aic94xx_task.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657
  1. /*
  2. * Aic94xx SAS/SATA Tasks
  3. *
  4. * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
  5. * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
  6. *
  7. * This file is licensed under GPLv2.
  8. *
  9. * This file is part of the aic94xx driver.
  10. *
  11. * The aic94xx driver is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU General Public License as
  13. * published by the Free Software Foundation; version 2 of the
  14. * License.
  15. *
  16. * The aic94xx driver is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU General Public License
  22. * along with the aic94xx driver; if not, write to the Free Software
  23. * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  24. *
  25. */
  26. #include <linux/spinlock.h>
  27. #include "aic94xx.h"
  28. #include "aic94xx_sas.h"
  29. #include "aic94xx_hwi.h"
  30. static void asd_unbuild_ata_ascb(struct asd_ascb *a);
  31. static void asd_unbuild_smp_ascb(struct asd_ascb *a);
  32. static void asd_unbuild_ssp_ascb(struct asd_ascb *a);
  33. static inline void asd_can_dequeue(struct asd_ha_struct *asd_ha, int num)
  34. {
  35. unsigned long flags;
  36. spin_lock_irqsave(&asd_ha->seq.pend_q_lock, flags);
  37. asd_ha->seq.can_queue += num;
  38. spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags);
  39. }
  40. /* PCI_DMA_... to our direction translation.
  41. */
  42. static const u8 data_dir_flags[] = {
  43. [PCI_DMA_BIDIRECTIONAL] = DATA_DIR_BYRECIPIENT, /* UNSPECIFIED */
  44. [PCI_DMA_TODEVICE] = DATA_DIR_OUT, /* OUTBOUND */
  45. [PCI_DMA_FROMDEVICE] = DATA_DIR_IN, /* INBOUND */
  46. [PCI_DMA_NONE] = DATA_DIR_NONE, /* NO TRANSFER */
  47. };
  48. static inline int asd_map_scatterlist(struct sas_task *task,
  49. struct sg_el *sg_arr,
  50. gfp_t gfp_flags)
  51. {
  52. struct asd_ascb *ascb = task->lldd_task;
  53. struct asd_ha_struct *asd_ha = ascb->ha;
  54. struct scatterlist *sc;
  55. int num_sg, res;
  56. if (task->data_dir == PCI_DMA_NONE)
  57. return 0;
  58. if (task->num_scatter == 0) {
  59. void *p = task->scatter;
  60. dma_addr_t dma = pci_map_single(asd_ha->pcidev, p,
  61. task->total_xfer_len,
  62. task->data_dir);
  63. sg_arr[0].bus_addr = cpu_to_le64((u64)dma);
  64. sg_arr[0].size = cpu_to_le32(task->total_xfer_len);
  65. sg_arr[0].flags |= ASD_SG_EL_LIST_EOL;
  66. return 0;
  67. }
  68. /* STP tasks come from libata which has already mapped
  69. * the SG list */
  70. if (sas_protocol_ata(task->task_proto))
  71. num_sg = task->num_scatter;
  72. else
  73. num_sg = pci_map_sg(asd_ha->pcidev, task->scatter,
  74. task->num_scatter, task->data_dir);
  75. if (num_sg == 0)
  76. return -ENOMEM;
  77. if (num_sg > 3) {
  78. int i;
  79. ascb->sg_arr = asd_alloc_coherent(asd_ha,
  80. num_sg*sizeof(struct sg_el),
  81. gfp_flags);
  82. if (!ascb->sg_arr) {
  83. res = -ENOMEM;
  84. goto err_unmap;
  85. }
  86. for_each_sg(task->scatter, sc, num_sg, i) {
  87. struct sg_el *sg =
  88. &((struct sg_el *)ascb->sg_arr->vaddr)[i];
  89. sg->bus_addr = cpu_to_le64((u64)sg_dma_address(sc));
  90. sg->size = cpu_to_le32((u32)sg_dma_len(sc));
  91. if (i == num_sg-1)
  92. sg->flags |= ASD_SG_EL_LIST_EOL;
  93. }
  94. for_each_sg(task->scatter, sc, 2, i) {
  95. sg_arr[i].bus_addr =
  96. cpu_to_le64((u64)sg_dma_address(sc));
  97. sg_arr[i].size = cpu_to_le32((u32)sg_dma_len(sc));
  98. }
  99. sg_arr[1].next_sg_offs = 2 * sizeof(*sg_arr);
  100. sg_arr[1].flags |= ASD_SG_EL_LIST_EOS;
  101. memset(&sg_arr[2], 0, sizeof(*sg_arr));
  102. sg_arr[2].bus_addr=cpu_to_le64((u64)ascb->sg_arr->dma_handle);
  103. } else {
  104. int i;
  105. for_each_sg(task->scatter, sc, num_sg, i) {
  106. sg_arr[i].bus_addr =
  107. cpu_to_le64((u64)sg_dma_address(sc));
  108. sg_arr[i].size = cpu_to_le32((u32)sg_dma_len(sc));
  109. }
  110. sg_arr[i-1].flags |= ASD_SG_EL_LIST_EOL;
  111. }
  112. return 0;
  113. err_unmap:
  114. if (sas_protocol_ata(task->task_proto))
  115. pci_unmap_sg(asd_ha->pcidev, task->scatter, task->num_scatter,
  116. task->data_dir);
  117. return res;
  118. }
  119. static inline void asd_unmap_scatterlist(struct asd_ascb *ascb)
  120. {
  121. struct asd_ha_struct *asd_ha = ascb->ha;
  122. struct sas_task *task = ascb->uldd_task;
  123. if (task->data_dir == PCI_DMA_NONE)
  124. return;
  125. if (task->num_scatter == 0) {
  126. dma_addr_t dma = (dma_addr_t)
  127. le64_to_cpu(ascb->scb->ssp_task.sg_element[0].bus_addr);
  128. pci_unmap_single(ascb->ha->pcidev, dma, task->total_xfer_len,
  129. task->data_dir);
  130. return;
  131. }
  132. asd_free_coherent(asd_ha, ascb->sg_arr);
  133. if (task->task_proto != SAS_PROTOCOL_STP)
  134. pci_unmap_sg(asd_ha->pcidev, task->scatter, task->num_scatter,
  135. task->data_dir);
  136. }
  137. /* ---------- Task complete tasklet ---------- */
  138. static void asd_get_response_tasklet(struct asd_ascb *ascb,
  139. struct done_list_struct *dl)
  140. {
  141. struct asd_ha_struct *asd_ha = ascb->ha;
  142. struct sas_task *task = ascb->uldd_task;
  143. struct task_status_struct *ts = &task->task_status;
  144. unsigned long flags;
  145. struct tc_resp_sb_struct {
  146. __le16 index_escb;
  147. u8 len_lsb;
  148. u8 flags;
  149. } __attribute__ ((packed)) *resp_sb = (void *) dl->status_block;
  150. /* int size = ((resp_sb->flags & 7) << 8) | resp_sb->len_lsb; */
  151. int edb_id = ((resp_sb->flags & 0x70) >> 4)-1;
  152. struct asd_ascb *escb;
  153. struct asd_dma_tok *edb;
  154. void *r;
  155. spin_lock_irqsave(&asd_ha->seq.tc_index_lock, flags);
  156. escb = asd_tc_index_find(&asd_ha->seq,
  157. (int)le16_to_cpu(resp_sb->index_escb));
  158. spin_unlock_irqrestore(&asd_ha->seq.tc_index_lock, flags);
  159. if (!escb) {
  160. ASD_DPRINTK("Uh-oh! No escb for this dl?!\n");
  161. return;
  162. }
  163. ts->buf_valid_size = 0;
  164. edb = asd_ha->seq.edb_arr[edb_id + escb->edb_index];
  165. r = edb->vaddr;
  166. if (task->task_proto == SAS_PROTO_SSP) {
  167. struct ssp_response_iu *iu =
  168. r + 16 + sizeof(struct ssp_frame_hdr);
  169. ts->residual = le32_to_cpu(*(__le32 *)r);
  170. ts->resp = SAS_TASK_COMPLETE;
  171. if (iu->datapres == 0)
  172. ts->stat = iu->status;
  173. else if (iu->datapres == 1)
  174. ts->stat = iu->resp_data[3];
  175. else if (iu->datapres == 2) {
  176. ts->stat = SAM_CHECK_COND;
  177. ts->buf_valid_size = min((u32) SAS_STATUS_BUF_SIZE,
  178. be32_to_cpu(iu->sense_data_len));
  179. memcpy(ts->buf, iu->sense_data, ts->buf_valid_size);
  180. if (iu->status != SAM_CHECK_COND) {
  181. ASD_DPRINTK("device %llx sent sense data, but "
  182. "stat(0x%x) is not CHECK_CONDITION"
  183. "\n",
  184. SAS_ADDR(task->dev->sas_addr),
  185. iu->status);
  186. }
  187. }
  188. } else {
  189. struct ata_task_resp *resp = (void *) &ts->buf[0];
  190. ts->residual = le32_to_cpu(*(__le32 *)r);
  191. if (SAS_STATUS_BUF_SIZE >= sizeof(*resp)) {
  192. resp->frame_len = le16_to_cpu(*(__le16 *)(r+6));
  193. memcpy(&resp->ending_fis[0], r+16, 24);
  194. ts->buf_valid_size = sizeof(*resp);
  195. }
  196. }
  197. asd_invalidate_edb(escb, edb_id);
  198. }
  199. static void asd_task_tasklet_complete(struct asd_ascb *ascb,
  200. struct done_list_struct *dl)
  201. {
  202. struct sas_task *task = ascb->uldd_task;
  203. struct task_status_struct *ts = &task->task_status;
  204. unsigned long flags;
  205. u8 opcode = dl->opcode;
  206. asd_can_dequeue(ascb->ha, 1);
  207. Again:
  208. switch (opcode) {
  209. case TC_NO_ERROR:
  210. ts->resp = SAS_TASK_COMPLETE;
  211. ts->stat = SAM_GOOD;
  212. break;
  213. case TC_UNDERRUN:
  214. ts->resp = SAS_TASK_COMPLETE;
  215. ts->stat = SAS_DATA_UNDERRUN;
  216. ts->residual = le32_to_cpu(*(__le32 *)dl->status_block);
  217. break;
  218. case TC_OVERRUN:
  219. ts->resp = SAS_TASK_COMPLETE;
  220. ts->stat = SAS_DATA_OVERRUN;
  221. ts->residual = 0;
  222. break;
  223. case TC_SSP_RESP:
  224. case TC_ATA_RESP:
  225. ts->resp = SAS_TASK_COMPLETE;
  226. ts->stat = SAS_PROTO_RESPONSE;
  227. asd_get_response_tasklet(ascb, dl);
  228. break;
  229. case TF_OPEN_REJECT:
  230. ts->resp = SAS_TASK_UNDELIVERED;
  231. ts->stat = SAS_OPEN_REJECT;
  232. if (dl->status_block[1] & 2)
  233. ts->open_rej_reason = 1 + dl->status_block[2];
  234. else if (dl->status_block[1] & 1)
  235. ts->open_rej_reason = (dl->status_block[2] >> 4)+10;
  236. else
  237. ts->open_rej_reason = SAS_OREJ_UNKNOWN;
  238. break;
  239. case TF_OPEN_TO:
  240. ts->resp = SAS_TASK_UNDELIVERED;
  241. ts->stat = SAS_OPEN_TO;
  242. break;
  243. case TF_PHY_DOWN:
  244. case TU_PHY_DOWN:
  245. ts->resp = SAS_TASK_UNDELIVERED;
  246. ts->stat = SAS_PHY_DOWN;
  247. break;
  248. case TI_PHY_DOWN:
  249. ts->resp = SAS_TASK_COMPLETE;
  250. ts->stat = SAS_PHY_DOWN;
  251. break;
  252. case TI_BREAK:
  253. case TI_PROTO_ERR:
  254. case TI_NAK:
  255. case TI_ACK_NAK_TO:
  256. case TF_SMP_XMIT_RCV_ERR:
  257. case TC_ATA_R_ERR_RECV:
  258. ts->resp = SAS_TASK_COMPLETE;
  259. ts->stat = SAS_INTERRUPTED;
  260. break;
  261. case TF_BREAK:
  262. case TU_BREAK:
  263. case TU_ACK_NAK_TO:
  264. case TF_SMPRSP_TO:
  265. ts->resp = SAS_TASK_UNDELIVERED;
  266. ts->stat = SAS_DEV_NO_RESPONSE;
  267. break;
  268. case TF_NAK_RECV:
  269. ts->resp = SAS_TASK_COMPLETE;
  270. ts->stat = SAS_NAK_R_ERR;
  271. break;
  272. case TA_I_T_NEXUS_LOSS:
  273. opcode = dl->status_block[0];
  274. goto Again;
  275. break;
  276. case TF_INV_CONN_HANDLE:
  277. ts->resp = SAS_TASK_UNDELIVERED;
  278. ts->stat = SAS_DEVICE_UNKNOWN;
  279. break;
  280. case TF_REQUESTED_N_PENDING:
  281. ts->resp = SAS_TASK_UNDELIVERED;
  282. ts->stat = SAS_PENDING;
  283. break;
  284. case TC_TASK_CLEARED:
  285. case TA_ON_REQ:
  286. ts->resp = SAS_TASK_COMPLETE;
  287. ts->stat = SAS_ABORTED_TASK;
  288. break;
  289. case TF_NO_SMP_CONN:
  290. case TF_TMF_NO_CTX:
  291. case TF_TMF_NO_TAG:
  292. case TF_TMF_TAG_FREE:
  293. case TF_TMF_TASK_DONE:
  294. case TF_TMF_NO_CONN_HANDLE:
  295. case TF_IRTT_TO:
  296. case TF_IU_SHORT:
  297. case TF_DATA_OFFS_ERR:
  298. ts->resp = SAS_TASK_UNDELIVERED;
  299. ts->stat = SAS_DEV_NO_RESPONSE;
  300. break;
  301. case TC_LINK_ADM_RESP:
  302. case TC_CONTROL_PHY:
  303. case TC_RESUME:
  304. case TC_PARTIAL_SG_LIST:
  305. default:
  306. ASD_DPRINTK("%s: dl opcode: 0x%x?\n", __FUNCTION__, opcode);
  307. break;
  308. }
  309. switch (task->task_proto) {
  310. case SATA_PROTO:
  311. case SAS_PROTO_STP:
  312. asd_unbuild_ata_ascb(ascb);
  313. break;
  314. case SAS_PROTO_SMP:
  315. asd_unbuild_smp_ascb(ascb);
  316. break;
  317. case SAS_PROTO_SSP:
  318. asd_unbuild_ssp_ascb(ascb);
  319. default:
  320. break;
  321. }
  322. spin_lock_irqsave(&task->task_state_lock, flags);
  323. task->task_state_flags &= ~SAS_TASK_STATE_PENDING;
  324. task->task_state_flags &= ~SAS_TASK_AT_INITIATOR;
  325. task->task_state_flags |= SAS_TASK_STATE_DONE;
  326. if (unlikely((task->task_state_flags & SAS_TASK_STATE_ABORTED))) {
  327. spin_unlock_irqrestore(&task->task_state_lock, flags);
  328. ASD_DPRINTK("task 0x%p done with opcode 0x%x resp 0x%x "
  329. "stat 0x%x but aborted by upper layer!\n",
  330. task, opcode, ts->resp, ts->stat);
  331. complete(&ascb->completion);
  332. } else {
  333. spin_unlock_irqrestore(&task->task_state_lock, flags);
  334. task->lldd_task = NULL;
  335. asd_ascb_free(ascb);
  336. mb();
  337. task->task_done(task);
  338. }
  339. }
  340. /* ---------- ATA ---------- */
  341. static int asd_build_ata_ascb(struct asd_ascb *ascb, struct sas_task *task,
  342. gfp_t gfp_flags)
  343. {
  344. struct domain_device *dev = task->dev;
  345. struct scb *scb;
  346. u8 flags;
  347. int res = 0;
  348. scb = ascb->scb;
  349. if (unlikely(task->ata_task.device_control_reg_update))
  350. scb->header.opcode = CONTROL_ATA_DEV;
  351. else if (dev->sata_dev.command_set == ATA_COMMAND_SET)
  352. scb->header.opcode = INITIATE_ATA_TASK;
  353. else
  354. scb->header.opcode = INITIATE_ATAPI_TASK;
  355. scb->ata_task.proto_conn_rate = (1 << 5); /* STP */
  356. if (dev->port->oob_mode == SAS_OOB_MODE)
  357. scb->ata_task.proto_conn_rate |= dev->linkrate;
  358. scb->ata_task.total_xfer_len = cpu_to_le32(task->total_xfer_len);
  359. scb->ata_task.fis = task->ata_task.fis;
  360. if (likely(!task->ata_task.device_control_reg_update))
  361. scb->ata_task.fis.flags |= 0x80; /* C=1: update ATA cmd reg */
  362. scb->ata_task.fis.flags &= 0xF0; /* PM_PORT field shall be 0 */
  363. if (dev->sata_dev.command_set == ATAPI_COMMAND_SET)
  364. memcpy(scb->ata_task.atapi_packet, task->ata_task.atapi_packet,
  365. 16);
  366. scb->ata_task.sister_scb = cpu_to_le16(0xFFFF);
  367. scb->ata_task.conn_handle = cpu_to_le16(
  368. (u16)(unsigned long)dev->lldd_dev);
  369. if (likely(!task->ata_task.device_control_reg_update)) {
  370. flags = 0;
  371. if (task->ata_task.dma_xfer)
  372. flags |= DATA_XFER_MODE_DMA;
  373. if (task->ata_task.use_ncq &&
  374. dev->sata_dev.command_set != ATAPI_COMMAND_SET)
  375. flags |= ATA_Q_TYPE_NCQ;
  376. flags |= data_dir_flags[task->data_dir];
  377. scb->ata_task.ata_flags = flags;
  378. scb->ata_task.retry_count = task->ata_task.retry_count;
  379. flags = 0;
  380. if (task->ata_task.set_affil_pol)
  381. flags |= SET_AFFIL_POLICY;
  382. if (task->ata_task.stp_affil_pol)
  383. flags |= STP_AFFIL_POLICY;
  384. scb->ata_task.flags = flags;
  385. }
  386. ascb->tasklet_complete = asd_task_tasklet_complete;
  387. if (likely(!task->ata_task.device_control_reg_update))
  388. res = asd_map_scatterlist(task, scb->ata_task.sg_element,
  389. gfp_flags);
  390. return res;
  391. }
  392. static void asd_unbuild_ata_ascb(struct asd_ascb *a)
  393. {
  394. asd_unmap_scatterlist(a);
  395. }
  396. /* ---------- SMP ---------- */
  397. static int asd_build_smp_ascb(struct asd_ascb *ascb, struct sas_task *task,
  398. gfp_t gfp_flags)
  399. {
  400. struct asd_ha_struct *asd_ha = ascb->ha;
  401. struct domain_device *dev = task->dev;
  402. struct scb *scb;
  403. pci_map_sg(asd_ha->pcidev, &task->smp_task.smp_req, 1,
  404. PCI_DMA_TODEVICE);
  405. pci_map_sg(asd_ha->pcidev, &task->smp_task.smp_resp, 1,
  406. PCI_DMA_FROMDEVICE);
  407. scb = ascb->scb;
  408. scb->header.opcode = INITIATE_SMP_TASK;
  409. scb->smp_task.proto_conn_rate = dev->linkrate;
  410. scb->smp_task.smp_req.bus_addr =
  411. cpu_to_le64((u64)sg_dma_address(&task->smp_task.smp_req));
  412. scb->smp_task.smp_req.size =
  413. cpu_to_le32((u32)sg_dma_len(&task->smp_task.smp_req)-4);
  414. scb->smp_task.smp_resp.bus_addr =
  415. cpu_to_le64((u64)sg_dma_address(&task->smp_task.smp_resp));
  416. scb->smp_task.smp_resp.size =
  417. cpu_to_le32((u32)sg_dma_len(&task->smp_task.smp_resp)-4);
  418. scb->smp_task.sister_scb = cpu_to_le16(0xFFFF);
  419. scb->smp_task.conn_handle = cpu_to_le16((u16)
  420. (unsigned long)dev->lldd_dev);
  421. ascb->tasklet_complete = asd_task_tasklet_complete;
  422. return 0;
  423. }
  424. static void asd_unbuild_smp_ascb(struct asd_ascb *a)
  425. {
  426. struct sas_task *task = a->uldd_task;
  427. BUG_ON(!task);
  428. pci_unmap_sg(a->ha->pcidev, &task->smp_task.smp_req, 1,
  429. PCI_DMA_TODEVICE);
  430. pci_unmap_sg(a->ha->pcidev, &task->smp_task.smp_resp, 1,
  431. PCI_DMA_FROMDEVICE);
  432. }
  433. /* ---------- SSP ---------- */
  434. static int asd_build_ssp_ascb(struct asd_ascb *ascb, struct sas_task *task,
  435. gfp_t gfp_flags)
  436. {
  437. struct domain_device *dev = task->dev;
  438. struct scb *scb;
  439. int res = 0;
  440. scb = ascb->scb;
  441. scb->header.opcode = INITIATE_SSP_TASK;
  442. scb->ssp_task.proto_conn_rate = (1 << 4); /* SSP */
  443. scb->ssp_task.proto_conn_rate |= dev->linkrate;
  444. scb->ssp_task.total_xfer_len = cpu_to_le32(task->total_xfer_len);
  445. scb->ssp_task.ssp_frame.frame_type = SSP_DATA;
  446. memcpy(scb->ssp_task.ssp_frame.hashed_dest_addr, dev->hashed_sas_addr,
  447. HASHED_SAS_ADDR_SIZE);
  448. memcpy(scb->ssp_task.ssp_frame.hashed_src_addr,
  449. dev->port->ha->hashed_sas_addr, HASHED_SAS_ADDR_SIZE);
  450. scb->ssp_task.ssp_frame.tptt = cpu_to_be16(0xFFFF);
  451. memcpy(scb->ssp_task.ssp_cmd.lun, task->ssp_task.LUN, 8);
  452. if (task->ssp_task.enable_first_burst)
  453. scb->ssp_task.ssp_cmd.efb_prio_attr |= EFB_MASK;
  454. scb->ssp_task.ssp_cmd.efb_prio_attr |= (task->ssp_task.task_prio << 3);
  455. scb->ssp_task.ssp_cmd.efb_prio_attr |= (task->ssp_task.task_attr & 7);
  456. memcpy(scb->ssp_task.ssp_cmd.cdb, task->ssp_task.cdb, 16);
  457. scb->ssp_task.sister_scb = cpu_to_le16(0xFFFF);
  458. scb->ssp_task.conn_handle = cpu_to_le16(
  459. (u16)(unsigned long)dev->lldd_dev);
  460. scb->ssp_task.data_dir = data_dir_flags[task->data_dir];
  461. scb->ssp_task.retry_count = scb->ssp_task.retry_count;
  462. ascb->tasklet_complete = asd_task_tasklet_complete;
  463. res = asd_map_scatterlist(task, scb->ssp_task.sg_element, gfp_flags);
  464. return res;
  465. }
  466. static void asd_unbuild_ssp_ascb(struct asd_ascb *a)
  467. {
  468. asd_unmap_scatterlist(a);
  469. }
  470. /* ---------- Execute Task ---------- */
  471. static inline int asd_can_queue(struct asd_ha_struct *asd_ha, int num)
  472. {
  473. int res = 0;
  474. unsigned long flags;
  475. spin_lock_irqsave(&asd_ha->seq.pend_q_lock, flags);
  476. if ((asd_ha->seq.can_queue - num) < 0)
  477. res = -SAS_QUEUE_FULL;
  478. else
  479. asd_ha->seq.can_queue -= num;
  480. spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags);
  481. return res;
  482. }
  483. int asd_execute_task(struct sas_task *task, const int num,
  484. gfp_t gfp_flags)
  485. {
  486. int res = 0;
  487. LIST_HEAD(alist);
  488. struct sas_task *t = task;
  489. struct asd_ascb *ascb = NULL, *a;
  490. struct asd_ha_struct *asd_ha = task->dev->port->ha->lldd_ha;
  491. unsigned long flags;
  492. res = asd_can_queue(asd_ha, num);
  493. if (res)
  494. return res;
  495. res = num;
  496. ascb = asd_ascb_alloc_list(asd_ha, &res, gfp_flags);
  497. if (res) {
  498. res = -ENOMEM;
  499. goto out_err;
  500. }
  501. __list_add(&alist, ascb->list.prev, &ascb->list);
  502. list_for_each_entry(a, &alist, list) {
  503. a->uldd_task = t;
  504. t->lldd_task = a;
  505. t = list_entry(t->list.next, struct sas_task, list);
  506. }
  507. list_for_each_entry(a, &alist, list) {
  508. t = a->uldd_task;
  509. a->uldd_timer = 1;
  510. if (t->task_proto & SAS_PROTO_STP)
  511. t->task_proto = SAS_PROTO_STP;
  512. switch (t->task_proto) {
  513. case SATA_PROTO:
  514. case SAS_PROTO_STP:
  515. res = asd_build_ata_ascb(a, t, gfp_flags);
  516. break;
  517. case SAS_PROTO_SMP:
  518. res = asd_build_smp_ascb(a, t, gfp_flags);
  519. break;
  520. case SAS_PROTO_SSP:
  521. res = asd_build_ssp_ascb(a, t, gfp_flags);
  522. break;
  523. default:
  524. asd_printk("unknown sas_task proto: 0x%x\n",
  525. t->task_proto);
  526. res = -ENOMEM;
  527. break;
  528. }
  529. if (res)
  530. goto out_err_unmap;
  531. spin_lock_irqsave(&t->task_state_lock, flags);
  532. t->task_state_flags |= SAS_TASK_AT_INITIATOR;
  533. spin_unlock_irqrestore(&t->task_state_lock, flags);
  534. }
  535. list_del_init(&alist);
  536. res = asd_post_ascb_list(asd_ha, ascb, num);
  537. if (unlikely(res)) {
  538. a = NULL;
  539. __list_add(&alist, ascb->list.prev, &ascb->list);
  540. goto out_err_unmap;
  541. }
  542. return 0;
  543. out_err_unmap:
  544. {
  545. struct asd_ascb *b = a;
  546. list_for_each_entry(a, &alist, list) {
  547. if (a == b)
  548. break;
  549. t = a->uldd_task;
  550. spin_lock_irqsave(&t->task_state_lock, flags);
  551. t->task_state_flags &= ~SAS_TASK_AT_INITIATOR;
  552. spin_unlock_irqrestore(&t->task_state_lock, flags);
  553. switch (t->task_proto) {
  554. case SATA_PROTO:
  555. case SAS_PROTO_STP:
  556. asd_unbuild_ata_ascb(a);
  557. break;
  558. case SAS_PROTO_SMP:
  559. asd_unbuild_smp_ascb(a);
  560. break;
  561. case SAS_PROTO_SSP:
  562. asd_unbuild_ssp_ascb(a);
  563. default:
  564. break;
  565. }
  566. t->lldd_task = NULL;
  567. }
  568. }
  569. list_del_init(&alist);
  570. out_err:
  571. if (ascb)
  572. asd_ascb_free_list(ascb);
  573. asd_can_dequeue(asd_ha, num);
  574. return res;
  575. }