tehuti.c 68 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507
  1. /*
  2. * Tehuti Networks(R) Network Driver
  3. * ethtool interface implementation
  4. * Copyright (C) 2007 Tehuti Networks Ltd. All rights reserved
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. */
  11. /*
  12. * RX HW/SW interaction overview
  13. * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  14. * There are 2 types of RX communication channels betwean driver and NIC.
  15. * 1) RX Free Fifo - RXF - holds descriptors of empty buffers to accept incoming
  16. * traffic. This Fifo is filled by SW and is readen by HW. Each descriptor holds
  17. * info about buffer's location, size and ID. An ID field is used to identify a
  18. * buffer when it's returned with data via RXD Fifo (see below)
  19. * 2) RX Data Fifo - RXD - holds descriptors of full buffers. This Fifo is
  20. * filled by HW and is readen by SW. Each descriptor holds status and ID.
  21. * HW pops descriptor from RXF Fifo, stores ID, fills buffer with incoming data,
  22. * via dma moves it into host memory, builds new RXD descriptor with same ID,
  23. * pushes it into RXD Fifo and raises interrupt to indicate new RX data.
  24. *
  25. * Current NIC configuration (registers + firmware) makes NIC use 2 RXF Fifos.
  26. * One holds 1.5K packets and another - 26K packets. Depending on incoming
  27. * packet size, HW desides on a RXF Fifo to pop buffer from. When packet is
  28. * filled with data, HW builds new RXD descriptor for it and push it into single
  29. * RXD Fifo.
  30. *
  31. * RX SW Data Structures
  32. * ~~~~~~~~~~~~~~~~~~~~~
  33. * skb db - used to keep track of all skbs owned by SW and their dma addresses.
  34. * For RX case, ownership lasts from allocating new empty skb for RXF until
  35. * accepting full skb from RXD and passing it to OS. Each RXF Fifo has its own
  36. * skb db. Implemented as array with bitmask.
  37. * fifo - keeps info about fifo's size and location, relevant HW registers,
  38. * usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
  39. * Implemented as simple struct.
  40. *
  41. * RX SW Execution Flow
  42. * ~~~~~~~~~~~~~~~~~~~~
  43. * Upon initialization (ifconfig up) driver creates RX fifos and initializes
  44. * relevant registers. At the end of init phase, driver enables interrupts.
  45. * NIC sees that there is no RXF buffers and raises
  46. * RD_INTR interrupt, isr fills skbs and Rx begins.
  47. * Driver has two receive operation modes:
  48. * NAPI - interrupt-driven mixed with polling
  49. * interrupt-driven only
  50. *
  51. * Interrupt-driven only flow is following. When buffer is ready, HW raises
  52. * interrupt and isr is called. isr collects all available packets
  53. * (bdx_rx_receive), refills skbs (bdx_rx_alloc_skbs) and exit.
  54. * Rx buffer allocation note
  55. * ~~~~~~~~~~~~~~~~~~~~~~~~~
  56. * Driver cares to feed such amount of RxF descriptors that respective amount of
  57. * RxD descriptors can not fill entire RxD fifo. The main reason is lack of
  58. * overflow check in Bordeaux for RxD fifo free/used size.
  59. * FIXME: this is NOT fully implemented, more work should be done
  60. *
  61. */
  62. #include "tehuti.h"
  63. #include "tehuti_fw.h"
  64. static struct pci_device_id __devinitdata bdx_pci_tbl[] = {
  65. {0x1FC9, 0x3009, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
  66. {0x1FC9, 0x3010, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
  67. {0x1FC9, 0x3014, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
  68. {0}
  69. };
  70. MODULE_DEVICE_TABLE(pci, bdx_pci_tbl);
  71. /* Definitions needed by ISR or NAPI functions */
  72. static void bdx_rx_alloc_skbs(struct bdx_priv *priv, struct rxf_fifo *f);
  73. static void bdx_tx_cleanup(struct bdx_priv *priv);
  74. static int bdx_rx_receive(struct bdx_priv *priv, struct rxd_fifo *f, int budget);
  75. /* Definitions needed by FW loading */
  76. static void bdx_tx_push_desc_safe(struct bdx_priv *priv, void *data, int size);
  77. /* Definitions needed by hw_start */
  78. static int bdx_tx_init(struct bdx_priv *priv);
  79. static int bdx_rx_init(struct bdx_priv *priv);
  80. /* Definitions needed by bdx_close */
  81. static void bdx_rx_free(struct bdx_priv *priv);
  82. static void bdx_tx_free(struct bdx_priv *priv);
  83. /* Definitions needed by bdx_probe */
  84. static void bdx_ethtool_ops(struct net_device *netdev);
  85. /*************************************************************************
  86. * Print Info *
  87. *************************************************************************/
  88. static void print_hw_id(struct pci_dev *pdev)
  89. {
  90. struct pci_nic *nic = pci_get_drvdata(pdev);
  91. u16 pci_link_status = 0;
  92. u16 pci_ctrl = 0;
  93. pci_read_config_word(pdev, PCI_LINK_STATUS_REG, &pci_link_status);
  94. pci_read_config_word(pdev, PCI_DEV_CTRL_REG, &pci_ctrl);
  95. printk(KERN_INFO "tehuti: %s%s\n", BDX_NIC_NAME,
  96. nic->port_num == 1 ? "" : ", 2-Port");
  97. printk(KERN_INFO
  98. "tehuti: srom 0x%x fpga %d build %u lane# %d"
  99. " max_pl 0x%x mrrs 0x%x\n",
  100. readl(nic->regs + SROM_VER), readl(nic->regs + FPGA_VER) & 0xFFF,
  101. readl(nic->regs + FPGA_SEED),
  102. GET_LINK_STATUS_LANES(pci_link_status),
  103. GET_DEV_CTRL_MAXPL(pci_ctrl), GET_DEV_CTRL_MRRS(pci_ctrl));
  104. }
  105. static void print_fw_id(struct pci_nic *nic)
  106. {
  107. printk(KERN_INFO "tehuti: fw 0x%x\n", readl(nic->regs + FW_VER));
  108. }
  109. static void print_eth_id(struct net_device *ndev)
  110. {
  111. printk(KERN_INFO "%s: %s, Port %c\n", ndev->name, BDX_NIC_NAME,
  112. (ndev->if_port == 0) ? 'A' : 'B');
  113. }
  114. /*************************************************************************
  115. * Code *
  116. *************************************************************************/
  117. #define bdx_enable_interrupts(priv) \
  118. do { WRITE_REG(priv, regIMR, IR_RUN); } while (0)
  119. #define bdx_disable_interrupts(priv) \
  120. do { WRITE_REG(priv, regIMR, 0); } while (0)
  121. /* bdx_fifo_init
  122. * create TX/RX descriptor fifo for host-NIC communication.
  123. * 1K extra space is allocated at the end of the fifo to simplify
  124. * processing of descriptors that wraps around fifo's end
  125. * @priv - NIC private structure
  126. * @f - fifo to initialize
  127. * @fsz_type - fifo size type: 0-4KB, 1-8KB, 2-16KB, 3-32KB
  128. * @reg_XXX - offsets of registers relative to base address
  129. *
  130. * Returns 0 on success, negative value on failure
  131. *
  132. */
  133. static int
  134. bdx_fifo_init(struct bdx_priv *priv, struct fifo *f, int fsz_type,
  135. u16 reg_CFG0, u16 reg_CFG1, u16 reg_RPTR, u16 reg_WPTR)
  136. {
  137. u16 memsz = FIFO_SIZE * (1 << fsz_type);
  138. memset(f, 0, sizeof(struct fifo));
  139. /* pci_alloc_consistent gives us 4k-aligned memory */
  140. f->va = pci_alloc_consistent(priv->pdev,
  141. memsz + FIFO_EXTRA_SPACE, &f->da);
  142. if (!f->va) {
  143. ERR("pci_alloc_consistent failed\n");
  144. RET(-ENOMEM);
  145. }
  146. f->reg_CFG0 = reg_CFG0;
  147. f->reg_CFG1 = reg_CFG1;
  148. f->reg_RPTR = reg_RPTR;
  149. f->reg_WPTR = reg_WPTR;
  150. f->rptr = 0;
  151. f->wptr = 0;
  152. f->memsz = memsz;
  153. f->size_mask = memsz - 1;
  154. WRITE_REG(priv, reg_CFG0, (u32) ((f->da & TX_RX_CFG0_BASE) | fsz_type));
  155. WRITE_REG(priv, reg_CFG1, H32_64(f->da));
  156. RET(0);
  157. }
  158. /* bdx_fifo_free - free all resources used by fifo
  159. * @priv - NIC private structure
  160. * @f - fifo to release
  161. */
  162. static void bdx_fifo_free(struct bdx_priv *priv, struct fifo *f)
  163. {
  164. ENTER;
  165. if (f->va) {
  166. pci_free_consistent(priv->pdev,
  167. f->memsz + FIFO_EXTRA_SPACE, f->va, f->da);
  168. f->va = NULL;
  169. }
  170. RET();
  171. }
  172. /*
  173. * bdx_link_changed - notifies OS about hw link state.
  174. * @bdx_priv - hw adapter structure
  175. */
  176. static void bdx_link_changed(struct bdx_priv *priv)
  177. {
  178. u32 link = READ_REG(priv, regMAC_LNK_STAT) & MAC_LINK_STAT;
  179. if (!link) {
  180. if (netif_carrier_ok(priv->ndev)) {
  181. netif_stop_queue(priv->ndev);
  182. netif_carrier_off(priv->ndev);
  183. ERR("%s: Link Down\n", priv->ndev->name);
  184. }
  185. } else {
  186. if (!netif_carrier_ok(priv->ndev)) {
  187. netif_wake_queue(priv->ndev);
  188. netif_carrier_on(priv->ndev);
  189. ERR("%s: Link Up\n", priv->ndev->name);
  190. }
  191. }
  192. }
  193. static void bdx_isr_extra(struct bdx_priv *priv, u32 isr)
  194. {
  195. if (isr & IR_RX_FREE_0) {
  196. bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
  197. DBG("RX_FREE_0\n");
  198. }
  199. if (isr & IR_LNKCHG0)
  200. bdx_link_changed(priv);
  201. if (isr & IR_PCIE_LINK)
  202. ERR("%s: PCI-E Link Fault\n", priv->ndev->name);
  203. if (isr & IR_PCIE_TOUT)
  204. ERR("%s: PCI-E Time Out\n", priv->ndev->name);
  205. }
  206. /* bdx_isr - Interrupt Service Routine for Bordeaux NIC
  207. * @irq - interrupt number
  208. * @ndev - network device
  209. * @regs - CPU registers
  210. *
  211. * Return IRQ_NONE if it was not our interrupt, IRQ_HANDLED - otherwise
  212. *
  213. * It reads ISR register to know interrupt reasons, and proceed them one by one.
  214. * Reasons of interest are:
  215. * RX_DESC - new packet has arrived and RXD fifo holds its descriptor
  216. * RX_FREE - number of free Rx buffers in RXF fifo gets low
  217. * TX_FREE - packet was transmited and RXF fifo holds its descriptor
  218. */
  219. static irqreturn_t bdx_isr_napi(int irq, void *dev)
  220. {
  221. struct net_device *ndev = dev;
  222. struct bdx_priv *priv = ndev->priv;
  223. u32 isr;
  224. ENTER;
  225. isr = (READ_REG(priv, regISR) & IR_RUN);
  226. if (unlikely(!isr)) {
  227. bdx_enable_interrupts(priv);
  228. return IRQ_NONE; /* Not our interrupt */
  229. }
  230. if (isr & IR_EXTRA)
  231. bdx_isr_extra(priv, isr);
  232. if (isr & (IR_RX_DESC_0 | IR_TX_FREE_0)) {
  233. if (likely(netif_rx_schedule_prep(ndev, &priv->napi))) {
  234. __netif_rx_schedule(ndev, &priv->napi);
  235. RET(IRQ_HANDLED);
  236. } else {
  237. /* NOTE: we get here if intr has slipped into window
  238. * between these lines in bdx_poll:
  239. * bdx_enable_interrupts(priv);
  240. * return 0;
  241. * currently intrs are disabled (since we read ISR),
  242. * and we have failed to register next poll.
  243. * so we read the regs to trigger chip
  244. * and allow further interupts. */
  245. READ_REG(priv, regTXF_WPTR_0);
  246. READ_REG(priv, regRXD_WPTR_0);
  247. }
  248. }
  249. bdx_enable_interrupts(priv);
  250. RET(IRQ_HANDLED);
  251. }
  252. static int bdx_poll(struct napi_struct *napi, int budget)
  253. {
  254. struct bdx_priv *priv = container_of(napi, struct bdx_priv, napi);
  255. struct net_device *dev = priv->ndev;
  256. int work_done;
  257. ENTER;
  258. bdx_tx_cleanup(priv);
  259. work_done = bdx_rx_receive(priv, &priv->rxd_fifo0, budget);
  260. if ((work_done < budget) ||
  261. (priv->napi_stop++ >= 30)) {
  262. DBG("rx poll is done. backing to isr-driven\n");
  263. /* from time to time we exit to let NAPI layer release
  264. * device lock and allow waiting tasks (eg rmmod) to advance) */
  265. priv->napi_stop = 0;
  266. netif_rx_complete(dev, napi);
  267. bdx_enable_interrupts(priv);
  268. }
  269. return work_done;
  270. }
  271. /* bdx_fw_load - loads firmware to NIC
  272. * @priv - NIC private structure
  273. * Firmware is loaded via TXD fifo, so it must be initialized first.
  274. * Firware must be loaded once per NIC not per PCI device provided by NIC (NIC
  275. * can have few of them). So all drivers use semaphore register to choose one
  276. * that will actually load FW to NIC.
  277. */
  278. static int bdx_fw_load(struct bdx_priv *priv)
  279. {
  280. int master, i;
  281. ENTER;
  282. master = READ_REG(priv, regINIT_SEMAPHORE);
  283. if (!READ_REG(priv, regINIT_STATUS) && master) {
  284. bdx_tx_push_desc_safe(priv, s_firmLoad, sizeof(s_firmLoad));
  285. mdelay(100);
  286. }
  287. for (i = 0; i < 200; i++) {
  288. if (READ_REG(priv, regINIT_STATUS))
  289. break;
  290. mdelay(2);
  291. }
  292. if (master)
  293. WRITE_REG(priv, regINIT_SEMAPHORE, 1);
  294. if (i == 200) {
  295. ERR("%s: firmware loading failed\n", priv->ndev->name);
  296. DBG("VPC = 0x%x VIC = 0x%x INIT_STATUS = 0x%x i=%d\n",
  297. READ_REG(priv, regVPC),
  298. READ_REG(priv, regVIC), READ_REG(priv, regINIT_STATUS), i);
  299. RET(-EIO);
  300. } else {
  301. DBG("%s: firmware loading success\n", priv->ndev->name);
  302. RET(0);
  303. }
  304. }
  305. static void bdx_restore_mac(struct net_device *ndev, struct bdx_priv *priv)
  306. {
  307. u32 val;
  308. ENTER;
  309. DBG("mac0=%x mac1=%x mac2=%x\n",
  310. READ_REG(priv, regUNC_MAC0_A),
  311. READ_REG(priv, regUNC_MAC1_A), READ_REG(priv, regUNC_MAC2_A));
  312. val = (ndev->dev_addr[0] << 8) | (ndev->dev_addr[1]);
  313. WRITE_REG(priv, regUNC_MAC2_A, val);
  314. val = (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]);
  315. WRITE_REG(priv, regUNC_MAC1_A, val);
  316. val = (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]);
  317. WRITE_REG(priv, regUNC_MAC0_A, val);
  318. DBG("mac0=%x mac1=%x mac2=%x\n",
  319. READ_REG(priv, regUNC_MAC0_A),
  320. READ_REG(priv, regUNC_MAC1_A), READ_REG(priv, regUNC_MAC2_A));
  321. RET();
  322. }
  323. /* bdx_hw_start - inits registers and starts HW's Rx and Tx engines
  324. * @priv - NIC private structure
  325. */
  326. static int bdx_hw_start(struct bdx_priv *priv)
  327. {
  328. int rc = -EIO;
  329. struct net_device *ndev = priv->ndev;
  330. ENTER;
  331. bdx_link_changed(priv);
  332. /* 10G overall max length (vlan, eth&ip header, ip payload, crc) */
  333. WRITE_REG(priv, regFRM_LENGTH, 0X3FE0);
  334. WRITE_REG(priv, regPAUSE_QUANT, 0x96);
  335. WRITE_REG(priv, regRX_FIFO_SECTION, 0x800010);
  336. WRITE_REG(priv, regTX_FIFO_SECTION, 0xE00010);
  337. WRITE_REG(priv, regRX_FULLNESS, 0);
  338. WRITE_REG(priv, regTX_FULLNESS, 0);
  339. WRITE_REG(priv, regCTRLST,
  340. regCTRLST_BASE | regCTRLST_RX_ENA | regCTRLST_TX_ENA);
  341. WRITE_REG(priv, regVGLB, 0);
  342. WRITE_REG(priv, regMAX_FRAME_A,
  343. priv->rxf_fifo0.m.pktsz & MAX_FRAME_AB_VAL);
  344. DBG("RDINTCM=%08x\n", priv->rdintcm); /*NOTE: test script uses this */
  345. WRITE_REG(priv, regRDINTCM0, priv->rdintcm);
  346. WRITE_REG(priv, regRDINTCM2, 0); /*cpu_to_le32(rcm.val)); */
  347. DBG("TDINTCM=%08x\n", priv->tdintcm); /*NOTE: test script uses this */
  348. WRITE_REG(priv, regTDINTCM0, priv->tdintcm); /* old val = 0x300064 */
  349. /* Enable timer interrupt once in 2 secs. */
  350. /*WRITE_REG(priv, regGTMR0, ((GTMR_SEC * 2) & GTMR_DATA)); */
  351. bdx_restore_mac(priv->ndev, priv);
  352. WRITE_REG(priv, regGMAC_RXF_A, GMAC_RX_FILTER_OSEN |
  353. GMAC_RX_FILTER_AM | GMAC_RX_FILTER_AB);
  354. #define BDX_IRQ_TYPE ((priv->nic->irq_type == IRQ_MSI)?0:IRQF_SHARED)
  355. if ((rc = request_irq(priv->pdev->irq, &bdx_isr_napi, BDX_IRQ_TYPE,
  356. ndev->name, ndev)))
  357. goto err_irq;
  358. bdx_enable_interrupts(priv);
  359. RET(0);
  360. err_irq:
  361. RET(rc);
  362. }
  363. static void bdx_hw_stop(struct bdx_priv *priv)
  364. {
  365. ENTER;
  366. bdx_disable_interrupts(priv);
  367. free_irq(priv->pdev->irq, priv->ndev);
  368. netif_carrier_off(priv->ndev);
  369. netif_stop_queue(priv->ndev);
  370. RET();
  371. }
  372. static int bdx_hw_reset_direct(void __iomem *regs)
  373. {
  374. u32 val, i;
  375. ENTER;
  376. /* reset sequences: read, write 1, read, write 0 */
  377. val = readl(regs + regCLKPLL);
  378. writel((val | CLKPLL_SFTRST) + 0x8, regs + regCLKPLL);
  379. udelay(50);
  380. val = readl(regs + regCLKPLL);
  381. writel(val & ~CLKPLL_SFTRST, regs + regCLKPLL);
  382. /* check that the PLLs are locked and reset ended */
  383. for (i = 0; i < 70; i++, mdelay(10))
  384. if ((readl(regs + regCLKPLL) & CLKPLL_LKD) == CLKPLL_LKD) {
  385. /* do any PCI-E read transaction */
  386. readl(regs + regRXD_CFG0_0);
  387. return 0;
  388. }
  389. ERR("tehuti: HW reset failed\n");
  390. return 1; /* failure */
  391. }
  392. static int bdx_hw_reset(struct bdx_priv *priv)
  393. {
  394. u32 val, i;
  395. ENTER;
  396. if (priv->port == 0) {
  397. /* reset sequences: read, write 1, read, write 0 */
  398. val = READ_REG(priv, regCLKPLL);
  399. WRITE_REG(priv, regCLKPLL, (val | CLKPLL_SFTRST) + 0x8);
  400. udelay(50);
  401. val = READ_REG(priv, regCLKPLL);
  402. WRITE_REG(priv, regCLKPLL, val & ~CLKPLL_SFTRST);
  403. }
  404. /* check that the PLLs are locked and reset ended */
  405. for (i = 0; i < 70; i++, mdelay(10))
  406. if ((READ_REG(priv, regCLKPLL) & CLKPLL_LKD) == CLKPLL_LKD) {
  407. /* do any PCI-E read transaction */
  408. READ_REG(priv, regRXD_CFG0_0);
  409. return 0;
  410. }
  411. ERR("tehuti: HW reset failed\n");
  412. return 1; /* failure */
  413. }
  414. static int bdx_sw_reset(struct bdx_priv *priv)
  415. {
  416. int i;
  417. ENTER;
  418. /* 1. load MAC (obsolete) */
  419. /* 2. disable Rx (and Tx) */
  420. WRITE_REG(priv, regGMAC_RXF_A, 0);
  421. mdelay(100);
  422. /* 3. disable port */
  423. WRITE_REG(priv, regDIS_PORT, 1);
  424. /* 4. disable queue */
  425. WRITE_REG(priv, regDIS_QU, 1);
  426. /* 5. wait until hw is disabled */
  427. for (i = 0; i < 50; i++) {
  428. if (READ_REG(priv, regRST_PORT) & 1)
  429. break;
  430. mdelay(10);
  431. }
  432. if (i == 50)
  433. ERR("%s: SW reset timeout. continuing anyway\n",
  434. priv->ndev->name);
  435. /* 6. disable intrs */
  436. WRITE_REG(priv, regRDINTCM0, 0);
  437. WRITE_REG(priv, regTDINTCM0, 0);
  438. WRITE_REG(priv, regIMR, 0);
  439. READ_REG(priv, regISR);
  440. /* 7. reset queue */
  441. WRITE_REG(priv, regRST_QU, 1);
  442. /* 8. reset port */
  443. WRITE_REG(priv, regRST_PORT, 1);
  444. /* 9. zero all read and write pointers */
  445. for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
  446. DBG("%x = %x\n", i, READ_REG(priv, i) & TXF_WPTR_WR_PTR);
  447. for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
  448. WRITE_REG(priv, i, 0);
  449. /* 10. unseet port disable */
  450. WRITE_REG(priv, regDIS_PORT, 0);
  451. /* 11. unset queue disable */
  452. WRITE_REG(priv, regDIS_QU, 0);
  453. /* 12. unset queue reset */
  454. WRITE_REG(priv, regRST_QU, 0);
  455. /* 13. unset port reset */
  456. WRITE_REG(priv, regRST_PORT, 0);
  457. /* 14. enable Rx */
  458. /* skiped. will be done later */
  459. /* 15. save MAC (obsolete) */
  460. for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
  461. DBG("%x = %x\n", i, READ_REG(priv, i) & TXF_WPTR_WR_PTR);
  462. RET(0);
  463. }
  464. /* bdx_reset - performs right type of reset depending on hw type */
  465. static int bdx_reset(struct bdx_priv *priv)
  466. {
  467. ENTER;
  468. RET((priv->pdev->device == 0x3009)
  469. ? bdx_hw_reset(priv)
  470. : bdx_sw_reset(priv));
  471. }
  472. /**
  473. * bdx_close - Disables a network interface
  474. * @netdev: network interface device structure
  475. *
  476. * Returns 0, this is not allowed to fail
  477. *
  478. * The close entry point is called when an interface is de-activated
  479. * by the OS. The hardware is still under the drivers control, but
  480. * needs to be disabled. A global MAC reset is issued to stop the
  481. * hardware, and all transmit and receive resources are freed.
  482. **/
  483. static int bdx_close(struct net_device *ndev)
  484. {
  485. struct bdx_priv *priv = NULL;
  486. ENTER;
  487. priv = ndev->priv;
  488. napi_disable(&priv->napi);
  489. bdx_reset(priv);
  490. bdx_hw_stop(priv);
  491. bdx_rx_free(priv);
  492. bdx_tx_free(priv);
  493. RET(0);
  494. }
  495. /**
  496. * bdx_open - Called when a network interface is made active
  497. * @netdev: network interface device structure
  498. *
  499. * Returns 0 on success, negative value on failure
  500. *
  501. * The open entry point is called when a network interface is made
  502. * active by the system (IFF_UP). At this point all resources needed
  503. * for transmit and receive operations are allocated, the interrupt
  504. * handler is registered with the OS, the watchdog timer is started,
  505. * and the stack is notified that the interface is ready.
  506. **/
  507. static int bdx_open(struct net_device *ndev)
  508. {
  509. struct bdx_priv *priv;
  510. int rc;
  511. ENTER;
  512. priv = ndev->priv;
  513. bdx_reset(priv);
  514. if (netif_running(ndev))
  515. netif_stop_queue(priv->ndev);
  516. if ((rc = bdx_tx_init(priv)))
  517. goto err;
  518. if ((rc = bdx_rx_init(priv)))
  519. goto err;
  520. if ((rc = bdx_fw_load(priv)))
  521. goto err;
  522. bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
  523. if ((rc = bdx_hw_start(priv)))
  524. goto err;
  525. napi_enable(&priv->napi);
  526. print_fw_id(priv->nic);
  527. RET(0);
  528. err:
  529. bdx_close(ndev);
  530. RET(rc);
  531. }
  532. static void __init bdx_firmware_endianess(void)
  533. {
  534. int i;
  535. for (i = 0; i < sizeof(s_firmLoad) / sizeof(u32); i++)
  536. s_firmLoad[i] = CPU_CHIP_SWAP32(s_firmLoad[i]);
  537. }
  538. static int bdx_ioctl_priv(struct net_device *ndev, struct ifreq *ifr, int cmd)
  539. {
  540. struct bdx_priv *priv = ndev->priv;
  541. u32 data[3];
  542. int error;
  543. ENTER;
  544. DBG("jiffies=%ld cmd=%d\n", jiffies, cmd);
  545. if (cmd != SIOCDEVPRIVATE) {
  546. error = copy_from_user(data, ifr->ifr_data, sizeof(data));
  547. if (error) {
  548. ERR("cant copy from user\n");
  549. RET(error);
  550. }
  551. DBG("%d 0x%x 0x%x\n", data[0], data[1], data[2]);
  552. }
  553. switch (data[0]) {
  554. case BDX_OP_READ:
  555. data[2] = READ_REG(priv, data[1]);
  556. DBG("read_reg(0x%x)=0x%x (dec %d)\n", data[1], data[2],
  557. data[2]);
  558. error = copy_to_user(ifr->ifr_data, data, sizeof(data));
  559. if (error)
  560. RET(error);
  561. break;
  562. case BDX_OP_WRITE:
  563. WRITE_REG(priv, data[1], data[2]);
  564. DBG("write_reg(0x%x, 0x%x)\n", data[1], data[2]);
  565. break;
  566. default:
  567. RET(-EOPNOTSUPP);
  568. }
  569. return 0;
  570. }
  571. static int bdx_ioctl(struct net_device *ndev, struct ifreq *ifr, int cmd)
  572. {
  573. ENTER;
  574. if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
  575. RET(bdx_ioctl_priv(ndev, ifr, cmd));
  576. else
  577. RET(-EOPNOTSUPP);
  578. }
  579. /*
  580. * __bdx_vlan_rx_vid - private helper for adding/killing VLAN vid
  581. * by passing VLAN filter table to hardware
  582. * @ndev network device
  583. * @vid VLAN vid
  584. * @op add or kill operation
  585. */
  586. static void __bdx_vlan_rx_vid(struct net_device *ndev, uint16_t vid, int enable)
  587. {
  588. struct bdx_priv *priv = ndev->priv;
  589. u32 reg, bit, val;
  590. ENTER;
  591. DBG2("vid=%d value=%d\n", (int)vid, enable);
  592. if (unlikely(vid >= 4096)) {
  593. ERR("tehuti: invalid VID: %u (> 4096)\n", vid);
  594. RET();
  595. }
  596. reg = regVLAN_0 + (vid / 32) * 4;
  597. bit = 1 << vid % 32;
  598. val = READ_REG(priv, reg);
  599. DBG2("reg=%x, val=%x, bit=%d\n", reg, val, bit);
  600. if (enable)
  601. val |= bit;
  602. else
  603. val &= ~bit;
  604. DBG2("new val %x\n", val);
  605. WRITE_REG(priv, reg, val);
  606. RET();
  607. }
  608. /*
  609. * bdx_vlan_rx_add_vid - kernel hook for adding VLAN vid to hw filtering table
  610. * @ndev network device
  611. * @vid VLAN vid to add
  612. */
  613. static void bdx_vlan_rx_add_vid(struct net_device *ndev, uint16_t vid)
  614. {
  615. __bdx_vlan_rx_vid(ndev, vid, 1);
  616. }
  617. /*
  618. * bdx_vlan_rx_kill_vid - kernel hook for killing VLAN vid in hw filtering table
  619. * @ndev network device
  620. * @vid VLAN vid to kill
  621. */
  622. static void bdx_vlan_rx_kill_vid(struct net_device *ndev, unsigned short vid)
  623. {
  624. __bdx_vlan_rx_vid(ndev, vid, 0);
  625. }
  626. /*
  627. * bdx_vlan_rx_register - kernel hook for adding VLAN group
  628. * @ndev network device
  629. * @grp VLAN group
  630. */
  631. static void
  632. bdx_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
  633. {
  634. struct bdx_priv *priv = ndev->priv;
  635. ENTER;
  636. DBG("device='%s', group='%p'\n", ndev->name, grp);
  637. priv->vlgrp = grp;
  638. RET();
  639. }
  640. /**
  641. * bdx_change_mtu - Change the Maximum Transfer Unit
  642. * @netdev: network interface device structure
  643. * @new_mtu: new value for maximum frame size
  644. *
  645. * Returns 0 on success, negative on failure
  646. */
  647. static int bdx_change_mtu(struct net_device *ndev, int new_mtu)
  648. {
  649. ENTER;
  650. if (new_mtu == ndev->mtu)
  651. RET(0);
  652. /* enforce minimum frame size */
  653. if (new_mtu < ETH_ZLEN) {
  654. ERR("%s: %s mtu %d is less then minimal %d\n",
  655. BDX_DRV_NAME, ndev->name, new_mtu, ETH_ZLEN);
  656. RET(-EINVAL);
  657. }
  658. ndev->mtu = new_mtu;
  659. if (netif_running(ndev)) {
  660. bdx_close(ndev);
  661. bdx_open(ndev);
  662. }
  663. RET(0);
  664. }
  665. static void bdx_setmulti(struct net_device *ndev)
  666. {
  667. struct bdx_priv *priv = ndev->priv;
  668. u32 rxf_val =
  669. GMAC_RX_FILTER_AM | GMAC_RX_FILTER_AB | GMAC_RX_FILTER_OSEN;
  670. int i;
  671. ENTER;
  672. /* IMF - imperfect (hash) rx multicat filter */
  673. /* PMF - perfect rx multicat filter */
  674. /* FIXME: RXE(OFF) */
  675. if (ndev->flags & IFF_PROMISC) {
  676. rxf_val |= GMAC_RX_FILTER_PRM;
  677. } else if (ndev->flags & IFF_ALLMULTI) {
  678. /* set IMF to accept all multicast frmaes */
  679. for (i = 0; i < MAC_MCST_HASH_NUM; i++)
  680. WRITE_REG(priv, regRX_MCST_HASH0 + i * 4, ~0);
  681. } else if (ndev->mc_count) {
  682. u8 hash;
  683. struct dev_mc_list *mclist;
  684. u32 reg, val;
  685. /* set IMF to deny all multicast frames */
  686. for (i = 0; i < MAC_MCST_HASH_NUM; i++)
  687. WRITE_REG(priv, regRX_MCST_HASH0 + i * 4, 0);
  688. /* set PMF to deny all multicast frames */
  689. for (i = 0; i < MAC_MCST_NUM; i++) {
  690. WRITE_REG(priv, regRX_MAC_MCST0 + i * 8, 0);
  691. WRITE_REG(priv, regRX_MAC_MCST1 + i * 8, 0);
  692. }
  693. /* use PMF to accept first MAC_MCST_NUM (15) addresses */
  694. /* TBD: sort addreses and write them in ascending order
  695. * into RX_MAC_MCST regs. we skip this phase now and accept ALL
  696. * multicast frames throu IMF */
  697. mclist = ndev->mc_list;
  698. /* accept the rest of addresses throu IMF */
  699. for (; mclist; mclist = mclist->next) {
  700. hash = 0;
  701. for (i = 0; i < ETH_ALEN; i++)
  702. hash ^= mclist->dmi_addr[i];
  703. reg = regRX_MCST_HASH0 + ((hash >> 5) << 2);
  704. val = READ_REG(priv, reg);
  705. val |= (1 << (hash % 32));
  706. WRITE_REG(priv, reg, val);
  707. }
  708. } else {
  709. DBG("only own mac %d\n", ndev->mc_count);
  710. rxf_val |= GMAC_RX_FILTER_AB;
  711. }
  712. WRITE_REG(priv, regGMAC_RXF_A, rxf_val);
  713. /* enable RX */
  714. /* FIXME: RXE(ON) */
  715. RET();
  716. }
  717. static int bdx_set_mac(struct net_device *ndev, void *p)
  718. {
  719. struct bdx_priv *priv = ndev->priv;
  720. struct sockaddr *addr = p;
  721. ENTER;
  722. /*
  723. if (netif_running(dev))
  724. return -EBUSY
  725. */
  726. memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
  727. bdx_restore_mac(ndev, priv);
  728. RET(0);
  729. }
  730. static int bdx_read_mac(struct bdx_priv *priv)
  731. {
  732. u16 macAddress[3], i;
  733. ENTER;
  734. macAddress[2] = READ_REG(priv, regUNC_MAC0_A);
  735. macAddress[2] = READ_REG(priv, regUNC_MAC0_A);
  736. macAddress[1] = READ_REG(priv, regUNC_MAC1_A);
  737. macAddress[1] = READ_REG(priv, regUNC_MAC1_A);
  738. macAddress[0] = READ_REG(priv, regUNC_MAC2_A);
  739. macAddress[0] = READ_REG(priv, regUNC_MAC2_A);
  740. for (i = 0; i < 3; i++) {
  741. priv->ndev->dev_addr[i * 2 + 1] = macAddress[i];
  742. priv->ndev->dev_addr[i * 2] = macAddress[i] >> 8;
  743. }
  744. RET(0);
  745. }
  746. static u64 bdx_read_l2stat(struct bdx_priv *priv, int reg)
  747. {
  748. u64 val;
  749. val = READ_REG(priv, reg);
  750. val |= ((u64) READ_REG(priv, reg + 8)) << 32;
  751. return val;
  752. }
  753. /*Do the statistics-update work*/
  754. static void bdx_update_stats(struct bdx_priv *priv)
  755. {
  756. struct bdx_stats *stats = &priv->hw_stats;
  757. u64 *stats_vector = (u64 *) stats;
  758. int i;
  759. int addr;
  760. /*Fill HW structure */
  761. addr = 0x7200;
  762. /*First 12 statistics - 0x7200 - 0x72B0 */
  763. for (i = 0; i < 12; i++) {
  764. stats_vector[i] = bdx_read_l2stat(priv, addr);
  765. addr += 0x10;
  766. }
  767. BDX_ASSERT(addr != 0x72C0);
  768. /* 0x72C0-0x72E0 RSRV */
  769. addr = 0x72F0;
  770. for (; i < 16; i++) {
  771. stats_vector[i] = bdx_read_l2stat(priv, addr);
  772. addr += 0x10;
  773. }
  774. BDX_ASSERT(addr != 0x7330);
  775. /* 0x7330-0x7360 RSRV */
  776. addr = 0x7370;
  777. for (; i < 19; i++) {
  778. stats_vector[i] = bdx_read_l2stat(priv, addr);
  779. addr += 0x10;
  780. }
  781. BDX_ASSERT(addr != 0x73A0);
  782. /* 0x73A0-0x73B0 RSRV */
  783. addr = 0x73C0;
  784. for (; i < 23; i++) {
  785. stats_vector[i] = bdx_read_l2stat(priv, addr);
  786. addr += 0x10;
  787. }
  788. BDX_ASSERT(addr != 0x7400);
  789. BDX_ASSERT((sizeof(struct bdx_stats) / sizeof(u64)) != i);
  790. }
  791. static struct net_device_stats *bdx_get_stats(struct net_device *ndev)
  792. {
  793. struct bdx_priv *priv = ndev->priv;
  794. struct net_device_stats *net_stat = &priv->net_stats;
  795. return net_stat;
  796. }
  797. static void print_rxdd(struct rxd_desc *rxdd, u32 rxd_val1, u16 len,
  798. u16 rxd_vlan);
  799. static void print_rxfd(struct rxf_desc *rxfd);
  800. /*************************************************************************
  801. * Rx DB *
  802. *************************************************************************/
  803. static void bdx_rxdb_destroy(struct rxdb *db)
  804. {
  805. if (db)
  806. vfree(db);
  807. }
  808. static struct rxdb *bdx_rxdb_create(int nelem)
  809. {
  810. struct rxdb *db;
  811. int i;
  812. db = vmalloc(sizeof(struct rxdb)
  813. + (nelem * sizeof(int))
  814. + (nelem * sizeof(struct rx_map)));
  815. if (likely(db != NULL)) {
  816. db->stack = (int *)(db + 1);
  817. db->elems = (void *)(db->stack + nelem);
  818. db->nelem = nelem;
  819. db->top = nelem;
  820. for (i = 0; i < nelem; i++)
  821. db->stack[i] = nelem - i - 1; /* to make first allocs
  822. close to db struct*/
  823. }
  824. return db;
  825. }
  826. static inline int bdx_rxdb_alloc_elem(struct rxdb *db)
  827. {
  828. BDX_ASSERT(db->top <= 0);
  829. return db->stack[--(db->top)];
  830. }
  831. static inline void *bdx_rxdb_addr_elem(struct rxdb *db, int n)
  832. {
  833. BDX_ASSERT((n < 0) || (n >= db->nelem));
  834. return db->elems + n;
  835. }
  836. static inline int bdx_rxdb_available(struct rxdb *db)
  837. {
  838. return db->top;
  839. }
  840. static inline void bdx_rxdb_free_elem(struct rxdb *db, int n)
  841. {
  842. BDX_ASSERT((n >= db->nelem) || (n < 0));
  843. db->stack[(db->top)++] = n;
  844. }
  845. /*************************************************************************
  846. * Rx Init *
  847. *************************************************************************/
  848. /* bdx_rx_init - initialize RX all related HW and SW resources
  849. * @priv - NIC private structure
  850. *
  851. * Returns 0 on success, negative value on failure
  852. *
  853. * It creates rxf and rxd fifos, update relevant HW registers, preallocate
  854. * skb for rx. It assumes that Rx is desabled in HW
  855. * funcs are grouped for better cache usage
  856. *
  857. * RxD fifo is smaller then RxF fifo by design. Upon high load, RxD will be
  858. * filled and packets will be dropped by nic without getting into host or
  859. * cousing interrupt. Anyway, in that condition, host has no chance to proccess
  860. * all packets, but dropping in nic is cheaper, since it takes 0 cpu cycles
  861. */
  862. /* TBD: ensure proper packet size */
  863. static int bdx_rx_init(struct bdx_priv *priv)
  864. {
  865. ENTER;
  866. if (bdx_fifo_init(priv, &priv->rxd_fifo0.m, priv->rxd_size,
  867. regRXD_CFG0_0, regRXD_CFG1_0,
  868. regRXD_RPTR_0, regRXD_WPTR_0))
  869. goto err_mem;
  870. if (bdx_fifo_init(priv, &priv->rxf_fifo0.m, priv->rxf_size,
  871. regRXF_CFG0_0, regRXF_CFG1_0,
  872. regRXF_RPTR_0, regRXF_WPTR_0))
  873. goto err_mem;
  874. if (!
  875. (priv->rxdb =
  876. bdx_rxdb_create(priv->rxf_fifo0.m.memsz /
  877. sizeof(struct rxf_desc))))
  878. goto err_mem;
  879. priv->rxf_fifo0.m.pktsz = priv->ndev->mtu + VLAN_ETH_HLEN;
  880. return 0;
  881. err_mem:
  882. ERR("%s: %s: Rx init failed\n", BDX_DRV_NAME, priv->ndev->name);
  883. return -ENOMEM;
  884. }
  885. /* bdx_rx_free_skbs - frees and unmaps all skbs allocated for the fifo
  886. * @priv - NIC private structure
  887. * @f - RXF fifo
  888. */
  889. static void bdx_rx_free_skbs(struct bdx_priv *priv, struct rxf_fifo *f)
  890. {
  891. struct rx_map *dm;
  892. struct rxdb *db = priv->rxdb;
  893. u16 i;
  894. ENTER;
  895. DBG("total=%d free=%d busy=%d\n", db->nelem, bdx_rxdb_available(db),
  896. db->nelem - bdx_rxdb_available(db));
  897. while (bdx_rxdb_available(db) > 0) {
  898. i = bdx_rxdb_alloc_elem(db);
  899. dm = bdx_rxdb_addr_elem(db, i);
  900. dm->dma = 0;
  901. }
  902. for (i = 0; i < db->nelem; i++) {
  903. dm = bdx_rxdb_addr_elem(db, i);
  904. if (dm->dma) {
  905. pci_unmap_single(priv->pdev,
  906. dm->dma, f->m.pktsz,
  907. PCI_DMA_FROMDEVICE);
  908. dev_kfree_skb(dm->skb);
  909. }
  910. }
  911. }
  912. /* bdx_rx_free - release all Rx resources
  913. * @priv - NIC private structure
  914. * It assumes that Rx is desabled in HW
  915. */
  916. static void bdx_rx_free(struct bdx_priv *priv)
  917. {
  918. ENTER;
  919. if (priv->rxdb) {
  920. bdx_rx_free_skbs(priv, &priv->rxf_fifo0);
  921. bdx_rxdb_destroy(priv->rxdb);
  922. priv->rxdb = NULL;
  923. }
  924. bdx_fifo_free(priv, &priv->rxf_fifo0.m);
  925. bdx_fifo_free(priv, &priv->rxd_fifo0.m);
  926. RET();
  927. }
  928. /*************************************************************************
  929. * Rx Engine *
  930. *************************************************************************/
  931. /* bdx_rx_alloc_skbs - fill rxf fifo with new skbs
  932. * @priv - nic's private structure
  933. * @f - RXF fifo that needs skbs
  934. * It allocates skbs, build rxf descs and push it (rxf descr) into rxf fifo.
  935. * skb's virtual and physical addresses are stored in skb db.
  936. * To calculate free space, func uses cached values of RPTR and WPTR
  937. * When needed, it also updates RPTR and WPTR.
  938. */
  939. /* TBD: do not update WPTR if no desc were written */
  940. static void bdx_rx_alloc_skbs(struct bdx_priv *priv, struct rxf_fifo *f)
  941. {
  942. struct sk_buff *skb;
  943. struct rxf_desc *rxfd;
  944. struct rx_map *dm;
  945. int dno, delta, idx;
  946. struct rxdb *db = priv->rxdb;
  947. ENTER;
  948. dno = bdx_rxdb_available(db) - 1;
  949. while (dno > 0) {
  950. if (!(skb = dev_alloc_skb(f->m.pktsz + NET_IP_ALIGN))) {
  951. ERR("NO MEM: dev_alloc_skb failed\n");
  952. break;
  953. }
  954. skb->dev = priv->ndev;
  955. skb_reserve(skb, NET_IP_ALIGN);
  956. idx = bdx_rxdb_alloc_elem(db);
  957. dm = bdx_rxdb_addr_elem(db, idx);
  958. dm->dma = pci_map_single(priv->pdev,
  959. skb->data, f->m.pktsz,
  960. PCI_DMA_FROMDEVICE);
  961. dm->skb = skb;
  962. rxfd = (struct rxf_desc *)(f->m.va + f->m.wptr);
  963. rxfd->info = CPU_CHIP_SWAP32(0x10003); /* INFO=1 BC=3 */
  964. rxfd->va_lo = idx;
  965. rxfd->pa_lo = CPU_CHIP_SWAP32(L32_64(dm->dma));
  966. rxfd->pa_hi = CPU_CHIP_SWAP32(H32_64(dm->dma));
  967. rxfd->len = CPU_CHIP_SWAP32(f->m.pktsz);
  968. print_rxfd(rxfd);
  969. f->m.wptr += sizeof(struct rxf_desc);
  970. delta = f->m.wptr - f->m.memsz;
  971. if (unlikely(delta >= 0)) {
  972. f->m.wptr = delta;
  973. if (delta > 0) {
  974. memcpy(f->m.va, f->m.va + f->m.memsz, delta);
  975. DBG("wrapped descriptor\n");
  976. }
  977. }
  978. dno--;
  979. }
  980. /*TBD: to do - delayed rxf wptr like in txd */
  981. WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
  982. RET();
  983. }
  984. static inline void
  985. NETIF_RX_MUX(struct bdx_priv *priv, u32 rxd_val1, u16 rxd_vlan,
  986. struct sk_buff *skb)
  987. {
  988. ENTER;
  989. DBG("rxdd->flags.bits.vtag=%d vlgrp=%p\n", GET_RXD_VTAG(rxd_val1),
  990. priv->vlgrp);
  991. if (priv->vlgrp && GET_RXD_VTAG(rxd_val1)) {
  992. DBG("%s: vlan rcv vlan '%x' vtag '%x', device name '%s'\n",
  993. priv->ndev->name,
  994. GET_RXD_VLAN_ID(rxd_vlan),
  995. GET_RXD_VTAG(rxd_val1),
  996. vlan_group_get_device(priv->vlgrp,
  997. GET_RXD_VLAN_ID(rxd_vlan))->name);
  998. /* NAPI variant of receive functions */
  999. vlan_hwaccel_receive_skb(skb, priv->vlgrp,
  1000. GET_RXD_VLAN_ID(rxd_vlan));
  1001. } else {
  1002. netif_receive_skb(skb);
  1003. }
  1004. }
  1005. static void bdx_recycle_skb(struct bdx_priv *priv, struct rxd_desc *rxdd)
  1006. {
  1007. struct rxf_desc *rxfd;
  1008. struct rx_map *dm;
  1009. struct rxf_fifo *f;
  1010. struct rxdb *db;
  1011. struct sk_buff *skb;
  1012. int delta;
  1013. ENTER;
  1014. DBG("priv=%p rxdd=%p\n", priv, rxdd);
  1015. f = &priv->rxf_fifo0;
  1016. db = priv->rxdb;
  1017. DBG("db=%p f=%p\n", db, f);
  1018. dm = bdx_rxdb_addr_elem(db, rxdd->va_lo);
  1019. DBG("dm=%p\n", dm);
  1020. skb = dm->skb;
  1021. rxfd = (struct rxf_desc *)(f->m.va + f->m.wptr);
  1022. rxfd->info = CPU_CHIP_SWAP32(0x10003); /* INFO=1 BC=3 */
  1023. rxfd->va_lo = rxdd->va_lo;
  1024. rxfd->pa_lo = CPU_CHIP_SWAP32(L32_64(dm->dma));
  1025. rxfd->pa_hi = CPU_CHIP_SWAP32(H32_64(dm->dma));
  1026. rxfd->len = CPU_CHIP_SWAP32(f->m.pktsz);
  1027. print_rxfd(rxfd);
  1028. f->m.wptr += sizeof(struct rxf_desc);
  1029. delta = f->m.wptr - f->m.memsz;
  1030. if (unlikely(delta >= 0)) {
  1031. f->m.wptr = delta;
  1032. if (delta > 0) {
  1033. memcpy(f->m.va, f->m.va + f->m.memsz, delta);
  1034. DBG("wrapped descriptor\n");
  1035. }
  1036. }
  1037. RET();
  1038. }
  1039. /* bdx_rx_receive - recieves full packets from RXD fifo and pass them to OS
  1040. * NOTE: a special treatment is given to non-continous descriptors
  1041. * that start near the end, wraps around and continue at the beginning. a second
  1042. * part is copied right after the first, and then descriptor is interpreted as
  1043. * normal. fifo has an extra space to allow such operations
  1044. * @priv - nic's private structure
  1045. * @f - RXF fifo that needs skbs
  1046. */
  1047. /* TBD: replace memcpy func call by explicite inline asm */
  1048. static int bdx_rx_receive(struct bdx_priv *priv, struct rxd_fifo *f, int budget)
  1049. {
  1050. struct sk_buff *skb, *skb2;
  1051. struct rxd_desc *rxdd;
  1052. struct rx_map *dm;
  1053. struct rxf_fifo *rxf_fifo;
  1054. int tmp_len, size;
  1055. int done = 0;
  1056. int max_done = BDX_MAX_RX_DONE;
  1057. struct rxdb *db = NULL;
  1058. /* Unmarshalled descriptor - copy of descriptor in host order */
  1059. u32 rxd_val1;
  1060. u16 len;
  1061. u16 rxd_vlan;
  1062. ENTER;
  1063. max_done = budget;
  1064. priv->ndev->last_rx = jiffies;
  1065. f->m.wptr = READ_REG(priv, f->m.reg_WPTR) & TXF_WPTR_WR_PTR;
  1066. size = f->m.wptr - f->m.rptr;
  1067. if (size < 0)
  1068. size = f->m.memsz + size; /* size is negative :-) */
  1069. while (size > 0) {
  1070. rxdd = (struct rxd_desc *)(f->m.va + f->m.rptr);
  1071. rxd_val1 = CPU_CHIP_SWAP32(rxdd->rxd_val1);
  1072. len = CPU_CHIP_SWAP16(rxdd->len);
  1073. rxd_vlan = CPU_CHIP_SWAP16(rxdd->rxd_vlan);
  1074. print_rxdd(rxdd, rxd_val1, len, rxd_vlan);
  1075. tmp_len = GET_RXD_BC(rxd_val1) << 3;
  1076. BDX_ASSERT(tmp_len <= 0);
  1077. size -= tmp_len;
  1078. if (size < 0) /* test for partially arrived descriptor */
  1079. break;
  1080. f->m.rptr += tmp_len;
  1081. tmp_len = f->m.rptr - f->m.memsz;
  1082. if (unlikely(tmp_len >= 0)) {
  1083. f->m.rptr = tmp_len;
  1084. if (tmp_len > 0) {
  1085. DBG("wrapped desc rptr=%d tmp_len=%d\n",
  1086. f->m.rptr, tmp_len);
  1087. memcpy(f->m.va + f->m.memsz, f->m.va, tmp_len);
  1088. }
  1089. }
  1090. if (unlikely(GET_RXD_ERR(rxd_val1))) {
  1091. DBG("rxd_err = 0x%x\n", GET_RXD_ERR(rxd_val1));
  1092. priv->net_stats.rx_errors++;
  1093. bdx_recycle_skb(priv, rxdd);
  1094. continue;
  1095. }
  1096. rxf_fifo = &priv->rxf_fifo0;
  1097. db = priv->rxdb;
  1098. dm = bdx_rxdb_addr_elem(db, rxdd->va_lo);
  1099. skb = dm->skb;
  1100. if (len < BDX_COPYBREAK &&
  1101. (skb2 = dev_alloc_skb(len + NET_IP_ALIGN))) {
  1102. skb_reserve(skb2, NET_IP_ALIGN);
  1103. /*skb_put(skb2, len); */
  1104. pci_dma_sync_single_for_cpu(priv->pdev,
  1105. dm->dma, rxf_fifo->m.pktsz,
  1106. PCI_DMA_FROMDEVICE);
  1107. memcpy(skb2->data, skb->data, len);
  1108. bdx_recycle_skb(priv, rxdd);
  1109. skb = skb2;
  1110. } else {
  1111. pci_unmap_single(priv->pdev,
  1112. dm->dma, rxf_fifo->m.pktsz,
  1113. PCI_DMA_FROMDEVICE);
  1114. bdx_rxdb_free_elem(db, rxdd->va_lo);
  1115. }
  1116. priv->net_stats.rx_bytes += len;
  1117. skb_put(skb, len);
  1118. skb->dev = priv->ndev;
  1119. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1120. skb->protocol = eth_type_trans(skb, priv->ndev);
  1121. /* Non-IP packets aren't checksum-offloaded */
  1122. if (GET_RXD_PKT_ID(rxd_val1) == 0)
  1123. skb->ip_summed = CHECKSUM_NONE;
  1124. NETIF_RX_MUX(priv, rxd_val1, rxd_vlan, skb);
  1125. if (++done >= max_done)
  1126. break;
  1127. }
  1128. priv->net_stats.rx_packets += done;
  1129. /* FIXME: do smth to minimize pci accesses */
  1130. WRITE_REG(priv, f->m.reg_RPTR, f->m.rptr & TXF_WPTR_WR_PTR);
  1131. bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
  1132. RET(done);
  1133. }
  1134. /*************************************************************************
  1135. * Debug / Temprorary Code *
  1136. *************************************************************************/
  1137. static void print_rxdd(struct rxd_desc *rxdd, u32 rxd_val1, u16 len,
  1138. u16 rxd_vlan)
  1139. {
  1140. DBG("ERROR: rxdd bc %d rxfq %d to %d type %d err %d rxp %d "
  1141. "pkt_id %d vtag %d len %d vlan_id %d cfi %d prio %d "
  1142. "va_lo %d va_hi %d\n",
  1143. GET_RXD_BC(rxd_val1), GET_RXD_RXFQ(rxd_val1), GET_RXD_TO(rxd_val1),
  1144. GET_RXD_TYPE(rxd_val1), GET_RXD_ERR(rxd_val1),
  1145. GET_RXD_RXP(rxd_val1), GET_RXD_PKT_ID(rxd_val1),
  1146. GET_RXD_VTAG(rxd_val1), len, GET_RXD_VLAN_ID(rxd_vlan),
  1147. GET_RXD_CFI(rxd_vlan), GET_RXD_PRIO(rxd_vlan), rxdd->va_lo,
  1148. rxdd->va_hi);
  1149. }
  1150. static void print_rxfd(struct rxf_desc *rxfd)
  1151. {
  1152. DBG("=== RxF desc CHIP ORDER/ENDIANESS =============\n"
  1153. "info 0x%x va_lo %u pa_lo 0x%x pa_hi 0x%x len 0x%x\n",
  1154. rxfd->info, rxfd->va_lo, rxfd->pa_lo, rxfd->pa_hi, rxfd->len);
  1155. }
  1156. /*
  1157. * TX HW/SW interaction overview
  1158. * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1159. * There are 2 types of TX communication channels betwean driver and NIC.
  1160. * 1) TX Free Fifo - TXF - holds ack descriptors for sent packets
  1161. * 2) TX Data Fifo - TXD - holds descriptors of full buffers.
  1162. *
  1163. * Currently NIC supports TSO, checksuming and gather DMA
  1164. * UFO and IP fragmentation is on the way
  1165. *
  1166. * RX SW Data Structures
  1167. * ~~~~~~~~~~~~~~~~~~~~~
  1168. * txdb - used to keep track of all skbs owned by SW and their dma addresses.
  1169. * For TX case, ownership lasts from geting packet via hard_xmit and until HW
  1170. * acknowledges sent by TXF descriptors.
  1171. * Implemented as cyclic buffer.
  1172. * fifo - keeps info about fifo's size and location, relevant HW registers,
  1173. * usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
  1174. * Implemented as simple struct.
  1175. *
  1176. * TX SW Execution Flow
  1177. * ~~~~~~~~~~~~~~~~~~~~
  1178. * OS calls driver's hard_xmit method with packet to sent.
  1179. * Driver creates DMA mappings, builds TXD descriptors and kicks HW
  1180. * by updating TXD WPTR.
  1181. * When packet is sent, HW write us TXF descriptor and SW frees original skb.
  1182. * To prevent TXD fifo overflow without reading HW registers every time,
  1183. * SW deploys "tx level" technique.
  1184. * Upon strart up, tx level is initialized to TXD fifo length.
  1185. * For every sent packet, SW gets its TXD descriptor sizei
  1186. * (from precalculated array) and substructs it from tx level.
  1187. * The size is also stored in txdb. When TXF ack arrives, SW fetch size of
  1188. * original TXD descriptor from txdb and adds it to tx level.
  1189. * When Tx level drops under some predefined treshhold, the driver
  1190. * stops the TX queue. When TX level rises above that level,
  1191. * the tx queue is enabled again.
  1192. *
  1193. * This technique avoids eccessive reading of RPTR and WPTR registers.
  1194. * As our benchmarks shows, it adds 1.5 Gbit/sec to NIS's throuput.
  1195. */
  1196. /*************************************************************************
  1197. * Tx DB *
  1198. *************************************************************************/
  1199. static inline int bdx_tx_db_size(struct txdb *db)
  1200. {
  1201. int taken = db->wptr - db->rptr;
  1202. if (taken < 0)
  1203. taken = db->size + 1 + taken; /* (size + 1) equals memsz */
  1204. return db->size - taken;
  1205. }
  1206. /* __bdx_tx_ptr_next - helper function, increment read/write pointer + wrap
  1207. * @d - tx data base
  1208. * @ptr - read or write pointer
  1209. */
  1210. static inline void __bdx_tx_db_ptr_next(struct txdb *db, struct tx_map **pptr)
  1211. {
  1212. BDX_ASSERT(db == NULL || pptr == NULL); /* sanity */
  1213. BDX_ASSERT(*pptr != db->rptr && /* expect either read */
  1214. *pptr != db->wptr); /* or write pointer */
  1215. BDX_ASSERT(*pptr < db->start || /* pointer has to be */
  1216. *pptr >= db->end); /* in range */
  1217. ++*pptr;
  1218. if (unlikely(*pptr == db->end))
  1219. *pptr = db->start;
  1220. }
  1221. /* bdx_tx_db_inc_rptr - increment read pointer
  1222. * @d - tx data base
  1223. */
  1224. static inline void bdx_tx_db_inc_rptr(struct txdb *db)
  1225. {
  1226. BDX_ASSERT(db->rptr == db->wptr); /* can't read from empty db */
  1227. __bdx_tx_db_ptr_next(db, &db->rptr);
  1228. }
  1229. /* bdx_tx_db_inc_rptr - increment write pointer
  1230. * @d - tx data base
  1231. */
  1232. static inline void bdx_tx_db_inc_wptr(struct txdb *db)
  1233. {
  1234. __bdx_tx_db_ptr_next(db, &db->wptr);
  1235. BDX_ASSERT(db->rptr == db->wptr); /* we can not get empty db as
  1236. a result of write */
  1237. }
  1238. /* bdx_tx_db_init - creates and initializes tx db
  1239. * @d - tx data base
  1240. * @sz_type - size of tx fifo
  1241. * Returns 0 on success, error code otherwise
  1242. */
  1243. static int bdx_tx_db_init(struct txdb *d, int sz_type)
  1244. {
  1245. int memsz = FIFO_SIZE * (1 << (sz_type + 1));
  1246. d->start = vmalloc(memsz);
  1247. if (!d->start)
  1248. return -ENOMEM;
  1249. /*
  1250. * In order to differentiate between db is empty and db is full
  1251. * states at least one element should always be empty in order to
  1252. * avoid rptr == wptr which means db is empty
  1253. */
  1254. d->size = memsz / sizeof(struct tx_map) - 1;
  1255. d->end = d->start + d->size + 1; /* just after last element */
  1256. /* all dbs are created equally empty */
  1257. d->rptr = d->start;
  1258. d->wptr = d->start;
  1259. return 0;
  1260. }
  1261. /* bdx_tx_db_close - closes tx db and frees all memory
  1262. * @d - tx data base
  1263. */
  1264. static void bdx_tx_db_close(struct txdb *d)
  1265. {
  1266. BDX_ASSERT(d == NULL);
  1267. if (d->start) {
  1268. vfree(d->start);
  1269. d->start = NULL;
  1270. }
  1271. }
  1272. /*************************************************************************
  1273. * Tx Engine *
  1274. *************************************************************************/
  1275. /* sizes of tx desc (including padding if needed) as function
  1276. * of skb's frag number */
  1277. static struct {
  1278. u16 bytes;
  1279. u16 qwords; /* qword = 64 bit */
  1280. } txd_sizes[MAX_SKB_FRAGS + 1];
  1281. /* txdb_map_skb - creates and stores dma mappings for skb's data blocks
  1282. * @priv - NIC private structure
  1283. * @skb - socket buffer to map
  1284. *
  1285. * It makes dma mappings for skb's data blocks and writes them to PBL of
  1286. * new tx descriptor. It also stores them in the tx db, so they could be
  1287. * unmaped after data was sent. It is reponsibility of a caller to make
  1288. * sure that there is enough space in the tx db. Last element holds pointer
  1289. * to skb itself and marked with zero length
  1290. */
  1291. static inline void
  1292. bdx_tx_map_skb(struct bdx_priv *priv, struct sk_buff *skb,
  1293. struct txd_desc *txdd)
  1294. {
  1295. struct txdb *db = &priv->txdb;
  1296. struct pbl *pbl = &txdd->pbl[0];
  1297. int nr_frags = skb_shinfo(skb)->nr_frags;
  1298. int i;
  1299. db->wptr->len = skb->len - skb->data_len;
  1300. db->wptr->addr.dma = pci_map_single(priv->pdev, skb->data,
  1301. db->wptr->len, PCI_DMA_TODEVICE);
  1302. pbl->len = CPU_CHIP_SWAP32(db->wptr->len);
  1303. pbl->pa_lo = CPU_CHIP_SWAP32(L32_64(db->wptr->addr.dma));
  1304. pbl->pa_hi = CPU_CHIP_SWAP32(H32_64(db->wptr->addr.dma));
  1305. DBG("=== pbl len: 0x%x ================\n", pbl->len);
  1306. DBG("=== pbl pa_lo: 0x%x ================\n", pbl->pa_lo);
  1307. DBG("=== pbl pa_hi: 0x%x ================\n", pbl->pa_hi);
  1308. bdx_tx_db_inc_wptr(db);
  1309. for (i = 0; i < nr_frags; i++) {
  1310. struct skb_frag_struct *frag;
  1311. frag = &skb_shinfo(skb)->frags[i];
  1312. db->wptr->len = frag->size;
  1313. db->wptr->addr.dma =
  1314. pci_map_page(priv->pdev, frag->page, frag->page_offset,
  1315. frag->size, PCI_DMA_TODEVICE);
  1316. pbl++;
  1317. pbl->len = CPU_CHIP_SWAP32(db->wptr->len);
  1318. pbl->pa_lo = CPU_CHIP_SWAP32(L32_64(db->wptr->addr.dma));
  1319. pbl->pa_hi = CPU_CHIP_SWAP32(H32_64(db->wptr->addr.dma));
  1320. bdx_tx_db_inc_wptr(db);
  1321. }
  1322. /* add skb clean up info. */
  1323. db->wptr->len = -txd_sizes[nr_frags].bytes;
  1324. db->wptr->addr.skb = skb;
  1325. bdx_tx_db_inc_wptr(db);
  1326. }
  1327. /* init_txd_sizes - precalculate sizes of descriptors for skbs up to 16 frags
  1328. * number of frags is used as index to fetch correct descriptors size,
  1329. * instead of calculating it each time */
  1330. static void __init init_txd_sizes(void)
  1331. {
  1332. int i, lwords;
  1333. /* 7 - is number of lwords in txd with one phys buffer
  1334. * 3 - is number of lwords used for every additional phys buffer */
  1335. for (i = 0; i < MAX_SKB_FRAGS + 1; i++) {
  1336. lwords = 7 + (i * 3);
  1337. if (lwords & 1)
  1338. lwords++; /* pad it with 1 lword */
  1339. txd_sizes[i].qwords = lwords >> 1;
  1340. txd_sizes[i].bytes = lwords << 2;
  1341. }
  1342. }
  1343. /* bdx_tx_init - initialize all Tx related stuff.
  1344. * Namely, TXD and TXF fifos, database etc */
  1345. static int bdx_tx_init(struct bdx_priv *priv)
  1346. {
  1347. if (bdx_fifo_init(priv, &priv->txd_fifo0.m, priv->txd_size,
  1348. regTXD_CFG0_0,
  1349. regTXD_CFG1_0, regTXD_RPTR_0, regTXD_WPTR_0))
  1350. goto err_mem;
  1351. if (bdx_fifo_init(priv, &priv->txf_fifo0.m, priv->txf_size,
  1352. regTXF_CFG0_0,
  1353. regTXF_CFG1_0, regTXF_RPTR_0, regTXF_WPTR_0))
  1354. goto err_mem;
  1355. /* The TX db has to keep mappings for all packets sent (on TxD)
  1356. * and not yet reclaimed (on TxF) */
  1357. if (bdx_tx_db_init(&priv->txdb, max(priv->txd_size, priv->txf_size)))
  1358. goto err_mem;
  1359. priv->tx_level = BDX_MAX_TX_LEVEL;
  1360. #ifdef BDX_DELAY_WPTR
  1361. priv->tx_update_mark = priv->tx_level - 1024;
  1362. #endif
  1363. return 0;
  1364. err_mem:
  1365. ERR("tehuti: %s: Tx init failed\n", priv->ndev->name);
  1366. return -ENOMEM;
  1367. }
  1368. /*
  1369. * bdx_tx_space - calculates avalable space in TX fifo
  1370. * @priv - NIC private structure
  1371. * Returns avaliable space in TX fifo in bytes
  1372. */
  1373. static inline int bdx_tx_space(struct bdx_priv *priv)
  1374. {
  1375. struct txd_fifo *f = &priv->txd_fifo0;
  1376. int fsize;
  1377. f->m.rptr = READ_REG(priv, f->m.reg_RPTR) & TXF_WPTR_WR_PTR;
  1378. fsize = f->m.rptr - f->m.wptr;
  1379. if (fsize <= 0)
  1380. fsize = f->m.memsz + fsize;
  1381. return (fsize);
  1382. }
  1383. /* bdx_tx_transmit - send packet to NIC
  1384. * @skb - packet to send
  1385. * ndev - network device assigned to NIC
  1386. * Return codes:
  1387. * o NETDEV_TX_OK everything ok.
  1388. * o NETDEV_TX_BUSY Cannot transmit packet, try later
  1389. * Usually a bug, means queue start/stop flow control is broken in
  1390. * the driver. Note: the driver must NOT put the skb in its DMA ring.
  1391. * o NETDEV_TX_LOCKED Locking failed, please retry quickly.
  1392. */
  1393. static int bdx_tx_transmit(struct sk_buff *skb, struct net_device *ndev)
  1394. {
  1395. struct bdx_priv *priv = ndev->priv;
  1396. struct txd_fifo *f = &priv->txd_fifo0;
  1397. int txd_checksum = 7; /* full checksum */
  1398. int txd_lgsnd = 0;
  1399. int txd_vlan_id = 0;
  1400. int txd_vtag = 0;
  1401. int txd_mss = 0;
  1402. int nr_frags = skb_shinfo(skb)->nr_frags;
  1403. struct txd_desc *txdd;
  1404. int len;
  1405. unsigned long flags;
  1406. ENTER;
  1407. local_irq_save(flags);
  1408. if (!spin_trylock(&priv->tx_lock)) {
  1409. local_irq_restore(flags);
  1410. DBG("%s[%s]: TX locked, returning NETDEV_TX_LOCKED\n",
  1411. BDX_DRV_NAME, ndev->name);
  1412. return NETDEV_TX_LOCKED;
  1413. }
  1414. /* build tx descriptor */
  1415. BDX_ASSERT(f->m.wptr >= f->m.memsz); /* started with valid wptr */
  1416. txdd = (struct txd_desc *)(f->m.va + f->m.wptr);
  1417. if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL))
  1418. txd_checksum = 0;
  1419. if (skb_shinfo(skb)->gso_size) {
  1420. txd_mss = skb_shinfo(skb)->gso_size;
  1421. txd_lgsnd = 1;
  1422. DBG("skb %p skb len %d gso size = %d\n", skb, skb->len,
  1423. txd_mss);
  1424. }
  1425. if (vlan_tx_tag_present(skb)) {
  1426. /*Cut VLAN ID to 12 bits */
  1427. txd_vlan_id = vlan_tx_tag_get(skb) & BITS_MASK(12);
  1428. txd_vtag = 1;
  1429. }
  1430. txdd->length = CPU_CHIP_SWAP16(skb->len);
  1431. txdd->mss = CPU_CHIP_SWAP16(txd_mss);
  1432. txdd->txd_val1 =
  1433. CPU_CHIP_SWAP32(TXD_W1_VAL
  1434. (txd_sizes[nr_frags].qwords, txd_checksum, txd_vtag,
  1435. txd_lgsnd, txd_vlan_id));
  1436. DBG("=== TxD desc =====================\n");
  1437. DBG("=== w1: 0x%x ================\n", txdd->txd_val1);
  1438. DBG("=== w2: mss 0x%x len 0x%x\n", txdd->mss, txdd->length);
  1439. bdx_tx_map_skb(priv, skb, txdd);
  1440. /* increment TXD write pointer. In case of
  1441. fifo wrapping copy reminder of the descriptor
  1442. to the beginning */
  1443. f->m.wptr += txd_sizes[nr_frags].bytes;
  1444. len = f->m.wptr - f->m.memsz;
  1445. if (unlikely(len >= 0)) {
  1446. f->m.wptr = len;
  1447. if (len > 0) {
  1448. BDX_ASSERT(len > f->m.memsz);
  1449. memcpy(f->m.va, f->m.va + f->m.memsz, len);
  1450. }
  1451. }
  1452. BDX_ASSERT(f->m.wptr >= f->m.memsz); /* finished with valid wptr */
  1453. priv->tx_level -= txd_sizes[nr_frags].bytes;
  1454. BDX_ASSERT(priv->tx_level <= 0 || priv->tx_level > BDX_MAX_TX_LEVEL);
  1455. #ifdef BDX_DELAY_WPTR
  1456. if (priv->tx_level > priv->tx_update_mark) {
  1457. /* Force memory writes to complete before letting h/w
  1458. know there are new descriptors to fetch.
  1459. (might be needed on platforms like IA64)
  1460. wmb(); */
  1461. WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
  1462. } else {
  1463. if (priv->tx_noupd++ > BDX_NO_UPD_PACKETS) {
  1464. priv->tx_noupd = 0;
  1465. WRITE_REG(priv, f->m.reg_WPTR,
  1466. f->m.wptr & TXF_WPTR_WR_PTR);
  1467. }
  1468. }
  1469. #else
  1470. /* Force memory writes to complete before letting h/w
  1471. know there are new descriptors to fetch.
  1472. (might be needed on platforms like IA64)
  1473. wmb(); */
  1474. WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
  1475. #endif
  1476. ndev->trans_start = jiffies;
  1477. priv->net_stats.tx_packets++;
  1478. priv->net_stats.tx_bytes += skb->len;
  1479. if (priv->tx_level < BDX_MIN_TX_LEVEL) {
  1480. DBG("%s: %s: TX Q STOP level %d\n",
  1481. BDX_DRV_NAME, ndev->name, priv->tx_level);
  1482. netif_stop_queue(ndev);
  1483. }
  1484. spin_unlock_irqrestore(&priv->tx_lock, flags);
  1485. return NETDEV_TX_OK;
  1486. }
  1487. /* bdx_tx_cleanup - clean TXF fifo, run in the context of IRQ.
  1488. * @priv - bdx adapter
  1489. * It scans TXF fifo for descriptors, frees DMA mappings and reports to OS
  1490. * that those packets were sent
  1491. */
  1492. static void bdx_tx_cleanup(struct bdx_priv *priv)
  1493. {
  1494. struct txf_fifo *f = &priv->txf_fifo0;
  1495. struct txdb *db = &priv->txdb;
  1496. int tx_level = 0;
  1497. ENTER;
  1498. f->m.wptr = READ_REG(priv, f->m.reg_WPTR) & TXF_WPTR_MASK;
  1499. BDX_ASSERT(f->m.rptr >= f->m.memsz); /* started with valid rptr */
  1500. while (f->m.wptr != f->m.rptr) {
  1501. f->m.rptr += BDX_TXF_DESC_SZ;
  1502. f->m.rptr &= f->m.size_mask;
  1503. /* unmap all the fragments */
  1504. /* first has to come tx_maps containing dma */
  1505. BDX_ASSERT(db->rptr->len == 0);
  1506. do {
  1507. BDX_ASSERT(db->rptr->addr.dma == 0);
  1508. pci_unmap_page(priv->pdev, db->rptr->addr.dma,
  1509. db->rptr->len, PCI_DMA_TODEVICE);
  1510. bdx_tx_db_inc_rptr(db);
  1511. } while (db->rptr->len > 0);
  1512. tx_level -= db->rptr->len; /* '-' koz len is negative */
  1513. /* now should come skb pointer - free it */
  1514. dev_kfree_skb_irq(db->rptr->addr.skb);
  1515. bdx_tx_db_inc_rptr(db);
  1516. }
  1517. /* let h/w know which TXF descriptors were cleaned */
  1518. BDX_ASSERT((f->m.wptr & TXF_WPTR_WR_PTR) >= f->m.memsz);
  1519. WRITE_REG(priv, f->m.reg_RPTR, f->m.rptr & TXF_WPTR_WR_PTR);
  1520. /* We reclaimed resources, so in case the Q is stopped by xmit callback,
  1521. * we resume the transmition and use tx_lock to synchronize with xmit.*/
  1522. spin_lock(&priv->tx_lock);
  1523. priv->tx_level += tx_level;
  1524. BDX_ASSERT(priv->tx_level <= 0 || priv->tx_level > BDX_MAX_TX_LEVEL);
  1525. #ifdef BDX_DELAY_WPTR
  1526. if (priv->tx_noupd) {
  1527. priv->tx_noupd = 0;
  1528. WRITE_REG(priv, priv->txd_fifo0.m.reg_WPTR,
  1529. priv->txd_fifo0.m.wptr & TXF_WPTR_WR_PTR);
  1530. }
  1531. #endif
  1532. if (unlikely(netif_queue_stopped(priv->ndev)
  1533. && netif_carrier_ok(priv->ndev)
  1534. && (priv->tx_level >= BDX_MIN_TX_LEVEL))) {
  1535. DBG("%s: %s: TX Q WAKE level %d\n",
  1536. BDX_DRV_NAME, priv->ndev->name, priv->tx_level);
  1537. netif_wake_queue(priv->ndev);
  1538. }
  1539. spin_unlock(&priv->tx_lock);
  1540. }
  1541. /* bdx_tx_free_skbs - frees all skbs from TXD fifo.
  1542. * It gets called when OS stops this dev, eg upon "ifconfig down" or rmmod
  1543. */
  1544. static void bdx_tx_free_skbs(struct bdx_priv *priv)
  1545. {
  1546. struct txdb *db = &priv->txdb;
  1547. ENTER;
  1548. while (db->rptr != db->wptr) {
  1549. if (likely(db->rptr->len))
  1550. pci_unmap_page(priv->pdev, db->rptr->addr.dma,
  1551. db->rptr->len, PCI_DMA_TODEVICE);
  1552. else
  1553. dev_kfree_skb(db->rptr->addr.skb);
  1554. bdx_tx_db_inc_rptr(db);
  1555. }
  1556. RET();
  1557. }
  1558. /* bdx_tx_free - frees all Tx resources */
  1559. static void bdx_tx_free(struct bdx_priv *priv)
  1560. {
  1561. ENTER;
  1562. bdx_tx_free_skbs(priv);
  1563. bdx_fifo_free(priv, &priv->txd_fifo0.m);
  1564. bdx_fifo_free(priv, &priv->txf_fifo0.m);
  1565. bdx_tx_db_close(&priv->txdb);
  1566. }
  1567. /* bdx_tx_push_desc - push descriptor to TxD fifo
  1568. * @priv - NIC private structure
  1569. * @data - desc's data
  1570. * @size - desc's size
  1571. *
  1572. * Pushes desc to TxD fifo and overlaps it if needed.
  1573. * NOTE: this func does not check for available space. this is responsibility
  1574. * of the caller. Neither does it check that data size is smaller then
  1575. * fifo size.
  1576. */
  1577. static void bdx_tx_push_desc(struct bdx_priv *priv, void *data, int size)
  1578. {
  1579. struct txd_fifo *f = &priv->txd_fifo0;
  1580. int i = f->m.memsz - f->m.wptr;
  1581. if (size == 0)
  1582. return;
  1583. if (i > size) {
  1584. memcpy(f->m.va + f->m.wptr, data, size);
  1585. f->m.wptr += size;
  1586. } else {
  1587. memcpy(f->m.va + f->m.wptr, data, i);
  1588. f->m.wptr = size - i;
  1589. memcpy(f->m.va, data + i, f->m.wptr);
  1590. }
  1591. WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
  1592. }
  1593. /* bdx_tx_push_desc_safe - push descriptor to TxD fifo in a safe way
  1594. * @priv - NIC private structure
  1595. * @data - desc's data
  1596. * @size - desc's size
  1597. *
  1598. * NOTE: this func does check for available space and, if neccessary, waits for
  1599. * NIC to read existing data before writing new one.
  1600. */
  1601. static void bdx_tx_push_desc_safe(struct bdx_priv *priv, void *data, int size)
  1602. {
  1603. int timer = 0;
  1604. ENTER;
  1605. while (size > 0) {
  1606. /* we substruct 8 because when fifo is full rptr == wptr
  1607. which also means that fifo is empty, we can understand
  1608. the difference, but could hw do the same ??? :) */
  1609. int avail = bdx_tx_space(priv) - 8;
  1610. if (avail <= 0) {
  1611. if (timer++ > 300) { /* prevent endless loop */
  1612. DBG("timeout while writing desc to TxD fifo\n");
  1613. break;
  1614. }
  1615. udelay(50); /* give hw a chance to clean fifo */
  1616. continue;
  1617. }
  1618. avail = MIN(avail, size);
  1619. DBG("about to push %d bytes starting %p size %d\n", avail,
  1620. data, size);
  1621. bdx_tx_push_desc(priv, data, avail);
  1622. size -= avail;
  1623. data += avail;
  1624. }
  1625. RET();
  1626. }
  1627. /**
  1628. * bdx_probe - Device Initialization Routine
  1629. * @pdev: PCI device information struct
  1630. * @ent: entry in bdx_pci_tbl
  1631. *
  1632. * Returns 0 on success, negative on failure
  1633. *
  1634. * bdx_probe initializes an adapter identified by a pci_dev structure.
  1635. * The OS initialization, configuring of the adapter private structure,
  1636. * and a hardware reset occur.
  1637. *
  1638. * functions and their order used as explained in
  1639. * /usr/src/linux/Documentation/DMA-{API,mapping}.txt
  1640. *
  1641. */
  1642. /* TBD: netif_msg should be checked and implemented. I disable it for now */
  1643. static int __devinit
  1644. bdx_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
  1645. {
  1646. struct net_device *ndev;
  1647. struct bdx_priv *priv;
  1648. int err, pci_using_dac, port;
  1649. unsigned long pciaddr;
  1650. u32 regionSize;
  1651. struct pci_nic *nic;
  1652. ENTER;
  1653. nic = vmalloc(sizeof(*nic));
  1654. if (!nic)
  1655. RET(-ENOMEM);
  1656. /************** pci *****************/
  1657. if ((err = pci_enable_device(pdev))) /* it trigers interrupt, dunno why. */
  1658. goto err_pci; /* it's not a problem though */
  1659. if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)) &&
  1660. !(err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK))) {
  1661. pci_using_dac = 1;
  1662. } else {
  1663. if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) ||
  1664. (err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))) {
  1665. printk(KERN_ERR "tehuti: No usable DMA configuration"
  1666. ", aborting\n");
  1667. goto err_dma;
  1668. }
  1669. pci_using_dac = 0;
  1670. }
  1671. if ((err = pci_request_regions(pdev, BDX_DRV_NAME)))
  1672. goto err_dma;
  1673. pci_set_master(pdev);
  1674. pciaddr = pci_resource_start(pdev, 0);
  1675. if (!pciaddr) {
  1676. err = -EIO;
  1677. ERR("tehuti: no MMIO resource\n");
  1678. goto err_out_res;
  1679. }
  1680. if ((regionSize = pci_resource_len(pdev, 0)) < BDX_REGS_SIZE) {
  1681. err = -EIO;
  1682. ERR("tehuti: MMIO resource (%x) too small\n", regionSize);
  1683. goto err_out_res;
  1684. }
  1685. nic->regs = ioremap(pciaddr, regionSize);
  1686. if (!nic->regs) {
  1687. err = -EIO;
  1688. ERR("tehuti: ioremap failed\n");
  1689. goto err_out_res;
  1690. }
  1691. if (pdev->irq < 2) {
  1692. err = -EIO;
  1693. ERR("tehuti: invalid irq (%d)\n", pdev->irq);
  1694. goto err_out_iomap;
  1695. }
  1696. pci_set_drvdata(pdev, nic);
  1697. if (pdev->device == 0x3014)
  1698. nic->port_num = 2;
  1699. else
  1700. nic->port_num = 1;
  1701. print_hw_id(pdev);
  1702. bdx_hw_reset_direct(nic->regs);
  1703. nic->irq_type = IRQ_INTX;
  1704. #ifdef BDX_MSI
  1705. if ((readl(nic->regs + FPGA_VER) & 0xFFF) >= 378) {
  1706. if ((err = pci_enable_msi(pdev)))
  1707. ERR("Tehuti: Can't eneble msi. error is %d\n", err);
  1708. else
  1709. nic->irq_type = IRQ_MSI;
  1710. } else
  1711. DBG("HW does not support MSI\n");
  1712. #endif
  1713. /************** netdev **************/
  1714. for (port = 0; port < nic->port_num; port++) {
  1715. if (!(ndev = alloc_etherdev(sizeof(struct bdx_priv)))) {
  1716. err = -ENOMEM;
  1717. printk(KERN_ERR "tehuti: alloc_etherdev failed\n");
  1718. goto err_out_iomap;
  1719. }
  1720. ndev->open = bdx_open;
  1721. ndev->stop = bdx_close;
  1722. ndev->hard_start_xmit = bdx_tx_transmit;
  1723. ndev->do_ioctl = bdx_ioctl;
  1724. ndev->set_multicast_list = bdx_setmulti;
  1725. ndev->get_stats = bdx_get_stats;
  1726. ndev->change_mtu = bdx_change_mtu;
  1727. ndev->set_mac_address = bdx_set_mac;
  1728. ndev->tx_queue_len = BDX_NDEV_TXQ_LEN;
  1729. ndev->vlan_rx_register = bdx_vlan_rx_register;
  1730. ndev->vlan_rx_add_vid = bdx_vlan_rx_add_vid;
  1731. ndev->vlan_rx_kill_vid = bdx_vlan_rx_kill_vid;
  1732. bdx_ethtool_ops(ndev); /* ethtool interface */
  1733. /* these fields are used for info purposes only
  1734. * so we can have them same for all ports of the board */
  1735. ndev->if_port = port;
  1736. ndev->base_addr = pciaddr;
  1737. ndev->mem_start = pciaddr;
  1738. ndev->mem_end = pciaddr + regionSize;
  1739. ndev->irq = pdev->irq;
  1740. ndev->features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_TSO
  1741. | NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX |
  1742. NETIF_F_HW_VLAN_FILTER
  1743. /*| NETIF_F_FRAGLIST */
  1744. ;
  1745. if (pci_using_dac)
  1746. ndev->features |= NETIF_F_HIGHDMA;
  1747. /************** priv ****************/
  1748. priv = nic->priv[port] = ndev->priv;
  1749. memset(priv, 0, sizeof(struct bdx_priv));
  1750. priv->pBdxRegs = nic->regs + port * 0x8000;
  1751. priv->port = port;
  1752. priv->pdev = pdev;
  1753. priv->ndev = ndev;
  1754. priv->nic = nic;
  1755. priv->msg_enable = BDX_DEF_MSG_ENABLE;
  1756. netif_napi_add(ndev, &priv->napi, bdx_poll, 64);
  1757. if ((readl(nic->regs + FPGA_VER) & 0xFFF) == 308) {
  1758. DBG("HW statistics not supported\n");
  1759. priv->stats_flag = 0;
  1760. } else {
  1761. priv->stats_flag = 1;
  1762. }
  1763. /* Initialize fifo sizes. */
  1764. priv->txd_size = 2;
  1765. priv->txf_size = 2;
  1766. priv->rxd_size = 2;
  1767. priv->rxf_size = 3;
  1768. /* Initialize the initial coalescing registers. */
  1769. priv->rdintcm = INT_REG_VAL(0x20, 1, 4, 12);
  1770. priv->tdintcm = INT_REG_VAL(0x20, 1, 0, 12);
  1771. /* ndev->xmit_lock spinlock is not used.
  1772. * Private priv->tx_lock is used for synchronization
  1773. * between transmit and TX irq cleanup. In addition
  1774. * set multicast list callback has to use priv->tx_lock.
  1775. */
  1776. #ifdef BDX_LLTX
  1777. ndev->features |= NETIF_F_LLTX;
  1778. #endif
  1779. spin_lock_init(&priv->tx_lock);
  1780. /*bdx_hw_reset(priv); */
  1781. if (bdx_read_mac(priv)) {
  1782. printk(KERN_ERR "tehuti: load MAC address failed\n");
  1783. goto err_out_iomap;
  1784. }
  1785. SET_NETDEV_DEV(ndev, &pdev->dev);
  1786. if ((err = register_netdev(ndev))) {
  1787. printk(KERN_ERR "tehuti: register_netdev failed\n");
  1788. goto err_out_free;
  1789. }
  1790. netif_carrier_off(ndev);
  1791. netif_stop_queue(ndev);
  1792. print_eth_id(ndev);
  1793. }
  1794. RET(0);
  1795. err_out_free:
  1796. free_netdev(ndev);
  1797. err_out_iomap:
  1798. iounmap(nic->regs);
  1799. err_out_res:
  1800. pci_release_regions(pdev);
  1801. err_dma:
  1802. pci_disable_device(pdev);
  1803. err_pci:
  1804. vfree(nic);
  1805. RET(err);
  1806. }
  1807. /****************** Ethtool interface *********************/
  1808. /* get strings for tests */
  1809. static const char
  1810. bdx_test_names[][ETH_GSTRING_LEN] = {
  1811. "No tests defined"
  1812. };
  1813. /* get strings for statistics counters */
  1814. static const char
  1815. bdx_stat_names[][ETH_GSTRING_LEN] = {
  1816. "InUCast", /* 0x7200 */
  1817. "InMCast", /* 0x7210 */
  1818. "InBCast", /* 0x7220 */
  1819. "InPkts", /* 0x7230 */
  1820. "InErrors", /* 0x7240 */
  1821. "InDropped", /* 0x7250 */
  1822. "FrameTooLong", /* 0x7260 */
  1823. "FrameSequenceErrors", /* 0x7270 */
  1824. "InVLAN", /* 0x7280 */
  1825. "InDroppedDFE", /* 0x7290 */
  1826. "InDroppedIntFull", /* 0x72A0 */
  1827. "InFrameAlignErrors", /* 0x72B0 */
  1828. /* 0x72C0-0x72E0 RSRV */
  1829. "OutUCast", /* 0x72F0 */
  1830. "OutMCast", /* 0x7300 */
  1831. "OutBCast", /* 0x7310 */
  1832. "OutPkts", /* 0x7320 */
  1833. /* 0x7330-0x7360 RSRV */
  1834. "OutVLAN", /* 0x7370 */
  1835. "InUCastOctects", /* 0x7380 */
  1836. "OutUCastOctects", /* 0x7390 */
  1837. /* 0x73A0-0x73B0 RSRV */
  1838. "InBCastOctects", /* 0x73C0 */
  1839. "OutBCastOctects", /* 0x73D0 */
  1840. "InOctects", /* 0x73E0 */
  1841. "OutOctects", /* 0x73F0 */
  1842. };
  1843. /*
  1844. * bdx_get_settings - get device-specific settings
  1845. * @netdev
  1846. * @ecmd
  1847. */
  1848. static int bdx_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
  1849. {
  1850. u32 rdintcm;
  1851. u32 tdintcm;
  1852. struct bdx_priv *priv = netdev->priv;
  1853. rdintcm = priv->rdintcm;
  1854. tdintcm = priv->tdintcm;
  1855. ecmd->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
  1856. ecmd->advertising = (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE);
  1857. ecmd->speed = SPEED_10000;
  1858. ecmd->duplex = DUPLEX_FULL;
  1859. ecmd->port = PORT_FIBRE;
  1860. ecmd->transceiver = XCVR_EXTERNAL; /* what does it mean? */
  1861. ecmd->autoneg = AUTONEG_DISABLE;
  1862. /* PCK_TH measures in multiples of FIFO bytes
  1863. We translate to packets */
  1864. ecmd->maxtxpkt =
  1865. ((GET_PCK_TH(tdintcm) * PCK_TH_MULT) / BDX_TXF_DESC_SZ);
  1866. ecmd->maxrxpkt =
  1867. ((GET_PCK_TH(rdintcm) * PCK_TH_MULT) / sizeof(struct rxf_desc));
  1868. return 0;
  1869. }
  1870. /*
  1871. * bdx_get_drvinfo - report driver information
  1872. * @netdev
  1873. * @drvinfo
  1874. */
  1875. static void
  1876. bdx_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *drvinfo)
  1877. {
  1878. struct bdx_priv *priv = netdev->priv;
  1879. strncat(drvinfo->driver, BDX_DRV_NAME, sizeof(drvinfo->driver));
  1880. strncat(drvinfo->version, BDX_DRV_VERSION, sizeof(drvinfo->version));
  1881. strncat(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version));
  1882. strncat(drvinfo->bus_info, pci_name(priv->pdev),
  1883. sizeof(drvinfo->bus_info));
  1884. drvinfo->n_stats = ((priv->stats_flag) ?
  1885. (sizeof(bdx_stat_names) / ETH_GSTRING_LEN) : 0);
  1886. drvinfo->testinfo_len = 0;
  1887. drvinfo->regdump_len = 0;
  1888. drvinfo->eedump_len = 0;
  1889. }
  1890. /*
  1891. * bdx_get_rx_csum - report whether receive checksums are turned on or off
  1892. * @netdev
  1893. */
  1894. static u32 bdx_get_rx_csum(struct net_device *netdev)
  1895. {
  1896. return 1; /* always on */
  1897. }
  1898. /*
  1899. * bdx_get_tx_csum - report whether transmit checksums are turned on or off
  1900. * @netdev
  1901. */
  1902. static u32 bdx_get_tx_csum(struct net_device *netdev)
  1903. {
  1904. return (netdev->features & NETIF_F_IP_CSUM) != 0;
  1905. }
  1906. /*
  1907. * bdx_get_coalesce - get interrupt coalescing parameters
  1908. * @netdev
  1909. * @ecoal
  1910. */
  1911. static int
  1912. bdx_get_coalesce(struct net_device *netdev, struct ethtool_coalesce *ecoal)
  1913. {
  1914. u32 rdintcm;
  1915. u32 tdintcm;
  1916. struct bdx_priv *priv = netdev->priv;
  1917. rdintcm = priv->rdintcm;
  1918. tdintcm = priv->tdintcm;
  1919. /* PCK_TH measures in multiples of FIFO bytes
  1920. We translate to packets */
  1921. ecoal->rx_coalesce_usecs = GET_INT_COAL(rdintcm) * INT_COAL_MULT;
  1922. ecoal->rx_max_coalesced_frames =
  1923. ((GET_PCK_TH(rdintcm) * PCK_TH_MULT) / sizeof(struct rxf_desc));
  1924. ecoal->tx_coalesce_usecs = GET_INT_COAL(tdintcm) * INT_COAL_MULT;
  1925. ecoal->tx_max_coalesced_frames =
  1926. ((GET_PCK_TH(tdintcm) * PCK_TH_MULT) / BDX_TXF_DESC_SZ);
  1927. /* adaptive parameters ignored */
  1928. return 0;
  1929. }
  1930. /*
  1931. * bdx_set_coalesce - set interrupt coalescing parameters
  1932. * @netdev
  1933. * @ecoal
  1934. */
  1935. static int
  1936. bdx_set_coalesce(struct net_device *netdev, struct ethtool_coalesce *ecoal)
  1937. {
  1938. u32 rdintcm;
  1939. u32 tdintcm;
  1940. struct bdx_priv *priv = netdev->priv;
  1941. int rx_coal;
  1942. int tx_coal;
  1943. int rx_max_coal;
  1944. int tx_max_coal;
  1945. /* Check for valid input */
  1946. rx_coal = ecoal->rx_coalesce_usecs / INT_COAL_MULT;
  1947. tx_coal = ecoal->tx_coalesce_usecs / INT_COAL_MULT;
  1948. rx_max_coal = ecoal->rx_max_coalesced_frames;
  1949. tx_max_coal = ecoal->tx_max_coalesced_frames;
  1950. /* Translate from packets to multiples of FIFO bytes */
  1951. rx_max_coal =
  1952. (((rx_max_coal * sizeof(struct rxf_desc)) + PCK_TH_MULT - 1)
  1953. / PCK_TH_MULT);
  1954. tx_max_coal =
  1955. (((tx_max_coal * BDX_TXF_DESC_SZ) + PCK_TH_MULT - 1)
  1956. / PCK_TH_MULT);
  1957. if ((rx_coal > 0x7FFF) || (tx_coal > 0x7FFF)
  1958. || (rx_max_coal > 0xF) || (tx_max_coal > 0xF))
  1959. return -EINVAL;
  1960. rdintcm = INT_REG_VAL(rx_coal, GET_INT_COAL_RC(priv->rdintcm),
  1961. GET_RXF_TH(priv->rdintcm), rx_max_coal);
  1962. tdintcm = INT_REG_VAL(tx_coal, GET_INT_COAL_RC(priv->tdintcm), 0,
  1963. tx_max_coal);
  1964. priv->rdintcm = rdintcm;
  1965. priv->tdintcm = tdintcm;
  1966. WRITE_REG(priv, regRDINTCM0, rdintcm);
  1967. WRITE_REG(priv, regTDINTCM0, tdintcm);
  1968. return 0;
  1969. }
  1970. /* Convert RX fifo size to number of pending packets */
  1971. static inline int bdx_rx_fifo_size_to_packets(int rx_size)
  1972. {
  1973. return ((FIFO_SIZE * (1 << rx_size)) / sizeof(struct rxf_desc));
  1974. }
  1975. /* Convert TX fifo size to number of pending packets */
  1976. static inline int bdx_tx_fifo_size_to_packets(int tx_size)
  1977. {
  1978. return ((FIFO_SIZE * (1 << tx_size)) / BDX_TXF_DESC_SZ);
  1979. }
  1980. /*
  1981. * bdx_get_ringparam - report ring sizes
  1982. * @netdev
  1983. * @ring
  1984. */
  1985. static void
  1986. bdx_get_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring)
  1987. {
  1988. struct bdx_priv *priv = netdev->priv;
  1989. /*max_pending - the maximum-sized FIFO we allow */
  1990. ring->rx_max_pending = bdx_rx_fifo_size_to_packets(3);
  1991. ring->tx_max_pending = bdx_tx_fifo_size_to_packets(3);
  1992. ring->rx_pending = bdx_rx_fifo_size_to_packets(priv->rxf_size);
  1993. ring->tx_pending = bdx_tx_fifo_size_to_packets(priv->txd_size);
  1994. }
  1995. /*
  1996. * bdx_set_ringparam - set ring sizes
  1997. * @netdev
  1998. * @ring
  1999. */
  2000. static int
  2001. bdx_set_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring)
  2002. {
  2003. struct bdx_priv *priv = netdev->priv;
  2004. int rx_size = 0;
  2005. int tx_size = 0;
  2006. for (; rx_size < 4; rx_size++) {
  2007. if (bdx_rx_fifo_size_to_packets(rx_size) >= ring->rx_pending)
  2008. break;
  2009. }
  2010. if (rx_size == 4)
  2011. rx_size = 3;
  2012. for (; tx_size < 4; tx_size++) {
  2013. if (bdx_tx_fifo_size_to_packets(tx_size) >= ring->tx_pending)
  2014. break;
  2015. }
  2016. if (tx_size == 4)
  2017. tx_size = 3;
  2018. /*Is there anything to do? */
  2019. if ((rx_size == priv->rxf_size)
  2020. && (tx_size == priv->txd_size))
  2021. return 0;
  2022. priv->rxf_size = rx_size;
  2023. if (rx_size > 1)
  2024. priv->rxd_size = rx_size - 1;
  2025. else
  2026. priv->rxd_size = rx_size;
  2027. priv->txf_size = priv->txd_size = tx_size;
  2028. if (netif_running(netdev)) {
  2029. bdx_close(netdev);
  2030. bdx_open(netdev);
  2031. }
  2032. return 0;
  2033. }
  2034. /*
  2035. * bdx_get_strings - return a set of strings that describe the requested objects
  2036. * @netdev
  2037. * @data
  2038. */
  2039. static void bdx_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
  2040. {
  2041. switch (stringset) {
  2042. case ETH_SS_TEST:
  2043. memcpy(data, *bdx_test_names, sizeof(bdx_test_names));
  2044. break;
  2045. case ETH_SS_STATS:
  2046. memcpy(data, *bdx_stat_names, sizeof(bdx_stat_names));
  2047. break;
  2048. }
  2049. }
  2050. /*
  2051. * bdx_get_stats_count - return number of 64bit statistics counters
  2052. * @netdev
  2053. */
  2054. static int bdx_get_stats_count(struct net_device *netdev)
  2055. {
  2056. struct bdx_priv *priv = netdev->priv;
  2057. BDX_ASSERT(sizeof(bdx_stat_names) / ETH_GSTRING_LEN
  2058. != sizeof(struct bdx_stats) / sizeof(u64));
  2059. return ((priv->stats_flag) ? (sizeof(bdx_stat_names) / ETH_GSTRING_LEN)
  2060. : 0);
  2061. }
  2062. /*
  2063. * bdx_get_ethtool_stats - return device's hardware L2 statistics
  2064. * @netdev
  2065. * @stats
  2066. * @data
  2067. */
  2068. static void bdx_get_ethtool_stats(struct net_device *netdev,
  2069. struct ethtool_stats *stats, u64 *data)
  2070. {
  2071. struct bdx_priv *priv = netdev->priv;
  2072. if (priv->stats_flag) {
  2073. /* Update stats from HW */
  2074. bdx_update_stats(priv);
  2075. /* Copy data to user buffer */
  2076. memcpy(data, &priv->hw_stats, sizeof(priv->hw_stats));
  2077. }
  2078. }
  2079. /*
  2080. * bdx_ethtool_ops - ethtool interface implementation
  2081. * @netdev
  2082. */
  2083. static void bdx_ethtool_ops(struct net_device *netdev)
  2084. {
  2085. static struct ethtool_ops bdx_ethtool_ops = {
  2086. .get_settings = bdx_get_settings,
  2087. .get_drvinfo = bdx_get_drvinfo,
  2088. .get_link = ethtool_op_get_link,
  2089. .get_coalesce = bdx_get_coalesce,
  2090. .set_coalesce = bdx_set_coalesce,
  2091. .get_ringparam = bdx_get_ringparam,
  2092. .set_ringparam = bdx_set_ringparam,
  2093. .get_rx_csum = bdx_get_rx_csum,
  2094. .get_tx_csum = bdx_get_tx_csum,
  2095. .get_sg = ethtool_op_get_sg,
  2096. .get_tso = ethtool_op_get_tso,
  2097. .get_strings = bdx_get_strings,
  2098. .get_stats_count = bdx_get_stats_count,
  2099. .get_ethtool_stats = bdx_get_ethtool_stats,
  2100. };
  2101. SET_ETHTOOL_OPS(netdev, &bdx_ethtool_ops);
  2102. }
  2103. /**
  2104. * bdx_remove - Device Removal Routine
  2105. * @pdev: PCI device information struct
  2106. *
  2107. * bdx_remove is called by the PCI subsystem to alert the driver
  2108. * that it should release a PCI device. The could be caused by a
  2109. * Hot-Plug event, or because the driver is going to be removed from
  2110. * memory.
  2111. **/
  2112. static void __devexit bdx_remove(struct pci_dev *pdev)
  2113. {
  2114. struct pci_nic *nic = pci_get_drvdata(pdev);
  2115. struct net_device *ndev;
  2116. int port;
  2117. for (port = 0; port < nic->port_num; port++) {
  2118. ndev = nic->priv[port]->ndev;
  2119. unregister_netdev(ndev);
  2120. free_netdev(ndev);
  2121. }
  2122. /*bdx_hw_reset_direct(nic->regs); */
  2123. #ifdef BDX_MSI
  2124. if (nic->irq_type == IRQ_MSI)
  2125. pci_disable_msi(pdev);
  2126. #endif
  2127. iounmap(nic->regs);
  2128. pci_release_regions(pdev);
  2129. pci_disable_device(pdev);
  2130. pci_set_drvdata(pdev, NULL);
  2131. vfree(nic);
  2132. RET();
  2133. }
  2134. static struct pci_driver bdx_pci_driver = {
  2135. .name = BDX_DRV_NAME,
  2136. .id_table = bdx_pci_tbl,
  2137. .probe = bdx_probe,
  2138. .remove = __devexit_p(bdx_remove),
  2139. };
  2140. /*
  2141. * print_driver_id - print parameters of the driver build
  2142. */
  2143. static void __init print_driver_id(void)
  2144. {
  2145. printk(KERN_INFO "%s: %s, %s\n", BDX_DRV_NAME, BDX_DRV_DESC,
  2146. BDX_DRV_VERSION);
  2147. printk(KERN_INFO "%s: Options: hw_csum %s\n", BDX_DRV_NAME,
  2148. BDX_MSI_STRING);
  2149. }
  2150. static int __init bdx_module_init(void)
  2151. {
  2152. ENTER;
  2153. bdx_firmware_endianess();
  2154. init_txd_sizes();
  2155. print_driver_id();
  2156. RET(pci_register_driver(&bdx_pci_driver));
  2157. }
  2158. module_init(bdx_module_init);
  2159. static void __exit bdx_module_exit(void)
  2160. {
  2161. ENTER;
  2162. pci_unregister_driver(&bdx_pci_driver);
  2163. RET();
  2164. }
  2165. module_exit(bdx_module_exit);
  2166. MODULE_LICENSE("GPL");
  2167. MODULE_AUTHOR(DRIVER_AUTHOR);
  2168. MODULE_DESCRIPTION(BDX_DRV_DESC);