfer */
  474. drv_data->cur_msg->state = next_transfer(drv_data);
  475. /* Schedule transfer tasklet */
  476. tasklet_schedule(&drv_data->pump_transfers);
  477. }
  478. static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
  479. {
  480. void *reg = drv_data->ioaddr;
  481. u32 irq_mask = (read_SSCR1(reg) & SSCR1_TIE) ?
  482. drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
  483. u32 irq_status = read_SSSR(reg) & irq_mask;
  484. if (irq_status & SSSR_ROR) {
  485. int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
  486. return IRQ_HANDLED;
  487. }
  488. if (irq_status & SSSR_TINT) {
  489. write_SSSR(SSSR_TINT, reg);
  490. if (drv_data->read(drv_data)) {
  491. int_transfer_complete(drv_data);
  492. return IRQ_HANDLED;
  493. }
  494. }
  495. /* Drain rx fifo, Fill tx fifo and prevent overruns */
  496. do {
  497. if (drv_data->read(drv_data)) {
  498. int_transfer_complete(drv_data);
  499. return IRQ_HANDLED;
  500. }
  501. } while (drv_data->write(drv_data));
  502. if (drv_data->read(drv_data)) {
  503. int_transfer_complete(drv_data);
  504. return IRQ_HANDLED;
  505. }
  506. if (drv_data->tx == drv_data->tx_end) {
  507. write_SSCR1(read_SSCR1(reg) & ~SSCR1_TIE, reg);
  508. /* PXA25x_SSP has no timeout, read trailing bytes */
  509. if (drv_data->ssp_type == PXA25x_SSP) {
  510. if (!wait_ssp_rx_stall(reg))
  511. {
  512. int_error_stop(drv_data, "interrupt_transfer: "
  513. "rx stall failed");
  514. return IRQ_HANDLED;
  515. }
  516. if (!drv_data->read(drv_data))
  517. {
  518. int_error_stop(drv_data,
  519. "interrupt_transfer: "
  520. "trailing byte read failed");
  521. return IRQ_HANDLED;
  522. }
  523. int_transfer_complete(drv_data);
  524. }
  525. }
  526. /* We did something */
  527. return IRQ_HANDLED;
  528. }
  529. static irqreturn_t ssp_int(int irq, void *dev_id)
  530. {
  531. struct driver_data *drv_data = dev_id;
  532. void *reg = drv_data->ioaddr;
  533. if (!drv_data->cur_msg) {
  534. write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
  535. write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
  536. if (drv_data->ssp_type != PXA25x_SSP)
  537. write_SSTO(0, reg);
  538. write_SSSR(drv_data->clear_sr, reg);
  539. dev_err(&drv_data->pdev->dev, "bad message state "
  540. "in interrupt handler\n");
  541. /* Never fail */
  542. return IRQ_HANDLED;
  543. }
  544. return drv_data->transfer_handler(drv_data);
  545. }
  546. int set_dma_burst_and_threshold(struct chip_data *chip, struct spi_device *spi,
  547. u8 bits_per_word, u32 *burst_code,
  548. u32 *threshold)
  549. {
  550. struct pxa2xx_spi_chip *chip_info =
  551. (struct pxa2xx_spi_chip *)spi->controller_data;
  552. int bytes_per_word;
  553. int burst_bytes;
  554. int thresh_words;
  555. int req_burst_size;
  556. int retval = 0;
  557. /* Set the threshold (in registers) to equal the same amount of data
  558. * as represented by burst size (in bytes). The computation below
  559. * is (burst_size rounded up to nearest 8 byte, word or long word)
  560. * divided by (bytes/register); the tx threshold is the inverse of
  561. * the rx, so that there will always be enough data in the rx fifo
  562. * to satisfy a burst, and there will always be enough space in the
  563. * tx fifo to accept a burst (a tx burst will overwrite the fifo if
  564. * there is not enough space), there must always remain enough empty
  565. * space in the rx fifo for any data loaded to the tx fifo.
  566. * Whenever burst_size (in bytes) equals bits/word, the fifo threshold
  567. * will be 8, or half the fifo;
  568. * The threshold can only be set to 2, 4 or 8, but not 16, because
  569. * to burst 16 to the tx fifo, the fifo would have to be empty;
  570. * however, the minimum fifo trigger level is 1, and the tx will
  571. * request service when the fifo is at this level, with only 15 spaces.
  572. */
  573. /* find bytes/word */
  574. if (bits_per_word <= 8)
  575. bytes_per_word = 1;
  576. else if (bits_per_word <= 16)
  577. bytes_per_word = 2;
  578. else
  579. bytes_per_word = 4;
  580. /* use struct pxa2xx_spi_chip->dma_burst_size if available */
  581. if (chip_info)
  582. req_burst_size = chip_info->dma_burst_size;
  583. else {
  584. switch (chip->dma_burst_size) {
  585. default:
  586. /* if the default burst size is not set,
  587. * do it now */
  588. chip->dma_burst_size = DCMD_BURST8;
  589. case DCMD_BURST8:
  590. req_burst_size = 8;
  591. break;
  592. case DCMD_BURST16:
  593. req_burst_size = 16;
  594. break;
  595. case DCMD_BURST32:
  596. req_burst_size = 32;
  597. break;
  598. }
  599. }
  600. if (req_burst_size <= 8) {
  601. *burst_code = DCMD_BURST8;
  602. burst_bytes = 8;
  603. } else if (req_burst_size <= 16) {
  604. if (bytes_per_word == 1) {
  605. /* don't burst more than 1/2 the fifo */
  606. *burst_code = DCMD_BURST8;
  607. burst_bytes = 8;
  608. retval = 1;
  609. } else {
  610. *burst_code = DCMD_BURST16;
  611. burst_bytes = 16;
  612. }
  613. } else {
  614. if (bytes_per_word == 1) {
  615. /* don't burst more than 1/2 the fifo */
  616. *burst_code = DCMD_BURST8;
  617. burst_bytes = 8;
  618. retval = 1;
  619. } else if (bytes_per_word == 2) {
  620. /* don't burst more than 1/2 the fifo */
  621. *burst_code = DCMD_BURST16;
  622. burst_bytes = 16;
  623. retval = 1;
  624. } else {
  625. *burst_code = DCMD_BURST32;
  626. burst_bytes = 32;
  627. }
  628. }
  629. thresh_words = burst_bytes / bytes_per_word;
  630. /* thresh_words will be between 2 and 8 */
  631. *threshold = (SSCR1_RxTresh(thresh_words) & SSCR1_RFT)
  632. | (SSCR1_TxTresh(16-thresh_words) & SSCR1_TFT);
  633. return retval;
  634. }
  635. static void pump_transfers(unsigned long data)
  636. {
  637. struct driver_data *drv_data = (struct driver_data *)data;
  638. struct spi_message *message = NULL;
  639. struct spi_transfer *transfer = NULL;
  640. struct spi_transfer *previous = NULL;
  641. struct chip_data *chip = NULL;
  642. void *reg = drv_data->ioaddr;
  643. u32 clk_div = 0;
  644. u8 bits = 0;
  645. u32 speed = 0;
  646. u32 cr0;
  647. u32 cr1;
  648. u32 dma_thresh = drv_data->cur_chip->dma_threshold;
  649. u32 dma_burst = drv_data->cur_chip->dma_burst_size;
  650. /* Get current state information */
  651. message = drv_data->cur_msg;
  652. transfer = drv_data->cur_transfer;
  653. chip = drv_data->cur_chip;
  654. /* Handle for abort */
  655. if (message->state == ERROR_STATE) {
  656. message->status = -EIO;
  657. giveback(drv_data);
  658. return;
  659. }
  660. /* Handle end of message */
  661. if (message->state == DONE_STATE) {
  662. message->status = 0;
  663. giveback(drv_data);
  664. return;
  665. }
  666. /* Delay if requested at end of transfer*/
  667. if (message->state == RUNNING_STATE) {
  668. previous = list_entry(transfer->transfer_list.prev,
  669. struct spi_transfer,
  670. transfer_list);
  671. if (previous->delay_usecs)
  672. udelay(previous->delay_usecs);
  673. }
  674. /* Check transfer length */
  675. if (transfer->len > 8191)
  676. {
  677. dev_warn(&drv_data->pdev->dev, "pump_transfers: transfer "
  678. "length greater than 8191\n");
  679. message->status = -EINVAL;
  680. giveback(drv_data);
  681. return;
  682. }
  683. /* Setup the transfer state based on the type of transfer */
  684. if (flush(drv_data) == 0) {
  685. dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
  686. message->status = -EIO;
  687. giveback(drv_data);
  688. return;
  689. }
  690. drv_data->n_bytes = chip->n_bytes;
  691. drv_data->dma_width = chip->dma_width;
  692. drv_data->cs_control = chip->cs_control;
  693. drv_data->tx = (void *)transfer->tx_buf;
  694. drv_data->tx_end = drv_data->tx + transfer->len;
  695. drv_data->rx = transfer->rx_buf;
  696. drv_data->rx_end = drv_data->rx + transfer->len;
  697. drv_data->rx_dma = transfer->rx_dma;
  698. drv_data->tx_dma = transfer->tx_dma;
  699. drv_data->len = transfer->len & DCMD_LENGTH;
  700. drv_data->write = drv_data->tx ? chip->write : null_writer;
  701. drv_data->read = drv_data->rx ? chip->read : null_reader;
  702. drv_data->cs_change = transfer->cs_change;
  703. /* Change speed and bit per word on a per transfer */
  704. cr0 = chip->cr0;
  705. if (transfer->speed_hz || transfer->bits_per_word) {
  706. bits = chip->bits_per_word;
  707. speed = chip->speed_hz;
  708. if (transfer->speed_hz)
  709. speed = transfer->speed_hz;
  710. if (transfer->bits_per_word)
  711. bits = transfer->bits_per_word;
  712. if (reg == SSP1_VIRT)
  713. clk_div = SSP1_SerClkDiv(speed);
  714. else if (reg == SSP2_VIRT)
  715. clk_div = SSP2_SerClkDiv(speed);
  716. else if (reg == SSP3_VIRT)
  717. clk_div = SSP3_SerClkDiv(speed);
  718. if (bits <= 8) {
  719. drv_data->n_bytes = 1;
  720. drv_data->dma_width = DCMD_WIDTH1;
  721. drv_data->read = drv_data->read != null_reader ?
  722. u8_reader : null_reader;
  723. drv_data->write = drv_data->write != null_writer ?
  724. u8_writer : null_writer;
  725. } else if (bits <= 16) {
  726. drv_data->n_bytes = 2;
  727. drv_data->dma_width = DCMD_WIDTH2;
  728. drv_data->read = drv_data->read != null_reader ?
  729. u16_reader : null_reader;
  730. drv_data->write = drv_data->write != null_writer ?
  731. u16_writer : null_writer;
  732. } else if (bits <= 32) {
  733. drv_data->n_bytes = 4;
  734. drv_data->dma_width = DCMD_WIDTH4;
  735. drv_data->read = drv_data->read != null_reader ?
  736. u32_reader : null_reader;
  737. drv_data->write = drv_data->write != null_writer ?
  738. u32_writer : null_writer;
  739. }
  740. /* if bits/word is changed in dma mode, then must check the
  741. * thresholds and burst also */
  742. if (chip->enable_dma) {
  743. if (set_dma_burst_and_threshold(chip, message->spi,
  744. bits, &dma_burst,
  745. &dma_thresh))
  746. if (printk_ratelimit())
  747. dev_warn(&message->spi->dev,
  748. "pump_transfer: "
  749. "DMA burst size reduced to "
  750. "match bits_per_word\n");
  751. }
  752. cr0 = clk_div
  753. | SSCR0_Motorola
  754. | SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
  755. | SSCR0_SSE
  756. | (bits > 16 ? SSCR0_EDSS : 0);
  757. }
  758. message->state = RUNNING_STATE;
  759. /* Try to map dma buffer and do a dma transfer if successful */
  760. if ((drv_data->dma_mapped = map_dma_buffers(drv_data))) {
  761. /* Ensure we have the correct interrupt handler */
  762. drv_data->transfer_handler = dma_transfer;
  763. /* Setup rx DMA Channel */
  764. DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
  765. DSADR(drv_data->rx_channel) = drv_data->ssdr_physical;
  766. DTADR(drv_data->rx_channel) = drv_data->rx_dma;
  767. if (drv_data->rx == drv_data->null_dma_buf)
  768. /* No target address increment */
  769. DCMD(drv_data->rx_channel) = DCMD_FLOWSRC
  770. | drv_data->dma_width
  771. | dma_burst
  772. | drv_data->len;
  773. else
  774. DCMD(drv_data->rx_channel) = DCMD_INCTRGADDR
  775. | DCMD_FLOWSRC
  776. | drv_data->dma_width
  777. | dma_burst
  778. | drv_data->len;
  779. /* Setup tx DMA Channel */
  780. DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
  781. DSADR(drv_data->tx_channel) = drv_data->tx_dma;
  782. DTADR(drv_data->tx_channel) = drv_data->ssdr_physical;
  783. if (drv_data->tx == drv_data->null_dma_buf)
  784. /* No source address increment */
  785. DCMD(drv_data->tx_channel) = DCMD_FLOWTRG
  786. | drv_data->dma_width
  787. | dma_burst
  788. | drv_data->len;
  789. else
  790. DCMD(drv_data->tx_channel) = DCMD_INCSRCADDR
  791. | DCMD_FLOWTRG
  792. | drv_data->dma_width
  793. | dma_burst
  794. | drv_data->len;
  795. /* Enable dma end irqs on SSP to detect end of transfer */
  796. if (drv_data->ssp_type == PXA25x_SSP)
  797. DCMD(drv_data->tx_channel) |= DCMD_ENDIRQEN;
  798. /* Fix me, need to handle cs polarity */
  799. drv_data->cs_control(PXA2XX_CS_ASSERT);
  800. /* Clear status and start DMA engine */
  801. cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
  802. write_SSSR(drv_data->clear_sr, reg);
  803. DCSR(drv_data->rx_channel) |= DCSR_RUN;
  804. DCSR(drv_data->tx_channel) |= DCSR_RUN;
  805. } else {
  806. /* Ensure we have the correct interrupt handler */
  807. drv_data->transfer_handler = interrupt_transfer;
  808. /* Fix me, need to handle cs polarity */
  809. drv_data->cs_control(PXA2XX_CS_ASSERT);
  810. /* Clear status */
  811. cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
  812. write_SSSR(drv_data->clear_sr, reg);
  813. }
  814. /* see if we need to reload the config registers */
  815. if ((read_SSCR0(reg) != cr0)
  816. || (read_SSCR1(reg) & SSCR1_CHANGE_MASK) !=
  817. (cr1 & SSCR1_CHANGE_MASK)) {
  818. write_SSCR0(cr0 & ~SSCR0_SSE, reg);
  819. if (drv_data->ssp_type != PXA25x_SSP)
  820. write_SSTO(chip->timeout, reg);
  821. write_SSCR1(cr1, reg);
  822. write_SSCR0(cr0, reg);
  823. } else {
  824. if (drv_data->ssp_type != PXA25x_SSP)
  825. write_SSTO(chip->timeout, reg);
  826. write_SSCR1(cr1, reg);
  827. }
  828. }
  829. static void pump_messages(struct work_struct *work)
  830. {
  831. struct driver_data *drv_data =
  832. container_of(work, struct driver_data, pump_messages);
  833. unsigned long flags;
  834. /* Lock queue and check for queue work */
  835. spin_lock_irqsave(&drv_data->lock, flags);
  836. if (list_empty(&drv_data->queue) || drv_data->run == QUEUE_STOPPED) {
  837. drv_data->busy = 0;
  838. spin_unlock_irqrestore(&drv_data->lock, flags);
  839. return;
  840. }
  841. /* Make sure we are not already running a message */
  842. if (drv_data->cur_msg) {
  843. spin_unlock_irqrestore(&drv_data->lock, flags);
  844. return;
  845. }
  846. /* Extract head of queue */
  847. drv_data->cur_msg = list_entry(drv_data->queue.next,
  848. struct spi_message, queue);
  849. list_del_init(&drv_data->cur_msg->queue);
  850. /* Initial message state*/
  851. drv_data->cur_msg->state = START_STATE;
  852. drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
  853. struct spi_transfer,
  854. transfer_list);
  855. /* prepare to setup the SSP, in pump_transfers, using the per
  856. * chip configuration */
  857. drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
  858. /* Mark as busy and launch transfers */
  859. tasklet_schedule(&drv_data->pump_transfers);
  860. drv_data->busy = 1;
  861. spin_unlock_irqrestore(&drv_data->lock, flags);
  862. }
  863. static int transfer(struct spi_device *spi, struct spi_message *msg)
  864. {
  865. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  866. unsigned long flags;
  867. spin_lock_irqsave(&drv_data->lock, flags);
  868. if (drv_data->run == QUEUE_STOPPED) {
  869. spin_unlock_irqrestore(&drv_data->lock, flags);
  870. return -ESHUTDOWN;
  871. }
  872. msg->actual_length = 0;
  873. msg->status = -EINPROGRESS;
  874. msg->state = START_STATE;
  875. list_add_tail(&msg->queue, &drv_data->queue);
  876. if (drv_data->run == QUEUE_RUNNING && !drv_data->busy)
  877. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  878. spin_unlock_irqrestore(&drv_data->lock, flags);
  879. return 0;
  880. }
  881. /* the spi->mode bits understood by this driver: */
  882. #define MODEBITS (SPI_CPOL | SPI_CPHA)
  883. static int setup(struct spi_device *spi)
  884. {
  885. struct pxa2xx_spi_chip *chip_info = NULL;
  886. struct chip_data *chip;
  887. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  888. unsigned int clk_div;
  889. if (!spi->bits_per_word)
  890. spi->bits_per_word = 8;
  891. if (drv_data->ssp_type != PXA25x_SSP
  892. && (spi->bits_per_word < 4 || spi->bits_per_word > 32)) {
  893. dev_err(&spi->dev, "failed setup: ssp_type=%d, bits/wrd=%d "
  894. "b/w not 4-32 for type non-PXA25x_SSP\n",
  895. drv_data->ssp_type, spi->bits_per_word);
  896. return -EINVAL;
  897. }
  898. else if (drv_data->ssp_type == PXA25x_SSP
  899. && (spi->bits_per_word < 4
  900. || spi->bits_per_word > 16)) {
  901. dev_err(&spi->dev, "failed setup: ssp_type=%d, bits/wrd=%d "
  902. "b/w not 4-16 for type PXA25x_SSP\n",
  903. drv_data->ssp_type, spi->bits_per_word);
  904. return -EINVAL;
  905. }
  906. if (spi->mode & ~MODEBITS) {
  907. dev_dbg(&spi->dev, "setup: unsupported mode bits %x\n",
  908. spi->mode & ~MODEBITS);
  909. return -EINVAL;
  910. }
  911. /* Only alloc on first setup */
  912. chip = spi_get_ctldata(spi);
  913. if (!chip) {
  914. chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
  915. if (!chip) {
  916. dev_err(&spi->dev,
  917. "failed setup: can't allocate chip data\n");
  918. return -ENOMEM;
  919. }
  920. chip->cs_control = null_cs_control;
  921. chip->enable_dma = 0;
  922. chip->timeout = 1000;
  923. chip->threshold = SSCR1_RxTresh(1) | SSCR1_TxTresh(1);
  924. chip->dma_burst_size = drv_data->master_info->enable_dma ?
  925. DCMD_BURST8 : 0;
  926. }
  927. /* protocol drivers may change the chip settings, so...
  928. * if chip_info exists, use it */
  929. chip_info = spi->controller_data;
  930. /* chip_info isn't always needed */
  931. chip->cr1 = 0;
  932. if (chip_info) {
  933. if (chip_info->cs_control)
  934. chip->cs_control = chip_info->cs_control;
  935. chip->timeout = chip_info->timeout;
  936. chip->threshold = (SSCR1_RxTresh(chip_info->rx_threshold) &
  937. SSCR1_RFT) |
  938. (SSCR1_TxTresh(chip_info->tx_threshold) &
  939. SSCR1_TFT);
  940. chip->enable_dma = chip_info->dma_burst_size != 0
  941. && drv_data->master_info->enable_dma;
  942. chip->dma_threshold = 0;
  943. if (chip_info->enable_loopback)
  944. chip->cr1 = SSCR1_LBM;
  945. }
  946. /* set dma burst and threshold outside of chip_info path so that if
  947. * chip_info goes away after setting chip->enable_dma, the
  948. * burst and threshold can still respond to changes in bits_per_word */
  949. if (chip->enable_dma) {
  950. /* set up legal burst and threshold for dma */
  951. if (set_dma_burst_and_threshold(chip, spi, spi->bits_per_word,
  952. &chip->dma_burst_size,
  953. &chip->dma_threshold)) {
  954. dev_warn(&spi->dev, "in setup: DMA burst size reduced "
  955. "to match bits_per_word\n");
  956. }
  957. }
  958. if (drv_data->ioaddr == SSP1_VIRT)
  959. clk_div = SSP1_SerClkDiv(spi->max_speed_hz);
  960. else if (drv_data->ioaddr == SSP2_VIRT)
  961. clk_div = SSP2_SerClkDiv(spi->max_speed_hz);
  962. else if (drv_data->ioaddr == SSP3_VIRT)
  963. clk_div = SSP3_SerClkDiv(spi->max_speed_hz);
  964. else
  965. {
  966. dev_err(&spi->dev, "failed setup: unknown IO address=0x%p\n",
  967. drv_data->ioaddr);
  968. return -ENODEV;
  969. }
  970. chip->speed_hz = spi->max_speed_hz;
  971. chip->cr0 = clk_div
  972. | SSCR0_Motorola
  973. | SSCR0_DataSize(spi->bits_per_word > 16 ?
  974. spi->bits_per_word - 16 : spi->bits_per_word)
  975. | SSCR0_SSE
  976. | (spi->bits_per_word > 16 ? SSCR0_EDSS : 0);
  977. chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
  978. chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
  979. | (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
  980. /* NOTE: PXA25x_SSP _could_ use external clocking ... */
  981. if (drv_data->ssp_type != PXA25x_SSP)
  982. dev_dbg(&spi->dev, "%d bits/word, %d Hz, mode %d\n",
  983. spi->bits_per_word,
  984. (CLOCK_SPEED_HZ)
  985. / (1 + ((chip->cr0 & SSCR0_SCR) >> 8)),
  986. spi->mode & 0x3);
  987. else
  988. dev_dbg(&spi->dev, "%d bits/word, %d Hz, mode %d\n",
  989. spi->bits_per_word,
  990. (CLOCK_SPEED_HZ/2)
  991. / (1 + ((chip->cr0 & SSCR0_SCR) >> 8)),
  992. spi->mode & 0x3);
  993. if (spi->bits_per_word <= 8) {
  994. chip->n_bytes = 1;
  995. chip->dma_width = DCMD_WIDTH1;
  996. chip->read = u8_reader;
  997. chip->write = u8_writer;
  998. } else if (spi->bits_per_word <= 16) {
  999. chip->n_bytes = 2;
  1000. chip->dma_width = DCMD_WIDTH2;
  1001. chip->read = u16_reader;
  1002. chip->write = u16_writer;
  1003. } else if (spi->bits_per_word <= 32) {
  1004. chip->cr0 |= SSCR0_EDSS;
  1005. chip->n_bytes = 4;
  1006. chip->dma_width = DCMD_WIDTH4;
  1007. chip->read = u32_reader;
  1008. chip->write = u32_writer;
  1009. } else {
  1010. dev_err(&spi->dev, "invalid wordsize\n");
  1011. return -ENODEV;
  1012. }
  1013. chip->bits_per_word = spi->bits_per_word;
  1014. spi_set_ctldata(spi, chip);
  1015. return 0;
  1016. }
  1017. static void cleanup(struct spi_device *spi)
  1018. {
  1019. struct chip_data *chip = spi_get_ctldata(spi);
  1020. kfree(chip);
  1021. }
  1022. static int __init init_queue(struct driver_data *drv_data)
  1023. {
  1024. INIT_LIST_HEAD(&drv_data->queue);
  1025. spin_lock_init(&drv_data->lock);
  1026. drv_data->run = QUEUE_STOPPED;
  1027. drv_data->busy = 0;
  1028. tasklet_init(&drv_data->pump_transfers,
  1029. pump_transfers, (unsigned long)drv_data);
  1030. INIT_WORK(&drv_data->pump_messages, pump_messages);
  1031. drv_data->workqueue = create_singlethread_workqueue(
  1032. drv_data->master->dev.parent->bus_id);
  1033. if (drv_data->workqueue == NULL)
  1034. return -EBUSY;
  1035. return 0;
  1036. }
  1037. static int start_queue(struct driver_data *drv_data)
  1038. {
  1039. unsigned long flags;
  1040. spin_lock_irqsave(&drv_data->lock, flags);
  1041. if (drv_data->run == QUEUE_RUNNING || drv_data->busy) {
  1042. spin_unlock_irqrestore(&drv_data->lock, flags);
  1043. return -EBUSY;
  1044. }
  1045. drv_data->run = QUEUE_RUNNING;
  1046. drv_data->cur_msg = NULL;
  1047. drv_data->cur_transfer = NULL;
  1048. drv_data->cur_chip = NULL;
  1049. spin_unlock_irqrestore(&drv_data->lock, flags);
  1050. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  1051. return 0;
  1052. }
  1053. static int stop_queue(struct driver_data *drv_data)
  1054. {
  1055. unsigned long flags;
  1056. unsigned limit = 500;
  1057. int status = 0;
  1058. spin_lock_irqsave(&drv_data->lock, flags);
  1059. /* This is a bit lame, but is optimized for the common execution path.
  1060. * A wait_queue on the drv_data->busy could be used, but then the common
  1061. * execution path (pump_messages) would be required to call wake_up or
  1062. * friends on every SPI message. Do this instead */
  1063. drv_data->run = QUEUE_STOPPED;
  1064. while (!list_empty(&drv_data->queue) && drv_data->busy && limit--) {
  1065. spin_unlock_irqrestore(&drv_data->lock, flags);
  1066. msleep(10);
  1067. spin_lock_irqsave(&drv_data->lock, flags);
  1068. }
  1069. if (!list_empty(&drv_data->queue) || drv_data->busy)
  1070. status = -EBUSY;
  1071. spin_unlock_irqrestore(&drv_data->lock, flags);
  1072. return status;
  1073. }
  1074. static int destroy_queue(struct driver_data *drv_data)
  1075. {
  1076. int status;
  1077. status = stop_queue(drv_data);
  1078. /* we are unloading the module or failing to load (only two calls
  1079. * to this routine), and neither call can handle a return value.
  1080. * However, destroy_workqueue calls flush_workqueue, and that will
  1081. * block until all work is done. If the reason that stop_queue
  1082. * timed out is that the work will never finish, then it does no
  1083. * good to call destroy_workqueue, so return anyway. */
  1084. if (status != 0)
  1085. return status;
  1086. destroy_workqueue(drv_data->workqueue);
  1087. return 0;
  1088. }
  1089. static int __init pxa2xx_spi_probe(struct platform_device *pdev)
  1090. {
  1091. struct device *dev = &pdev->dev;
  1092. struct pxa2xx_spi_master *platform_info;
  1093. struct spi_master *master;
  1094. struct driver_data *drv_data = 0;
  1095. struct resource *memory_resource;
  1096. int irq;
  1097. int status = 0;
  1098. platform_info = dev->platform_data;
  1099. if (platform_info->ssp_type == SSP_UNDEFINED) {
  1100. dev_err(&pdev->dev, "undefined SSP\n");
  1101. return -ENODEV;
  1102. }
  1103. /* Allocate master with space for drv_data and null dma buffer */
  1104. master = spi_alloc_master(dev, sizeof(struct driver_data) + 16);
  1105. if (!master) {
  1106. dev_err(&pdev->dev, "can not alloc spi_master\n");
  1107. return -ENOMEM;
  1108. }
  1109. drv_data = spi_master_get_devdata(master);
  1110. drv_data->master = master;
  1111. drv_data->master_info = platform_info;
  1112. drv_data->pdev = pdev;
  1113. master->bus_num = pdev->id;
  1114. master->num_chipselect = platform_info->num_chipselect;
  1115. master->cleanup = cleanup;
  1116. master->setup = setup;
  1117. master->transfer = transfer;
  1118. drv_data->ssp_type = platform_info->ssp_type;
  1119. drv_data->null_dma_buf = (u32 *)ALIGN((u32)(drv_data +
  1120. sizeof(struct driver_data)), 8);
  1121. /* Setup register addresses */
  1122. memory_resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1123. if (!memory_resource) {
  1124. dev_err(&pdev->dev, "memory resources not defined\n");
  1125. status = -ENODEV;
  1126. goto out_error_master_alloc;
  1127. }
  1128. drv_data->ioaddr = (void *)io_p2v((unsigned long)(memory_resource->start));
  1129. drv_data->ssdr_physical = memory_resource->start + 0x00000010;
  1130. if (platform_info->ssp_type == PXA25x_SSP) {
  1131. drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
  1132. drv_data->dma_cr1 = 0;
  1133. drv_data->clear_sr = SSSR_ROR;
  1134. drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
  1135. } else {
  1136. drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
  1137. drv_data->dma_cr1 = SSCR1_TSRE | SSCR1_RSRE | SSCR1_TINTE;
  1138. drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
  1139. drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
  1140. }
  1141. /* Attach to IRQ */
  1142. irq = platform_get_irq(pdev, 0);
  1143. if (irq < 0) {
  1144. dev_err(&pdev->dev, "irq resource not defined\n");
  1145. status = -ENODEV;
  1146. goto out_error_master_alloc;
  1147. }
  1148. status = request_irq(irq, ssp_int, 0, dev->bus_id, drv_data);
  1149. if (status < 0) {
  1150. dev_err(&pdev->dev, "can not get IRQ\n");
  1151. goto out_error_master_alloc;
  1152. }
  1153. /* Setup DMA if requested */
  1154. drv_data->tx_channel = -1;
  1155. drv_data->rx_channel = -1;
  1156. if (platform_info->enable_dma) {
  1157. /* Get two DMA channels (rx and tx) */
  1158. drv_data->rx_channel = pxa_request_dma("pxa2xx_spi_ssp_rx",
  1159. DMA_PRIO_HIGH,
  1160. dma_handler,
  1161. drv_data);
  1162. if (drv_data->rx_channel < 0) {
  1163. dev_err(dev, "problem (%d) requesting rx channel\n",
  1164. drv_data->rx_channel);
  1165. status = -ENODEV;
  1166. goto out_error_irq_alloc;
  1167. }
  1168. drv_data->tx_channel = pxa_request_dma("pxa2xx_spi_ssp_tx",
  1169. DMA_PRIO_MEDIUM,
  1170. dma_handler,
  1171. drv_data);
  1172. if (drv_data->tx_channel < 0) {
  1173. dev_err(dev, "problem (%d) requesting tx channel\n",
  1174. drv_data->tx_channel);
  1175. status = -ENODEV;
  1176. goto out_error_dma_alloc;
  1177. }
  1178. if (drv_data->ioaddr == SSP1_VIRT) {
  1179. DRCMRRXSSDR = DRCMR_MAPVLD
  1180. | drv_data->rx_channel;
  1181. DRCMRTXSSDR = DRCMR_MAPVLD
  1182. | drv_data->tx_channel;
  1183. } else if (drv_data->ioaddr == SSP2_VIRT) {
  1184. DRCMRRXSS2DR = DRCMR_MAPVLD
  1185. | drv_data->rx_channel;
  1186. DRCMRTXSS2DR = DRCMR_MAPVLD
  1187. | drv_data->tx_channel;
  1188. } else if (drv_data->ioaddr == SSP3_VIRT) {
  1189. DRCMRRXSS3DR = DRCMR_MAPVLD
  1190. | drv_data->rx_channel;
  1191. DRCMRTXSS3DR = DRCMR_MAPVLD
  1192. | drv_data->tx_channel;
  1193. } else {
  1194. dev_err(dev, "bad SSP type\n");
  1195. goto out_error_dma_alloc;
  1196. }
  1197. }
  1198. /* Enable SOC clock */
  1199. pxa_set_cken(platform_info->clock_enable, 1);
  1200. /* Load default SSP configuration */
  1201. write_SSCR0(0, drv_data->ioaddr);
  1202. write_SSCR1(SSCR1_RxTresh(4) | SSCR1_TxTresh(12), drv_data->ioaddr);
  1203. write_SSCR0(SSCR0_SerClkDiv(2)
  1204. | SSCR0_Motorola
  1205. | SSCR0_DataSize(8),
  1206. drv_data->ioaddr);
  1207. if (drv_data->ssp_type != PXA25x_SSP)
  1208. write_SSTO(0, drv_data->ioaddr);
  1209. write_SSPSP(0, drv_data->ioaddr);
  1210. /* Initial and start queue */
  1211. status = init_queue(drv_data);
  1212. if (status != 0) {
  1213. dev_err(&pdev->dev, "problem initializing queue\n");
  1214. goto out_error_clock_enabled;
  1215. }
  1216. status = start_queue(drv_data);
  1217. if (status != 0) {
  1218. dev_err(&pdev->dev, "problem starting queue\n");
  1219. goto out_error_clock_enabled;
  1220. }
  1221. /* Register with the SPI framework */
  1222. platform_set_drvdata(pdev, drv_data);
  1223. status = spi_register_master(master);
  1224. if (status != 0) {
  1225. dev_err(&pdev->dev, "problem registering spi master\n");
  1226. goto out_error_queue_alloc;
  1227. }
  1228. return status;
  1229. out_error_queue_alloc:
  1230. destroy_queue(drv_data);
  1231. out_error_clock_enabled:
  1232. pxa_set_cken(platform_info->clock_enable, 0);
  1233. out_error_dma_alloc:
  1234. if (drv_data->tx_channel != -1)
  1235. pxa_free_dma(drv_data->tx_channel);
  1236. if (drv_data->rx_channel != -1)
  1237. pxa_free_dma(drv_data->rx_channel);
  1238. out_error_irq_alloc:
  1239. free_irq(irq, drv_data);
  1240. out_error_master_alloc:
  1241. spi_master_put(master);
  1242. return status;
  1243. }
  1244. static int pxa2xx_spi_remove(struct platform_device *pdev)
  1245. {
  1246. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1247. int irq;
  1248. int status = 0;
  1249. if (!drv_data)
  1250. return 0;
  1251. /* Remove the queue */
  1252. status = destroy_queue(drv_data);
  1253. if (status != 0)
  1254. /* the kernel does not check the return status of this
  1255. * this routine (mod->exit, within the kernel). Therefore
  1256. * nothing is gained by returning from here, the module is
  1257. * going away regardless, and we should not leave any more
  1258. * resources allocated than necessary. We cannot free the
  1259. * message memory in drv_data->queue, but we can release the
  1260. * resources below. I think the kernel should honor -EBUSY
  1261. * returns but... */
  1262. dev_err(&pdev->dev, "pxa2xx_spi_remove: workqueue will not "
  1263. "complete, message memory not freed\n");
  1264. /* Disable the SSP at the peripheral and SOC level */
  1265. write_SSCR0(0, drv_data->ioaddr);
  1266. pxa_set_cken(drv_data->master_info->clock_enable, 0);
  1267. /* Release DMA */
  1268. if (drv_data->master_info->enable_dma) {
  1269. if (drv_data->ioaddr == SSP1_VIRT) {
  1270. DRCMRRXSSDR = 0;
  1271. DRCMRTXSSDR = 0;
  1272. } else if (drv_data->ioaddr == SSP2_VIRT) {
  1273. DRCMRRXSS2DR = 0;
  1274. DRCMRTXSS2DR = 0;
  1275. } else if (drv_data->ioaddr == SSP3_VIRT) {
  1276. DRCMRRXSS3DR = 0;
  1277. DRCMRTXSS3DR = 0;
  1278. }
  1279. pxa_free_dma(drv_data->tx_channel);
  1280. pxa_free_dma(drv_data->rx_channel);
  1281. }
  1282. /* Release IRQ */
  1283. irq = platform_get_irq(pdev, 0);
  1284. if (irq >= 0)
  1285. free_irq(irq, drv_data);
  1286. /* Disconnect from the SPI framework */
  1287. spi_unregister_master(drv_data->master);
  1288. /* Prevent double remove */
  1289. platform_set_drvdata(pdev, NULL);
  1290. return 0;
  1291. }
  1292. static void pxa2xx_spi_shutdown(struct platform_device *pdev)
  1293. {
  1294. int status = 0;
  1295. if ((status = pxa2xx_spi_remove(pdev)) != 0)
  1296. dev_err(&pdev->dev, "shutdown failed with %d\n", status);
  1297. }
  1298. #ifdef CONFIG_PM
  1299. static int suspend_devices(struct device *dev, void *pm_message)
  1300. {
  1301. pm_message_t *state = pm_message;
  1302. if (dev->power.power_state.event != state->event) {
  1303. dev_warn(dev, "pm state does not match request\n");
  1304. return -1;
  1305. }
  1306. return 0;
  1307. }
  1308. static int pxa2xx_spi_suspend(struct platform_device *pdev, pm_message_t state)
  1309. {
  1310. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1311. int status = 0;
  1312. /* Check all childern for current power state */
  1313. if (device_for_each_child(&pdev->dev, &state, suspend_devices) != 0) {
  1314. dev_warn(&pdev->dev, "suspend aborted\n");
  1315. return -1;
  1316. }
  1317. status = stop_queue(drv_data);
  1318. if (status != 0)
  1319. return status;
  1320. write_SSCR0(0, drv_data->ioaddr);
  1321. pxa_set_cken(drv_data->master_info->clock_enable, 0);
  1322. return 0;
  1323. }
  1324. static int pxa2xx_spi_resume(struct platform_device *pdev)
  1325. {
  1326. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1327. int status = 0;
  1328. /* Enable the SSP clock */
  1329. pxa_set_cken(drv_data->master_info->clock_enable, 1);
  1330. /* Start the queue running */
  1331. status = start_queue(drv_data);
  1332. if (status != 0) {
  1333. dev_err(&pdev->dev, "problem starting queue (%d)\n", status);
  1334. return status;
  1335. }
  1336. return 0;
  1337. }
  1338. #else
  1339. #define pxa2xx_spi_suspend NULL
  1340. #define pxa2xx_spi_resume NULL
  1341. #endif /* CONFIG_PM */
  1342. static struct platform_driver driver = {
  1343. .driver = {
  1344. .name = "pxa2xx-spi",
  1345. .bus = &platform_bus_type,
  1346. .owner = THIS_MODULE,
  1347. },
  1348. .remove = pxa2xx_spi_remove,
  1349. .shutdown = pxa2xx_spi_shutdown,
  1350. .suspend = pxa2xx_spi_suspend,
  1351. .resume = pxa2xx_spi_resume,
  1352. };
  1353. static int __init pxa2xx_spi_init(void)
  1354. {
  1355. return platform_driver_probe(&driver, pxa2xx_spi_probe);
  1356. }
  1357. module_init(pxa2xx_spi_init);
  1358. static void __exit pxa2xx_spi_exit(void)
  1359. {
  1360. platform_driver_unregister(&driver);
  1361. }
  1362. module_exit(pxa2xx_spi_exit);