sungem.c 79 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209
  1. /* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $
  2. * sungem.c: Sun GEM ethernet driver.
  3. *
  4. * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com)
  5. *
  6. * Support for Apple GMAC and assorted PHYs, WOL, Power Management
  7. * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org)
  8. * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp.
  9. *
  10. * NAPI and NETPOLL support
  11. * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com)
  12. *
  13. * TODO:
  14. * - Now that the driver was significantly simplified, I need to rework
  15. * the locking. I'm sure we don't need _2_ spinlocks, and we probably
  16. * can avoid taking most of them for so long period of time (and schedule
  17. * instead). The main issues at this point are caused by the netdev layer
  18. * though:
  19. *
  20. * gem_change_mtu() and gem_set_multicast() are called with a read_lock()
  21. * help by net/core/dev.c, thus they can't schedule. That means they can't
  22. * call napi_disable() neither, thus force gem_poll() to keep a spinlock
  23. * where it could have been dropped. change_mtu especially would love also to
  24. * be able to msleep instead of horrid locked delays when resetting the HW,
  25. * but that read_lock() makes it impossible, unless I defer it's action to
  26. * the reset task, which means it'll be asynchronous (won't take effect until
  27. * the system schedules a bit).
  28. *
  29. * Also, it would probably be possible to also remove most of the long-life
  30. * locking in open/resume code path (gem_reinit_chip) by beeing more careful
  31. * about when we can start taking interrupts or get xmit() called...
  32. */
  33. #include <linux/module.h>
  34. #include <linux/kernel.h>
  35. #include <linux/types.h>
  36. #include <linux/fcntl.h>
  37. #include <linux/interrupt.h>
  38. #include <linux/ioport.h>
  39. #include <linux/in.h>
  40. #include <linux/slab.h>
  41. #include <linux/string.h>
  42. #include <linux/delay.h>
  43. #include <linux/init.h>
  44. #include <linux/errno.h>
  45. #include <linux/pci.h>
  46. #include <linux/dma-mapping.h>
  47. #include <linux/netdevice.h>
  48. #include <linux/etherdevice.h>
  49. #include <linux/skbuff.h>
  50. #include <linux/mii.h>
  51. #include <linux/ethtool.h>
  52. #include <linux/crc32.h>
  53. #include <linux/random.h>
  54. #include <linux/workqueue.h>
  55. #include <linux/if_vlan.h>
  56. #include <linux/bitops.h>
  57. #include <linux/mutex.h>
  58. #include <linux/mm.h>
  59. #include <asm/system.h>
  60. #include <asm/io.h>
  61. #include <asm/byteorder.h>
  62. #include <asm/uaccess.h>
  63. #include <asm/irq.h>
  64. #ifdef CONFIG_SPARC
  65. #include <asm/idprom.h>
  66. #include <asm/prom.h>
  67. #endif
  68. #ifdef CONFIG_PPC_PMAC
  69. #include <asm/pci-bridge.h>
  70. #include <asm/prom.h>
  71. #include <asm/machdep.h>
  72. #include <asm/pmac_feature.h>
  73. #endif
  74. #include "sungem_phy.h"
  75. #include "sungem.h"
  76. /* Stripping FCS is causing problems, disabled for now */
  77. #undef STRIP_FCS
  78. #define DEFAULT_MSG (NETIF_MSG_DRV | \
  79. NETIF_MSG_PROBE | \
  80. NETIF_MSG_LINK)
  81. #define ADVERTISE_MASK (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
  82. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
  83. SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | \
  84. SUPPORTED_Pause | SUPPORTED_Autoneg)
  85. #define DRV_NAME "sungem"
  86. #define DRV_VERSION "0.98"
  87. #define DRV_RELDATE "8/24/03"
  88. #define DRV_AUTHOR "David S. Miller (davem@redhat.com)"
  89. static char version[] __devinitdata =
  90. DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " " DRV_AUTHOR "\n";
  91. MODULE_AUTHOR(DRV_AUTHOR);
  92. MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver");
  93. MODULE_LICENSE("GPL");
  94. #define GEM_MODULE_NAME "gem"
  95. #define PFX GEM_MODULE_NAME ": "
  96. static struct pci_device_id gem_pci_tbl[] = {
  97. { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_GEM,
  98. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  99. /* These models only differ from the original GEM in
  100. * that their tx/rx fifos are of a different size and
  101. * they only support 10/100 speeds. -DaveM
  102. *
  103. * Apple's GMAC does support gigabit on machines with
  104. * the BCM54xx PHYs. -BenH
  105. */
  106. { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_RIO_GEM,
  107. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  108. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC,
  109. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  110. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMACP,
  111. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  112. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2,
  113. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  114. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_GMAC,
  115. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  116. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_SUNGEM,
  117. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  118. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID2_GMAC,
  119. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  120. {0, }
  121. };
  122. MODULE_DEVICE_TABLE(pci, gem_pci_tbl);
  123. static u16 __phy_read(struct gem *gp, int phy_addr, int reg)
  124. {
  125. u32 cmd;
  126. int limit = 10000;
  127. cmd = (1 << 30);
  128. cmd |= (2 << 28);
  129. cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
  130. cmd |= (reg << 18) & MIF_FRAME_REGAD;
  131. cmd |= (MIF_FRAME_TAMSB);
  132. writel(cmd, gp->regs + MIF_FRAME);
  133. while (limit--) {
  134. cmd = readl(gp->regs + MIF_FRAME);
  135. if (cmd & MIF_FRAME_TALSB)
  136. break;
  137. udelay(10);
  138. }
  139. if (!limit)
  140. cmd = 0xffff;
  141. return cmd & MIF_FRAME_DATA;
  142. }
  143. static inline int _phy_read(struct net_device *dev, int mii_id, int reg)
  144. {
  145. struct gem *gp = dev->priv;
  146. return __phy_read(gp, mii_id, reg);
  147. }
  148. static inline u16 phy_read(struct gem *gp, int reg)
  149. {
  150. return __phy_read(gp, gp->mii_phy_addr, reg);
  151. }
  152. static void __phy_write(struct gem *gp, int phy_addr, int reg, u16 val)
  153. {
  154. u32 cmd;
  155. int limit = 10000;
  156. cmd = (1 << 30);
  157. cmd |= (1 << 28);
  158. cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
  159. cmd |= (reg << 18) & MIF_FRAME_REGAD;
  160. cmd |= (MIF_FRAME_TAMSB);
  161. cmd |= (val & MIF_FRAME_DATA);
  162. writel(cmd, gp->regs + MIF_FRAME);
  163. while (limit--) {
  164. cmd = readl(gp->regs + MIF_FRAME);
  165. if (cmd & MIF_FRAME_TALSB)
  166. break;
  167. udelay(10);
  168. }
  169. }
  170. static inline void _phy_write(struct net_device *dev, int mii_id, int reg, int val)
  171. {
  172. struct gem *gp = dev->priv;
  173. __phy_write(gp, mii_id, reg, val & 0xffff);
  174. }
  175. static inline void phy_write(struct gem *gp, int reg, u16 val)
  176. {
  177. __phy_write(gp, gp->mii_phy_addr, reg, val);
  178. }
  179. static inline void gem_enable_ints(struct gem *gp)
  180. {
  181. /* Enable all interrupts but TXDONE */
  182. writel(GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
  183. }
  184. static inline void gem_disable_ints(struct gem *gp)
  185. {
  186. /* Disable all interrupts, including TXDONE */
  187. writel(GREG_STAT_NAPI | GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
  188. }
  189. static void gem_get_cell(struct gem *gp)
  190. {
  191. BUG_ON(gp->cell_enabled < 0);
  192. gp->cell_enabled++;
  193. #ifdef CONFIG_PPC_PMAC
  194. if (gp->cell_enabled == 1) {
  195. mb();
  196. pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 1);
  197. udelay(10);
  198. }
  199. #endif /* CONFIG_PPC_PMAC */
  200. }
  201. /* Turn off the chip's clock */
  202. static void gem_put_cell(struct gem *gp)
  203. {
  204. BUG_ON(gp->cell_enabled <= 0);
  205. gp->cell_enabled--;
  206. #ifdef CONFIG_PPC_PMAC
  207. if (gp->cell_enabled == 0) {
  208. mb();
  209. pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 0);
  210. udelay(10);
  211. }
  212. #endif /* CONFIG_PPC_PMAC */
  213. }
  214. static void gem_handle_mif_event(struct gem *gp, u32 reg_val, u32 changed_bits)
  215. {
  216. if (netif_msg_intr(gp))
  217. printk(KERN_DEBUG "%s: mif interrupt\n", gp->dev->name);
  218. }
  219. static int gem_pcs_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  220. {
  221. u32 pcs_istat = readl(gp->regs + PCS_ISTAT);
  222. u32 pcs_miistat;
  223. if (netif_msg_intr(gp))
  224. printk(KERN_DEBUG "%s: pcs interrupt, pcs_istat: 0x%x\n",
  225. gp->dev->name, pcs_istat);
  226. if (!(pcs_istat & PCS_ISTAT_LSC)) {
  227. printk(KERN_ERR "%s: PCS irq but no link status change???\n",
  228. dev->name);
  229. return 0;
  230. }
  231. /* The link status bit latches on zero, so you must
  232. * read it twice in such a case to see a transition
  233. * to the link being up.
  234. */
  235. pcs_miistat = readl(gp->regs + PCS_MIISTAT);
  236. if (!(pcs_miistat & PCS_MIISTAT_LS))
  237. pcs_miistat |=
  238. (readl(gp->regs + PCS_MIISTAT) &
  239. PCS_MIISTAT_LS);
  240. if (pcs_miistat & PCS_MIISTAT_ANC) {
  241. /* The remote-fault indication is only valid
  242. * when autoneg has completed.
  243. */
  244. if (pcs_miistat & PCS_MIISTAT_RF)
  245. printk(KERN_INFO "%s: PCS AutoNEG complete, "
  246. "RemoteFault\n", dev->name);
  247. else
  248. printk(KERN_INFO "%s: PCS AutoNEG complete.\n",
  249. dev->name);
  250. }
  251. if (pcs_miistat & PCS_MIISTAT_LS) {
  252. printk(KERN_INFO "%s: PCS link is now up.\n",
  253. dev->name);
  254. netif_carrier_on(gp->dev);
  255. } else {
  256. printk(KERN_INFO "%s: PCS link is now down.\n",
  257. dev->name);
  258. netif_carrier_off(gp->dev);
  259. /* If this happens and the link timer is not running,
  260. * reset so we re-negotiate.
  261. */
  262. if (!timer_pending(&gp->link_timer))
  263. return 1;
  264. }
  265. return 0;
  266. }
  267. static int gem_txmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  268. {
  269. u32 txmac_stat = readl(gp->regs + MAC_TXSTAT);
  270. if (netif_msg_intr(gp))
  271. printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n",
  272. gp->dev->name, txmac_stat);
  273. /* Defer timer expiration is quite normal,
  274. * don't even log the event.
  275. */
  276. if ((txmac_stat & MAC_TXSTAT_DTE) &&
  277. !(txmac_stat & ~MAC_TXSTAT_DTE))
  278. return 0;
  279. if (txmac_stat & MAC_TXSTAT_URUN) {
  280. printk(KERN_ERR "%s: TX MAC xmit underrun.\n",
  281. dev->name);
  282. gp->net_stats.tx_fifo_errors++;
  283. }
  284. if (txmac_stat & MAC_TXSTAT_MPE) {
  285. printk(KERN_ERR "%s: TX MAC max packet size error.\n",
  286. dev->name);
  287. gp->net_stats.tx_errors++;
  288. }
  289. /* The rest are all cases of one of the 16-bit TX
  290. * counters expiring.
  291. */
  292. if (txmac_stat & MAC_TXSTAT_NCE)
  293. gp->net_stats.collisions += 0x10000;
  294. if (txmac_stat & MAC_TXSTAT_ECE) {
  295. gp->net_stats.tx_aborted_errors += 0x10000;
  296. gp->net_stats.collisions += 0x10000;
  297. }
  298. if (txmac_stat & MAC_TXSTAT_LCE) {
  299. gp->net_stats.tx_aborted_errors += 0x10000;
  300. gp->net_stats.collisions += 0x10000;
  301. }
  302. /* We do not keep track of MAC_TXSTAT_FCE and
  303. * MAC_TXSTAT_PCE events.
  304. */
  305. return 0;
  306. }
  307. /* When we get a RX fifo overflow, the RX unit in GEM is probably hung
  308. * so we do the following.
  309. *
  310. * If any part of the reset goes wrong, we return 1 and that causes the
  311. * whole chip to be reset.
  312. */
  313. static int gem_rxmac_reset(struct gem *gp)
  314. {
  315. struct net_device *dev = gp->dev;
  316. int limit, i;
  317. u64 desc_dma;
  318. u32 val;
  319. /* First, reset & disable MAC RX. */
  320. writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
  321. for (limit = 0; limit < 5000; limit++) {
  322. if (!(readl(gp->regs + MAC_RXRST) & MAC_RXRST_CMD))
  323. break;
  324. udelay(10);
  325. }
  326. if (limit == 5000) {
  327. printk(KERN_ERR "%s: RX MAC will not reset, resetting whole "
  328. "chip.\n", dev->name);
  329. return 1;
  330. }
  331. writel(gp->mac_rx_cfg & ~MAC_RXCFG_ENAB,
  332. gp->regs + MAC_RXCFG);
  333. for (limit = 0; limit < 5000; limit++) {
  334. if (!(readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB))
  335. break;
  336. udelay(10);
  337. }
  338. if (limit == 5000) {
  339. printk(KERN_ERR "%s: RX MAC will not disable, resetting whole "
  340. "chip.\n", dev->name);
  341. return 1;
  342. }
  343. /* Second, disable RX DMA. */
  344. writel(0, gp->regs + RXDMA_CFG);
  345. for (limit = 0; limit < 5000; limit++) {
  346. if (!(readl(gp->regs + RXDMA_CFG) & RXDMA_CFG_ENABLE))
  347. break;
  348. udelay(10);
  349. }
  350. if (limit == 5000) {
  351. printk(KERN_ERR "%s: RX DMA will not disable, resetting whole "
  352. "chip.\n", dev->name);
  353. return 1;
  354. }
  355. udelay(5000);
  356. /* Execute RX reset command. */
  357. writel(gp->swrst_base | GREG_SWRST_RXRST,
  358. gp->regs + GREG_SWRST);
  359. for (limit = 0; limit < 5000; limit++) {
  360. if (!(readl(gp->regs + GREG_SWRST) & GREG_SWRST_RXRST))
  361. break;
  362. udelay(10);
  363. }
  364. if (limit == 5000) {
  365. printk(KERN_ERR "%s: RX reset command will not execute, resetting "
  366. "whole chip.\n", dev->name);
  367. return 1;
  368. }
  369. /* Refresh the RX ring. */
  370. for (i = 0; i < RX_RING_SIZE; i++) {
  371. struct gem_rxd *rxd = &gp->init_block->rxd[i];
  372. if (gp->rx_skbs[i] == NULL) {
  373. printk(KERN_ERR "%s: Parts of RX ring empty, resetting "
  374. "whole chip.\n", dev->name);
  375. return 1;
  376. }
  377. rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
  378. }
  379. gp->rx_new = gp->rx_old = 0;
  380. /* Now we must reprogram the rest of RX unit. */
  381. desc_dma = (u64) gp->gblock_dvma;
  382. desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
  383. writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
  384. writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
  385. writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
  386. val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
  387. ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128);
  388. writel(val, gp->regs + RXDMA_CFG);
  389. if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
  390. writel(((5 & RXDMA_BLANK_IPKTS) |
  391. ((8 << 12) & RXDMA_BLANK_ITIME)),
  392. gp->regs + RXDMA_BLANK);
  393. else
  394. writel(((5 & RXDMA_BLANK_IPKTS) |
  395. ((4 << 12) & RXDMA_BLANK_ITIME)),
  396. gp->regs + RXDMA_BLANK);
  397. val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
  398. val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
  399. writel(val, gp->regs + RXDMA_PTHRESH);
  400. val = readl(gp->regs + RXDMA_CFG);
  401. writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
  402. writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
  403. val = readl(gp->regs + MAC_RXCFG);
  404. writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
  405. return 0;
  406. }
  407. static int gem_rxmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  408. {
  409. u32 rxmac_stat = readl(gp->regs + MAC_RXSTAT);
  410. int ret = 0;
  411. if (netif_msg_intr(gp))
  412. printk(KERN_DEBUG "%s: rxmac interrupt, rxmac_stat: 0x%x\n",
  413. gp->dev->name, rxmac_stat);
  414. if (rxmac_stat & MAC_RXSTAT_OFLW) {
  415. u32 smac = readl(gp->regs + MAC_SMACHINE);
  416. printk(KERN_ERR "%s: RX MAC fifo overflow smac[%08x].\n",
  417. dev->name, smac);
  418. gp->net_stats.rx_over_errors++;
  419. gp->net_stats.rx_fifo_errors++;
  420. ret = gem_rxmac_reset(gp);
  421. }
  422. if (rxmac_stat & MAC_RXSTAT_ACE)
  423. gp->net_stats.rx_frame_errors += 0x10000;
  424. if (rxmac_stat & MAC_RXSTAT_CCE)
  425. gp->net_stats.rx_crc_errors += 0x10000;
  426. if (rxmac_stat & MAC_RXSTAT_LCE)
  427. gp->net_stats.rx_length_errors += 0x10000;
  428. /* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE
  429. * events.
  430. */
  431. return ret;
  432. }
  433. static int gem_mac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  434. {
  435. u32 mac_cstat = readl(gp->regs + MAC_CSTAT);
  436. if (netif_msg_intr(gp))
  437. printk(KERN_DEBUG "%s: mac interrupt, mac_cstat: 0x%x\n",
  438. gp->dev->name, mac_cstat);
  439. /* This interrupt is just for pause frame and pause
  440. * tracking. It is useful for diagnostics and debug
  441. * but probably by default we will mask these events.
  442. */
  443. if (mac_cstat & MAC_CSTAT_PS)
  444. gp->pause_entered++;
  445. if (mac_cstat & MAC_CSTAT_PRCV)
  446. gp->pause_last_time_recvd = (mac_cstat >> 16);
  447. return 0;
  448. }
  449. static int gem_mif_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  450. {
  451. u32 mif_status = readl(gp->regs + MIF_STATUS);
  452. u32 reg_val, changed_bits;
  453. reg_val = (mif_status & MIF_STATUS_DATA) >> 16;
  454. changed_bits = (mif_status & MIF_STATUS_STAT);
  455. gem_handle_mif_event(gp, reg_val, changed_bits);
  456. return 0;
  457. }
  458. static int gem_pci_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  459. {
  460. u32 pci_estat = readl(gp->regs + GREG_PCIESTAT);
  461. if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
  462. gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
  463. printk(KERN_ERR "%s: PCI error [%04x] ",
  464. dev->name, pci_estat);
  465. if (pci_estat & GREG_PCIESTAT_BADACK)
  466. printk("<No ACK64# during ABS64 cycle> ");
  467. if (pci_estat & GREG_PCIESTAT_DTRTO)
  468. printk("<Delayed transaction timeout> ");
  469. if (pci_estat & GREG_PCIESTAT_OTHER)
  470. printk("<other>");
  471. printk("\n");
  472. } else {
  473. pci_estat |= GREG_PCIESTAT_OTHER;
  474. printk(KERN_ERR "%s: PCI error\n", dev->name);
  475. }
  476. if (pci_estat & GREG_PCIESTAT_OTHER) {
  477. u16 pci_cfg_stat;
  478. /* Interrogate PCI config space for the
  479. * true cause.
  480. */
  481. pci_read_config_word(gp->pdev, PCI_STATUS,
  482. &pci_cfg_stat);
  483. printk(KERN_ERR "%s: Read PCI cfg space status [%04x]\n",
  484. dev->name, pci_cfg_stat);
  485. if (pci_cfg_stat & PCI_STATUS_PARITY)
  486. printk(KERN_ERR "%s: PCI parity error detected.\n",
  487. dev->name);
  488. if (pci_cfg_stat & PCI_STATUS_SIG_TARGET_ABORT)
  489. printk(KERN_ERR "%s: PCI target abort.\n",
  490. dev->name);
  491. if (pci_cfg_stat & PCI_STATUS_REC_TARGET_ABORT)
  492. printk(KERN_ERR "%s: PCI master acks target abort.\n",
  493. dev->name);
  494. if (pci_cfg_stat & PCI_STATUS_REC_MASTER_ABORT)
  495. printk(KERN_ERR "%s: PCI master abort.\n",
  496. dev->name);
  497. if (pci_cfg_stat & PCI_STATUS_SIG_SYSTEM_ERROR)
  498. printk(KERN_ERR "%s: PCI system error SERR#.\n",
  499. dev->name);
  500. if (pci_cfg_stat & PCI_STATUS_DETECTED_PARITY)
  501. printk(KERN_ERR "%s: PCI parity error.\n",
  502. dev->name);
  503. /* Write the error bits back to clear them. */
  504. pci_cfg_stat &= (PCI_STATUS_PARITY |
  505. PCI_STATUS_SIG_TARGET_ABORT |
  506. PCI_STATUS_REC_TARGET_ABORT |
  507. PCI_STATUS_REC_MASTER_ABORT |
  508. PCI_STATUS_SIG_SYSTEM_ERROR |
  509. PCI_STATUS_DETECTED_PARITY);
  510. pci_write_config_word(gp->pdev,
  511. PCI_STATUS, pci_cfg_stat);
  512. }
  513. /* For all PCI errors, we should reset the chip. */
  514. return 1;
  515. }
  516. /* All non-normal interrupt conditions get serviced here.
  517. * Returns non-zero if we should just exit the interrupt
  518. * handler right now (ie. if we reset the card which invalidates
  519. * all of the other original irq status bits).
  520. */
  521. static int gem_abnormal_irq(struct net_device *dev, struct gem *gp, u32 gem_status)
  522. {
  523. if (gem_status & GREG_STAT_RXNOBUF) {
  524. /* Frame arrived, no free RX buffers available. */
  525. if (netif_msg_rx_err(gp))
  526. printk(KERN_DEBUG "%s: no buffer for rx frame\n",
  527. gp->dev->name);
  528. gp->net_stats.rx_dropped++;
  529. }
  530. if (gem_status & GREG_STAT_RXTAGERR) {
  531. /* corrupt RX tag framing */
  532. if (netif_msg_rx_err(gp))
  533. printk(KERN_DEBUG "%s: corrupt rx tag framing\n",
  534. gp->dev->name);
  535. gp->net_stats.rx_errors++;
  536. goto do_reset;
  537. }
  538. if (gem_status & GREG_STAT_PCS) {
  539. if (gem_pcs_interrupt(dev, gp, gem_status))
  540. goto do_reset;
  541. }
  542. if (gem_status & GREG_STAT_TXMAC) {
  543. if (gem_txmac_interrupt(dev, gp, gem_status))
  544. goto do_reset;
  545. }
  546. if (gem_status & GREG_STAT_RXMAC) {
  547. if (gem_rxmac_interrupt(dev, gp, gem_status))
  548. goto do_reset;
  549. }
  550. if (gem_status & GREG_STAT_MAC) {
  551. if (gem_mac_interrupt(dev, gp, gem_status))
  552. goto do_reset;
  553. }
  554. if (gem_status & GREG_STAT_MIF) {
  555. if (gem_mif_interrupt(dev, gp, gem_status))
  556. goto do_reset;
  557. }
  558. if (gem_status & GREG_STAT_PCIERR) {
  559. if (gem_pci_interrupt(dev, gp, gem_status))
  560. goto do_reset;
  561. }
  562. return 0;
  563. do_reset:
  564. gp->reset_task_pending = 1;
  565. schedule_work(&gp->reset_task);
  566. return 1;
  567. }
  568. static __inline__ void gem_tx(struct net_device *dev, struct gem *gp, u32 gem_status)
  569. {
  570. int entry, limit;
  571. if (netif_msg_intr(gp))
  572. printk(KERN_DEBUG "%s: tx interrupt, gem_status: 0x%x\n",
  573. gp->dev->name, gem_status);
  574. entry = gp->tx_old;
  575. limit = ((gem_status & GREG_STAT_TXNR) >> GREG_STAT_TXNR_SHIFT);
  576. while (entry != limit) {
  577. struct sk_buff *skb;
  578. struct gem_txd *txd;
  579. dma_addr_t dma_addr;
  580. u32 dma_len;
  581. int frag;
  582. if (netif_msg_tx_done(gp))
  583. printk(KERN_DEBUG "%s: tx done, slot %d\n",
  584. gp->dev->name, entry);
  585. skb = gp->tx_skbs[entry];
  586. if (skb_shinfo(skb)->nr_frags) {
  587. int last = entry + skb_shinfo(skb)->nr_frags;
  588. int walk = entry;
  589. int incomplete = 0;
  590. last &= (TX_RING_SIZE - 1);
  591. for (;;) {
  592. walk = NEXT_TX(walk);
  593. if (walk == limit)
  594. incomplete = 1;
  595. if (walk == last)
  596. break;
  597. }
  598. if (incomplete)
  599. break;
  600. }
  601. gp->tx_skbs[entry] = NULL;
  602. gp->net_stats.tx_bytes += skb->len;
  603. for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
  604. txd = &gp->init_block->txd[entry];
  605. dma_addr = le64_to_cpu(txd->buffer);
  606. dma_len = le64_to_cpu(txd->control_word) & TXDCTRL_BUFSZ;
  607. pci_unmap_page(gp->pdev, dma_addr, dma_len, PCI_DMA_TODEVICE);
  608. entry = NEXT_TX(entry);
  609. }
  610. gp->net_stats.tx_packets++;
  611. dev_kfree_skb_irq(skb);
  612. }
  613. gp->tx_old = entry;
  614. if (netif_queue_stopped(dev) &&
  615. TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
  616. netif_wake_queue(dev);
  617. }
  618. static __inline__ void gem_post_rxds(struct gem *gp, int limit)
  619. {
  620. int cluster_start, curr, count, kick;
  621. cluster_start = curr = (gp->rx_new & ~(4 - 1));
  622. count = 0;
  623. kick = -1;
  624. wmb();
  625. while (curr != limit) {
  626. curr = NEXT_RX(curr);
  627. if (++count == 4) {
  628. struct gem_rxd *rxd =
  629. &gp->init_block->rxd[cluster_start];
  630. for (;;) {
  631. rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
  632. rxd++;
  633. cluster_start = NEXT_RX(cluster_start);
  634. if (cluster_start == curr)
  635. break;
  636. }
  637. kick = curr;
  638. count = 0;
  639. }
  640. }
  641. if (kick >= 0) {
  642. mb();
  643. writel(kick, gp->regs + RXDMA_KICK);
  644. }
  645. }
  646. static int gem_rx(struct gem *gp, int work_to_do)
  647. {
  648. int entry, drops, work_done = 0;
  649. u32 done;
  650. if (netif_msg_rx_status(gp))
  651. printk(KERN_DEBUG "%s: rx interrupt, done: %d, rx_new: %d\n",
  652. gp->dev->name, readl(gp->regs + RXDMA_DONE), gp->rx_new);
  653. entry = gp->rx_new;
  654. drops = 0;
  655. done = readl(gp->regs + RXDMA_DONE);
  656. for (;;) {
  657. struct gem_rxd *rxd = &gp->init_block->rxd[entry];
  658. struct sk_buff *skb;
  659. u64 status = cpu_to_le64(rxd->status_word);
  660. dma_addr_t dma_addr;
  661. int len;
  662. if ((status & RXDCTRL_OWN) != 0)
  663. break;
  664. if (work_done >= RX_RING_SIZE || work_done >= work_to_do)
  665. break;
  666. /* When writing back RX descriptor, GEM writes status
  667. * then buffer address, possibly in seperate transactions.
  668. * If we don't wait for the chip to write both, we could
  669. * post a new buffer to this descriptor then have GEM spam
  670. * on the buffer address. We sync on the RX completion
  671. * register to prevent this from happening.
  672. */
  673. if (entry == done) {
  674. done = readl(gp->regs + RXDMA_DONE);
  675. if (entry == done)
  676. break;
  677. }
  678. /* We can now account for the work we're about to do */
  679. work_done++;
  680. skb = gp->rx_skbs[entry];
  681. len = (status & RXDCTRL_BUFSZ) >> 16;
  682. if ((len < ETH_ZLEN) || (status & RXDCTRL_BAD)) {
  683. gp->net_stats.rx_errors++;
  684. if (len < ETH_ZLEN)
  685. gp->net_stats.rx_length_errors++;
  686. if (len & RXDCTRL_BAD)
  687. gp->net_stats.rx_crc_errors++;
  688. /* We'll just return it to GEM. */
  689. drop_it:
  690. gp->net_stats.rx_dropped++;
  691. goto next;
  692. }
  693. dma_addr = cpu_to_le64(rxd->buffer);
  694. if (len > RX_COPY_THRESHOLD) {
  695. struct sk_buff *new_skb;
  696. new_skb = gem_alloc_skb(RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
  697. if (new_skb == NULL) {
  698. drops++;
  699. goto drop_it;
  700. }
  701. pci_unmap_page(gp->pdev, dma_addr,
  702. RX_BUF_ALLOC_SIZE(gp),
  703. PCI_DMA_FROMDEVICE);
  704. gp->rx_skbs[entry] = new_skb;
  705. new_skb->dev = gp->dev;
  706. skb_put(new_skb, (gp->rx_buf_sz + RX_OFFSET));
  707. rxd->buffer = cpu_to_le64(pci_map_page(gp->pdev,
  708. virt_to_page(new_skb->data),
  709. offset_in_page(new_skb->data),
  710. RX_BUF_ALLOC_SIZE(gp),
  711. PCI_DMA_FROMDEVICE));
  712. skb_reserve(new_skb, RX_OFFSET);
  713. /* Trim the original skb for the netif. */
  714. skb_trim(skb, len);
  715. } else {
  716. struct sk_buff *copy_skb = dev_alloc_skb(len + 2);
  717. if (copy_skb == NULL) {
  718. drops++;
  719. goto drop_it;
  720. }
  721. skb_reserve(copy_skb, 2);
  722. skb_put(copy_skb, len);
  723. pci_dma_sync_single_for_cpu(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
  724. skb_copy_from_linear_data(skb, copy_skb->data, len);
  725. pci_dma_sync_single_for_device(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
  726. /* We'll reuse the original ring buffer. */
  727. skb = copy_skb;
  728. }
  729. skb->csum = ntohs((status & RXDCTRL_TCPCSUM) ^ 0xffff);
  730. skb->ip_summed = CHECKSUM_COMPLETE;
  731. skb->protocol = eth_type_trans(skb, gp->dev);
  732. netif_receive_skb(skb);
  733. gp->net_stats.rx_packets++;
  734. gp->net_stats.rx_bytes += len;
  735. gp->dev->last_rx = jiffies;
  736. next:
  737. entry = NEXT_RX(entry);
  738. }
  739. gem_post_rxds(gp, entry);
  740. gp->rx_new = entry;
  741. if (drops)
  742. printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n",
  743. gp->dev->name);
  744. return work_done;
  745. }
  746. static int gem_poll(struct napi_struct *napi, int budget)
  747. {
  748. struct gem *gp = container_of(napi, struct gem, napi);
  749. struct net_device *dev = gp->dev;
  750. unsigned long flags;
  751. int work_done;
  752. /*
  753. * NAPI locking nightmare: See comment at head of driver
  754. */
  755. spin_lock_irqsave(&gp->lock, flags);
  756. work_done = 0;
  757. do {
  758. /* Handle anomalies */
  759. if (gp->status & GREG_STAT_ABNORMAL) {
  760. if (gem_abnormal_irq(dev, gp, gp->status))
  761. break;
  762. }
  763. /* Run TX completion thread */
  764. spin_lock(&gp->tx_lock);
  765. gem_tx(dev, gp, gp->status);
  766. spin_unlock(&gp->tx_lock);
  767. spin_unlock_irqrestore(&gp->lock, flags);
  768. /* Run RX thread. We don't use any locking here,
  769. * code willing to do bad things - like cleaning the
  770. * rx ring - must call napi_disable(), which
  771. * schedule_timeout()'s if polling is already disabled.
  772. */
  773. work_done += gem_rx(gp, budget);
  774. if (work_done >= budget)
  775. return work_done;
  776. spin_lock_irqsave(&gp->lock, flags);
  777. gp->status = readl(gp->regs + GREG_STAT);
  778. } while (gp->status & GREG_STAT_NAPI);
  779. __netif_rx_complete(dev, napi);
  780. gem_enable_ints(gp);
  781. spin_unlock_irqrestore(&gp->lock, flags);
  782. return work_done;
  783. }
  784. static irqreturn_t gem_interrupt(int irq, void *dev_id)
  785. {
  786. struct net_device *dev = dev_id;
  787. struct gem *gp = dev->priv;
  788. unsigned long flags;
  789. /* Swallow interrupts when shutting the chip down, though
  790. * that shouldn't happen, we should have done free_irq() at
  791. * this point...
  792. */
  793. if (!gp->running)
  794. return IRQ_HANDLED;
  795. spin_lock_irqsave(&gp->lock, flags);
  796. if (netif_rx_schedule_prep(dev, &gp->napi)) {
  797. u32 gem_status = readl(gp->regs + GREG_STAT);
  798. if (gem_status == 0) {
  799. napi_enable(&gp->napi);
  800. spin_unlock_irqrestore(&gp->lock, flags);
  801. return IRQ_NONE;
  802. }
  803. gp->status = gem_status;
  804. gem_disable_ints(gp);
  805. __netif_rx_schedule(dev, &gp->napi);
  806. }
  807. spin_unlock_irqrestore(&gp->lock, flags);
  808. /* If polling was disabled at the time we received that
  809. * interrupt, we may return IRQ_HANDLED here while we
  810. * should return IRQ_NONE. No big deal...
  811. */
  812. return IRQ_HANDLED;
  813. }
  814. #ifdef CONFIG_NET_POLL_CONTROLLER
  815. static void gem_poll_controller(struct net_device *dev)
  816. {
  817. /* gem_interrupt is safe to reentrance so no need
  818. * to disable_irq here.
  819. */
  820. gem_interrupt(dev->irq, dev);
  821. }
  822. #endif
  823. static void gem_tx_timeout(struct net_device *dev)
  824. {
  825. struct gem *gp = dev->priv;
  826. printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
  827. if (!gp->running) {
  828. printk("%s: hrm.. hw not running !\n", dev->name);
  829. return;
  830. }
  831. printk(KERN_ERR "%s: TX_STATE[%08x:%08x:%08x]\n",
  832. dev->name,
  833. readl(gp->regs + TXDMA_CFG),
  834. readl(gp->regs + MAC_TXSTAT),
  835. readl(gp->regs + MAC_TXCFG));
  836. printk(KERN_ERR "%s: RX_STATE[%08x:%08x:%08x]\n",
  837. dev->name,
  838. readl(gp->regs + RXDMA_CFG),
  839. readl(gp->regs + MAC_RXSTAT),
  840. readl(gp->regs + MAC_RXCFG));
  841. spin_lock_irq(&gp->lock);
  842. spin_lock(&gp->tx_lock);
  843. gp->reset_task_pending = 1;
  844. schedule_work(&gp->reset_task);
  845. spin_unlock(&gp->tx_lock);
  846. spin_unlock_irq(&gp->lock);
  847. }
  848. static __inline__ int gem_intme(int entry)
  849. {
  850. /* Algorithm: IRQ every 1/2 of descriptors. */
  851. if (!(entry & ((TX_RING_SIZE>>1)-1)))
  852. return 1;
  853. return 0;
  854. }
  855. static int gem_start_xmit(struct sk_buff *skb, struct net_device *dev)
  856. {
  857. struct gem *gp = dev->priv;
  858. int entry;
  859. u64 ctrl;
  860. unsigned long flags;
  861. ctrl = 0;
  862. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  863. const u64 csum_start_off = skb_transport_offset(skb);
  864. const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
  865. ctrl = (TXDCTRL_CENAB |
  866. (csum_start_off << 15) |
  867. (csum_stuff_off << 21));
  868. }
  869. local_irq_save(flags);
  870. if (!spin_trylock(&gp->tx_lock)) {
  871. /* Tell upper layer to requeue */
  872. local_irq_restore(flags);
  873. return NETDEV_TX_LOCKED;
  874. }
  875. /* We raced with gem_do_stop() */
  876. if (!gp->running) {
  877. spin_unlock_irqrestore(&gp->tx_lock, flags);
  878. return NETDEV_TX_BUSY;
  879. }
  880. /* This is a hard error, log it. */
  881. if (TX_BUFFS_AVAIL(gp) <= (skb_shinfo(skb)->nr_frags + 1)) {
  882. netif_stop_queue(dev);
  883. spin_unlock_irqrestore(&gp->tx_lock, flags);
  884. printk(KERN_ERR PFX "%s: BUG! Tx Ring full when queue awake!\n",
  885. dev->name);
  886. return NETDEV_TX_BUSY;
  887. }
  888. entry = gp->tx_new;
  889. gp->tx_skbs[entry] = skb;
  890. if (skb_shinfo(skb)->nr_frags == 0) {
  891. struct gem_txd *txd = &gp->init_block->txd[entry];
  892. dma_addr_t mapping;
  893. u32 len;
  894. len = skb->len;
  895. mapping = pci_map_page(gp->pdev,
  896. virt_to_page(skb->data),
  897. offset_in_page(skb->data),
  898. len, PCI_DMA_TODEVICE);
  899. ctrl |= TXDCTRL_SOF | TXDCTRL_EOF | len;
  900. if (gem_intme(entry))
  901. ctrl |= TXDCTRL_INTME;
  902. txd->buffer = cpu_to_le64(mapping);
  903. wmb();
  904. txd->control_word = cpu_to_le64(ctrl);
  905. entry = NEXT_TX(entry);
  906. } else {
  907. struct gem_txd *txd;
  908. u32 first_len;
  909. u64 intme;
  910. dma_addr_t first_mapping;
  911. int frag, first_entry = entry;
  912. intme = 0;
  913. if (gem_intme(entry))
  914. intme |= TXDCTRL_INTME;
  915. /* We must give this initial chunk to the device last.
  916. * Otherwise we could race with the device.
  917. */
  918. first_len = skb_headlen(skb);
  919. first_mapping = pci_map_page(gp->pdev, virt_to_page(skb->data),
  920. offset_in_page(skb->data),
  921. first_len, PCI_DMA_TODEVICE);
  922. entry = NEXT_TX(entry);
  923. for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
  924. skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
  925. u32 len;
  926. dma_addr_t mapping;
  927. u64 this_ctrl;
  928. len = this_frag->size;
  929. mapping = pci_map_page(gp->pdev,
  930. this_frag->page,
  931. this_frag->page_offset,
  932. len, PCI_DMA_TODEVICE);
  933. this_ctrl = ctrl;
  934. if (frag == skb_shinfo(skb)->nr_frags - 1)
  935. this_ctrl |= TXDCTRL_EOF;
  936. txd = &gp->init_block->txd[entry];
  937. txd->buffer = cpu_to_le64(mapping);
  938. wmb();
  939. txd->control_word = cpu_to_le64(this_ctrl | len);
  940. if (gem_intme(entry))
  941. intme |= TXDCTRL_INTME;
  942. entry = NEXT_TX(entry);
  943. }
  944. txd = &gp->init_block->txd[first_entry];
  945. txd->buffer = cpu_to_le64(first_mapping);
  946. wmb();
  947. txd->control_word =
  948. cpu_to_le64(ctrl | TXDCTRL_SOF | intme | first_len);
  949. }
  950. gp->tx_new = entry;
  951. if (TX_BUFFS_AVAIL(gp) <= (MAX_SKB_FRAGS + 1))
  952. netif_stop_queue(dev);
  953. if (netif_msg_tx_queued(gp))
  954. printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n",
  955. dev->name, entry, skb->len);
  956. mb();
  957. writel(gp->tx_new, gp->regs + TXDMA_KICK);
  958. spin_unlock_irqrestore(&gp->tx_lock, flags);
  959. dev->trans_start = jiffies;
  960. return NETDEV_TX_OK;
  961. }
  962. #define STOP_TRIES 32
  963. /* Must be invoked under gp->lock and gp->tx_lock. */
  964. static void gem_reset(struct gem *gp)
  965. {
  966. int limit;
  967. u32 val;
  968. /* Make sure we won't get any more interrupts */
  969. writel(0xffffffff, gp->regs + GREG_IMASK);
  970. /* Reset the chip */
  971. writel(gp->swrst_base | GREG_SWRST_TXRST | GREG_SWRST_RXRST,
  972. gp->regs + GREG_SWRST);
  973. limit = STOP_TRIES;
  974. do {
  975. udelay(20);
  976. val = readl(gp->regs + GREG_SWRST);
  977. if (limit-- <= 0)
  978. break;
  979. } while (val & (GREG_SWRST_TXRST | GREG_SWRST_RXRST));
  980. if (limit <= 0)
  981. printk(KERN_ERR "%s: SW reset is ghetto.\n", gp->dev->name);
  982. }
  983. /* Must be invoked under gp->lock and gp->tx_lock. */
  984. static void gem_start_dma(struct gem *gp)
  985. {
  986. u32 val;
  987. /* We are ready to rock, turn everything on. */
  988. val = readl(gp->regs + TXDMA_CFG);
  989. writel(val | TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
  990. val = readl(gp->regs + RXDMA_CFG);
  991. writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
  992. val = readl(gp->regs + MAC_TXCFG);
  993. writel(val | MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
  994. val = readl(gp->regs + MAC_RXCFG);
  995. writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
  996. (void) readl(gp->regs + MAC_RXCFG);
  997. udelay(100);
  998. gem_enable_ints(gp);
  999. writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
  1000. }
  1001. /* Must be invoked under gp->lock and gp->tx_lock. DMA won't be
  1002. * actually stopped before about 4ms tho ...
  1003. */
  1004. static void gem_stop_dma(struct gem *gp)
  1005. {
  1006. u32 val;
  1007. /* We are done rocking, turn everything off. */
  1008. val = readl(gp->regs + TXDMA_CFG);
  1009. writel(val & ~TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
  1010. val = readl(gp->regs + RXDMA_CFG);
  1011. writel(val & ~RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
  1012. val = readl(gp->regs + MAC_TXCFG);
  1013. writel(val & ~MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
  1014. val = readl(gp->regs + MAC_RXCFG);
  1015. writel(val & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
  1016. (void) readl(gp->regs + MAC_RXCFG);
  1017. /* Need to wait a bit ... done by the caller */
  1018. }
  1019. /* Must be invoked under gp->lock and gp->tx_lock. */
  1020. // XXX dbl check what that function should do when called on PCS PHY
  1021. static void gem_begin_auto_negotiation(struct gem *gp, struct ethtool_cmd *ep)
  1022. {
  1023. u32 advertise, features;
  1024. int autoneg;
  1025. int speed;
  1026. int duplex;
  1027. if (gp->phy_type != phy_mii_mdio0 &&
  1028. gp->phy_type != phy_mii_mdio1)
  1029. goto non_mii;
  1030. /* Setup advertise */
  1031. if (found_mii_phy(gp))
  1032. features = gp->phy_mii.def->features;
  1033. else
  1034. features = 0;
  1035. advertise = features & ADVERTISE_MASK;
  1036. if (gp->phy_mii.advertising != 0)
  1037. advertise &= gp->phy_mii.advertising;
  1038. autoneg = gp->want_autoneg;
  1039. speed = gp->phy_mii.speed;
  1040. duplex = gp->phy_mii.duplex;
  1041. /* Setup link parameters */
  1042. if (!ep)
  1043. goto start_aneg;
  1044. if (ep->autoneg == AUTONEG_ENABLE) {
  1045. advertise = ep->advertising;
  1046. autoneg = 1;
  1047. } else {
  1048. autoneg = 0;
  1049. speed = ep->speed;
  1050. duplex = ep->duplex;
  1051. }
  1052. start_aneg:
  1053. /* Sanitize settings based on PHY capabilities */
  1054. if ((features & SUPPORTED_Autoneg) == 0)
  1055. autoneg = 0;
  1056. if (speed == SPEED_1000 &&
  1057. !(features & (SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)))
  1058. speed = SPEED_100;
  1059. if (speed == SPEED_100 &&
  1060. !(features & (SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full)))
  1061. speed = SPEED_10;
  1062. if (duplex == DUPLEX_FULL &&
  1063. !(features & (SUPPORTED_1000baseT_Full |
  1064. SUPPORTED_100baseT_Full |
  1065. SUPPORTED_10baseT_Full)))
  1066. duplex = DUPLEX_HALF;
  1067. if (speed == 0)
  1068. speed = SPEED_10;
  1069. /* If we are asleep, we don't try to actually setup the PHY, we
  1070. * just store the settings
  1071. */
  1072. if (gp->asleep) {
  1073. gp->phy_mii.autoneg = gp->want_autoneg = autoneg;
  1074. gp->phy_mii.speed = speed;
  1075. gp->phy_mii.duplex = duplex;
  1076. return;
  1077. }
  1078. /* Configure PHY & start aneg */
  1079. gp->want_autoneg = autoneg;
  1080. if (autoneg) {
  1081. if (found_mii_phy(gp))
  1082. gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, advertise);
  1083. gp->lstate = link_aneg;
  1084. } else {
  1085. if (found_mii_phy(gp))
  1086. gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, speed, duplex);
  1087. gp->lstate = link_force_ok;
  1088. }
  1089. non_mii:
  1090. gp->timer_ticks = 0;
  1091. mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
  1092. }
  1093. /* A link-up condition has occurred, initialize and enable the
  1094. * rest of the chip.
  1095. *
  1096. * Must be invoked under gp->lock and gp->tx_lock.
  1097. */
  1098. static int gem_set_link_modes(struct gem *gp)
  1099. {
  1100. u32 val;
  1101. int full_duplex, speed, pause;
  1102. full_duplex = 0;
  1103. speed = SPEED_10;
  1104. pause = 0;
  1105. if (found_mii_phy(gp)) {
  1106. if (gp->phy_mii.def->ops->read_link(&gp->phy_mii))
  1107. return 1;
  1108. full_duplex = (gp->phy_mii.duplex == DUPLEX_FULL);
  1109. speed = gp->phy_mii.speed;
  1110. pause = gp->phy_mii.pause;
  1111. } else if (gp->phy_type == phy_serialink ||
  1112. gp->phy_type == phy_serdes) {
  1113. u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
  1114. if (pcs_lpa & PCS_MIIADV_FD)
  1115. full_duplex = 1;
  1116. speed = SPEED_1000;
  1117. }
  1118. if (netif_msg_link(gp))
  1119. printk(KERN_INFO "%s: Link is up at %d Mbps, %s-duplex.\n",
  1120. gp->dev->name, speed, (full_duplex ? "full" : "half"));
  1121. if (!gp->running)
  1122. return 0;
  1123. val = (MAC_TXCFG_EIPG0 | MAC_TXCFG_NGU);
  1124. if (full_duplex) {
  1125. val |= (MAC_TXCFG_ICS | MAC_TXCFG_ICOLL);
  1126. } else {
  1127. /* MAC_TXCFG_NBO must be zero. */
  1128. }
  1129. writel(val, gp->regs + MAC_TXCFG);
  1130. val = (MAC_XIFCFG_OE | MAC_XIFCFG_LLED);
  1131. if (!full_duplex &&
  1132. (gp->phy_type == phy_mii_mdio0 ||
  1133. gp->phy_type == phy_mii_mdio1)) {
  1134. val |= MAC_XIFCFG_DISE;
  1135. } else if (full_duplex) {
  1136. val |= MAC_XIFCFG_FLED;
  1137. }
  1138. if (speed == SPEED_1000)
  1139. val |= (MAC_XIFCFG_GMII);
  1140. writel(val, gp->regs + MAC_XIFCFG);
  1141. /* If gigabit and half-duplex, enable carrier extension
  1142. * mode. Else, disable it.
  1143. */
  1144. if (speed == SPEED_1000 && !full_duplex) {
  1145. val = readl(gp->regs + MAC_TXCFG);
  1146. writel(val | MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
  1147. val = readl(gp->regs + MAC_RXCFG);
  1148. writel(val | MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
  1149. } else {
  1150. val = readl(gp->regs + MAC_TXCFG);
  1151. writel(val & ~MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
  1152. val = readl(gp->regs + MAC_RXCFG);
  1153. writel(val & ~MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
  1154. }
  1155. if (gp->phy_type == phy_serialink ||
  1156. gp->phy_type == phy_serdes) {
  1157. u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
  1158. if (pcs_lpa & (PCS_MIIADV_SP | PCS_MIIADV_AP))
  1159. pause = 1;
  1160. }
  1161. if (netif_msg_link(gp)) {
  1162. if (pause) {
  1163. printk(KERN_INFO "%s: Pause is enabled "
  1164. "(rxfifo: %d off: %d on: %d)\n",
  1165. gp->dev->name,
  1166. gp->rx_fifo_sz,
  1167. gp->rx_pause_off,
  1168. gp->rx_pause_on);
  1169. } else {
  1170. printk(KERN_INFO "%s: Pause is disabled\n",
  1171. gp->dev->name);
  1172. }
  1173. }
  1174. if (!full_duplex)
  1175. writel(512, gp->regs + MAC_STIME);
  1176. else
  1177. writel(64, gp->regs + MAC_STIME);
  1178. val = readl(gp->regs + MAC_MCCFG);
  1179. if (pause)
  1180. val |= (MAC_MCCFG_SPE | MAC_MCCFG_RPE);
  1181. else
  1182. val &= ~(MAC_MCCFG_SPE | MAC_MCCFG_RPE);
  1183. writel(val, gp->regs + MAC_MCCFG);
  1184. gem_start_dma(gp);
  1185. return 0;
  1186. }
  1187. /* Must be invoked under gp->lock and gp->tx_lock. */
  1188. static int gem_mdio_link_not_up(struct gem *gp)
  1189. {
  1190. switch (gp->lstate) {
  1191. case link_force_ret:
  1192. if (netif_msg_link(gp))
  1193. printk(KERN_INFO "%s: Autoneg failed again, keeping"
  1194. " forced mode\n", gp->dev->name);
  1195. gp->phy_mii.def->ops->setup_forced(&gp->phy_mii,
  1196. gp->last_forced_speed, DUPLEX_HALF);
  1197. gp->timer_ticks = 5;
  1198. gp->lstate = link_force_ok;
  1199. return 0;
  1200. case link_aneg:
  1201. /* We try forced modes after a failed aneg only on PHYs that don't
  1202. * have "magic_aneg" bit set, which means they internally do the
  1203. * while forced-mode thingy. On these, we just restart aneg
  1204. */
  1205. if (gp->phy_mii.def->magic_aneg)
  1206. return 1;
  1207. if (netif_msg_link(gp))
  1208. printk(KERN_INFO "%s: switching to forced 100bt\n",
  1209. gp->dev->name);
  1210. /* Try forced modes. */
  1211. gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_100,
  1212. DUPLEX_HALF);
  1213. gp->timer_ticks = 5;
  1214. gp->lstate = link_force_try;
  1215. return 0;
  1216. case link_force_try:
  1217. /* Downgrade from 100 to 10 Mbps if necessary.
  1218. * If already at 10Mbps, warn user about the
  1219. * situation every 10 ticks.
  1220. */
  1221. if (gp->phy_mii.speed == SPEED_100) {
  1222. gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_10,
  1223. DUPLEX_HALF);
  1224. gp->timer_ticks = 5;
  1225. if (netif_msg_link(gp))
  1226. printk(KERN_INFO "%s: switching to forced 10bt\n",
  1227. gp->dev->name);
  1228. return 0;
  1229. } else
  1230. return 1;
  1231. default:
  1232. return 0;
  1233. }
  1234. }
  1235. static void gem_link_timer(unsigned long data)
  1236. {
  1237. struct gem *gp = (struct gem *) data;
  1238. int restart_aneg = 0;
  1239. if (gp->asleep)
  1240. return;
  1241. spin_lock_irq(&gp->lock);
  1242. spin_lock(&gp->tx_lock);
  1243. gem_get_cell(gp);
  1244. /* If the reset task is still pending, we just
  1245. * reschedule the link timer
  1246. */
  1247. if (gp->reset_task_pending)
  1248. goto restart;
  1249. if (gp->phy_type == phy_serialink ||
  1250. gp->phy_type == phy_serdes) {
  1251. u32 val = readl(gp->regs + PCS_MIISTAT);
  1252. if (!(val & PCS_MIISTAT_LS))
  1253. val = readl(gp->regs + PCS_MIISTAT);
  1254. if ((val & PCS_MIISTAT_LS) != 0) {
  1255. gp->lstate = link_up;
  1256. netif_carrier_on(gp->dev);
  1257. (void)gem_set_link_modes(gp);
  1258. }
  1259. goto restart;
  1260. }
  1261. if (found_mii_phy(gp) && gp->phy_mii.def->ops->poll_link(&gp->phy_mii)) {
  1262. /* Ok, here we got a link. If we had it due to a forced
  1263. * fallback, and we were configured for autoneg, we do
  1264. * retry a short autoneg pass. If you know your hub is
  1265. * broken, use ethtool ;)
  1266. */
  1267. if (gp->lstate == link_force_try && gp->want_autoneg) {
  1268. gp->lstate = link_force_ret;
  1269. gp->last_forced_speed = gp->phy_mii.speed;
  1270. gp->timer_ticks = 5;
  1271. if (netif_msg_link(gp))
  1272. printk(KERN_INFO "%s: Got link after fallback, retrying"
  1273. " autoneg once...\n", gp->dev->name);
  1274. gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, gp->phy_mii.advertising);
  1275. } else if (gp->lstate != link_up) {
  1276. gp->lstate = link_up;
  1277. netif_carrier_on(gp->dev);
  1278. if (gem_set_link_modes(gp))
  1279. restart_aneg = 1;
  1280. }
  1281. } else {
  1282. /* If the link was previously up, we restart the
  1283. * whole process
  1284. */
  1285. if (gp->lstate == link_up) {
  1286. gp->lstate = link_down;
  1287. if (netif_msg_link(gp))
  1288. printk(KERN_INFO "%s: Link down\n",
  1289. gp->dev->name);
  1290. netif_carrier_off(gp->dev);
  1291. gp->reset_task_pending = 1;
  1292. schedule_work(&gp->reset_task);
  1293. restart_aneg = 1;
  1294. } else if (++gp->timer_ticks > 10) {
  1295. if (found_mii_phy(gp))
  1296. restart_aneg = gem_mdio_link_not_up(gp);
  1297. else
  1298. restart_aneg = 1;
  1299. }
  1300. }
  1301. if (restart_aneg) {
  1302. gem_begin_auto_negotiation(gp, NULL);
  1303. goto out_unlock;
  1304. }
  1305. restart:
  1306. mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
  1307. out_unlock:
  1308. gem_put_cell(gp);
  1309. spin_unlock(&gp->tx_lock);
  1310. spin_unlock_irq(&gp->lock);
  1311. }
  1312. /* Must be invoked under gp->lock and gp->tx_lock. */
  1313. static void gem_clean_rings(struct gem *gp)
  1314. {
  1315. struct gem_init_block *gb = gp->init_block;
  1316. struct sk_buff *skb;
  1317. int i;
  1318. dma_addr_t dma_addr;
  1319. for (i = 0; i < RX_RING_SIZE; i++) {
  1320. struct gem_rxd *rxd;
  1321. rxd = &gb->rxd[i];
  1322. if (gp->rx_skbs[i] != NULL) {
  1323. skb = gp->rx_skbs[i];
  1324. dma_addr = le64_to_cpu(rxd->buffer);
  1325. pci_unmap_page(gp->pdev, dma_addr,
  1326. RX_BUF_ALLOC_SIZE(gp),
  1327. PCI_DMA_FROMDEVICE);
  1328. dev_kfree_skb_any(skb);
  1329. gp->rx_skbs[i] = NULL;
  1330. }
  1331. rxd->status_word = 0;
  1332. wmb();
  1333. rxd->buffer = 0;
  1334. }
  1335. for (i = 0; i < TX_RING_SIZE; i++) {
  1336. if (gp->tx_skbs[i] != NULL) {
  1337. struct gem_txd *txd;
  1338. int frag;
  1339. skb = gp->tx_skbs[i];
  1340. gp->tx_skbs[i] = NULL;
  1341. for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
  1342. int ent = i & (TX_RING_SIZE - 1);
  1343. txd = &gb->txd[ent];
  1344. dma_addr = le64_to_cpu(txd->buffer);
  1345. pci_unmap_page(gp->pdev, dma_addr,
  1346. le64_to_cpu(txd->control_word) &
  1347. TXDCTRL_BUFSZ, PCI_DMA_TODEVICE);
  1348. if (frag != skb_shinfo(skb)->nr_frags)
  1349. i++;
  1350. }
  1351. dev_kfree_skb_any(skb);
  1352. }
  1353. }
  1354. }
  1355. /* Must be invoked under gp->lock and gp->tx_lock. */
  1356. static void gem_init_rings(struct gem *gp)
  1357. {
  1358. struct gem_init_block *gb = gp->init_block;
  1359. struct net_device *dev = gp->dev;
  1360. int i;
  1361. dma_addr_t dma_addr;
  1362. gp->rx_new = gp->rx_old = gp->tx_new = gp->tx_old = 0;
  1363. gem_clean_rings(gp);
  1364. gp->rx_buf_sz = max(dev->mtu + ETH_HLEN + VLAN_HLEN,
  1365. (unsigned)VLAN_ETH_FRAME_LEN);
  1366. for (i = 0; i < RX_RING_SIZE; i++) {
  1367. struct sk_buff *skb;
  1368. struct gem_rxd *rxd = &gb->rxd[i];
  1369. skb = gem_alloc_skb(RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
  1370. if (!skb) {
  1371. rxd->buffer = 0;
  1372. rxd->status_word = 0;
  1373. continue;
  1374. }
  1375. gp->rx_skbs[i] = skb;
  1376. skb->dev = dev;
  1377. skb_put(skb, (gp->rx_buf_sz + RX_OFFSET));
  1378. dma_addr = pci_map_page(gp->pdev,
  1379. virt_to_page(skb->data),
  1380. offset_in_page(skb->data),
  1381. RX_BUF_ALLOC_SIZE(gp),
  1382. PCI_DMA_FROMDEVICE);
  1383. rxd->buffer = cpu_to_le64(dma_addr);
  1384. wmb();
  1385. rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
  1386. skb_reserve(skb, RX_OFFSET);
  1387. }
  1388. for (i = 0; i < TX_RING_SIZE; i++) {
  1389. struct gem_txd *txd = &gb->txd[i];
  1390. txd->control_word = 0;
  1391. wmb();
  1392. txd->buffer = 0;
  1393. }
  1394. wmb();
  1395. }
  1396. /* Init PHY interface and start link poll state machine */
  1397. static void gem_init_phy(struct gem *gp)
  1398. {
  1399. u32 mifcfg;
  1400. /* Revert MIF CFG setting done on stop_phy */
  1401. mifcfg = readl(gp->regs + MIF_CFG);
  1402. mifcfg &= ~MIF_CFG_BBMODE;
  1403. writel(mifcfg, gp->regs + MIF_CFG);
  1404. if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) {
  1405. int i;
  1406. /* Those delay sucks, the HW seem to love them though, I'll
  1407. * serisouly consider breaking some locks here to be able
  1408. * to schedule instead
  1409. */
  1410. for (i = 0; i < 3; i++) {
  1411. #ifdef CONFIG_PPC_PMAC
  1412. pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET, gp->of_node, 0, 0);
  1413. msleep(20);
  1414. #endif
  1415. /* Some PHYs used by apple have problem getting back to us,
  1416. * we do an additional reset here
  1417. */
  1418. phy_write(gp, MII_BMCR, BMCR_RESET);
  1419. msleep(20);
  1420. if (phy_read(gp, MII_BMCR) != 0xffff)
  1421. break;
  1422. if (i == 2)
  1423. printk(KERN_WARNING "%s: GMAC PHY not responding !\n",
  1424. gp->dev->name);
  1425. }
  1426. }
  1427. if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
  1428. gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
  1429. u32 val;
  1430. /* Init datapath mode register. */
  1431. if (gp->phy_type == phy_mii_mdio0 ||
  1432. gp->phy_type == phy_mii_mdio1) {
  1433. val = PCS_DMODE_MGM;
  1434. } else if (gp->phy_type == phy_serialink) {
  1435. val = PCS_DMODE_SM | PCS_DMODE_GMOE;
  1436. } else {
  1437. val = PCS_DMODE_ESM;
  1438. }
  1439. writel(val, gp->regs + PCS_DMODE);
  1440. }
  1441. if (gp->phy_type == phy_mii_mdio0 ||
  1442. gp->phy_type == phy_mii_mdio1) {
  1443. // XXX check for errors
  1444. mii_phy_probe(&gp->phy_mii, gp->mii_phy_addr);
  1445. /* Init PHY */
  1446. if (gp->phy_mii.def && gp->phy_mii.def->ops->init)
  1447. gp->phy_mii.def->ops->init(&gp->phy_mii);
  1448. } else {
  1449. u32 val;
  1450. int limit;
  1451. /* Reset PCS unit. */
  1452. val = readl(gp->regs + PCS_MIICTRL);
  1453. val |= PCS_MIICTRL_RST;
  1454. writeb(val, gp->regs + PCS_MIICTRL);
  1455. limit = 32;
  1456. while (readl(gp->regs + PCS_MIICTRL) & PCS_MIICTRL_RST) {
  1457. udelay(100);
  1458. if (limit-- <= 0)
  1459. break;
  1460. }
  1461. if (limit <= 0)
  1462. printk(KERN_WARNING "%s: PCS reset bit would not clear.\n",
  1463. gp->dev->name);
  1464. /* Make sure PCS is disabled while changing advertisement
  1465. * configuration.
  1466. */
  1467. val = readl(gp->regs + PCS_CFG);
  1468. val &= ~(PCS_CFG_ENABLE | PCS_CFG_TO);
  1469. writel(val, gp->regs + PCS_CFG);
  1470. /* Advertise all capabilities except assymetric
  1471. * pause.
  1472. */
  1473. val = readl(gp->regs + PCS_MIIADV);
  1474. val |= (PCS_MIIADV_FD | PCS_MIIADV_HD |
  1475. PCS_MIIADV_SP | PCS_MIIADV_AP);
  1476. writel(val, gp->regs + PCS_MIIADV);
  1477. /* Enable and restart auto-negotiation, disable wrapback/loopback,
  1478. * and re-enable PCS.
  1479. */
  1480. val = readl(gp->regs + PCS_MIICTRL);
  1481. val |= (PCS_MIICTRL_RAN | PCS_MIICTRL_ANE);
  1482. val &= ~PCS_MIICTRL_WB;
  1483. writel(val, gp->regs + PCS_MIICTRL);
  1484. val = readl(gp->regs + PCS_CFG);
  1485. val |= PCS_CFG_ENABLE;
  1486. writel(val, gp->regs + PCS_CFG);
  1487. /* Make sure serialink loopback is off. The meaning
  1488. * of this bit is logically inverted based upon whether
  1489. * you are in Serialink or SERDES mode.
  1490. */
  1491. val = readl(gp->regs + PCS_SCTRL);
  1492. if (gp->phy_type == phy_serialink)
  1493. val &= ~PCS_SCTRL_LOOP;
  1494. else
  1495. val |= PCS_SCTRL_LOOP;
  1496. writel(val, gp->regs + PCS_SCTRL);
  1497. }
  1498. /* Default aneg parameters */
  1499. gp->timer_ticks = 0;
  1500. gp->lstate = link_down;
  1501. netif_carrier_off(gp->dev);
  1502. /* Can I advertise gigabit here ? I'd need BCM PHY docs... */
  1503. spin_lock_irq(&gp->lock);
  1504. gem_begin_auto_negotiation(gp, NULL);
  1505. spin_unlock_irq(&gp->lock);
  1506. }
  1507. /* Must be invoked under gp->lock and gp->tx_lock. */
  1508. static void gem_init_dma(struct gem *gp)
  1509. {
  1510. u64 desc_dma = (u64) gp->gblock_dvma;
  1511. u32 val;
  1512. val = (TXDMA_CFG_BASE | (0x7ff << 10) | TXDMA_CFG_PMODE);
  1513. writel(val, gp->regs + TXDMA_CFG);
  1514. writel(desc_dma >> 32, gp->regs + TXDMA_DBHI);
  1515. writel(desc_dma & 0xffffffff, gp->regs + TXDMA_DBLOW);
  1516. desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
  1517. writel(0, gp->regs + TXDMA_KICK);
  1518. val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
  1519. ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128);
  1520. writel(val, gp->regs + RXDMA_CFG);
  1521. writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
  1522. writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
  1523. writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
  1524. val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
  1525. val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
  1526. writel(val, gp->regs + RXDMA_PTHRESH);
  1527. if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
  1528. writel(((5 & RXDMA_BLANK_IPKTS) |
  1529. ((8 << 12) & RXDMA_BLANK_ITIME)),
  1530. gp->regs + RXDMA_BLANK);
  1531. else
  1532. writel(((5 & RXDMA_BLANK_IPKTS) |
  1533. ((4 << 12) & RXDMA_BLANK_ITIME)),
  1534. gp->regs + RXDMA_BLANK);
  1535. }
  1536. /* Must be invoked under gp->lock and gp->tx_lock. */
  1537. static u32 gem_setup_multicast(struct gem *gp)
  1538. {
  1539. u32 rxcfg = 0;
  1540. int i;
  1541. if ((gp->dev->flags & IFF_ALLMULTI) ||
  1542. (gp->dev->mc_count > 256)) {
  1543. for (i=0; i<16; i++)
  1544. writel(0xffff, gp->regs + MAC_HASH0 + (i << 2));
  1545. rxcfg |= MAC_RXCFG_HFE;
  1546. } else if (gp->dev->flags & IFF_PROMISC) {
  1547. rxcfg |= MAC_RXCFG_PROM;
  1548. } else {
  1549. u16 hash_table[16];
  1550. u32 crc;
  1551. struct dev_mc_list *dmi = gp->dev->mc_list;
  1552. int i;
  1553. for (i = 0; i < 16; i++)
  1554. hash_table[i] = 0;
  1555. for (i = 0; i < gp->dev->mc_count; i++) {
  1556. char *addrs = dmi->dmi_addr;
  1557. dmi = dmi->next;
  1558. if (!(*addrs & 1))
  1559. continue;
  1560. crc = ether_crc_le(6, addrs);
  1561. crc >>= 24;
  1562. hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
  1563. }
  1564. for (i=0; i<16; i++)
  1565. writel(hash_table[i], gp->regs + MAC_HASH0 + (i << 2));
  1566. rxcfg |= MAC_RXCFG_HFE;
  1567. }
  1568. return rxcfg;
  1569. }
  1570. /* Must be invoked under gp->lock and gp->tx_lock. */
  1571. static void gem_init_mac(struct gem *gp)
  1572. {
  1573. unsigned char *e = &gp->dev->dev_addr[0];
  1574. writel(0x1bf0, gp->regs + MAC_SNDPAUSE);
  1575. writel(0x00, gp->regs + MAC_IPG0);
  1576. writel(0x08, gp->regs + MAC_IPG1);
  1577. writel(0x04, gp->regs + MAC_IPG2);
  1578. writel(0x40, gp->regs + MAC_STIME);
  1579. writel(0x40, gp->regs + MAC_MINFSZ);
  1580. /* Ethernet payload + header + FCS + optional VLAN tag. */
  1581. writel(0x20000000 | (gp->rx_buf_sz + 4), gp->regs + MAC_MAXFSZ);
  1582. writel(0x07, gp->regs + MAC_PASIZE);
  1583. writel(0x04, gp->regs + MAC_JAMSIZE);
  1584. writel(0x10, gp->regs + MAC_ATTLIM);
  1585. writel(0x8808, gp->regs + MAC_MCTYPE);
  1586. writel((e[5] | (e[4] << 8)) & 0x3ff, gp->regs + MAC_RANDSEED);
  1587. writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
  1588. writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
  1589. writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
  1590. writel(0, gp->regs + MAC_ADDR3);
  1591. writel(0, gp->regs + MAC_ADDR4);
  1592. writel(0, gp->regs + MAC_ADDR5);
  1593. writel(0x0001, gp->regs + MAC_ADDR6);
  1594. writel(0xc200, gp->regs + MAC_ADDR7);
  1595. writel(0x0180, gp->regs + MAC_ADDR8);
  1596. writel(0, gp->regs + MAC_AFILT0);
  1597. writel(0, gp->regs + MAC_AFILT1);
  1598. writel(0, gp->regs + MAC_AFILT2);
  1599. writel(0, gp->regs + MAC_AF21MSK);
  1600. writel(0, gp->regs + MAC_AF0MSK);
  1601. gp->mac_rx_cfg = gem_setup_multicast(gp);
  1602. #ifdef STRIP_FCS
  1603. gp->mac_rx_cfg |= MAC_RXCFG_SFCS;
  1604. #endif
  1605. writel(0, gp->regs + MAC_NCOLL);
  1606. writel(0, gp->regs + MAC_FASUCC);
  1607. writel(0, gp->regs + MAC_ECOLL);
  1608. writel(0, gp->regs + MAC_LCOLL);
  1609. writel(0, gp->regs + MAC_DTIMER);
  1610. writel(0, gp->regs + MAC_PATMPS);
  1611. writel(0, gp->regs + MAC_RFCTR);
  1612. writel(0, gp->regs + MAC_LERR);
  1613. writel(0, gp->regs + MAC_AERR);
  1614. writel(0, gp->regs + MAC_FCSERR);
  1615. writel(0, gp->regs + MAC_RXCVERR);
  1616. /* Clear RX/TX/MAC/XIF config, we will set these up and enable
  1617. * them once a link is established.
  1618. */
  1619. writel(0, gp->regs + MAC_TXCFG);
  1620. writel(gp->mac_rx_cfg, gp->regs + MAC_RXCFG);
  1621. writel(0, gp->regs + MAC_MCCFG);
  1622. writel(0, gp->regs + MAC_XIFCFG);
  1623. /* Setup MAC interrupts. We want to get all of the interesting
  1624. * counter expiration events, but we do not want to hear about
  1625. * normal rx/tx as the DMA engine tells us that.
  1626. */
  1627. writel(MAC_TXSTAT_XMIT, gp->regs + MAC_TXMASK);
  1628. writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
  1629. /* Don't enable even the PAUSE interrupts for now, we
  1630. * make no use of those events other than to record them.
  1631. */
  1632. writel(0xffffffff, gp->regs + MAC_MCMASK);
  1633. /* Don't enable GEM's WOL in normal operations
  1634. */
  1635. if (gp->has_wol)
  1636. writel(0, gp->regs + WOL_WAKECSR);
  1637. }
  1638. /* Must be invoked under gp->lock and gp->tx_lock. */
  1639. static void gem_init_pause_thresholds(struct gem *gp)
  1640. {
  1641. u32 cfg;
  1642. /* Calculate pause thresholds. Setting the OFF threshold to the
  1643. * full RX fifo size effectively disables PAUSE generation which
  1644. * is what we do for 10/100 only GEMs which have FIFOs too small
  1645. * to make real gains from PAUSE.
  1646. */
  1647. if (gp->rx_fifo_sz <= (2 * 1024)) {
  1648. gp->rx_pause_off = gp->rx_pause_on = gp->rx_fifo_sz;
  1649. } else {
  1650. int max_frame = (gp->rx_buf_sz + 4 + 64) & ~63;
  1651. int off = (gp->rx_fifo_sz - (max_frame * 2));
  1652. int on = off - max_frame;
  1653. gp->rx_pause_off = off;
  1654. gp->rx_pause_on = on;
  1655. }
  1656. /* Configure the chip "burst" DMA mode & enable some
  1657. * HW bug fixes on Apple version
  1658. */
  1659. cfg = 0;
  1660. if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE)
  1661. cfg |= GREG_CFG_RONPAULBIT | GREG_CFG_ENBUG2FIX;
  1662. #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
  1663. cfg |= GREG_CFG_IBURST;
  1664. #endif
  1665. cfg |= ((31 << 1) & GREG_CFG_TXDMALIM);
  1666. cfg |= ((31 << 6) & GREG_CFG_RXDMALIM);
  1667. writel(cfg, gp->regs + GREG_CFG);
  1668. /* If Infinite Burst didn't stick, then use different
  1669. * thresholds (and Apple bug fixes don't exist)
  1670. */
  1671. if (!(readl(gp->regs + GREG_CFG) & GREG_CFG_IBURST)) {
  1672. cfg = ((2 << 1) & GREG_CFG_TXDMALIM);
  1673. cfg |= ((8 << 6) & GREG_CFG_RXDMALIM);
  1674. writel(cfg, gp->regs + GREG_CFG);
  1675. }
  1676. }
  1677. static int gem_check_invariants(struct gem *gp)
  1678. {
  1679. struct pci_dev *pdev = gp->pdev;
  1680. u32 mif_cfg;
  1681. /* On Apple's sungem, we can't rely on registers as the chip
  1682. * was been powered down by the firmware. The PHY is looked
  1683. * up later on.
  1684. */
  1685. if (pdev->vendor == PCI_VENDOR_ID_APPLE) {
  1686. gp->phy_type = phy_mii_mdio0;
  1687. gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
  1688. gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
  1689. gp->swrst_base = 0;
  1690. mif_cfg = readl(gp->regs + MIF_CFG);
  1691. mif_cfg &= ~(MIF_CFG_PSELECT|MIF_CFG_POLL|MIF_CFG_BBMODE|MIF_CFG_MDI1);
  1692. mif_cfg |= MIF_CFG_MDI0;
  1693. writel(mif_cfg, gp->regs + MIF_CFG);
  1694. writel(PCS_DMODE_MGM, gp->regs + PCS_DMODE);
  1695. writel(MAC_XIFCFG_OE, gp->regs + MAC_XIFCFG);
  1696. /* We hard-code the PHY address so we can properly bring it out of
  1697. * reset later on, we can't really probe it at this point, though
  1698. * that isn't an issue.
  1699. */
  1700. if (gp->pdev->device == PCI_DEVICE_ID_APPLE_K2_GMAC)
  1701. gp->mii_phy_addr = 1;
  1702. else
  1703. gp->mii_phy_addr = 0;
  1704. return 0;
  1705. }
  1706. mif_cfg = readl(gp->regs + MIF_CFG);
  1707. if (pdev->vendor == PCI_VENDOR_ID_SUN &&
  1708. pdev->device == PCI_DEVICE_ID_SUN_RIO_GEM) {
  1709. /* One of the MII PHYs _must_ be present
  1710. * as this chip has no gigabit PHY.
  1711. */
  1712. if ((mif_cfg & (MIF_CFG_MDI0 | MIF_CFG_MDI1)) == 0) {
  1713. printk(KERN_ERR PFX "RIO GEM lacks MII phy, mif_cfg[%08x]\n",
  1714. mif_cfg);
  1715. return -1;
  1716. }
  1717. }
  1718. /* Determine initial PHY interface type guess. MDIO1 is the
  1719. * external PHY and thus takes precedence over MDIO0.
  1720. */
  1721. if (mif_cfg & MIF_CFG_MDI1) {
  1722. gp->phy_type = phy_mii_mdio1;
  1723. mif_cfg |= MIF_CFG_PSELECT;
  1724. writel(mif_cfg, gp->regs + MIF_CFG);
  1725. } else if (mif_cfg & MIF_CFG_MDI0) {
  1726. gp->phy_type = phy_mii_mdio0;
  1727. mif_cfg &= ~MIF_CFG_PSELECT;
  1728. writel(mif_cfg, gp->regs + MIF_CFG);
  1729. } else {
  1730. gp->phy_type = phy_serialink;
  1731. }
  1732. if (gp->phy_type == phy_mii_mdio1 ||
  1733. gp->phy_type == phy_mii_mdio0) {
  1734. int i;
  1735. for (i = 0; i < 32; i++) {
  1736. gp->mii_phy_addr = i;
  1737. if (phy_read(gp, MII_BMCR) != 0xffff)
  1738. break;
  1739. }
  1740. if (i == 32) {
  1741. if (pdev->device != PCI_DEVICE_ID_SUN_GEM) {
  1742. printk(KERN_ERR PFX "RIO MII phy will not respond.\n");
  1743. return -1;
  1744. }
  1745. gp->phy_type = phy_serdes;
  1746. }
  1747. }
  1748. /* Fetch the FIFO configurations now too. */
  1749. gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
  1750. gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
  1751. if (pdev->vendor == PCI_VENDOR_ID_SUN) {
  1752. if (pdev->device == PCI_DEVICE_ID_SUN_GEM) {
  1753. if (gp->tx_fifo_sz != (9 * 1024) ||
  1754. gp->rx_fifo_sz != (20 * 1024)) {
  1755. printk(KERN_ERR PFX "GEM has bogus fifo sizes tx(%d) rx(%d)\n",
  1756. gp->tx_fifo_sz, gp->rx_fifo_sz);
  1757. return -1;
  1758. }
  1759. gp->swrst_base = 0;
  1760. } else {
  1761. if (gp->tx_fifo_sz != (2 * 1024) ||
  1762. gp->rx_fifo_sz != (2 * 1024)) {
  1763. printk(KERN_ERR PFX "RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n",
  1764. gp->tx_fifo_sz, gp->rx_fifo_sz);
  1765. return -1;
  1766. }
  1767. gp->swrst_base = (64 / 4) << GREG_SWRST_CACHE_SHIFT;
  1768. }
  1769. }
  1770. return 0;
  1771. }
  1772. /* Must be invoked under gp->lock and gp->tx_lock. */
  1773. static void gem_reinit_chip(struct gem *gp)
  1774. {
  1775. /* Reset the chip */
  1776. gem_reset(gp);
  1777. /* Make sure ints are disabled */
  1778. gem_disable_ints(gp);
  1779. /* Allocate & setup ring buffers */
  1780. gem_init_rings(gp);
  1781. /* Configure pause thresholds */
  1782. gem_init_pause_thresholds(gp);
  1783. /* Init DMA & MAC engines */
  1784. gem_init_dma(gp);
  1785. gem_init_mac(gp);
  1786. }
  1787. /* Must be invoked with no lock held. */
  1788. static void gem_stop_phy(struct gem *gp, int wol)
  1789. {
  1790. u32 mifcfg;
  1791. unsigned long flags;
  1792. /* Let the chip settle down a bit, it seems that helps
  1793. * for sleep mode on some models
  1794. */
  1795. msleep(10);
  1796. /* Make sure we aren't polling PHY status change. We
  1797. * don't currently use that feature though
  1798. */
  1799. mifcfg = readl(gp->regs + MIF_CFG);
  1800. mifcfg &= ~MIF_CFG_POLL;
  1801. writel(mifcfg, gp->regs + MIF_CFG);
  1802. if (wol && gp->has_wol) {
  1803. unsigned char *e = &gp->dev->dev_addr[0];
  1804. u32 csr;
  1805. /* Setup wake-on-lan for MAGIC packet */
  1806. writel(MAC_RXCFG_HFE | MAC_RXCFG_SFCS | MAC_RXCFG_ENAB,
  1807. gp->regs + MAC_RXCFG);
  1808. writel((e[4] << 8) | e[5], gp->regs + WOL_MATCH0);
  1809. writel((e[2] << 8) | e[3], gp->regs + WOL_MATCH1);
  1810. writel((e[0] << 8) | e[1], gp->regs + WOL_MATCH2);
  1811. writel(WOL_MCOUNT_N | WOL_MCOUNT_M, gp->regs + WOL_MCOUNT);
  1812. csr = WOL_WAKECSR_ENABLE;
  1813. if ((readl(gp->regs + MAC_XIFCFG) & MAC_XIFCFG_GMII) == 0)
  1814. csr |= WOL_WAKECSR_MII;
  1815. writel(csr, gp->regs + WOL_WAKECSR);
  1816. } else {
  1817. writel(0, gp->regs + MAC_RXCFG);
  1818. (void)readl(gp->regs + MAC_RXCFG);
  1819. /* Machine sleep will die in strange ways if we
  1820. * dont wait a bit here, looks like the chip takes
  1821. * some time to really shut down
  1822. */
  1823. msleep(10);
  1824. }
  1825. writel(0, gp->regs + MAC_TXCFG);
  1826. writel(0, gp->regs + MAC_XIFCFG);
  1827. writel(0, gp->regs + TXDMA_CFG);
  1828. writel(0, gp->regs + RXDMA_CFG);
  1829. if (!wol) {
  1830. spin_lock_irqsave(&gp->lock, flags);
  1831. spin_lock(&gp->tx_lock);
  1832. gem_reset(gp);
  1833. writel(MAC_TXRST_CMD, gp->regs + MAC_TXRST);
  1834. writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
  1835. spin_unlock(&gp->tx_lock);
  1836. spin_unlock_irqrestore(&gp->lock, flags);
  1837. /* No need to take the lock here */
  1838. if (found_mii_phy(gp) && gp->phy_mii.def->ops->suspend)
  1839. gp->phy_mii.def->ops->suspend(&gp->phy_mii);
  1840. /* According to Apple, we must set the MDIO pins to this begnign
  1841. * state or we may 1) eat more current, 2) damage some PHYs
  1842. */
  1843. writel(mifcfg | MIF_CFG_BBMODE, gp->regs + MIF_CFG);
  1844. writel(0, gp->regs + MIF_BBCLK);
  1845. writel(0, gp->regs + MIF_BBDATA);
  1846. writel(0, gp->regs + MIF_BBOENAB);
  1847. writel(MAC_XIFCFG_GMII | MAC_XIFCFG_LBCK, gp->regs + MAC_XIFCFG);
  1848. (void) readl(gp->regs + MAC_XIFCFG);
  1849. }
  1850. }
  1851. static int gem_do_start(struct net_device *dev)
  1852. {
  1853. struct gem *gp = dev->priv;
  1854. unsigned long flags;
  1855. spin_lock_irqsave(&gp->lock, flags);
  1856. spin_lock(&gp->tx_lock);
  1857. /* Enable the cell */
  1858. gem_get_cell(gp);
  1859. /* Init & setup chip hardware */
  1860. gem_reinit_chip(gp);
  1861. gp->running = 1;
  1862. if (gp->lstate == link_up) {
  1863. netif_carrier_on(gp->dev);
  1864. gem_set_link_modes(gp);
  1865. }
  1866. netif_wake_queue(gp->dev);
  1867. spin_unlock(&gp->tx_lock);
  1868. spin_unlock_irqrestore(&gp->lock, flags);
  1869. if (request_irq(gp->pdev->irq, gem_interrupt,
  1870. IRQF_SHARED, dev->name, (void *)dev)) {
  1871. printk(KERN_ERR "%s: failed to request irq !\n", gp->dev->name);
  1872. spin_lock_irqsave(&gp->lock, flags);
  1873. spin_lock(&gp->tx_lock);
  1874. gp->running = 0;
  1875. gem_reset(gp);
  1876. gem_clean_rings(gp);
  1877. gem_put_cell(gp);
  1878. spin_unlock(&gp->tx_lock);
  1879. spin_unlock_irqrestore(&gp->lock, flags);
  1880. return -EAGAIN;
  1881. }
  1882. return 0;
  1883. }
  1884. static void gem_do_stop(struct net_device *dev, int wol)
  1885. {
  1886. struct gem *gp = dev->priv;
  1887. unsigned long flags;
  1888. spin_lock_irqsave(&gp->lock, flags);
  1889. spin_lock(&gp->tx_lock);
  1890. gp->running = 0;
  1891. /* Stop netif queue */
  1892. netif_stop_queue(dev);
  1893. /* Make sure ints are disabled */
  1894. gem_disable_ints(gp);
  1895. /* We can drop the lock now */
  1896. spin_unlock(&gp->tx_lock);
  1897. spin_unlock_irqrestore(&gp->lock, flags);
  1898. /* If we are going to sleep with WOL */
  1899. gem_stop_dma(gp);
  1900. msleep(10);
  1901. if (!wol)
  1902. gem_reset(gp);
  1903. msleep(10);
  1904. /* Get rid of rings */
  1905. gem_clean_rings(gp);
  1906. /* No irq needed anymore */
  1907. free_irq(gp->pdev->irq, (void *) dev);
  1908. /* Cell not needed neither if no WOL */
  1909. if (!wol) {
  1910. spin_lock_irqsave(&gp->lock, flags);
  1911. gem_put_cell(gp);
  1912. spin_unlock_irqrestore(&gp->lock, flags);
  1913. }
  1914. }
  1915. static void gem_reset_task(struct work_struct *work)
  1916. {
  1917. struct gem *gp = container_of(work, struct gem, reset_task);
  1918. mutex_lock(&gp->pm_mutex);
  1919. napi_disable(&gp->napi);
  1920. spin_lock_irq(&gp->lock);
  1921. spin_lock(&gp->tx_lock);
  1922. if (gp->running == 0)
  1923. goto not_running;
  1924. if (gp->running) {
  1925. netif_stop_queue(gp->dev);
  1926. /* Reset the chip & rings */
  1927. gem_reinit_chip(gp);
  1928. if (gp->lstate == link_up)
  1929. gem_set_link_modes(gp);
  1930. netif_wake_queue(gp->dev);
  1931. }
  1932. not_running:
  1933. gp->reset_task_pending = 0;
  1934. spin_unlock(&gp->tx_lock);
  1935. spin_unlock_irq(&gp->lock);
  1936. napi_enable(&gp->napi);
  1937. mutex_unlock(&gp->pm_mutex);
  1938. }
  1939. static int gem_open(struct net_device *dev)
  1940. {
  1941. struct gem *gp = dev->priv;
  1942. int rc = 0;
  1943. mutex_lock(&gp->pm_mutex);
  1944. /* We need the cell enabled */
  1945. if (!gp->asleep)
  1946. rc = gem_do_start(dev);
  1947. gp->opened = (rc == 0);
  1948. if (gp->opened)
  1949. napi_enable(&gp->napi);
  1950. mutex_unlock(&gp->pm_mutex);
  1951. return rc;
  1952. }
  1953. static int gem_close(struct net_device *dev)
  1954. {
  1955. struct gem *gp = dev->priv;
  1956. napi_disable(&gp->napi);
  1957. mutex_lock(&gp->pm_mutex);
  1958. gp->opened = 0;
  1959. if (!gp->asleep)
  1960. gem_do_stop(dev, 0);
  1961. mutex_unlock(&gp->pm_mutex);
  1962. return 0;
  1963. }
  1964. #ifdef CONFIG_PM
  1965. static int gem_suspend(struct pci_dev *pdev, pm_message_t state)
  1966. {
  1967. struct net_device *dev = pci_get_drvdata(pdev);
  1968. struct gem *gp = dev->priv;
  1969. unsigned long flags;
  1970. mutex_lock(&gp->pm_mutex);
  1971. napi_disable(&gp->napi);
  1972. printk(KERN_INFO "%s: suspending, WakeOnLan %s\n",
  1973. dev->name,
  1974. (gp->wake_on_lan && gp->opened) ? "enabled" : "disabled");
  1975. /* Keep the cell enabled during the entire operation */
  1976. spin_lock_irqsave(&gp->lock, flags);
  1977. spin_lock(&gp->tx_lock);
  1978. gem_get_cell(gp);
  1979. spin_unlock(&gp->tx_lock);
  1980. spin_unlock_irqrestore(&gp->lock, flags);
  1981. /* If the driver is opened, we stop the MAC */
  1982. if (gp->opened) {
  1983. /* Stop traffic, mark us closed */
  1984. netif_device_detach(dev);
  1985. /* Switch off MAC, remember WOL setting */
  1986. gp->asleep_wol = gp->wake_on_lan;
  1987. gem_do_stop(dev, gp->asleep_wol);
  1988. } else
  1989. gp->asleep_wol = 0;
  1990. /* Mark us asleep */
  1991. gp->asleep = 1;
  1992. wmb();
  1993. /* Stop the link timer */
  1994. del_timer_sync(&gp->link_timer);
  1995. /* Now we release the mutex to not block the reset task who
  1996. * can take it too. We are marked asleep, so there will be no
  1997. * conflict here
  1998. */
  1999. mutex_unlock(&gp->pm_mutex);
  2000. /* Wait for a pending reset task to complete */
  2001. while (gp->reset_task_pending)
  2002. yield();
  2003. flush_scheduled_work();
  2004. /* Shut the PHY down eventually and setup WOL */
  2005. gem_stop_phy(gp, gp->asleep_wol);
  2006. /* Make sure bus master is disabled */
  2007. pci_disable_device(gp->pdev);
  2008. /* Release the cell, no need to take a lock at this point since
  2009. * nothing else can happen now
  2010. */
  2011. gem_put_cell(gp);
  2012. return 0;
  2013. }
  2014. static int gem_resume(struct pci_dev *pdev)
  2015. {
  2016. struct net_device *dev = pci_get_drvdata(pdev);
  2017. struct gem *gp = dev->priv;
  2018. unsigned long flags;
  2019. printk(KERN_INFO "%s: resuming\n", dev->name);
  2020. mutex_lock(&gp->pm_mutex);
  2021. /* Keep the cell enabled during the entire operation, no need to
  2022. * take a lock here tho since nothing else can happen while we are
  2023. * marked asleep
  2024. */
  2025. gem_get_cell(gp);
  2026. /* Make sure PCI access and bus master are enabled */
  2027. if (pci_enable_device(gp->pdev)) {
  2028. printk(KERN_ERR "%s: Can't re-enable chip !\n",
  2029. dev->name);
  2030. /* Put cell and forget it for now, it will be considered as
  2031. * still asleep, a new sleep cycle may bring it back
  2032. */
  2033. gem_put_cell(gp);
  2034. mutex_unlock(&gp->pm_mutex);
  2035. return 0;
  2036. }
  2037. pci_set_master(gp->pdev);
  2038. /* Reset everything */
  2039. gem_reset(gp);
  2040. /* Mark us woken up */
  2041. gp->asleep = 0;
  2042. wmb();
  2043. /* Bring the PHY back. Again, lock is useless at this point as
  2044. * nothing can be happening until we restart the whole thing
  2045. */
  2046. gem_init_phy(gp);
  2047. /* If we were opened, bring everything back */
  2048. if (gp->opened) {
  2049. /* Restart MAC */
  2050. gem_do_start(dev);
  2051. /* Re-attach net device */
  2052. netif_device_attach(dev);
  2053. }
  2054. spin_lock_irqsave(&gp->lock, flags);
  2055. spin_lock(&gp->tx_lock);
  2056. /* If we had WOL enabled, the cell clock was never turned off during
  2057. * sleep, so we end up beeing unbalanced. Fix that here
  2058. */
  2059. if (gp->asleep_wol)
  2060. gem_put_cell(gp);
  2061. /* This function doesn't need to hold the cell, it will be held if the
  2062. * driver is open by gem_do_start().
  2063. */
  2064. gem_put_cell(gp);
  2065. spin_unlock(&gp->tx_lock);
  2066. spin_unlock_irqrestore(&gp->lock, flags);
  2067. napi_enable(&gp->napi);
  2068. mutex_unlock(&gp->pm_mutex);
  2069. return 0;
  2070. }
  2071. #endif /* CONFIG_PM */
  2072. static struct net_device_stats *gem_get_stats(struct net_device *dev)
  2073. {
  2074. struct gem *gp = dev->priv;
  2075. struct net_device_stats *stats = &gp->net_stats;
  2076. spin_lock_irq(&gp->lock);
  2077. spin_lock(&gp->tx_lock);
  2078. /* I have seen this being called while the PM was in progress,
  2079. * so we shield against this
  2080. */
  2081. if (gp->running) {
  2082. stats->rx_crc_errors += readl(gp->regs + MAC_FCSERR);
  2083. writel(0, gp->regs + MAC_FCSERR);
  2084. stats->rx_frame_errors += readl(gp->regs + MAC_AERR);
  2085. writel(0, gp->regs + MAC_AERR);
  2086. stats->rx_length_errors += readl(gp->regs + MAC_LERR);
  2087. writel(0, gp->regs + MAC_LERR);
  2088. stats->tx_aborted_errors += readl(gp->regs + MAC_ECOLL);
  2089. stats->collisions +=
  2090. (readl(gp->regs + MAC_ECOLL) +
  2091. readl(gp->regs + MAC_LCOLL));
  2092. writel(0, gp->regs + MAC_ECOLL);
  2093. writel(0, gp->regs + MAC_LCOLL);
  2094. }
  2095. spin_unlock(&gp->tx_lock);
  2096. spin_unlock_irq(&gp->lock);
  2097. return &gp->net_stats;
  2098. }
  2099. static int gem_set_mac_address(struct net_device *dev, void *addr)
  2100. {
  2101. struct sockaddr *macaddr = (struct sockaddr *) addr;
  2102. struct gem *gp = dev->priv;
  2103. unsigned char *e = &dev->dev_addr[0];
  2104. if (!is_valid_ether_addr(macaddr->sa_data))
  2105. return -EADDRNOTAVAIL;
  2106. if (!netif_running(dev) || !netif_device_present(dev)) {
  2107. /* We'll just catch it later when the
  2108. * device is up'd or resumed.
  2109. */
  2110. memcpy(dev->dev_addr, macaddr->sa_data, dev->addr_len);
  2111. return 0;
  2112. }
  2113. mutex_lock(&gp->pm_mutex);
  2114. memcpy(dev->dev_addr, macaddr->sa_data, dev->addr_len);
  2115. if (gp->running) {
  2116. writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
  2117. writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
  2118. writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
  2119. }
  2120. mutex_unlock(&gp->pm_mutex);
  2121. return 0;
  2122. }
  2123. static void gem_set_multicast(struct net_device *dev)
  2124. {
  2125. struct gem *gp = dev->priv;
  2126. u32 rxcfg, rxcfg_new;
  2127. int limit = 10000;
  2128. spin_lock_irq(&gp->lock);
  2129. spin_lock(&gp->tx_lock);
  2130. if (!gp->running)
  2131. goto bail;
  2132. netif_stop_queue(dev);
  2133. rxcfg = readl(gp->regs + MAC_RXCFG);
  2134. rxcfg_new = gem_setup_multicast(gp);
  2135. #ifdef STRIP_FCS
  2136. rxcfg_new |= MAC_RXCFG_SFCS;
  2137. #endif
  2138. gp->mac_rx_cfg = rxcfg_new;
  2139. writel(rxcfg & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
  2140. while (readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB) {
  2141. if (!limit--)
  2142. break;
  2143. udelay(10);
  2144. }
  2145. rxcfg &= ~(MAC_RXCFG_PROM | MAC_RXCFG_HFE);
  2146. rxcfg |= rxcfg_new;
  2147. writel(rxcfg, gp->regs + MAC_RXCFG);
  2148. netif_wake_queue(dev);
  2149. bail:
  2150. spin_unlock(&gp->tx_lock);
  2151. spin_unlock_irq(&gp->lock);
  2152. }
  2153. /* Jumbo-grams don't seem to work :-( */
  2154. #define GEM_MIN_MTU 68
  2155. #if 1
  2156. #define GEM_MAX_MTU 1500
  2157. #else
  2158. #define GEM_MAX_MTU 9000
  2159. #endif
  2160. static int gem_change_mtu(struct net_device *dev, int new_mtu)
  2161. {
  2162. struct gem *gp = dev->priv;
  2163. if (new_mtu < GEM_MIN_MTU || new_mtu > GEM_MAX_MTU)
  2164. return -EINVAL;
  2165. if (!netif_running(dev) || !netif_device_present(dev)) {
  2166. /* We'll just catch it later when the
  2167. * device is up'd or resumed.
  2168. */
  2169. dev->mtu = new_mtu;
  2170. return 0;
  2171. }
  2172. mutex_lock(&gp->pm_mutex);
  2173. spin_lock_irq(&gp->lock);
  2174. spin_lock(&gp->tx_lock);
  2175. dev->mtu = new_mtu;
  2176. if (gp->running) {
  2177. gem_reinit_chip(gp);
  2178. if (gp->lstate == link_up)
  2179. gem_set_link_modes(gp);
  2180. }
  2181. spin_unlock(&gp->tx_lock);
  2182. spin_unlock_irq(&gp->lock);
  2183. mutex_unlock(&gp->pm_mutex);
  2184. return 0;
  2185. }
  2186. static void gem_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  2187. {
  2188. struct gem *gp = dev->priv;
  2189. strcpy(info->driver, DRV_NAME);
  2190. strcpy(info->version, DRV_VERSION);
  2191. strcpy(info->bus_info, pci_name(gp->pdev));
  2192. }
  2193. static int gem_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  2194. {
  2195. struct gem *gp = dev->priv;
  2196. if (gp->phy_type == phy_mii_mdio0 ||
  2197. gp->phy_type == phy_mii_mdio1) {
  2198. if (gp->phy_mii.def)
  2199. cmd->supported = gp->phy_mii.def->features;
  2200. else
  2201. cmd->supported = (SUPPORTED_10baseT_Half |
  2202. SUPPORTED_10baseT_Full);
  2203. /* XXX hardcoded stuff for now */
  2204. cmd->port = PORT_MII;
  2205. cmd->transceiver = XCVR_EXTERNAL;
  2206. cmd->phy_address = 0; /* XXX fixed PHYAD */
  2207. /* Return current PHY settings */
  2208. spin_lock_irq(&gp->lock);
  2209. cmd->autoneg = gp->want_autoneg;
  2210. cmd->speed = gp->phy_mii.speed;
  2211. cmd->duplex = gp->phy_mii.duplex;
  2212. cmd->advertising = gp->phy_mii.advertising;
  2213. /* If we started with a forced mode, we don't have a default
  2214. * advertise set, we need to return something sensible so
  2215. * userland can re-enable autoneg properly.
  2216. */
  2217. if (cmd->advertising == 0)
  2218. cmd->advertising = cmd->supported;
  2219. spin_unlock_irq(&gp->lock);
  2220. } else { // XXX PCS ?
  2221. cmd->supported =
  2222. (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
  2223. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
  2224. SUPPORTED_Autoneg);
  2225. cmd->advertising = cmd->supported;
  2226. cmd->speed = 0;
  2227. cmd->duplex = cmd->port = cmd->phy_address =
  2228. cmd->transceiver = cmd->autoneg = 0;
  2229. }
  2230. cmd->maxtxpkt = cmd->maxrxpkt = 0;
  2231. return 0;
  2232. }
  2233. static int gem_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  2234. {
  2235. struct gem *gp = dev->priv;
  2236. /* Verify the settings we care about. */
  2237. if (cmd->autoneg != AUTONEG_ENABLE &&
  2238. cmd->autoneg != AUTONEG_DISABLE)
  2239. return -EINVAL;
  2240. if (cmd->autoneg == AUTONEG_ENABLE &&
  2241. cmd->advertising == 0)
  2242. return -EINVAL;
  2243. if (cmd->autoneg == AUTONEG_DISABLE &&
  2244. ((cmd->speed != SPEED_1000 &&
  2245. cmd->speed != SPEED_100 &&
  2246. cmd->speed != SPEED_10) ||
  2247. (cmd->duplex != DUPLEX_HALF &&
  2248. cmd->duplex != DUPLEX_FULL)))
  2249. return -EINVAL;
  2250. /* Apply settings and restart link process. */
  2251. spin_lock_irq(&gp->lock);
  2252. gem_get_cell(gp);
  2253. gem_begin_auto_negotiation(gp, cmd);
  2254. gem_put_cell(gp);
  2255. spin_unlock_irq(&gp->lock);
  2256. return 0;
  2257. }
  2258. static int gem_nway_reset(struct net_device *dev)
  2259. {
  2260. struct gem *gp = dev->priv;
  2261. if (!gp->want_autoneg)
  2262. return -EINVAL;
  2263. /* Restart link process. */
  2264. spin_lock_irq(&gp->lock);
  2265. gem_get_cell(gp);
  2266. gem_begin_auto_negotiation(gp, NULL);
  2267. gem_put_cell(gp);
  2268. spin_unlock_irq(&gp->lock);
  2269. return 0;
  2270. }
  2271. static u32 gem_get_msglevel(struct net_device *dev)
  2272. {
  2273. struct gem *gp = dev->priv;
  2274. return gp->msg_enable;
  2275. }
  2276. static void gem_set_msglevel(struct net_device *dev, u32 value)
  2277. {
  2278. struct gem *gp = dev->priv;
  2279. gp->msg_enable = value;
  2280. }
  2281. /* Add more when I understand how to program the chip */
  2282. /* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */
  2283. #define WOL_SUPPORTED_MASK (WAKE_MAGIC)
  2284. static void gem_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  2285. {
  2286. struct gem *gp = dev->priv;
  2287. /* Add more when I understand how to program the chip */
  2288. if (gp->has_wol) {
  2289. wol->supported = WOL_SUPPORTED_MASK;
  2290. wol->wolopts = gp->wake_on_lan;
  2291. } else {
  2292. wol->supported = 0;
  2293. wol->wolopts = 0;
  2294. }
  2295. }
  2296. static int gem_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  2297. {
  2298. struct gem *gp = dev->priv;
  2299. if (!gp->has_wol)
  2300. return -EOPNOTSUPP;
  2301. gp->wake_on_lan = wol->wolopts & WOL_SUPPORTED_MASK;
  2302. return 0;
  2303. }
  2304. static const struct ethtool_ops gem_ethtool_ops = {
  2305. .get_drvinfo = gem_get_drvinfo,
  2306. .get_link = ethtool_op_get_link,
  2307. .get_settings = gem_get_settings,
  2308. .set_settings = gem_set_settings,
  2309. .nway_reset = gem_nway_reset,
  2310. .get_msglevel = gem_get_msglevel,
  2311. .set_msglevel = gem_set_msglevel,
  2312. .get_wol = gem_get_wol,
  2313. .set_wol = gem_set_wol,
  2314. };
  2315. static int gem_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  2316. {
  2317. struct gem *gp = dev->priv;
  2318. struct mii_ioctl_data *data = if_mii(ifr);
  2319. int rc = -EOPNOTSUPP;
  2320. unsigned long flags;
  2321. /* Hold the PM mutex while doing ioctl's or we may collide
  2322. * with power management.
  2323. */
  2324. mutex_lock(&gp->pm_mutex);
  2325. spin_lock_irqsave(&gp->lock, flags);
  2326. gem_get_cell(gp);
  2327. spin_unlock_irqrestore(&gp->lock, flags);
  2328. switch (cmd) {
  2329. case SIOCGMIIPHY: /* Get address of MII PHY in use. */
  2330. data->phy_id = gp->mii_phy_addr;
  2331. /* Fallthrough... */
  2332. case SIOCGMIIREG: /* Read MII PHY register. */
  2333. if (!gp->running)
  2334. rc = -EAGAIN;
  2335. else {
  2336. data->val_out = __phy_read(gp, data->phy_id & 0x1f,
  2337. data->reg_num & 0x1f);
  2338. rc = 0;
  2339. }
  2340. break;
  2341. case SIOCSMIIREG: /* Write MII PHY register. */
  2342. if (!capable(CAP_NET_ADMIN))
  2343. rc = -EPERM;
  2344. else if (!gp->running)
  2345. rc = -EAGAIN;
  2346. else {
  2347. __phy_write(gp, data->phy_id & 0x1f, data->reg_num & 0x1f,
  2348. data->val_in);
  2349. rc = 0;
  2350. }
  2351. break;
  2352. };
  2353. spin_lock_irqsave(&gp->lock, flags);
  2354. gem_put_cell(gp);
  2355. spin_unlock_irqrestore(&gp->lock, flags);
  2356. mutex_unlock(&gp->pm_mutex);
  2357. return rc;
  2358. }
  2359. #if (!defined(CONFIG_SPARC) && !defined(CONFIG_PPC_PMAC))
  2360. /* Fetch MAC address from vital product data of PCI ROM. */
  2361. static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, unsigned char *dev_addr)
  2362. {
  2363. int this_offset;
  2364. for (this_offset = 0x20; this_offset < len; this_offset++) {
  2365. void __iomem *p = rom_base + this_offset;
  2366. int i;
  2367. if (readb(p + 0) != 0x90 ||
  2368. readb(p + 1) != 0x00 ||
  2369. readb(p + 2) != 0x09 ||
  2370. readb(p + 3) != 0x4e ||
  2371. readb(p + 4) != 0x41 ||
  2372. readb(p + 5) != 0x06)
  2373. continue;
  2374. this_offset += 6;
  2375. p += 6;
  2376. for (i = 0; i < 6; i++)
  2377. dev_addr[i] = readb(p + i);
  2378. return 1;
  2379. }
  2380. return 0;
  2381. }
  2382. static void get_gem_mac_nonobp(struct pci_dev *pdev, unsigned char *dev_addr)
  2383. {
  2384. size_t size;
  2385. void __iomem *p = pci_map_rom(pdev, &size);
  2386. if (p) {
  2387. int found;
  2388. found = readb(p) == 0x55 &&
  2389. readb(p + 1) == 0xaa &&
  2390. find_eth_addr_in_vpd(p, (64 * 1024), dev_addr);
  2391. pci_unmap_rom(pdev, p);
  2392. if (found)
  2393. return;
  2394. }
  2395. /* Sun MAC prefix then 3 random bytes. */
  2396. dev_addr[0] = 0x08;
  2397. dev_addr[1] = 0x00;
  2398. dev_addr[2] = 0x20;
  2399. get_random_bytes(dev_addr + 3, 3);
  2400. return;
  2401. }
  2402. #endif /* not Sparc and not PPC */
  2403. static int __devinit gem_get_device_address(struct gem *gp)
  2404. {
  2405. #if defined(CONFIG_SPARC) || defined(CONFIG_PPC_PMAC)
  2406. struct net_device *dev = gp->dev;
  2407. const unsigned char *addr;
  2408. addr = of_get_property(gp->of_node, "local-mac-address", NULL);
  2409. if (addr == NULL) {
  2410. #ifdef CONFIG_SPARC
  2411. addr = idprom->id_ethaddr;
  2412. #else
  2413. printk("\n");
  2414. printk(KERN_ERR "%s: can't get mac-address\n", dev->name);
  2415. return -1;
  2416. #endif
  2417. }
  2418. memcpy(dev->dev_addr, addr, 6);
  2419. #else
  2420. get_gem_mac_nonobp(gp->pdev, gp->dev->dev_addr);
  2421. #endif
  2422. return 0;
  2423. }
  2424. static void gem_remove_one(struct pci_dev *pdev)
  2425. {
  2426. struct net_device *dev = pci_get_drvdata(pdev);
  2427. if (dev) {
  2428. struct gem *gp = dev->priv;
  2429. unregister_netdev(dev);
  2430. /* Stop the link timer */
  2431. del_timer_sync(&gp->link_timer);
  2432. /* We shouldn't need any locking here */
  2433. gem_get_cell(gp);
  2434. /* Wait for a pending reset task to complete */
  2435. while (gp->reset_task_pending)
  2436. yield();
  2437. flush_scheduled_work();
  2438. /* Shut the PHY down */
  2439. gem_stop_phy(gp, 0);
  2440. gem_put_cell(gp);
  2441. /* Make sure bus master is disabled */
  2442. pci_disable_device(gp->pdev);
  2443. /* Free resources */
  2444. pci_free_consistent(pdev,
  2445. sizeof(struct gem_init_block),
  2446. gp->init_block,
  2447. gp->gblock_dvma);
  2448. iounmap(gp->regs);
  2449. pci_release_regions(pdev);
  2450. free_netdev(dev);
  2451. pci_set_drvdata(pdev, NULL);
  2452. }
  2453. }
  2454. static int __devinit gem_init_one(struct pci_dev *pdev,
  2455. const struct pci_device_id *ent)
  2456. {
  2457. static int gem_version_printed = 0;
  2458. unsigned long gemreg_base, gemreg_len;
  2459. struct net_device *dev;
  2460. struct gem *gp;
  2461. int err, pci_using_dac;
  2462. DECLARE_MAC_BUF(mac);
  2463. if (gem_version_printed++ == 0)
  2464. printk(KERN_INFO "%s", version);
  2465. /* Apple gmac note: during probe, the chip is powered up by
  2466. * the arch code to allow the code below to work (and to let
  2467. * the chip be probed on the config space. It won't stay powered
  2468. * up until the interface is brought up however, so we can't rely
  2469. * on register configuration done at this point.
  2470. */
  2471. err = pci_enable_device(pdev);
  2472. if (err) {
  2473. printk(KERN_ERR PFX "Cannot enable MMIO operation, "
  2474. "aborting.\n");
  2475. return err;
  2476. }
  2477. pci_set_master(pdev);
  2478. /* Configure DMA attributes. */
  2479. /* All of the GEM documentation states that 64-bit DMA addressing
  2480. * is fully supported and should work just fine. However the
  2481. * front end for RIO based GEMs is different and only supports
  2482. * 32-bit addressing.
  2483. *
  2484. * For now we assume the various PPC GEMs are 32-bit only as well.
  2485. */
  2486. if (pdev->vendor == PCI_VENDOR_ID_SUN &&
  2487. pdev->device == PCI_DEVICE_ID_SUN_GEM &&
  2488. !pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
  2489. pci_using_dac = 1;
  2490. } else {
  2491. err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
  2492. if (err) {
  2493. printk(KERN_ERR PFX "No usable DMA configuration, "
  2494. "aborting.\n");
  2495. goto err_disable_device;
  2496. }
  2497. pci_using_dac = 0;
  2498. }
  2499. gemreg_base = pci_resource_start(pdev, 0);
  2500. gemreg_len = pci_resource_len(pdev, 0);
  2501. if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
  2502. printk(KERN_ERR PFX "Cannot find proper PCI device "
  2503. "base address, aborting.\n");
  2504. err = -ENODEV;
  2505. goto err_disable_device;
  2506. }
  2507. dev = alloc_etherdev(sizeof(*gp));
  2508. if (!dev) {
  2509. printk(KERN_ERR PFX "Etherdev alloc failed, aborting.\n");
  2510. err = -ENOMEM;
  2511. goto err_disable_device;
  2512. }
  2513. SET_NETDEV_DEV(dev, &pdev->dev);
  2514. gp = dev->priv;
  2515. err = pci_request_regions(pdev, DRV_NAME);
  2516. if (err) {
  2517. printk(KERN_ERR PFX "Cannot obtain PCI resources, "
  2518. "aborting.\n");
  2519. goto err_out_free_netdev;
  2520. }
  2521. gp->pdev = pdev;
  2522. dev->base_addr = (long) pdev;
  2523. gp->dev = dev;
  2524. gp->msg_enable = DEFAULT_MSG;
  2525. spin_lock_init(&gp->lock);
  2526. spin_lock_init(&gp->tx_lock);
  2527. mutex_init(&gp->pm_mutex);
  2528. init_timer(&gp->link_timer);
  2529. gp->link_timer.function = gem_link_timer;
  2530. gp->link_timer.data = (unsigned long) gp;
  2531. INIT_WORK(&gp->reset_task, gem_reset_task);
  2532. gp->lstate = link_down;
  2533. gp->timer_ticks = 0;
  2534. netif_carrier_off(dev);
  2535. gp->regs = ioremap(gemreg_base, gemreg_len);
  2536. if (gp->regs == 0UL) {
  2537. printk(KERN_ERR PFX "Cannot map device registers, "
  2538. "aborting.\n");
  2539. err = -EIO;
  2540. goto err_out_free_res;
  2541. }
  2542. /* On Apple, we want a reference to the Open Firmware device-tree
  2543. * node. We use it for clock control.
  2544. */
  2545. #if defined(CONFIG_PPC_PMAC) || defined(CONFIG_SPARC)
  2546. gp->of_node = pci_device_to_OF_node(pdev);
  2547. #endif
  2548. /* Only Apple version supports WOL afaik */
  2549. if (pdev->vendor == PCI_VENDOR_ID_APPLE)
  2550. gp->has_wol = 1;
  2551. /* Make sure cell is enabled */
  2552. gem_get_cell(gp);
  2553. /* Make sure everything is stopped and in init state */
  2554. gem_reset(gp);
  2555. /* Fill up the mii_phy structure (even if we won't use it) */
  2556. gp->phy_mii.dev = dev;
  2557. gp->phy_mii.mdio_read = _phy_read;
  2558. gp->phy_mii.mdio_write = _phy_write;
  2559. #ifdef CONFIG_PPC_PMAC
  2560. gp->phy_mii.platform_data = gp->of_node;
  2561. #endif
  2562. /* By default, we start with autoneg */
  2563. gp->want_autoneg = 1;
  2564. /* Check fifo sizes, PHY type, etc... */
  2565. if (gem_check_invariants(gp)) {
  2566. err = -ENODEV;
  2567. goto err_out_iounmap;
  2568. }
  2569. /* It is guaranteed that the returned buffer will be at least
  2570. * PAGE_SIZE aligned.
  2571. */
  2572. gp->init_block = (struct gem_init_block *)
  2573. pci_alloc_consistent(pdev, sizeof(struct gem_init_block),
  2574. &gp->gblock_dvma);
  2575. if (!gp->init_block) {
  2576. printk(KERN_ERR PFX "Cannot allocate init block, "
  2577. "aborting.\n");
  2578. err = -ENOMEM;
  2579. goto err_out_iounmap;
  2580. }
  2581. if (gem_get_device_address(gp))
  2582. goto err_out_free_consistent;
  2583. dev->open = gem_open;
  2584. dev->stop = gem_close;
  2585. dev->hard_start_xmit = gem_start_xmit;
  2586. dev->get_stats = gem_get_stats;
  2587. dev->set_multicast_list = gem_set_multicast;
  2588. dev->do_ioctl = gem_ioctl;
  2589. netif_napi_add(dev, &gp->napi, gem_poll, 64);
  2590. dev->ethtool_ops = &gem_ethtool_ops;
  2591. dev->tx_timeout = gem_tx_timeout;
  2592. dev->watchdog_timeo = 5 * HZ;
  2593. dev->change_mtu = gem_change_mtu;
  2594. dev->irq = pdev->irq;
  2595. dev->dma = 0;
  2596. dev->set_mac_address = gem_set_mac_address;
  2597. #ifdef CONFIG_NET_POLL_CONTROLLER
  2598. dev->poll_controller = gem_poll_controller;
  2599. #endif
  2600. /* Set that now, in case PM kicks in now */
  2601. pci_set_drvdata(pdev, dev);
  2602. /* Detect & init PHY, start autoneg, we release the cell now
  2603. * too, it will be managed by whoever needs it
  2604. */
  2605. gem_init_phy(gp);
  2606. spin_lock_irq(&gp->lock);
  2607. gem_put_cell(gp);
  2608. spin_unlock_irq(&gp->lock);
  2609. /* Register with kernel */
  2610. if (register_netdev(dev)) {
  2611. printk(KERN_ERR PFX "Cannot register net device, "
  2612. "aborting.\n");
  2613. err = -ENOMEM;
  2614. goto err_out_free_consistent;
  2615. }
  2616. printk(KERN_INFO "%s: Sun GEM (PCI) 10/100/1000BaseT Ethernet "
  2617. "%s\n",
  2618. dev->name, print_mac(mac, dev->dev_addr));
  2619. if (gp->phy_type == phy_mii_mdio0 ||
  2620. gp->phy_type == phy_mii_mdio1)
  2621. printk(KERN_INFO "%s: Found %s PHY\n", dev->name,
  2622. gp->phy_mii.def ? gp->phy_mii.def->name : "no");
  2623. /* GEM can do it all... */
  2624. dev->features |= NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_LLTX;
  2625. if (pci_using_dac)
  2626. dev->features |= NETIF_F_HIGHDMA;
  2627. return 0;
  2628. err_out_free_consistent:
  2629. gem_remove_one(pdev);
  2630. err_out_iounmap:
  2631. gem_put_cell(gp);
  2632. iounmap(gp->regs);
  2633. err_out_free_res:
  2634. pci_release_regions(pdev);
  2635. err_out_free_netdev:
  2636. free_netdev(dev);
  2637. err_disable_device:
  2638. pci_disable_device(pdev);
  2639. return err;
  2640. }
  2641. static struct pci_driver gem_driver = {
  2642. .name = GEM_MODULE_NAME,
  2643. .id_table = gem_pci_tbl,
  2644. .probe = gem_init_one,
  2645. .remove = gem_remove_one,
  2646. #ifdef CONFIG_PM
  2647. .suspend = gem_suspend,
  2648. .resume = gem_resume,
  2649. #endif /* CONFIG_PM */
  2650. };
  2651. static int __init gem_init(void)
  2652. {
  2653. return pci_register_driver(&gem_driver);
  2654. }
  2655. static void __exit gem_cleanup(void)
  2656. {
  2657. pci_unregister_driver(&gem_driver);
  2658. }
  2659. module_init(gem_init);
  2660. module_exit(gem_cleanup);