qla3xxx.c 108 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177
  1. /*
  2. * QLogic QLA3xxx NIC HBA Driver
  3. * Copyright (c) 2003-2006 QLogic Corporation
  4. *
  5. * See LICENSE.qla3xxx for copyright and licensing details.
  6. */
  7. #include <linux/kernel.h>
  8. #include <linux/init.h>
  9. #include <linux/types.h>
  10. #include <linux/module.h>
  11. #include <linux/list.h>
  12. #include <linux/pci.h>
  13. #include <linux/dma-mapping.h>
  14. #include <linux/sched.h>
  15. #include <linux/slab.h>
  16. #include <linux/dmapool.h>
  17. #include <linux/mempool.h>
  18. #include <linux/spinlock.h>
  19. #include <linux/kthread.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/errno.h>
  22. #include <linux/ioport.h>
  23. #include <linux/ip.h>
  24. #include <linux/in.h>
  25. #include <linux/if_arp.h>
  26. #include <linux/if_ether.h>
  27. #include <linux/netdevice.h>
  28. #include <linux/etherdevice.h>
  29. #include <linux/ethtool.h>
  30. #include <linux/skbuff.h>
  31. #include <linux/rtnetlink.h>
  32. #include <linux/if_vlan.h>
  33. #include <linux/delay.h>
  34. #include <linux/mm.h>
  35. #include "qla3xxx.h"
  36. #define DRV_NAME "qla3xxx"
  37. #define DRV_STRING "QLogic ISP3XXX Network Driver"
  38. #define DRV_VERSION "v2.03.00-k4"
  39. #define PFX DRV_NAME " "
  40. static const char ql3xxx_driver_name[] = DRV_NAME;
  41. static const char ql3xxx_driver_version[] = DRV_VERSION;
  42. MODULE_AUTHOR("QLogic Corporation");
  43. MODULE_DESCRIPTION("QLogic ISP3XXX Network Driver " DRV_VERSION " ");
  44. MODULE_LICENSE("GPL");
  45. MODULE_VERSION(DRV_VERSION);
  46. static const u32 default_msg
  47. = NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK
  48. | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN;
  49. static int debug = -1; /* defaults above */
  50. module_param(debug, int, 0);
  51. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  52. static int msi;
  53. module_param(msi, int, 0);
  54. MODULE_PARM_DESC(msi, "Turn on Message Signaled Interrupts.");
  55. static struct pci_device_id ql3xxx_pci_tbl[] __devinitdata = {
  56. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QL3022_DEVICE_ID)},
  57. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QL3032_DEVICE_ID)},
  58. /* required last entry */
  59. {0,}
  60. };
  61. MODULE_DEVICE_TABLE(pci, ql3xxx_pci_tbl);
  62. /*
  63. * These are the known PHY's which are used
  64. */
  65. typedef enum {
  66. PHY_TYPE_UNKNOWN = 0,
  67. PHY_VITESSE_VSC8211,
  68. PHY_AGERE_ET1011C,
  69. MAX_PHY_DEV_TYPES
  70. } PHY_DEVICE_et;
  71. typedef struct {
  72. PHY_DEVICE_et phyDevice;
  73. u32 phyIdOUI;
  74. u16 phyIdModel;
  75. char *name;
  76. } PHY_DEVICE_INFO_t;
  77. static const PHY_DEVICE_INFO_t PHY_DEVICES[] =
  78. {{PHY_TYPE_UNKNOWN, 0x000000, 0x0, "PHY_TYPE_UNKNOWN"},
  79. {PHY_VITESSE_VSC8211, 0x0003f1, 0xb, "PHY_VITESSE_VSC8211"},
  80. {PHY_AGERE_ET1011C, 0x00a0bc, 0x1, "PHY_AGERE_ET1011C"},
  81. };
  82. /*
  83. * Caller must take hw_lock.
  84. */
  85. static int ql_sem_spinlock(struct ql3_adapter *qdev,
  86. u32 sem_mask, u32 sem_bits)
  87. {
  88. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  89. u32 value;
  90. unsigned int seconds = 3;
  91. do {
  92. writel((sem_mask | sem_bits),
  93. &port_regs->CommonRegs.semaphoreReg);
  94. value = readl(&port_regs->CommonRegs.semaphoreReg);
  95. if ((value & (sem_mask >> 16)) == sem_bits)
  96. return 0;
  97. ssleep(1);
  98. } while(--seconds);
  99. return -1;
  100. }
  101. static void ql_sem_unlock(struct ql3_adapter *qdev, u32 sem_mask)
  102. {
  103. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  104. writel(sem_mask, &port_regs->CommonRegs.semaphoreReg);
  105. readl(&port_regs->CommonRegs.semaphoreReg);
  106. }
  107. static int ql_sem_lock(struct ql3_adapter *qdev, u32 sem_mask, u32 sem_bits)
  108. {
  109. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  110. u32 value;
  111. writel((sem_mask | sem_bits), &port_regs->CommonRegs.semaphoreReg);
  112. value = readl(&port_regs->CommonRegs.semaphoreReg);
  113. return ((value & (sem_mask >> 16)) == sem_bits);
  114. }
  115. /*
  116. * Caller holds hw_lock.
  117. */
  118. static int ql_wait_for_drvr_lock(struct ql3_adapter *qdev)
  119. {
  120. int i = 0;
  121. while (1) {
  122. if (!ql_sem_lock(qdev,
  123. QL_DRVR_SEM_MASK,
  124. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index)
  125. * 2) << 1)) {
  126. if (i < 10) {
  127. ssleep(1);
  128. i++;
  129. } else {
  130. printk(KERN_ERR PFX "%s: Timed out waiting for "
  131. "driver lock...\n",
  132. qdev->ndev->name);
  133. return 0;
  134. }
  135. } else {
  136. printk(KERN_DEBUG PFX
  137. "%s: driver lock acquired.\n",
  138. qdev->ndev->name);
  139. return 1;
  140. }
  141. }
  142. }
  143. static void ql_set_register_page(struct ql3_adapter *qdev, u32 page)
  144. {
  145. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  146. writel(((ISP_CONTROL_NP_MASK << 16) | page),
  147. &port_regs->CommonRegs.ispControlStatus);
  148. readl(&port_regs->CommonRegs.ispControlStatus);
  149. qdev->current_page = page;
  150. }
  151. static u32 ql_read_common_reg_l(struct ql3_adapter *qdev,
  152. u32 __iomem * reg)
  153. {
  154. u32 value;
  155. unsigned long hw_flags;
  156. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  157. value = readl(reg);
  158. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  159. return value;
  160. }
  161. static u32 ql_read_common_reg(struct ql3_adapter *qdev,
  162. u32 __iomem * reg)
  163. {
  164. return readl(reg);
  165. }
  166. static u32 ql_read_page0_reg_l(struct ql3_adapter *qdev, u32 __iomem *reg)
  167. {
  168. u32 value;
  169. unsigned long hw_flags;
  170. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  171. if (qdev->current_page != 0)
  172. ql_set_register_page(qdev,0);
  173. value = readl(reg);
  174. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  175. return value;
  176. }
  177. static u32 ql_read_page0_reg(struct ql3_adapter *qdev, u32 __iomem *reg)
  178. {
  179. if (qdev->current_page != 0)
  180. ql_set_register_page(qdev,0);
  181. return readl(reg);
  182. }
  183. static void ql_write_common_reg_l(struct ql3_adapter *qdev,
  184. u32 __iomem *reg, u32 value)
  185. {
  186. unsigned long hw_flags;
  187. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  188. writel(value, reg);
  189. readl(reg);
  190. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  191. return;
  192. }
  193. static void ql_write_common_reg(struct ql3_adapter *qdev,
  194. u32 __iomem *reg, u32 value)
  195. {
  196. writel(value, reg);
  197. readl(reg);
  198. return;
  199. }
  200. static void ql_write_nvram_reg(struct ql3_adapter *qdev,
  201. u32 __iomem *reg, u32 value)
  202. {
  203. writel(value, reg);
  204. readl(reg);
  205. udelay(1);
  206. return;
  207. }
  208. static void ql_write_page0_reg(struct ql3_adapter *qdev,
  209. u32 __iomem *reg, u32 value)
  210. {
  211. if (qdev->current_page != 0)
  212. ql_set_register_page(qdev,0);
  213. writel(value, reg);
  214. readl(reg);
  215. return;
  216. }
  217. /*
  218. * Caller holds hw_lock. Only called during init.
  219. */
  220. static void ql_write_page1_reg(struct ql3_adapter *qdev,
  221. u32 __iomem *reg, u32 value)
  222. {
  223. if (qdev->current_page != 1)
  224. ql_set_register_page(qdev,1);
  225. writel(value, reg);
  226. readl(reg);
  227. return;
  228. }
  229. /*
  230. * Caller holds hw_lock. Only called during init.
  231. */
  232. static void ql_write_page2_reg(struct ql3_adapter *qdev,
  233. u32 __iomem *reg, u32 value)
  234. {
  235. if (qdev->current_page != 2)
  236. ql_set_register_page(qdev,2);
  237. writel(value, reg);
  238. readl(reg);
  239. return;
  240. }
  241. static void ql_disable_interrupts(struct ql3_adapter *qdev)
  242. {
  243. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  244. ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg,
  245. (ISP_IMR_ENABLE_INT << 16));
  246. }
  247. static void ql_enable_interrupts(struct ql3_adapter *qdev)
  248. {
  249. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  250. ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg,
  251. ((0xff << 16) | ISP_IMR_ENABLE_INT));
  252. }
  253. static void ql_release_to_lrg_buf_free_list(struct ql3_adapter *qdev,
  254. struct ql_rcv_buf_cb *lrg_buf_cb)
  255. {
  256. dma_addr_t map;
  257. int err;
  258. lrg_buf_cb->next = NULL;
  259. if (qdev->lrg_buf_free_tail == NULL) { /* The list is empty */
  260. qdev->lrg_buf_free_head = qdev->lrg_buf_free_tail = lrg_buf_cb;
  261. } else {
  262. qdev->lrg_buf_free_tail->next = lrg_buf_cb;
  263. qdev->lrg_buf_free_tail = lrg_buf_cb;
  264. }
  265. if (!lrg_buf_cb->skb) {
  266. lrg_buf_cb->skb = netdev_alloc_skb(qdev->ndev,
  267. qdev->lrg_buffer_len);
  268. if (unlikely(!lrg_buf_cb->skb)) {
  269. printk(KERN_ERR PFX "%s: failed netdev_alloc_skb().\n",
  270. qdev->ndev->name);
  271. qdev->lrg_buf_skb_check++;
  272. } else {
  273. /*
  274. * We save some space to copy the ethhdr from first
  275. * buffer
  276. */
  277. skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE);
  278. map = pci_map_single(qdev->pdev,
  279. lrg_buf_cb->skb->data,
  280. qdev->lrg_buffer_len -
  281. QL_HEADER_SPACE,
  282. PCI_DMA_FROMDEVICE);
  283. err = pci_dma_mapping_error(map);
  284. if(err) {
  285. printk(KERN_ERR "%s: PCI mapping failed with error: %d\n",
  286. qdev->ndev->name, err);
  287. dev_kfree_skb(lrg_buf_cb->skb);
  288. lrg_buf_cb->skb = NULL;
  289. qdev->lrg_buf_skb_check++;
  290. return;
  291. }
  292. lrg_buf_cb->buf_phy_addr_low =
  293. cpu_to_le32(LS_64BITS(map));
  294. lrg_buf_cb->buf_phy_addr_high =
  295. cpu_to_le32(MS_64BITS(map));
  296. pci_unmap_addr_set(lrg_buf_cb, mapaddr, map);
  297. pci_unmap_len_set(lrg_buf_cb, maplen,
  298. qdev->lrg_buffer_len -
  299. QL_HEADER_SPACE);
  300. }
  301. }
  302. qdev->lrg_buf_free_count++;
  303. }
  304. static struct ql_rcv_buf_cb *ql_get_from_lrg_buf_free_list(struct ql3_adapter
  305. *qdev)
  306. {
  307. struct ql_rcv_buf_cb *lrg_buf_cb;
  308. if ((lrg_buf_cb = qdev->lrg_buf_free_head) != NULL) {
  309. if ((qdev->lrg_buf_free_head = lrg_buf_cb->next) == NULL)
  310. qdev->lrg_buf_free_tail = NULL;
  311. qdev->lrg_buf_free_count--;
  312. }
  313. return lrg_buf_cb;
  314. }
  315. static u32 addrBits = EEPROM_NO_ADDR_BITS;
  316. static u32 dataBits = EEPROM_NO_DATA_BITS;
  317. static void fm93c56a_deselect(struct ql3_adapter *qdev);
  318. static void eeprom_readword(struct ql3_adapter *qdev, u32 eepromAddr,
  319. unsigned short *value);
  320. /*
  321. * Caller holds hw_lock.
  322. */
  323. static void fm93c56a_select(struct ql3_adapter *qdev)
  324. {
  325. struct ql3xxx_port_registers __iomem *port_regs =
  326. qdev->mem_map_registers;
  327. qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_1;
  328. ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  329. ISP_NVRAM_MASK | qdev->eeprom_cmd_data);
  330. ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  331. ((ISP_NVRAM_MASK << 16) | qdev->eeprom_cmd_data));
  332. }
  333. /*
  334. * Caller holds hw_lock.
  335. */
  336. static void fm93c56a_cmd(struct ql3_adapter *qdev, u32 cmd, u32 eepromAddr)
  337. {
  338. int i;
  339. u32 mask;
  340. u32 dataBit;
  341. u32 previousBit;
  342. struct ql3xxx_port_registers __iomem *port_regs =
  343. qdev->mem_map_registers;
  344. /* Clock in a zero, then do the start bit */
  345. ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  346. ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  347. AUBURN_EEPROM_DO_1);
  348. ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  349. ISP_NVRAM_MASK | qdev->
  350. eeprom_cmd_data | AUBURN_EEPROM_DO_1 |
  351. AUBURN_EEPROM_CLK_RISE);
  352. ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  353. ISP_NVRAM_MASK | qdev->
  354. eeprom_cmd_data | AUBURN_EEPROM_DO_1 |
  355. AUBURN_EEPROM_CLK_FALL);
  356. mask = 1 << (FM93C56A_CMD_BITS - 1);
  357. /* Force the previous data bit to be different */
  358. previousBit = 0xffff;
  359. for (i = 0; i < FM93C56A_CMD_BITS; i++) {
  360. dataBit =
  361. (cmd & mask) ? AUBURN_EEPROM_DO_1 : AUBURN_EEPROM_DO_0;
  362. if (previousBit != dataBit) {
  363. /*
  364. * If the bit changed, then change the DO state to
  365. * match
  366. */
  367. ql_write_nvram_reg(qdev,
  368. &port_regs->CommonRegs.
  369. serialPortInterfaceReg,
  370. ISP_NVRAM_MASK | qdev->
  371. eeprom_cmd_data | dataBit);
  372. previousBit = dataBit;
  373. }
  374. ql_write_nvram_reg(qdev,
  375. &port_regs->CommonRegs.
  376. serialPortInterfaceReg,
  377. ISP_NVRAM_MASK | qdev->
  378. eeprom_cmd_data | dataBit |
  379. AUBURN_EEPROM_CLK_RISE);
  380. ql_write_nvram_reg(qdev,
  381. &port_regs->CommonRegs.
  382. serialPortInterfaceReg,
  383. ISP_NVRAM_MASK | qdev->
  384. eeprom_cmd_data | dataBit |
  385. AUBURN_EEPROM_CLK_FALL);
  386. cmd = cmd << 1;
  387. }
  388. mask = 1 << (addrBits - 1);
  389. /* Force the previous data bit to be different */
  390. previousBit = 0xffff;
  391. for (i = 0; i < addrBits; i++) {
  392. dataBit =
  393. (eepromAddr & mask) ? AUBURN_EEPROM_DO_1 :
  394. AUBURN_EEPROM_DO_0;
  395. if (previousBit != dataBit) {
  396. /*
  397. * If the bit changed, then change the DO state to
  398. * match
  399. */
  400. ql_write_nvram_reg(qdev,
  401. &port_regs->CommonRegs.
  402. serialPortInterfaceReg,
  403. ISP_NVRAM_MASK | qdev->
  404. eeprom_cmd_data | dataBit);
  405. previousBit = dataBit;
  406. }
  407. ql_write_nvram_reg(qdev,
  408. &port_regs->CommonRegs.
  409. serialPortInterfaceReg,
  410. ISP_NVRAM_MASK | qdev->
  411. eeprom_cmd_data | dataBit |
  412. AUBURN_EEPROM_CLK_RISE);
  413. ql_write_nvram_reg(qdev,
  414. &port_regs->CommonRegs.
  415. serialPortInterfaceReg,
  416. ISP_NVRAM_MASK | qdev->
  417. eeprom_cmd_data | dataBit |
  418. AUBURN_EEPROM_CLK_FALL);
  419. eepromAddr = eepromAddr << 1;
  420. }
  421. }
  422. /*
  423. * Caller holds hw_lock.
  424. */
  425. static void fm93c56a_deselect(struct ql3_adapter *qdev)
  426. {
  427. struct ql3xxx_port_registers __iomem *port_regs =
  428. qdev->mem_map_registers;
  429. qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_0;
  430. ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  431. ISP_NVRAM_MASK | qdev->eeprom_cmd_data);
  432. }
  433. /*
  434. * Caller holds hw_lock.
  435. */
  436. static void fm93c56a_datain(struct ql3_adapter *qdev, unsigned short *value)
  437. {
  438. int i;
  439. u32 data = 0;
  440. u32 dataBit;
  441. struct ql3xxx_port_registers __iomem *port_regs =
  442. qdev->mem_map_registers;
  443. /* Read the data bits */
  444. /* The first bit is a dummy. Clock right over it. */
  445. for (i = 0; i < dataBits; i++) {
  446. ql_write_nvram_reg(qdev,
  447. &port_regs->CommonRegs.
  448. serialPortInterfaceReg,
  449. ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  450. AUBURN_EEPROM_CLK_RISE);
  451. ql_write_nvram_reg(qdev,
  452. &port_regs->CommonRegs.
  453. serialPortInterfaceReg,
  454. ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  455. AUBURN_EEPROM_CLK_FALL);
  456. dataBit =
  457. (ql_read_common_reg
  458. (qdev,
  459. &port_regs->CommonRegs.
  460. serialPortInterfaceReg) & AUBURN_EEPROM_DI_1) ? 1 : 0;
  461. data = (data << 1) | dataBit;
  462. }
  463. *value = (u16) data;
  464. }
  465. /*
  466. * Caller holds hw_lock.
  467. */
  468. static void eeprom_readword(struct ql3_adapter *qdev,
  469. u32 eepromAddr, unsigned short *value)
  470. {
  471. fm93c56a_select(qdev);
  472. fm93c56a_cmd(qdev, (int)FM93C56A_READ, eepromAddr);
  473. fm93c56a_datain(qdev, value);
  474. fm93c56a_deselect(qdev);
  475. }
  476. static void ql_swap_mac_addr(u8 * macAddress)
  477. {
  478. #ifdef __BIG_ENDIAN
  479. u8 temp;
  480. temp = macAddress[0];
  481. macAddress[0] = macAddress[1];
  482. macAddress[1] = temp;
  483. temp = macAddress[2];
  484. macAddress[2] = macAddress[3];
  485. macAddress[3] = temp;
  486. temp = macAddress[4];
  487. macAddress[4] = macAddress[5];
  488. macAddress[5] = temp;
  489. #endif
  490. }
  491. static int ql_get_nvram_params(struct ql3_adapter *qdev)
  492. {
  493. u16 *pEEPROMData;
  494. u16 checksum = 0;
  495. u32 index;
  496. unsigned long hw_flags;
  497. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  498. pEEPROMData = (u16 *) & qdev->nvram_data;
  499. qdev->eeprom_cmd_data = 0;
  500. if(ql_sem_spinlock(qdev, QL_NVRAM_SEM_MASK,
  501. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  502. 2) << 10)) {
  503. printk(KERN_ERR PFX"%s: Failed ql_sem_spinlock().\n",
  504. __func__);
  505. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  506. return -1;
  507. }
  508. for (index = 0; index < EEPROM_SIZE; index++) {
  509. eeprom_readword(qdev, index, pEEPROMData);
  510. checksum += *pEEPROMData;
  511. pEEPROMData++;
  512. }
  513. ql_sem_unlock(qdev, QL_NVRAM_SEM_MASK);
  514. if (checksum != 0) {
  515. printk(KERN_ERR PFX "%s: checksum should be zero, is %x!!\n",
  516. qdev->ndev->name, checksum);
  517. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  518. return -1;
  519. }
  520. /*
  521. * We have a problem with endianness for the MAC addresses
  522. * and the two 8-bit values version, and numPorts. We
  523. * have to swap them on big endian systems.
  524. */
  525. ql_swap_mac_addr(qdev->nvram_data.funcCfg_fn0.macAddress);
  526. ql_swap_mac_addr(qdev->nvram_data.funcCfg_fn1.macAddress);
  527. ql_swap_mac_addr(qdev->nvram_data.funcCfg_fn2.macAddress);
  528. ql_swap_mac_addr(qdev->nvram_data.funcCfg_fn3.macAddress);
  529. pEEPROMData = (u16 *) & qdev->nvram_data.version;
  530. *pEEPROMData = le16_to_cpu(*pEEPROMData);
  531. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  532. return checksum;
  533. }
  534. static const u32 PHYAddr[2] = {
  535. PORT0_PHY_ADDRESS, PORT1_PHY_ADDRESS
  536. };
  537. static int ql_wait_for_mii_ready(struct ql3_adapter *qdev)
  538. {
  539. struct ql3xxx_port_registers __iomem *port_regs =
  540. qdev->mem_map_registers;
  541. u32 temp;
  542. int count = 1000;
  543. while (count) {
  544. temp = ql_read_page0_reg(qdev, &port_regs->macMIIStatusReg);
  545. if (!(temp & MAC_MII_STATUS_BSY))
  546. return 0;
  547. udelay(10);
  548. count--;
  549. }
  550. return -1;
  551. }
  552. static void ql_mii_enable_scan_mode(struct ql3_adapter *qdev)
  553. {
  554. struct ql3xxx_port_registers __iomem *port_regs =
  555. qdev->mem_map_registers;
  556. u32 scanControl;
  557. if (qdev->numPorts > 1) {
  558. /* Auto scan will cycle through multiple ports */
  559. scanControl = MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC;
  560. } else {
  561. scanControl = MAC_MII_CONTROL_SC;
  562. }
  563. /*
  564. * Scan register 1 of PHY/PETBI,
  565. * Set up to scan both devices
  566. * The autoscan starts from the first register, completes
  567. * the last one before rolling over to the first
  568. */
  569. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  570. PHYAddr[0] | MII_SCAN_REGISTER);
  571. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  572. (scanControl) |
  573. ((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS) << 16));
  574. }
  575. static u8 ql_mii_disable_scan_mode(struct ql3_adapter *qdev)
  576. {
  577. u8 ret;
  578. struct ql3xxx_port_registers __iomem *port_regs =
  579. qdev->mem_map_registers;
  580. /* See if scan mode is enabled before we turn it off */
  581. if (ql_read_page0_reg(qdev, &port_regs->macMIIMgmtControlReg) &
  582. (MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC)) {
  583. /* Scan is enabled */
  584. ret = 1;
  585. } else {
  586. /* Scan is disabled */
  587. ret = 0;
  588. }
  589. /*
  590. * When disabling scan mode you must first change the MII register
  591. * address
  592. */
  593. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  594. PHYAddr[0] | MII_SCAN_REGISTER);
  595. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  596. ((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS |
  597. MAC_MII_CONTROL_RC) << 16));
  598. return ret;
  599. }
  600. static int ql_mii_write_reg_ex(struct ql3_adapter *qdev,
  601. u16 regAddr, u16 value, u32 phyAddr)
  602. {
  603. struct ql3xxx_port_registers __iomem *port_regs =
  604. qdev->mem_map_registers;
  605. u8 scanWasEnabled;
  606. scanWasEnabled = ql_mii_disable_scan_mode(qdev);
  607. if (ql_wait_for_mii_ready(qdev)) {
  608. if (netif_msg_link(qdev))
  609. printk(KERN_WARNING PFX
  610. "%s Timed out waiting for management port to "
  611. "get free before issuing command.\n",
  612. qdev->ndev->name);
  613. return -1;
  614. }
  615. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  616. phyAddr | regAddr);
  617. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value);
  618. /* Wait for write to complete 9/10/04 SJP */
  619. if (ql_wait_for_mii_ready(qdev)) {
  620. if (netif_msg_link(qdev))
  621. printk(KERN_WARNING PFX
  622. "%s: Timed out waiting for management port to"
  623. "get free before issuing command.\n",
  624. qdev->ndev->name);
  625. return -1;
  626. }
  627. if (scanWasEnabled)
  628. ql_mii_enable_scan_mode(qdev);
  629. return 0;
  630. }
  631. static int ql_mii_read_reg_ex(struct ql3_adapter *qdev, u16 regAddr,
  632. u16 * value, u32 phyAddr)
  633. {
  634. struct ql3xxx_port_registers __iomem *port_regs =
  635. qdev->mem_map_registers;
  636. u8 scanWasEnabled;
  637. u32 temp;
  638. scanWasEnabled = ql_mii_disable_scan_mode(qdev);
  639. if (ql_wait_for_mii_ready(qdev)) {
  640. if (netif_msg_link(qdev))
  641. printk(KERN_WARNING PFX
  642. "%s: Timed out waiting for management port to "
  643. "get free before issuing command.\n",
  644. qdev->ndev->name);
  645. return -1;
  646. }
  647. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  648. phyAddr | regAddr);
  649. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  650. (MAC_MII_CONTROL_RC << 16));
  651. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  652. (MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC);
  653. /* Wait for the read to complete */
  654. if (ql_wait_for_mii_ready(qdev)) {
  655. if (netif_msg_link(qdev))
  656. printk(KERN_WARNING PFX
  657. "%s: Timed out waiting for management port to "
  658. "get free after issuing command.\n",
  659. qdev->ndev->name);
  660. return -1;
  661. }
  662. temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg);
  663. *value = (u16) temp;
  664. if (scanWasEnabled)
  665. ql_mii_enable_scan_mode(qdev);
  666. return 0;
  667. }
  668. static int ql_mii_write_reg(struct ql3_adapter *qdev, u16 regAddr, u16 value)
  669. {
  670. struct ql3xxx_port_registers __iomem *port_regs =
  671. qdev->mem_map_registers;
  672. ql_mii_disable_scan_mode(qdev);
  673. if (ql_wait_for_mii_ready(qdev)) {
  674. if (netif_msg_link(qdev))
  675. printk(KERN_WARNING PFX
  676. "%s: Timed out waiting for management port to "
  677. "get free before issuing command.\n",
  678. qdev->ndev->name);
  679. return -1;
  680. }
  681. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  682. qdev->PHYAddr | regAddr);
  683. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value);
  684. /* Wait for write to complete. */
  685. if (ql_wait_for_mii_ready(qdev)) {
  686. if (netif_msg_link(qdev))
  687. printk(KERN_WARNING PFX
  688. "%s: Timed out waiting for management port to "
  689. "get free before issuing command.\n",
  690. qdev->ndev->name);
  691. return -1;
  692. }
  693. ql_mii_enable_scan_mode(qdev);
  694. return 0;
  695. }
  696. static int ql_mii_read_reg(struct ql3_adapter *qdev, u16 regAddr, u16 *value)
  697. {
  698. u32 temp;
  699. struct ql3xxx_port_registers __iomem *port_regs =
  700. qdev->mem_map_registers;
  701. ql_mii_disable_scan_mode(qdev);
  702. if (ql_wait_for_mii_ready(qdev)) {
  703. if (netif_msg_link(qdev))
  704. printk(KERN_WARNING PFX
  705. "%s: Timed out waiting for management port to "
  706. "get free before issuing command.\n",
  707. qdev->ndev->name);
  708. return -1;
  709. }
  710. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  711. qdev->PHYAddr | regAddr);
  712. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  713. (MAC_MII_CONTROL_RC << 16));
  714. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  715. (MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC);
  716. /* Wait for the read to complete */
  717. if (ql_wait_for_mii_ready(qdev)) {
  718. if (netif_msg_link(qdev))
  719. printk(KERN_WARNING PFX
  720. "%s: Timed out waiting for management port to "
  721. "get free before issuing command.\n",
  722. qdev->ndev->name);
  723. return -1;
  724. }
  725. temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg);
  726. *value = (u16) temp;
  727. ql_mii_enable_scan_mode(qdev);
  728. return 0;
  729. }
  730. static void ql_petbi_reset(struct ql3_adapter *qdev)
  731. {
  732. ql_mii_write_reg(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET);
  733. }
  734. static void ql_petbi_start_neg(struct ql3_adapter *qdev)
  735. {
  736. u16 reg;
  737. /* Enable Auto-negotiation sense */
  738. ql_mii_read_reg(qdev, PETBI_TBI_CTRL, &reg);
  739. reg |= PETBI_TBI_AUTO_SENSE;
  740. ql_mii_write_reg(qdev, PETBI_TBI_CTRL, reg);
  741. ql_mii_write_reg(qdev, PETBI_NEG_ADVER,
  742. PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX);
  743. ql_mii_write_reg(qdev, PETBI_CONTROL_REG,
  744. PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG |
  745. PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000);
  746. }
  747. static void ql_petbi_reset_ex(struct ql3_adapter *qdev)
  748. {
  749. ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET,
  750. PHYAddr[qdev->mac_index]);
  751. }
  752. static void ql_petbi_start_neg_ex(struct ql3_adapter *qdev)
  753. {
  754. u16 reg;
  755. /* Enable Auto-negotiation sense */
  756. ql_mii_read_reg_ex(qdev, PETBI_TBI_CTRL, &reg,
  757. PHYAddr[qdev->mac_index]);
  758. reg |= PETBI_TBI_AUTO_SENSE;
  759. ql_mii_write_reg_ex(qdev, PETBI_TBI_CTRL, reg,
  760. PHYAddr[qdev->mac_index]);
  761. ql_mii_write_reg_ex(qdev, PETBI_NEG_ADVER,
  762. PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX,
  763. PHYAddr[qdev->mac_index]);
  764. ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG,
  765. PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG |
  766. PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000,
  767. PHYAddr[qdev->mac_index]);
  768. }
  769. static void ql_petbi_init(struct ql3_adapter *qdev)
  770. {
  771. ql_petbi_reset(qdev);
  772. ql_petbi_start_neg(qdev);
  773. }
  774. static void ql_petbi_init_ex(struct ql3_adapter *qdev)
  775. {
  776. ql_petbi_reset_ex(qdev);
  777. ql_petbi_start_neg_ex(qdev);
  778. }
  779. static int ql_is_petbi_neg_pause(struct ql3_adapter *qdev)
  780. {
  781. u16 reg;
  782. if (ql_mii_read_reg(qdev, PETBI_NEG_PARTNER, &reg) < 0)
  783. return 0;
  784. return (reg & PETBI_NEG_PAUSE_MASK) == PETBI_NEG_PAUSE;
  785. }
  786. static void phyAgereSpecificInit(struct ql3_adapter *qdev, u32 miiAddr)
  787. {
  788. printk(KERN_INFO "%s: enabling Agere specific PHY\n", qdev->ndev->name);
  789. /* power down device bit 11 = 1 */
  790. ql_mii_write_reg_ex(qdev, 0x00, 0x1940, miiAddr);
  791. /* enable diagnostic mode bit 2 = 1 */
  792. ql_mii_write_reg_ex(qdev, 0x12, 0x840e, miiAddr);
  793. /* 1000MB amplitude adjust (see Agere errata) */
  794. ql_mii_write_reg_ex(qdev, 0x10, 0x8805, miiAddr);
  795. /* 1000MB amplitude adjust (see Agere errata) */
  796. ql_mii_write_reg_ex(qdev, 0x11, 0xf03e, miiAddr);
  797. /* 100MB amplitude adjust (see Agere errata) */
  798. ql_mii_write_reg_ex(qdev, 0x10, 0x8806, miiAddr);
  799. /* 100MB amplitude adjust (see Agere errata) */
  800. ql_mii_write_reg_ex(qdev, 0x11, 0x003e, miiAddr);
  801. /* 10MB amplitude adjust (see Agere errata) */
  802. ql_mii_write_reg_ex(qdev, 0x10, 0x8807, miiAddr);
  803. /* 10MB amplitude adjust (see Agere errata) */
  804. ql_mii_write_reg_ex(qdev, 0x11, 0x1f00, miiAddr);
  805. /* point to hidden reg 0x2806 */
  806. ql_mii_write_reg_ex(qdev, 0x10, 0x2806, miiAddr);
  807. /* Write new PHYAD w/bit 5 set */
  808. ql_mii_write_reg_ex(qdev, 0x11, 0x0020 | (PHYAddr[qdev->mac_index] >> 8), miiAddr);
  809. /*
  810. * Disable diagnostic mode bit 2 = 0
  811. * Power up device bit 11 = 0
  812. * Link up (on) and activity (blink)
  813. */
  814. ql_mii_write_reg(qdev, 0x12, 0x840a);
  815. ql_mii_write_reg(qdev, 0x00, 0x1140);
  816. ql_mii_write_reg(qdev, 0x1c, 0xfaf0);
  817. }
  818. static PHY_DEVICE_et getPhyType (struct ql3_adapter *qdev,
  819. u16 phyIdReg0, u16 phyIdReg1)
  820. {
  821. PHY_DEVICE_et result = PHY_TYPE_UNKNOWN;
  822. u32 oui;
  823. u16 model;
  824. int i;
  825. if (phyIdReg0 == 0xffff) {
  826. return result;
  827. }
  828. if (phyIdReg1 == 0xffff) {
  829. return result;
  830. }
  831. /* oui is split between two registers */
  832. oui = (phyIdReg0 << 6) | ((phyIdReg1 & PHY_OUI_1_MASK) >> 10);
  833. model = (phyIdReg1 & PHY_MODEL_MASK) >> 4;
  834. /* Scan table for this PHY */
  835. for(i = 0; i < MAX_PHY_DEV_TYPES; i++) {
  836. if ((oui == PHY_DEVICES[i].phyIdOUI) && (model == PHY_DEVICES[i].phyIdModel))
  837. {
  838. result = PHY_DEVICES[i].phyDevice;
  839. printk(KERN_INFO "%s: Phy: %s\n",
  840. qdev->ndev->name, PHY_DEVICES[i].name);
  841. break;
  842. }
  843. }
  844. return result;
  845. }
  846. static int ql_phy_get_speed(struct ql3_adapter *qdev)
  847. {
  848. u16 reg;
  849. switch(qdev->phyType) {
  850. case PHY_AGERE_ET1011C:
  851. {
  852. if (ql_mii_read_reg(qdev, 0x1A, &reg) < 0)
  853. return 0;
  854. reg = (reg >> 8) & 3;
  855. break;
  856. }
  857. default:
  858. if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, &reg) < 0)
  859. return 0;
  860. reg = (((reg & 0x18) >> 3) & 3);
  861. }
  862. switch(reg) {
  863. case 2:
  864. return SPEED_1000;
  865. case 1:
  866. return SPEED_100;
  867. case 0:
  868. return SPEED_10;
  869. default:
  870. return -1;
  871. }
  872. }
  873. static int ql_is_full_dup(struct ql3_adapter *qdev)
  874. {
  875. u16 reg;
  876. switch(qdev->phyType) {
  877. case PHY_AGERE_ET1011C:
  878. {
  879. if (ql_mii_read_reg(qdev, 0x1A, &reg))
  880. return 0;
  881. return ((reg & 0x0080) && (reg & 0x1000)) != 0;
  882. }
  883. case PHY_VITESSE_VSC8211:
  884. default:
  885. {
  886. if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, &reg) < 0)
  887. return 0;
  888. return (reg & PHY_AUX_DUPLEX_STAT) != 0;
  889. }
  890. }
  891. }
  892. static int ql_is_phy_neg_pause(struct ql3_adapter *qdev)
  893. {
  894. u16 reg;
  895. if (ql_mii_read_reg(qdev, PHY_NEG_PARTNER, &reg) < 0)
  896. return 0;
  897. return (reg & PHY_NEG_PAUSE) != 0;
  898. }
  899. static int PHY_Setup(struct ql3_adapter *qdev)
  900. {
  901. u16 reg1;
  902. u16 reg2;
  903. bool agereAddrChangeNeeded = false;
  904. u32 miiAddr = 0;
  905. int err;
  906. /* Determine the PHY we are using by reading the ID's */
  907. err = ql_mii_read_reg(qdev, PHY_ID_0_REG, &reg1);
  908. if(err != 0) {
  909. printk(KERN_ERR "%s: Could not read from reg PHY_ID_0_REG\n",
  910. qdev->ndev->name);
  911. return err;
  912. }
  913. err = ql_mii_read_reg(qdev, PHY_ID_1_REG, &reg2);
  914. if(err != 0) {
  915. printk(KERN_ERR "%s: Could not read from reg PHY_ID_0_REG\n",
  916. qdev->ndev->name);
  917. return err;
  918. }
  919. /* Check if we have a Agere PHY */
  920. if ((reg1 == 0xffff) || (reg2 == 0xffff)) {
  921. /* Determine which MII address we should be using
  922. determined by the index of the card */
  923. if (qdev->mac_index == 0) {
  924. miiAddr = MII_AGERE_ADDR_1;
  925. } else {
  926. miiAddr = MII_AGERE_ADDR_2;
  927. }
  928. err =ql_mii_read_reg_ex(qdev, PHY_ID_0_REG, &reg1, miiAddr);
  929. if(err != 0) {
  930. printk(KERN_ERR "%s: Could not read from reg PHY_ID_0_REG after Agere detected\n",
  931. qdev->ndev->name);
  932. return err;
  933. }
  934. err = ql_mii_read_reg_ex(qdev, PHY_ID_1_REG, &reg2, miiAddr);
  935. if(err != 0) {
  936. printk(KERN_ERR "%s: Could not read from reg PHY_ID_0_REG after Agere detected\n",
  937. qdev->ndev->name);
  938. return err;
  939. }
  940. /* We need to remember to initialize the Agere PHY */
  941. agereAddrChangeNeeded = true;
  942. }
  943. /* Determine the particular PHY we have on board to apply
  944. PHY specific initializations */
  945. qdev->phyType = getPhyType(qdev, reg1, reg2);
  946. if ((qdev->phyType == PHY_AGERE_ET1011C) && agereAddrChangeNeeded) {
  947. /* need this here so address gets changed */
  948. phyAgereSpecificInit(qdev, miiAddr);
  949. } else if (qdev->phyType == PHY_TYPE_UNKNOWN) {
  950. printk(KERN_ERR "%s: PHY is unknown\n", qdev->ndev->name);
  951. return -EIO;
  952. }
  953. return 0;
  954. }
  955. /*
  956. * Caller holds hw_lock.
  957. */
  958. static void ql_mac_enable(struct ql3_adapter *qdev, u32 enable)
  959. {
  960. struct ql3xxx_port_registers __iomem *port_regs =
  961. qdev->mem_map_registers;
  962. u32 value;
  963. if (enable)
  964. value = (MAC_CONFIG_REG_PE | (MAC_CONFIG_REG_PE << 16));
  965. else
  966. value = (MAC_CONFIG_REG_PE << 16);
  967. if (qdev->mac_index)
  968. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  969. else
  970. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  971. }
  972. /*
  973. * Caller holds hw_lock.
  974. */
  975. static void ql_mac_cfg_soft_reset(struct ql3_adapter *qdev, u32 enable)
  976. {
  977. struct ql3xxx_port_registers __iomem *port_regs =
  978. qdev->mem_map_registers;
  979. u32 value;
  980. if (enable)
  981. value = (MAC_CONFIG_REG_SR | (MAC_CONFIG_REG_SR << 16));
  982. else
  983. value = (MAC_CONFIG_REG_SR << 16);
  984. if (qdev->mac_index)
  985. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  986. else
  987. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  988. }
  989. /*
  990. * Caller holds hw_lock.
  991. */
  992. static void ql_mac_cfg_gig(struct ql3_adapter *qdev, u32 enable)
  993. {
  994. struct ql3xxx_port_registers __iomem *port_regs =
  995. qdev->mem_map_registers;
  996. u32 value;
  997. if (enable)
  998. value = (MAC_CONFIG_REG_GM | (MAC_CONFIG_REG_GM << 16));
  999. else
  1000. value = (MAC_CONFIG_REG_GM << 16);
  1001. if (qdev->mac_index)
  1002. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  1003. else
  1004. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  1005. }
  1006. /*
  1007. * Caller holds hw_lock.
  1008. */
  1009. static void ql_mac_cfg_full_dup(struct ql3_adapter *qdev, u32 enable)
  1010. {
  1011. struct ql3xxx_port_registers __iomem *port_regs =
  1012. qdev->mem_map_registers;
  1013. u32 value;
  1014. if (enable)
  1015. value = (MAC_CONFIG_REG_FD | (MAC_CONFIG_REG_FD << 16));
  1016. else
  1017. value = (MAC_CONFIG_REG_FD << 16);
  1018. if (qdev->mac_index)
  1019. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  1020. else
  1021. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  1022. }
  1023. /*
  1024. * Caller holds hw_lock.
  1025. */
  1026. static void ql_mac_cfg_pause(struct ql3_adapter *qdev, u32 enable)
  1027. {
  1028. struct ql3xxx_port_registers __iomem *port_regs =
  1029. qdev->mem_map_registers;
  1030. u32 value;
  1031. if (enable)
  1032. value =
  1033. ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) |
  1034. ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16));
  1035. else
  1036. value = ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16);
  1037. if (qdev->mac_index)
  1038. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  1039. else
  1040. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  1041. }
  1042. /*
  1043. * Caller holds hw_lock.
  1044. */
  1045. static int ql_is_fiber(struct ql3_adapter *qdev)
  1046. {
  1047. struct ql3xxx_port_registers __iomem *port_regs =
  1048. qdev->mem_map_registers;
  1049. u32 bitToCheck = 0;
  1050. u32 temp;
  1051. switch (qdev->mac_index) {
  1052. case 0:
  1053. bitToCheck = PORT_STATUS_SM0;
  1054. break;
  1055. case 1:
  1056. bitToCheck = PORT_STATUS_SM1;
  1057. break;
  1058. }
  1059. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  1060. return (temp & bitToCheck) != 0;
  1061. }
  1062. static int ql_is_auto_cfg(struct ql3_adapter *qdev)
  1063. {
  1064. u16 reg;
  1065. ql_mii_read_reg(qdev, 0x00, &reg);
  1066. return (reg & 0x1000) != 0;
  1067. }
  1068. /*
  1069. * Caller holds hw_lock.
  1070. */
  1071. static int ql_is_auto_neg_complete(struct ql3_adapter *qdev)
  1072. {
  1073. struct ql3xxx_port_registers __iomem *port_regs =
  1074. qdev->mem_map_registers;
  1075. u32 bitToCheck = 0;
  1076. u32 temp;
  1077. switch (qdev->mac_index) {
  1078. case 0:
  1079. bitToCheck = PORT_STATUS_AC0;
  1080. break;
  1081. case 1:
  1082. bitToCheck = PORT_STATUS_AC1;
  1083. break;
  1084. }
  1085. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  1086. if (temp & bitToCheck) {
  1087. if (netif_msg_link(qdev))
  1088. printk(KERN_INFO PFX
  1089. "%s: Auto-Negotiate complete.\n",
  1090. qdev->ndev->name);
  1091. return 1;
  1092. } else {
  1093. if (netif_msg_link(qdev))
  1094. printk(KERN_WARNING PFX
  1095. "%s: Auto-Negotiate incomplete.\n",
  1096. qdev->ndev->name);
  1097. return 0;
  1098. }
  1099. }
  1100. /*
  1101. * ql_is_neg_pause() returns 1 if pause was negotiated to be on
  1102. */
  1103. static int ql_is_neg_pause(struct ql3_adapter *qdev)
  1104. {
  1105. if (ql_is_fiber(qdev))
  1106. return ql_is_petbi_neg_pause(qdev);
  1107. else
  1108. return ql_is_phy_neg_pause(qdev);
  1109. }
  1110. static int ql_auto_neg_error(struct ql3_adapter *qdev)
  1111. {
  1112. struct ql3xxx_port_registers __iomem *port_regs =
  1113. qdev->mem_map_registers;
  1114. u32 bitToCheck = 0;
  1115. u32 temp;
  1116. switch (qdev->mac_index) {
  1117. case 0:
  1118. bitToCheck = PORT_STATUS_AE0;
  1119. break;
  1120. case 1:
  1121. bitToCheck = PORT_STATUS_AE1;
  1122. break;
  1123. }
  1124. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  1125. return (temp & bitToCheck) != 0;
  1126. }
  1127. static u32 ql_get_link_speed(struct ql3_adapter *qdev)
  1128. {
  1129. if (ql_is_fiber(qdev))
  1130. return SPEED_1000;
  1131. else
  1132. return ql_phy_get_speed(qdev);
  1133. }
  1134. static int ql_is_link_full_dup(struct ql3_adapter *qdev)
  1135. {
  1136. if (ql_is_fiber(qdev))
  1137. return 1;
  1138. else
  1139. return ql_is_full_dup(qdev);
  1140. }
  1141. /*
  1142. * Caller holds hw_lock.
  1143. */
  1144. static int ql_link_down_detect(struct ql3_adapter *qdev)
  1145. {
  1146. struct ql3xxx_port_registers __iomem *port_regs =
  1147. qdev->mem_map_registers;
  1148. u32 bitToCheck = 0;
  1149. u32 temp;
  1150. switch (qdev->mac_index) {
  1151. case 0:
  1152. bitToCheck = ISP_CONTROL_LINK_DN_0;
  1153. break;
  1154. case 1:
  1155. bitToCheck = ISP_CONTROL_LINK_DN_1;
  1156. break;
  1157. }
  1158. temp =
  1159. ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus);
  1160. return (temp & bitToCheck) != 0;
  1161. }
  1162. /*
  1163. * Caller holds hw_lock.
  1164. */
  1165. static int ql_link_down_detect_clear(struct ql3_adapter *qdev)
  1166. {
  1167. struct ql3xxx_port_registers __iomem *port_regs =
  1168. qdev->mem_map_registers;
  1169. switch (qdev->mac_index) {
  1170. case 0:
  1171. ql_write_common_reg(qdev,
  1172. &port_regs->CommonRegs.ispControlStatus,
  1173. (ISP_CONTROL_LINK_DN_0) |
  1174. (ISP_CONTROL_LINK_DN_0 << 16));
  1175. break;
  1176. case 1:
  1177. ql_write_common_reg(qdev,
  1178. &port_regs->CommonRegs.ispControlStatus,
  1179. (ISP_CONTROL_LINK_DN_1) |
  1180. (ISP_CONTROL_LINK_DN_1 << 16));
  1181. break;
  1182. default:
  1183. return 1;
  1184. }
  1185. return 0;
  1186. }
  1187. /*
  1188. * Caller holds hw_lock.
  1189. */
  1190. static int ql_this_adapter_controls_port(struct ql3_adapter *qdev)
  1191. {
  1192. struct ql3xxx_port_registers __iomem *port_regs =
  1193. qdev->mem_map_registers;
  1194. u32 bitToCheck = 0;
  1195. u32 temp;
  1196. switch (qdev->mac_index) {
  1197. case 0:
  1198. bitToCheck = PORT_STATUS_F1_ENABLED;
  1199. break;
  1200. case 1:
  1201. bitToCheck = PORT_STATUS_F3_ENABLED;
  1202. break;
  1203. default:
  1204. break;
  1205. }
  1206. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  1207. if (temp & bitToCheck) {
  1208. if (netif_msg_link(qdev))
  1209. printk(KERN_DEBUG PFX
  1210. "%s: is not link master.\n", qdev->ndev->name);
  1211. return 0;
  1212. } else {
  1213. if (netif_msg_link(qdev))
  1214. printk(KERN_DEBUG PFX
  1215. "%s: is link master.\n", qdev->ndev->name);
  1216. return 1;
  1217. }
  1218. }
  1219. static void ql_phy_reset_ex(struct ql3_adapter *qdev)
  1220. {
  1221. ql_mii_write_reg_ex(qdev, CONTROL_REG, PHY_CTRL_SOFT_RESET,
  1222. PHYAddr[qdev->mac_index]);
  1223. }
  1224. static void ql_phy_start_neg_ex(struct ql3_adapter *qdev)
  1225. {
  1226. u16 reg;
  1227. u16 portConfiguration;
  1228. if(qdev->phyType == PHY_AGERE_ET1011C) {
  1229. /* turn off external loopback */
  1230. ql_mii_write_reg(qdev, 0x13, 0x0000);
  1231. }
  1232. if(qdev->mac_index == 0)
  1233. portConfiguration = qdev->nvram_data.macCfg_port0.portConfiguration;
  1234. else
  1235. portConfiguration = qdev->nvram_data.macCfg_port1.portConfiguration;
  1236. /* Some HBA's in the field are set to 0 and they need to
  1237. be reinterpreted with a default value */
  1238. if(portConfiguration == 0)
  1239. portConfiguration = PORT_CONFIG_DEFAULT;
  1240. /* Set the 1000 advertisements */
  1241. ql_mii_read_reg_ex(qdev, PHY_GIG_CONTROL, &reg,
  1242. PHYAddr[qdev->mac_index]);
  1243. reg &= ~PHY_GIG_ALL_PARAMS;
  1244. if(portConfiguration &
  1245. PORT_CONFIG_FULL_DUPLEX_ENABLED &
  1246. PORT_CONFIG_1000MB_SPEED) {
  1247. reg |= PHY_GIG_ADV_1000F;
  1248. }
  1249. if(portConfiguration &
  1250. PORT_CONFIG_HALF_DUPLEX_ENABLED &
  1251. PORT_CONFIG_1000MB_SPEED) {
  1252. reg |= PHY_GIG_ADV_1000H;
  1253. }
  1254. ql_mii_write_reg_ex(qdev, PHY_GIG_CONTROL, reg,
  1255. PHYAddr[qdev->mac_index]);
  1256. /* Set the 10/100 & pause negotiation advertisements */
  1257. ql_mii_read_reg_ex(qdev, PHY_NEG_ADVER, &reg,
  1258. PHYAddr[qdev->mac_index]);
  1259. reg &= ~PHY_NEG_ALL_PARAMS;
  1260. if(portConfiguration & PORT_CONFIG_SYM_PAUSE_ENABLED)
  1261. reg |= PHY_NEG_ASY_PAUSE | PHY_NEG_SYM_PAUSE;
  1262. if(portConfiguration & PORT_CONFIG_FULL_DUPLEX_ENABLED) {
  1263. if(portConfiguration & PORT_CONFIG_100MB_SPEED)
  1264. reg |= PHY_NEG_ADV_100F;
  1265. if(portConfiguration & PORT_CONFIG_10MB_SPEED)
  1266. reg |= PHY_NEG_ADV_10F;
  1267. }
  1268. if(portConfiguration & PORT_CONFIG_HALF_DUPLEX_ENABLED) {
  1269. if(portConfiguration & PORT_CONFIG_100MB_SPEED)
  1270. reg |= PHY_NEG_ADV_100H;
  1271. if(portConfiguration & PORT_CONFIG_10MB_SPEED)
  1272. reg |= PHY_NEG_ADV_10H;
  1273. }
  1274. if(portConfiguration &
  1275. PORT_CONFIG_1000MB_SPEED) {
  1276. reg |= 1;
  1277. }
  1278. ql_mii_write_reg_ex(qdev, PHY_NEG_ADVER, reg,
  1279. PHYAddr[qdev->mac_index]);
  1280. ql_mii_read_reg_ex(qdev, CONTROL_REG, &reg, PHYAddr[qdev->mac_index]);
  1281. ql_mii_write_reg_ex(qdev, CONTROL_REG,
  1282. reg | PHY_CTRL_RESTART_NEG | PHY_CTRL_AUTO_NEG,
  1283. PHYAddr[qdev->mac_index]);
  1284. }
  1285. static void ql_phy_init_ex(struct ql3_adapter *qdev)
  1286. {
  1287. ql_phy_reset_ex(qdev);
  1288. PHY_Setup(qdev);
  1289. ql_phy_start_neg_ex(qdev);
  1290. }
  1291. /*
  1292. * Caller holds hw_lock.
  1293. */
  1294. static u32 ql_get_link_state(struct ql3_adapter *qdev)
  1295. {
  1296. struct ql3xxx_port_registers __iomem *port_regs =
  1297. qdev->mem_map_registers;
  1298. u32 bitToCheck = 0;
  1299. u32 temp, linkState;
  1300. switch (qdev->mac_index) {
  1301. case 0:
  1302. bitToCheck = PORT_STATUS_UP0;
  1303. break;
  1304. case 1:
  1305. bitToCheck = PORT_STATUS_UP1;
  1306. break;
  1307. }
  1308. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  1309. if (temp & bitToCheck) {
  1310. linkState = LS_UP;
  1311. } else {
  1312. linkState = LS_DOWN;
  1313. if (netif_msg_link(qdev))
  1314. printk(KERN_WARNING PFX
  1315. "%s: Link is down.\n", qdev->ndev->name);
  1316. }
  1317. return linkState;
  1318. }
  1319. static int ql_port_start(struct ql3_adapter *qdev)
  1320. {
  1321. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1322. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1323. 2) << 7)) {
  1324. printk(KERN_ERR "%s: Could not get hw lock for GIO\n",
  1325. qdev->ndev->name);
  1326. return -1;
  1327. }
  1328. if (ql_is_fiber(qdev)) {
  1329. ql_petbi_init(qdev);
  1330. } else {
  1331. /* Copper port */
  1332. ql_phy_init_ex(qdev);
  1333. }
  1334. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1335. return 0;
  1336. }
  1337. static int ql_finish_auto_neg(struct ql3_adapter *qdev)
  1338. {
  1339. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1340. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1341. 2) << 7))
  1342. return -1;
  1343. if (!ql_auto_neg_error(qdev)) {
  1344. if (test_bit(QL_LINK_MASTER,&qdev->flags)) {
  1345. /* configure the MAC */
  1346. if (netif_msg_link(qdev))
  1347. printk(KERN_DEBUG PFX
  1348. "%s: Configuring link.\n",
  1349. qdev->ndev->
  1350. name);
  1351. ql_mac_cfg_soft_reset(qdev, 1);
  1352. ql_mac_cfg_gig(qdev,
  1353. (ql_get_link_speed
  1354. (qdev) ==
  1355. SPEED_1000));
  1356. ql_mac_cfg_full_dup(qdev,
  1357. ql_is_link_full_dup
  1358. (qdev));
  1359. ql_mac_cfg_pause(qdev,
  1360. ql_is_neg_pause
  1361. (qdev));
  1362. ql_mac_cfg_soft_reset(qdev, 0);
  1363. /* enable the MAC */
  1364. if (netif_msg_link(qdev))
  1365. printk(KERN_DEBUG PFX
  1366. "%s: Enabling mac.\n",
  1367. qdev->ndev->
  1368. name);
  1369. ql_mac_enable(qdev, 1);
  1370. }
  1371. if (netif_msg_link(qdev))
  1372. printk(KERN_DEBUG PFX
  1373. "%s: Change port_link_state LS_DOWN to LS_UP.\n",
  1374. qdev->ndev->name);
  1375. qdev->port_link_state = LS_UP;
  1376. netif_start_queue(qdev->ndev);
  1377. netif_carrier_on(qdev->ndev);
  1378. if (netif_msg_link(qdev))
  1379. printk(KERN_INFO PFX
  1380. "%s: Link is up at %d Mbps, %s duplex.\n",
  1381. qdev->ndev->name,
  1382. ql_get_link_speed(qdev),
  1383. ql_is_link_full_dup(qdev)
  1384. ? "full" : "half");
  1385. } else { /* Remote error detected */
  1386. if (test_bit(QL_LINK_MASTER,&qdev->flags)) {
  1387. if (netif_msg_link(qdev))
  1388. printk(KERN_DEBUG PFX
  1389. "%s: Remote error detected. "
  1390. "Calling ql_port_start().\n",
  1391. qdev->ndev->
  1392. name);
  1393. /*
  1394. * ql_port_start() is shared code and needs
  1395. * to lock the PHY on it's own.
  1396. */
  1397. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1398. if(ql_port_start(qdev)) {/* Restart port */
  1399. return -1;
  1400. } else
  1401. return 0;
  1402. }
  1403. }
  1404. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1405. return 0;
  1406. }
  1407. static void ql_link_state_machine(struct ql3_adapter *qdev)
  1408. {
  1409. u32 curr_link_state;
  1410. unsigned long hw_flags;
  1411. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1412. curr_link_state = ql_get_link_state(qdev);
  1413. if (test_bit(QL_RESET_ACTIVE,&qdev->flags)) {
  1414. if (netif_msg_link(qdev))
  1415. printk(KERN_INFO PFX
  1416. "%s: Reset in progress, skip processing link "
  1417. "state.\n", qdev->ndev->name);
  1418. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1419. return;
  1420. }
  1421. switch (qdev->port_link_state) {
  1422. default:
  1423. if (test_bit(QL_LINK_MASTER,&qdev->flags)) {
  1424. ql_port_start(qdev);
  1425. }
  1426. qdev->port_link_state = LS_DOWN;
  1427. /* Fall Through */
  1428. case LS_DOWN:
  1429. if (netif_msg_link(qdev))
  1430. printk(KERN_DEBUG PFX
  1431. "%s: port_link_state = LS_DOWN.\n",
  1432. qdev->ndev->name);
  1433. if (curr_link_state == LS_UP) {
  1434. if (netif_msg_link(qdev))
  1435. printk(KERN_DEBUG PFX
  1436. "%s: curr_link_state = LS_UP.\n",
  1437. qdev->ndev->name);
  1438. if (ql_is_auto_neg_complete(qdev))
  1439. ql_finish_auto_neg(qdev);
  1440. if (qdev->port_link_state == LS_UP)
  1441. ql_link_down_detect_clear(qdev);
  1442. }
  1443. break;
  1444. case LS_UP:
  1445. /*
  1446. * See if the link is currently down or went down and came
  1447. * back up
  1448. */
  1449. if ((curr_link_state == LS_DOWN) || ql_link_down_detect(qdev)) {
  1450. if (netif_msg_link(qdev))
  1451. printk(KERN_INFO PFX "%s: Link is down.\n",
  1452. qdev->ndev->name);
  1453. qdev->port_link_state = LS_DOWN;
  1454. }
  1455. break;
  1456. }
  1457. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1458. }
  1459. /*
  1460. * Caller must take hw_lock and QL_PHY_GIO_SEM.
  1461. */
  1462. static void ql_get_phy_owner(struct ql3_adapter *qdev)
  1463. {
  1464. if (ql_this_adapter_controls_port(qdev))
  1465. set_bit(QL_LINK_MASTER,&qdev->flags);
  1466. else
  1467. clear_bit(QL_LINK_MASTER,&qdev->flags);
  1468. }
  1469. /*
  1470. * Caller must take hw_lock and QL_PHY_GIO_SEM.
  1471. */
  1472. static void ql_init_scan_mode(struct ql3_adapter *qdev)
  1473. {
  1474. ql_mii_enable_scan_mode(qdev);
  1475. if (test_bit(QL_LINK_OPTICAL,&qdev->flags)) {
  1476. if (ql_this_adapter_controls_port(qdev))
  1477. ql_petbi_init_ex(qdev);
  1478. } else {
  1479. if (ql_this_adapter_controls_port(qdev))
  1480. ql_phy_init_ex(qdev);
  1481. }
  1482. }
  1483. /*
  1484. * MII_Setup needs to be called before taking the PHY out of reset so that the
  1485. * management interface clock speed can be set properly. It would be better if
  1486. * we had a way to disable MDC until after the PHY is out of reset, but we
  1487. * don't have that capability.
  1488. */
  1489. static int ql_mii_setup(struct ql3_adapter *qdev)
  1490. {
  1491. u32 reg;
  1492. struct ql3xxx_port_registers __iomem *port_regs =
  1493. qdev->mem_map_registers;
  1494. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1495. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1496. 2) << 7))
  1497. return -1;
  1498. if (qdev->device_id == QL3032_DEVICE_ID)
  1499. ql_write_page0_reg(qdev,
  1500. &port_regs->macMIIMgmtControlReg, 0x0f00000);
  1501. /* Divide 125MHz clock by 28 to meet PHY timing requirements */
  1502. reg = MAC_MII_CONTROL_CLK_SEL_DIV28;
  1503. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  1504. reg | ((MAC_MII_CONTROL_CLK_SEL_MASK) << 16));
  1505. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1506. return 0;
  1507. }
  1508. static u32 ql_supported_modes(struct ql3_adapter *qdev)
  1509. {
  1510. u32 supported;
  1511. if (test_bit(QL_LINK_OPTICAL,&qdev->flags)) {
  1512. supported = SUPPORTED_1000baseT_Full | SUPPORTED_FIBRE
  1513. | SUPPORTED_Autoneg;
  1514. } else {
  1515. supported = SUPPORTED_10baseT_Half
  1516. | SUPPORTED_10baseT_Full
  1517. | SUPPORTED_100baseT_Half
  1518. | SUPPORTED_100baseT_Full
  1519. | SUPPORTED_1000baseT_Half
  1520. | SUPPORTED_1000baseT_Full
  1521. | SUPPORTED_Autoneg | SUPPORTED_TP;
  1522. }
  1523. return supported;
  1524. }
  1525. static int ql_get_auto_cfg_status(struct ql3_adapter *qdev)
  1526. {
  1527. int status;
  1528. unsigned long hw_flags;
  1529. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1530. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1531. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1532. 2) << 7)) {
  1533. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1534. return 0;
  1535. }
  1536. status = ql_is_auto_cfg(qdev);
  1537. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1538. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1539. return status;
  1540. }
  1541. static u32 ql_get_speed(struct ql3_adapter *qdev)
  1542. {
  1543. u32 status;
  1544. unsigned long hw_flags;
  1545. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1546. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1547. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1548. 2) << 7)) {
  1549. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1550. return 0;
  1551. }
  1552. status = ql_get_link_speed(qdev);
  1553. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1554. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1555. return status;
  1556. }
  1557. static int ql_get_full_dup(struct ql3_adapter *qdev)
  1558. {
  1559. int status;
  1560. unsigned long hw_flags;
  1561. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1562. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1563. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1564. 2) << 7)) {
  1565. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1566. return 0;
  1567. }
  1568. status = ql_is_link_full_dup(qdev);
  1569. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1570. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1571. return status;
  1572. }
  1573. static int ql_get_settings(struct net_device *ndev, struct ethtool_cmd *ecmd)
  1574. {
  1575. struct ql3_adapter *qdev = netdev_priv(ndev);
  1576. ecmd->transceiver = XCVR_INTERNAL;
  1577. ecmd->supported = ql_supported_modes(qdev);
  1578. if (test_bit(QL_LINK_OPTICAL,&qdev->flags)) {
  1579. ecmd->port = PORT_FIBRE;
  1580. } else {
  1581. ecmd->port = PORT_TP;
  1582. ecmd->phy_address = qdev->PHYAddr;
  1583. }
  1584. ecmd->advertising = ql_supported_modes(qdev);
  1585. ecmd->autoneg = ql_get_auto_cfg_status(qdev);
  1586. ecmd->speed = ql_get_speed(qdev);
  1587. ecmd->duplex = ql_get_full_dup(qdev);
  1588. return 0;
  1589. }
  1590. static void ql_get_drvinfo(struct net_device *ndev,
  1591. struct ethtool_drvinfo *drvinfo)
  1592. {
  1593. struct ql3_adapter *qdev = netdev_priv(ndev);
  1594. strncpy(drvinfo->driver, ql3xxx_driver_name, 32);
  1595. strncpy(drvinfo->version, ql3xxx_driver_version, 32);
  1596. strncpy(drvinfo->fw_version, "N/A", 32);
  1597. strncpy(drvinfo->bus_info, pci_name(qdev->pdev), 32);
  1598. drvinfo->regdump_len = 0;
  1599. drvinfo->eedump_len = 0;
  1600. }
  1601. static u32 ql_get_msglevel(struct net_device *ndev)
  1602. {
  1603. struct ql3_adapter *qdev = netdev_priv(ndev);
  1604. return qdev->msg_enable;
  1605. }
  1606. static void ql_set_msglevel(struct net_device *ndev, u32 value)
  1607. {
  1608. struct ql3_adapter *qdev = netdev_priv(ndev);
  1609. qdev->msg_enable = value;
  1610. }
  1611. static void ql_get_pauseparam(struct net_device *ndev,
  1612. struct ethtool_pauseparam *pause)
  1613. {
  1614. struct ql3_adapter *qdev = netdev_priv(ndev);
  1615. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  1616. u32 reg;
  1617. if(qdev->mac_index == 0)
  1618. reg = ql_read_page0_reg(qdev, &port_regs->mac0ConfigReg);
  1619. else
  1620. reg = ql_read_page0_reg(qdev, &port_regs->mac1ConfigReg);
  1621. pause->autoneg = ql_get_auto_cfg_status(qdev);
  1622. pause->rx_pause = (reg & MAC_CONFIG_REG_RF) >> 2;
  1623. pause->tx_pause = (reg & MAC_CONFIG_REG_TF) >> 1;
  1624. }
  1625. static const struct ethtool_ops ql3xxx_ethtool_ops = {
  1626. .get_settings = ql_get_settings,
  1627. .get_drvinfo = ql_get_drvinfo,
  1628. .get_link = ethtool_op_get_link,
  1629. .get_msglevel = ql_get_msglevel,
  1630. .set_msglevel = ql_set_msglevel,
  1631. .get_pauseparam = ql_get_pauseparam,
  1632. };
  1633. static int ql_populate_free_queue(struct ql3_adapter *qdev)
  1634. {
  1635. struct ql_rcv_buf_cb *lrg_buf_cb = qdev->lrg_buf_free_head;
  1636. dma_addr_t map;
  1637. int err;
  1638. while (lrg_buf_cb) {
  1639. if (!lrg_buf_cb->skb) {
  1640. lrg_buf_cb->skb = netdev_alloc_skb(qdev->ndev,
  1641. qdev->lrg_buffer_len);
  1642. if (unlikely(!lrg_buf_cb->skb)) {
  1643. printk(KERN_DEBUG PFX
  1644. "%s: Failed netdev_alloc_skb().\n",
  1645. qdev->ndev->name);
  1646. break;
  1647. } else {
  1648. /*
  1649. * We save some space to copy the ethhdr from
  1650. * first buffer
  1651. */
  1652. skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE);
  1653. map = pci_map_single(qdev->pdev,
  1654. lrg_buf_cb->skb->data,
  1655. qdev->lrg_buffer_len -
  1656. QL_HEADER_SPACE,
  1657. PCI_DMA_FROMDEVICE);
  1658. err = pci_dma_mapping_error(map);
  1659. if(err) {
  1660. printk(KERN_ERR "%s: PCI mapping failed with error: %d\n",
  1661. qdev->ndev->name, err);
  1662. dev_kfree_skb(lrg_buf_cb->skb);
  1663. lrg_buf_cb->skb = NULL;
  1664. break;
  1665. }
  1666. lrg_buf_cb->buf_phy_addr_low =
  1667. cpu_to_le32(LS_64BITS(map));
  1668. lrg_buf_cb->buf_phy_addr_high =
  1669. cpu_to_le32(MS_64BITS(map));
  1670. pci_unmap_addr_set(lrg_buf_cb, mapaddr, map);
  1671. pci_unmap_len_set(lrg_buf_cb, maplen,
  1672. qdev->lrg_buffer_len -
  1673. QL_HEADER_SPACE);
  1674. --qdev->lrg_buf_skb_check;
  1675. if (!qdev->lrg_buf_skb_check)
  1676. return 1;
  1677. }
  1678. }
  1679. lrg_buf_cb = lrg_buf_cb->next;
  1680. }
  1681. return 0;
  1682. }
  1683. /*
  1684. * Caller holds hw_lock.
  1685. */
  1686. static void ql_update_small_bufq_prod_index(struct ql3_adapter *qdev)
  1687. {
  1688. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  1689. if (qdev->small_buf_release_cnt >= 16) {
  1690. while (qdev->small_buf_release_cnt >= 16) {
  1691. qdev->small_buf_q_producer_index++;
  1692. if (qdev->small_buf_q_producer_index ==
  1693. NUM_SBUFQ_ENTRIES)
  1694. qdev->small_buf_q_producer_index = 0;
  1695. qdev->small_buf_release_cnt -= 8;
  1696. }
  1697. wmb();
  1698. writel(qdev->small_buf_q_producer_index,
  1699. &port_regs->CommonRegs.rxSmallQProducerIndex);
  1700. }
  1701. }
  1702. /*
  1703. * Caller holds hw_lock.
  1704. */
  1705. static void ql_update_lrg_bufq_prod_index(struct ql3_adapter *qdev)
  1706. {
  1707. struct bufq_addr_element *lrg_buf_q_ele;
  1708. int i;
  1709. struct ql_rcv_buf_cb *lrg_buf_cb;
  1710. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  1711. if ((qdev->lrg_buf_free_count >= 8)
  1712. && (qdev->lrg_buf_release_cnt >= 16)) {
  1713. if (qdev->lrg_buf_skb_check)
  1714. if (!ql_populate_free_queue(qdev))
  1715. return;
  1716. lrg_buf_q_ele = qdev->lrg_buf_next_free;
  1717. while ((qdev->lrg_buf_release_cnt >= 16)
  1718. && (qdev->lrg_buf_free_count >= 8)) {
  1719. for (i = 0; i < 8; i++) {
  1720. lrg_buf_cb =
  1721. ql_get_from_lrg_buf_free_list(qdev);
  1722. lrg_buf_q_ele->addr_high =
  1723. lrg_buf_cb->buf_phy_addr_high;
  1724. lrg_buf_q_ele->addr_low =
  1725. lrg_buf_cb->buf_phy_addr_low;
  1726. lrg_buf_q_ele++;
  1727. qdev->lrg_buf_release_cnt--;
  1728. }
  1729. qdev->lrg_buf_q_producer_index++;
  1730. if (qdev->lrg_buf_q_producer_index == qdev->num_lbufq_entries)
  1731. qdev->lrg_buf_q_producer_index = 0;
  1732. if (qdev->lrg_buf_q_producer_index ==
  1733. (qdev->num_lbufq_entries - 1)) {
  1734. lrg_buf_q_ele = qdev->lrg_buf_q_virt_addr;
  1735. }
  1736. }
  1737. wmb();
  1738. qdev->lrg_buf_next_free = lrg_buf_q_ele;
  1739. writel(qdev->lrg_buf_q_producer_index,
  1740. &port_regs->CommonRegs.rxLargeQProducerIndex);
  1741. }
  1742. }
  1743. static void ql_process_mac_tx_intr(struct ql3_adapter *qdev,
  1744. struct ob_mac_iocb_rsp *mac_rsp)
  1745. {
  1746. struct ql_tx_buf_cb *tx_cb;
  1747. int i;
  1748. int retval = 0;
  1749. if(mac_rsp->flags & OB_MAC_IOCB_RSP_S) {
  1750. printk(KERN_WARNING "Frame short but, frame was padded and sent.\n");
  1751. }
  1752. tx_cb = &qdev->tx_buf[mac_rsp->transaction_id];
  1753. /* Check the transmit response flags for any errors */
  1754. if(mac_rsp->flags & OB_MAC_IOCB_RSP_S) {
  1755. printk(KERN_ERR "Frame too short to be legal, frame not sent.\n");
  1756. qdev->ndev->stats.tx_errors++;
  1757. retval = -EIO;
  1758. goto frame_not_sent;
  1759. }
  1760. if(tx_cb->seg_count == 0) {
  1761. printk(KERN_ERR "tx_cb->seg_count == 0: %d\n", mac_rsp->transaction_id);
  1762. qdev->ndev->stats.tx_errors++;
  1763. retval = -EIO;
  1764. goto invalid_seg_count;
  1765. }
  1766. pci_unmap_single(qdev->pdev,
  1767. pci_unmap_addr(&tx_cb->map[0], mapaddr),
  1768. pci_unmap_len(&tx_cb->map[0], maplen),
  1769. PCI_DMA_TODEVICE);
  1770. tx_cb->seg_count--;
  1771. if (tx_cb->seg_count) {
  1772. for (i = 1; i < tx_cb->seg_count; i++) {
  1773. pci_unmap_page(qdev->pdev,
  1774. pci_unmap_addr(&tx_cb->map[i],
  1775. mapaddr),
  1776. pci_unmap_len(&tx_cb->map[i], maplen),
  1777. PCI_DMA_TODEVICE);
  1778. }
  1779. }
  1780. qdev->ndev->stats.tx_packets++;
  1781. qdev->ndev->stats.tx_bytes += tx_cb->skb->len;
  1782. frame_not_sent:
  1783. dev_kfree_skb_irq(tx_cb->skb);
  1784. tx_cb->skb = NULL;
  1785. invalid_seg_count:
  1786. atomic_inc(&qdev->tx_count);
  1787. }
  1788. static void ql_get_sbuf(struct ql3_adapter *qdev)
  1789. {
  1790. if (++qdev->small_buf_index == NUM_SMALL_BUFFERS)
  1791. qdev->small_buf_index = 0;
  1792. qdev->small_buf_release_cnt++;
  1793. }
  1794. static struct ql_rcv_buf_cb *ql_get_lbuf(struct ql3_adapter *qdev)
  1795. {
  1796. struct ql_rcv_buf_cb *lrg_buf_cb = NULL;
  1797. lrg_buf_cb = &qdev->lrg_buf[qdev->lrg_buf_index];
  1798. qdev->lrg_buf_release_cnt++;
  1799. if (++qdev->lrg_buf_index == qdev->num_large_buffers)
  1800. qdev->lrg_buf_index = 0;
  1801. return(lrg_buf_cb);
  1802. }
  1803. /*
  1804. * The difference between 3022 and 3032 for inbound completions:
  1805. * 3022 uses two buffers per completion. The first buffer contains
  1806. * (some) header info, the second the remainder of the headers plus
  1807. * the data. For this chip we reserve some space at the top of the
  1808. * receive buffer so that the header info in buffer one can be
  1809. * prepended to the buffer two. Buffer two is the sent up while
  1810. * buffer one is returned to the hardware to be reused.
  1811. * 3032 receives all of it's data and headers in one buffer for a
  1812. * simpler process. 3032 also supports checksum verification as
  1813. * can be seen in ql_process_macip_rx_intr().
  1814. */
  1815. static void ql_process_mac_rx_intr(struct ql3_adapter *qdev,
  1816. struct ib_mac_iocb_rsp *ib_mac_rsp_ptr)
  1817. {
  1818. struct ql_rcv_buf_cb *lrg_buf_cb1 = NULL;
  1819. struct ql_rcv_buf_cb *lrg_buf_cb2 = NULL;
  1820. struct sk_buff *skb;
  1821. u16 length = le16_to_cpu(ib_mac_rsp_ptr->length);
  1822. /*
  1823. * Get the inbound address list (small buffer).
  1824. */
  1825. ql_get_sbuf(qdev);
  1826. if (qdev->device_id == QL3022_DEVICE_ID)
  1827. lrg_buf_cb1 = ql_get_lbuf(qdev);
  1828. /* start of second buffer */
  1829. lrg_buf_cb2 = ql_get_lbuf(qdev);
  1830. skb = lrg_buf_cb2->skb;
  1831. qdev->ndev->stats.rx_packets++;
  1832. qdev->ndev->stats.rx_bytes += length;
  1833. skb_put(skb, length);
  1834. pci_unmap_single(qdev->pdev,
  1835. pci_unmap_addr(lrg_buf_cb2, mapaddr),
  1836. pci_unmap_len(lrg_buf_cb2, maplen),
  1837. PCI_DMA_FROMDEVICE);
  1838. prefetch(skb->data);
  1839. skb->ip_summed = CHECKSUM_NONE;
  1840. skb->protocol = eth_type_trans(skb, qdev->ndev);
  1841. netif_receive_skb(skb);
  1842. qdev->ndev->last_rx = jiffies;
  1843. lrg_buf_cb2->skb = NULL;
  1844. if (qdev->device_id == QL3022_DEVICE_ID)
  1845. ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb1);
  1846. ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb2);
  1847. }
  1848. static void ql_process_macip_rx_intr(struct ql3_adapter *qdev,
  1849. struct ib_ip_iocb_rsp *ib_ip_rsp_ptr)
  1850. {
  1851. struct ql_rcv_buf_cb *lrg_buf_cb1 = NULL;
  1852. struct ql_rcv_buf_cb *lrg_buf_cb2 = NULL;
  1853. struct sk_buff *skb1 = NULL, *skb2;
  1854. struct net_device *ndev = qdev->ndev;
  1855. u16 length = le16_to_cpu(ib_ip_rsp_ptr->length);
  1856. u16 size = 0;
  1857. /*
  1858. * Get the inbound address list (small buffer).
  1859. */
  1860. ql_get_sbuf(qdev);
  1861. if (qdev->device_id == QL3022_DEVICE_ID) {
  1862. /* start of first buffer on 3022 */
  1863. lrg_buf_cb1 = ql_get_lbuf(qdev);
  1864. skb1 = lrg_buf_cb1->skb;
  1865. size = ETH_HLEN;
  1866. if (*((u16 *) skb1->data) != 0xFFFF)
  1867. size += VLAN_ETH_HLEN - ETH_HLEN;
  1868. }
  1869. /* start of second buffer */
  1870. lrg_buf_cb2 = ql_get_lbuf(qdev);
  1871. skb2 = lrg_buf_cb2->skb;
  1872. skb_put(skb2, length); /* Just the second buffer length here. */
  1873. pci_unmap_single(qdev->pdev,
  1874. pci_unmap_addr(lrg_buf_cb2, mapaddr),
  1875. pci_unmap_len(lrg_buf_cb2, maplen),
  1876. PCI_DMA_FROMDEVICE);
  1877. prefetch(skb2->data);
  1878. skb2->ip_summed = CHECKSUM_NONE;
  1879. if (qdev->device_id == QL3022_DEVICE_ID) {
  1880. /*
  1881. * Copy the ethhdr from first buffer to second. This
  1882. * is necessary for 3022 IP completions.
  1883. */
  1884. skb_copy_from_linear_data_offset(skb1, VLAN_ID_LEN,
  1885. skb_push(skb2, size), size);
  1886. } else {
  1887. u16 checksum = le16_to_cpu(ib_ip_rsp_ptr->checksum);
  1888. if (checksum &
  1889. (IB_IP_IOCB_RSP_3032_ICE |
  1890. IB_IP_IOCB_RSP_3032_CE)) {
  1891. printk(KERN_ERR
  1892. "%s: Bad checksum for this %s packet, checksum = %x.\n",
  1893. __func__,
  1894. ((checksum &
  1895. IB_IP_IOCB_RSP_3032_TCP) ? "TCP" :
  1896. "UDP"),checksum);
  1897. } else if ((checksum & IB_IP_IOCB_RSP_3032_TCP) ||
  1898. (checksum & IB_IP_IOCB_RSP_3032_UDP &&
  1899. !(checksum & IB_IP_IOCB_RSP_3032_NUC))) {
  1900. skb2->ip_summed = CHECKSUM_UNNECESSARY;
  1901. }
  1902. }
  1903. skb2->protocol = eth_type_trans(skb2, qdev->ndev);
  1904. netif_receive_skb(skb2);
  1905. ndev->stats.rx_packets++;
  1906. ndev->stats.rx_bytes += length;
  1907. ndev->last_rx = jiffies;
  1908. lrg_buf_cb2->skb = NULL;
  1909. if (qdev->device_id == QL3022_DEVICE_ID)
  1910. ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb1);
  1911. ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb2);
  1912. }
  1913. static int ql_tx_rx_clean(struct ql3_adapter *qdev,
  1914. int *tx_cleaned, int *rx_cleaned, int work_to_do)
  1915. {
  1916. struct net_rsp_iocb *net_rsp;
  1917. struct net_device *ndev = qdev->ndev;
  1918. int work_done = 0;
  1919. /* While there are entries in the completion queue. */
  1920. while ((le32_to_cpu(*(qdev->prsp_producer_index)) !=
  1921. qdev->rsp_consumer_index) && (work_done < work_to_do)) {
  1922. net_rsp = qdev->rsp_current;
  1923. rmb();
  1924. /*
  1925. * Fix 4032 chipe undocumented "feature" where bit-8 is set if the
  1926. * inbound completion is for a VLAN.
  1927. */
  1928. if (qdev->device_id == QL3032_DEVICE_ID)
  1929. net_rsp->opcode &= 0x7f;
  1930. switch (net_rsp->opcode) {
  1931. case OPCODE_OB_MAC_IOCB_FN0:
  1932. case OPCODE_OB_MAC_IOCB_FN2:
  1933. ql_process_mac_tx_intr(qdev, (struct ob_mac_iocb_rsp *)
  1934. net_rsp);
  1935. (*tx_cleaned)++;
  1936. break;
  1937. case OPCODE_IB_MAC_IOCB:
  1938. case OPCODE_IB_3032_MAC_IOCB:
  1939. ql_process_mac_rx_intr(qdev, (struct ib_mac_iocb_rsp *)
  1940. net_rsp);
  1941. (*rx_cleaned)++;
  1942. break;
  1943. case OPCODE_IB_IP_IOCB:
  1944. case OPCODE_IB_3032_IP_IOCB:
  1945. ql_process_macip_rx_intr(qdev, (struct ib_ip_iocb_rsp *)
  1946. net_rsp);
  1947. (*rx_cleaned)++;
  1948. break;
  1949. default:
  1950. {
  1951. u32 *tmp = (u32 *) net_rsp;
  1952. printk(KERN_ERR PFX
  1953. "%s: Hit default case, not "
  1954. "handled!\n"
  1955. " dropping the packet, opcode = "
  1956. "%x.\n",
  1957. ndev->name, net_rsp->opcode);
  1958. printk(KERN_ERR PFX
  1959. "0x%08lx 0x%08lx 0x%08lx 0x%08lx \n",
  1960. (unsigned long int)tmp[0],
  1961. (unsigned long int)tmp[1],
  1962. (unsigned long int)tmp[2],
  1963. (unsigned long int)tmp[3]);
  1964. }
  1965. }
  1966. qdev->rsp_consumer_index++;
  1967. if (qdev->rsp_consumer_index == NUM_RSP_Q_ENTRIES) {
  1968. qdev->rsp_consumer_index = 0;
  1969. qdev->rsp_current = qdev->rsp_q_virt_addr;
  1970. } else {
  1971. qdev->rsp_current++;
  1972. }
  1973. work_done = *tx_cleaned + *rx_cleaned;
  1974. }
  1975. return work_done;
  1976. }
  1977. static int ql_poll(struct napi_struct *napi, int budget)
  1978. {
  1979. struct ql3_adapter *qdev = container_of(napi, struct ql3_adapter, napi);
  1980. struct net_device *ndev = qdev->ndev;
  1981. int rx_cleaned = 0, tx_cleaned = 0;
  1982. unsigned long hw_flags;
  1983. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  1984. if (!netif_carrier_ok(ndev))
  1985. goto quit_polling;
  1986. ql_tx_rx_clean(qdev, &tx_cleaned, &rx_cleaned, budget);
  1987. if (tx_cleaned + rx_cleaned != budget ||
  1988. !netif_running(ndev)) {
  1989. quit_polling:
  1990. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1991. __netif_rx_complete(ndev, napi);
  1992. ql_update_small_bufq_prod_index(qdev);
  1993. ql_update_lrg_bufq_prod_index(qdev);
  1994. writel(qdev->rsp_consumer_index,
  1995. &port_regs->CommonRegs.rspQConsumerIndex);
  1996. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1997. ql_enable_interrupts(qdev);
  1998. }
  1999. return tx_cleaned + rx_cleaned;
  2000. }
  2001. static irqreturn_t ql3xxx_isr(int irq, void *dev_id)
  2002. {
  2003. struct net_device *ndev = dev_id;
  2004. struct ql3_adapter *qdev = netdev_priv(ndev);
  2005. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  2006. u32 value;
  2007. int handled = 1;
  2008. u32 var;
  2009. port_regs = qdev->mem_map_registers;
  2010. value =
  2011. ql_read_common_reg_l(qdev, &port_regs->CommonRegs.ispControlStatus);
  2012. if (value & (ISP_CONTROL_FE | ISP_CONTROL_RI)) {
  2013. spin_lock(&qdev->adapter_lock);
  2014. netif_stop_queue(qdev->ndev);
  2015. netif_carrier_off(qdev->ndev);
  2016. ql_disable_interrupts(qdev);
  2017. qdev->port_link_state = LS_DOWN;
  2018. set_bit(QL_RESET_ACTIVE,&qdev->flags) ;
  2019. if (value & ISP_CONTROL_FE) {
  2020. /*
  2021. * Chip Fatal Error.
  2022. */
  2023. var =
  2024. ql_read_page0_reg_l(qdev,
  2025. &port_regs->PortFatalErrStatus);
  2026. printk(KERN_WARNING PFX
  2027. "%s: Resetting chip. PortFatalErrStatus "
  2028. "register = 0x%x\n", ndev->name, var);
  2029. set_bit(QL_RESET_START,&qdev->flags) ;
  2030. } else {
  2031. /*
  2032. * Soft Reset Requested.
  2033. */
  2034. set_bit(QL_RESET_PER_SCSI,&qdev->flags) ;
  2035. printk(KERN_ERR PFX
  2036. "%s: Another function issued a reset to the "
  2037. "chip. ISR value = %x.\n", ndev->name, value);
  2038. }
  2039. queue_delayed_work(qdev->workqueue, &qdev->reset_work, 0);
  2040. spin_unlock(&qdev->adapter_lock);
  2041. } else if (value & ISP_IMR_DISABLE_CMPL_INT) {
  2042. ql_disable_interrupts(qdev);
  2043. if (likely(netif_rx_schedule_prep(ndev, &qdev->napi))) {
  2044. __netif_rx_schedule(ndev, &qdev->napi);
  2045. }
  2046. } else {
  2047. return IRQ_NONE;
  2048. }
  2049. return IRQ_RETVAL(handled);
  2050. }
  2051. /*
  2052. * Get the total number of segments needed for the
  2053. * given number of fragments. This is necessary because
  2054. * outbound address lists (OAL) will be used when more than
  2055. * two frags are given. Each address list has 5 addr/len
  2056. * pairs. The 5th pair in each AOL is used to point to
  2057. * the next AOL if more frags are coming.
  2058. * That is why the frags:segment count ratio is not linear.
  2059. */
  2060. static int ql_get_seg_count(struct ql3_adapter *qdev,
  2061. unsigned short frags)
  2062. {
  2063. if (qdev->device_id == QL3022_DEVICE_ID)
  2064. return 1;
  2065. switch(frags) {
  2066. case 0: return 1; /* just the skb->data seg */
  2067. case 1: return 2; /* skb->data + 1 frag */
  2068. case 2: return 3; /* skb->data + 2 frags */
  2069. case 3: return 5; /* skb->data + 1 frag + 1 AOL containting 2 frags */
  2070. case 4: return 6;
  2071. case 5: return 7;
  2072. case 6: return 8;
  2073. case 7: return 10;
  2074. case 8: return 11;
  2075. case 9: return 12;
  2076. case 10: return 13;
  2077. case 11: return 15;
  2078. case 12: return 16;
  2079. case 13: return 17;
  2080. case 14: return 18;
  2081. case 15: return 20;
  2082. case 16: return 21;
  2083. case 17: return 22;
  2084. case 18: return 23;
  2085. }
  2086. return -1;
  2087. }
  2088. static void ql_hw_csum_setup(const struct sk_buff *skb,
  2089. struct ob_mac_iocb_req *mac_iocb_ptr)
  2090. {
  2091. const struct iphdr *ip = ip_hdr(skb);
  2092. mac_iocb_ptr->ip_hdr_off = skb_network_offset(skb);
  2093. mac_iocb_ptr->ip_hdr_len = ip->ihl;
  2094. if (ip->protocol == IPPROTO_TCP) {
  2095. mac_iocb_ptr->flags1 |= OB_3032MAC_IOCB_REQ_TC |
  2096. OB_3032MAC_IOCB_REQ_IC;
  2097. } else {
  2098. mac_iocb_ptr->flags1 |= OB_3032MAC_IOCB_REQ_UC |
  2099. OB_3032MAC_IOCB_REQ_IC;
  2100. }
  2101. }
  2102. /*
  2103. * Map the buffers for this transmit. This will return
  2104. * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
  2105. */
  2106. static int ql_send_map(struct ql3_adapter *qdev,
  2107. struct ob_mac_iocb_req *mac_iocb_ptr,
  2108. struct ql_tx_buf_cb *tx_cb,
  2109. struct sk_buff *skb)
  2110. {
  2111. struct oal *oal;
  2112. struct oal_entry *oal_entry;
  2113. int len = skb_headlen(skb);
  2114. dma_addr_t map;
  2115. int err;
  2116. int completed_segs, i;
  2117. int seg_cnt, seg = 0;
  2118. int frag_cnt = (int)skb_shinfo(skb)->nr_frags;
  2119. seg_cnt = tx_cb->seg_count;
  2120. /*
  2121. * Map the skb buffer first.
  2122. */
  2123. map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
  2124. err = pci_dma_mapping_error(map);
  2125. if(err) {
  2126. printk(KERN_ERR "%s: PCI mapping failed with error: %d\n",
  2127. qdev->ndev->name, err);
  2128. return NETDEV_TX_BUSY;
  2129. }
  2130. oal_entry = (struct oal_entry *)&mac_iocb_ptr->buf_addr0_low;
  2131. oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
  2132. oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
  2133. oal_entry->len = cpu_to_le32(len);
  2134. pci_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
  2135. pci_unmap_len_set(&tx_cb->map[seg], maplen, len);
  2136. seg++;
  2137. if (seg_cnt == 1) {
  2138. /* Terminate the last segment. */
  2139. oal_entry->len =
  2140. cpu_to_le32(le32_to_cpu(oal_entry->len) | OAL_LAST_ENTRY);
  2141. } else {
  2142. oal = tx_cb->oal;
  2143. for (completed_segs=0; completed_segs<frag_cnt; completed_segs++,seg++) {
  2144. skb_frag_t *frag = &skb_shinfo(skb)->frags[completed_segs];
  2145. oal_entry++;
  2146. if ((seg == 2 && seg_cnt > 3) || /* Check for continuation */
  2147. (seg == 7 && seg_cnt > 8) || /* requirements. It's strange */
  2148. (seg == 12 && seg_cnt > 13) || /* but necessary. */
  2149. (seg == 17 && seg_cnt > 18)) {
  2150. /* Continuation entry points to outbound address list. */
  2151. map = pci_map_single(qdev->pdev, oal,
  2152. sizeof(struct oal),
  2153. PCI_DMA_TODEVICE);
  2154. err = pci_dma_mapping_error(map);
  2155. if(err) {
  2156. printk(KERN_ERR "%s: PCI mapping outbound address list with error: %d\n",
  2157. qdev->ndev->name, err);
  2158. goto map_error;
  2159. }
  2160. oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
  2161. oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
  2162. oal_entry->len =
  2163. cpu_to_le32(sizeof(struct oal) |
  2164. OAL_CONT_ENTRY);
  2165. pci_unmap_addr_set(&tx_cb->map[seg], mapaddr,
  2166. map);
  2167. pci_unmap_len_set(&tx_cb->map[seg], maplen,
  2168. sizeof(struct oal));
  2169. oal_entry = (struct oal_entry *)oal;
  2170. oal++;
  2171. seg++;
  2172. }
  2173. map =
  2174. pci_map_page(qdev->pdev, frag->page,
  2175. frag->page_offset, frag->size,
  2176. PCI_DMA_TODEVICE);
  2177. err = pci_dma_mapping_error(map);
  2178. if(err) {
  2179. printk(KERN_ERR "%s: PCI mapping frags failed with error: %d\n",
  2180. qdev->ndev->name, err);
  2181. goto map_error;
  2182. }
  2183. oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
  2184. oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
  2185. oal_entry->len = cpu_to_le32(frag->size);
  2186. pci_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
  2187. pci_unmap_len_set(&tx_cb->map[seg], maplen,
  2188. frag->size);
  2189. }
  2190. /* Terminate the last segment. */
  2191. oal_entry->len =
  2192. cpu_to_le32(le32_to_cpu(oal_entry->len) | OAL_LAST_ENTRY);
  2193. }
  2194. return NETDEV_TX_OK;
  2195. map_error:
  2196. /* A PCI mapping failed and now we will need to back out
  2197. * We need to traverse through the oal's and associated pages which
  2198. * have been mapped and now we must unmap them to clean up properly
  2199. */
  2200. seg = 1;
  2201. oal_entry = (struct oal_entry *)&mac_iocb_ptr->buf_addr0_low;
  2202. oal = tx_cb->oal;
  2203. for (i=0; i<completed_segs; i++,seg++) {
  2204. oal_entry++;
  2205. if((seg == 2 && seg_cnt > 3) || /* Check for continuation */
  2206. (seg == 7 && seg_cnt > 8) || /* requirements. It's strange */
  2207. (seg == 12 && seg_cnt > 13) || /* but necessary. */
  2208. (seg == 17 && seg_cnt > 18)) {
  2209. pci_unmap_single(qdev->pdev,
  2210. pci_unmap_addr(&tx_cb->map[seg], mapaddr),
  2211. pci_unmap_len(&tx_cb->map[seg], maplen),
  2212. PCI_DMA_TODEVICE);
  2213. oal++;
  2214. seg++;
  2215. }
  2216. pci_unmap_page(qdev->pdev,
  2217. pci_unmap_addr(&tx_cb->map[seg], mapaddr),
  2218. pci_unmap_len(&tx_cb->map[seg], maplen),
  2219. PCI_DMA_TODEVICE);
  2220. }
  2221. pci_unmap_single(qdev->pdev,
  2222. pci_unmap_addr(&tx_cb->map[0], mapaddr),
  2223. pci_unmap_addr(&tx_cb->map[0], maplen),
  2224. PCI_DMA_TODEVICE);
  2225. return NETDEV_TX_BUSY;
  2226. }
  2227. /*
  2228. * The difference between 3022 and 3032 sends:
  2229. * 3022 only supports a simple single segment transmission.
  2230. * 3032 supports checksumming and scatter/gather lists (fragments).
  2231. * The 3032 supports sglists by using the 3 addr/len pairs (ALP)
  2232. * in the IOCB plus a chain of outbound address lists (OAL) that
  2233. * each contain 5 ALPs. The last ALP of the IOCB (3rd) or OAL (5th)
  2234. * will used to point to an OAL when more ALP entries are required.
  2235. * The IOCB is always the top of the chain followed by one or more
  2236. * OALs (when necessary).
  2237. */
  2238. static int ql3xxx_send(struct sk_buff *skb, struct net_device *ndev)
  2239. {
  2240. struct ql3_adapter *qdev = (struct ql3_adapter *)netdev_priv(ndev);
  2241. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  2242. struct ql_tx_buf_cb *tx_cb;
  2243. u32 tot_len = skb->len;
  2244. struct ob_mac_iocb_req *mac_iocb_ptr;
  2245. if (unlikely(atomic_read(&qdev->tx_count) < 2)) {
  2246. return NETDEV_TX_BUSY;
  2247. }
  2248. tx_cb = &qdev->tx_buf[qdev->req_producer_index] ;
  2249. if((tx_cb->seg_count = ql_get_seg_count(qdev,
  2250. (skb_shinfo(skb)->nr_frags))) == -1) {
  2251. printk(KERN_ERR PFX"%s: invalid segment count!\n",__func__);
  2252. return NETDEV_TX_OK;
  2253. }
  2254. mac_iocb_ptr = tx_cb->queue_entry;
  2255. memset((void *)mac_iocb_ptr, 0, sizeof(struct ob_mac_iocb_req));
  2256. mac_iocb_ptr->opcode = qdev->mac_ob_opcode;
  2257. mac_iocb_ptr->flags = OB_MAC_IOCB_REQ_X;
  2258. mac_iocb_ptr->flags |= qdev->mb_bit_mask;
  2259. mac_iocb_ptr->transaction_id = qdev->req_producer_index;
  2260. mac_iocb_ptr->data_len = cpu_to_le16((u16) tot_len);
  2261. tx_cb->skb = skb;
  2262. if (qdev->device_id == QL3032_DEVICE_ID &&
  2263. skb->ip_summed == CHECKSUM_PARTIAL)
  2264. ql_hw_csum_setup(skb, mac_iocb_ptr);
  2265. if(ql_send_map(qdev,mac_iocb_ptr,tx_cb,skb) != NETDEV_TX_OK) {
  2266. printk(KERN_ERR PFX"%s: Could not map the segments!\n",__func__);
  2267. return NETDEV_TX_BUSY;
  2268. }
  2269. wmb();
  2270. qdev->req_producer_index++;
  2271. if (qdev->req_producer_index == NUM_REQ_Q_ENTRIES)
  2272. qdev->req_producer_index = 0;
  2273. wmb();
  2274. ql_write_common_reg_l(qdev,
  2275. &port_regs->CommonRegs.reqQProducerIndex,
  2276. qdev->req_producer_index);
  2277. ndev->trans_start = jiffies;
  2278. if (netif_msg_tx_queued(qdev))
  2279. printk(KERN_DEBUG PFX "%s: tx queued, slot %d, len %d\n",
  2280. ndev->name, qdev->req_producer_index, skb->len);
  2281. atomic_dec(&qdev->tx_count);
  2282. return NETDEV_TX_OK;
  2283. }
  2284. static int ql_alloc_net_req_rsp_queues(struct ql3_adapter *qdev)
  2285. {
  2286. qdev->req_q_size =
  2287. (u32) (NUM_REQ_Q_ENTRIES * sizeof(struct ob_mac_iocb_req));
  2288. qdev->req_q_virt_addr =
  2289. pci_alloc_consistent(qdev->pdev,
  2290. (size_t) qdev->req_q_size,
  2291. &qdev->req_q_phy_addr);
  2292. if ((qdev->req_q_virt_addr == NULL) ||
  2293. LS_64BITS(qdev->req_q_phy_addr) & (qdev->req_q_size - 1)) {
  2294. printk(KERN_ERR PFX "%s: reqQ failed.\n",
  2295. qdev->ndev->name);
  2296. return -ENOMEM;
  2297. }
  2298. qdev->rsp_q_size = NUM_RSP_Q_ENTRIES * sizeof(struct net_rsp_iocb);
  2299. qdev->rsp_q_virt_addr =
  2300. pci_alloc_consistent(qdev->pdev,
  2301. (size_t) qdev->rsp_q_size,
  2302. &qdev->rsp_q_phy_addr);
  2303. if ((qdev->rsp_q_virt_addr == NULL) ||
  2304. LS_64BITS(qdev->rsp_q_phy_addr) & (qdev->rsp_q_size - 1)) {
  2305. printk(KERN_ERR PFX
  2306. "%s: rspQ allocation failed\n",
  2307. qdev->ndev->name);
  2308. pci_free_consistent(qdev->pdev, (size_t) qdev->req_q_size,
  2309. qdev->req_q_virt_addr,
  2310. qdev->req_q_phy_addr);
  2311. return -ENOMEM;
  2312. }
  2313. set_bit(QL_ALLOC_REQ_RSP_Q_DONE,&qdev->flags);
  2314. return 0;
  2315. }
  2316. static void ql_free_net_req_rsp_queues(struct ql3_adapter *qdev)
  2317. {
  2318. if (!test_bit(QL_ALLOC_REQ_RSP_Q_DONE,&qdev->flags)) {
  2319. printk(KERN_INFO PFX
  2320. "%s: Already done.\n", qdev->ndev->name);
  2321. return;
  2322. }
  2323. pci_free_consistent(qdev->pdev,
  2324. qdev->req_q_size,
  2325. qdev->req_q_virt_addr, qdev->req_q_phy_addr);
  2326. qdev->req_q_virt_addr = NULL;
  2327. pci_free_consistent(qdev->pdev,
  2328. qdev->rsp_q_size,
  2329. qdev->rsp_q_virt_addr, qdev->rsp_q_phy_addr);
  2330. qdev->rsp_q_virt_addr = NULL;
  2331. clear_bit(QL_ALLOC_REQ_RSP_Q_DONE,&qdev->flags);
  2332. }
  2333. static int ql_alloc_buffer_queues(struct ql3_adapter *qdev)
  2334. {
  2335. /* Create Large Buffer Queue */
  2336. qdev->lrg_buf_q_size =
  2337. qdev->num_lbufq_entries * sizeof(struct lrg_buf_q_entry);
  2338. if (qdev->lrg_buf_q_size < PAGE_SIZE)
  2339. qdev->lrg_buf_q_alloc_size = PAGE_SIZE;
  2340. else
  2341. qdev->lrg_buf_q_alloc_size = qdev->lrg_buf_q_size * 2;
  2342. qdev->lrg_buf = kmalloc(qdev->num_large_buffers * sizeof(struct ql_rcv_buf_cb),GFP_KERNEL);
  2343. if (qdev->lrg_buf == NULL) {
  2344. printk(KERN_ERR PFX
  2345. "%s: qdev->lrg_buf alloc failed.\n", qdev->ndev->name);
  2346. return -ENOMEM;
  2347. }
  2348. qdev->lrg_buf_q_alloc_virt_addr =
  2349. pci_alloc_consistent(qdev->pdev,
  2350. qdev->lrg_buf_q_alloc_size,
  2351. &qdev->lrg_buf_q_alloc_phy_addr);
  2352. if (qdev->lrg_buf_q_alloc_virt_addr == NULL) {
  2353. printk(KERN_ERR PFX
  2354. "%s: lBufQ failed\n", qdev->ndev->name);
  2355. return -ENOMEM;
  2356. }
  2357. qdev->lrg_buf_q_virt_addr = qdev->lrg_buf_q_alloc_virt_addr;
  2358. qdev->lrg_buf_q_phy_addr = qdev->lrg_buf_q_alloc_phy_addr;
  2359. /* Create Small Buffer Queue */
  2360. qdev->small_buf_q_size =
  2361. NUM_SBUFQ_ENTRIES * sizeof(struct lrg_buf_q_entry);
  2362. if (qdev->small_buf_q_size < PAGE_SIZE)
  2363. qdev->small_buf_q_alloc_size = PAGE_SIZE;
  2364. else
  2365. qdev->small_buf_q_alloc_size = qdev->small_buf_q_size * 2;
  2366. qdev->small_buf_q_alloc_virt_addr =
  2367. pci_alloc_consistent(qdev->pdev,
  2368. qdev->small_buf_q_alloc_size,
  2369. &qdev->small_buf_q_alloc_phy_addr);
  2370. if (qdev->small_buf_q_alloc_virt_addr == NULL) {
  2371. printk(KERN_ERR PFX
  2372. "%s: Small Buffer Queue allocation failed.\n",
  2373. qdev->ndev->name);
  2374. pci_free_consistent(qdev->pdev, qdev->lrg_buf_q_alloc_size,
  2375. qdev->lrg_buf_q_alloc_virt_addr,
  2376. qdev->lrg_buf_q_alloc_phy_addr);
  2377. return -ENOMEM;
  2378. }
  2379. qdev->small_buf_q_virt_addr = qdev->small_buf_q_alloc_virt_addr;
  2380. qdev->small_buf_q_phy_addr = qdev->small_buf_q_alloc_phy_addr;
  2381. set_bit(QL_ALLOC_BUFQS_DONE,&qdev->flags);
  2382. return 0;
  2383. }
  2384. static void ql_free_buffer_queues(struct ql3_adapter *qdev)
  2385. {
  2386. if (!test_bit(QL_ALLOC_BUFQS_DONE,&qdev->flags)) {
  2387. printk(KERN_INFO PFX
  2388. "%s: Already done.\n", qdev->ndev->name);
  2389. return;
  2390. }
  2391. if(qdev->lrg_buf) kfree(qdev->lrg_buf);
  2392. pci_free_consistent(qdev->pdev,
  2393. qdev->lrg_buf_q_alloc_size,
  2394. qdev->lrg_buf_q_alloc_virt_addr,
  2395. qdev->lrg_buf_q_alloc_phy_addr);
  2396. qdev->lrg_buf_q_virt_addr = NULL;
  2397. pci_free_consistent(qdev->pdev,
  2398. qdev->small_buf_q_alloc_size,
  2399. qdev->small_buf_q_alloc_virt_addr,
  2400. qdev->small_buf_q_alloc_phy_addr);
  2401. qdev->small_buf_q_virt_addr = NULL;
  2402. clear_bit(QL_ALLOC_BUFQS_DONE,&qdev->flags);
  2403. }
  2404. static int ql_alloc_small_buffers(struct ql3_adapter *qdev)
  2405. {
  2406. int i;
  2407. struct bufq_addr_element *small_buf_q_entry;
  2408. /* Currently we allocate on one of memory and use it for smallbuffers */
  2409. qdev->small_buf_total_size =
  2410. (QL_ADDR_ELE_PER_BUFQ_ENTRY * NUM_SBUFQ_ENTRIES *
  2411. QL_SMALL_BUFFER_SIZE);
  2412. qdev->small_buf_virt_addr =
  2413. pci_alloc_consistent(qdev->pdev,
  2414. qdev->small_buf_total_size,
  2415. &qdev->small_buf_phy_addr);
  2416. if (qdev->small_buf_virt_addr == NULL) {
  2417. printk(KERN_ERR PFX
  2418. "%s: Failed to get small buffer memory.\n",
  2419. qdev->ndev->name);
  2420. return -ENOMEM;
  2421. }
  2422. qdev->small_buf_phy_addr_low = LS_64BITS(qdev->small_buf_phy_addr);
  2423. qdev->small_buf_phy_addr_high = MS_64BITS(qdev->small_buf_phy_addr);
  2424. small_buf_q_entry = qdev->small_buf_q_virt_addr;
  2425. /* Initialize the small buffer queue. */
  2426. for (i = 0; i < (QL_ADDR_ELE_PER_BUFQ_ENTRY * NUM_SBUFQ_ENTRIES); i++) {
  2427. small_buf_q_entry->addr_high =
  2428. cpu_to_le32(qdev->small_buf_phy_addr_high);
  2429. small_buf_q_entry->addr_low =
  2430. cpu_to_le32(qdev->small_buf_phy_addr_low +
  2431. (i * QL_SMALL_BUFFER_SIZE));
  2432. small_buf_q_entry++;
  2433. }
  2434. qdev->small_buf_index = 0;
  2435. set_bit(QL_ALLOC_SMALL_BUF_DONE,&qdev->flags);
  2436. return 0;
  2437. }
  2438. static void ql_free_small_buffers(struct ql3_adapter *qdev)
  2439. {
  2440. if (!test_bit(QL_ALLOC_SMALL_BUF_DONE,&qdev->flags)) {
  2441. printk(KERN_INFO PFX
  2442. "%s: Already done.\n", qdev->ndev->name);
  2443. return;
  2444. }
  2445. if (qdev->small_buf_virt_addr != NULL) {
  2446. pci_free_consistent(qdev->pdev,
  2447. qdev->small_buf_total_size,
  2448. qdev->small_buf_virt_addr,
  2449. qdev->small_buf_phy_addr);
  2450. qdev->small_buf_virt_addr = NULL;
  2451. }
  2452. }
  2453. static void ql_free_large_buffers(struct ql3_adapter *qdev)
  2454. {
  2455. int i = 0;
  2456. struct ql_rcv_buf_cb *lrg_buf_cb;
  2457. for (i = 0; i < qdev->num_large_buffers; i++) {
  2458. lrg_buf_cb = &qdev->lrg_buf[i];
  2459. if (lrg_buf_cb->skb) {
  2460. dev_kfree_skb(lrg_buf_cb->skb);
  2461. pci_unmap_single(qdev->pdev,
  2462. pci_unmap_addr(lrg_buf_cb, mapaddr),
  2463. pci_unmap_len(lrg_buf_cb, maplen),
  2464. PCI_DMA_FROMDEVICE);
  2465. memset(lrg_buf_cb, 0, sizeof(struct ql_rcv_buf_cb));
  2466. } else {
  2467. break;
  2468. }
  2469. }
  2470. }
  2471. static void ql_init_large_buffers(struct ql3_adapter *qdev)
  2472. {
  2473. int i;
  2474. struct ql_rcv_buf_cb *lrg_buf_cb;
  2475. struct bufq_addr_element *buf_addr_ele = qdev->lrg_buf_q_virt_addr;
  2476. for (i = 0; i < qdev->num_large_buffers; i++) {
  2477. lrg_buf_cb = &qdev->lrg_buf[i];
  2478. buf_addr_ele->addr_high = lrg_buf_cb->buf_phy_addr_high;
  2479. buf_addr_ele->addr_low = lrg_buf_cb->buf_phy_addr_low;
  2480. buf_addr_ele++;
  2481. }
  2482. qdev->lrg_buf_index = 0;
  2483. qdev->lrg_buf_skb_check = 0;
  2484. }
  2485. static int ql_alloc_large_buffers(struct ql3_adapter *qdev)
  2486. {
  2487. int i;
  2488. struct ql_rcv_buf_cb *lrg_buf_cb;
  2489. struct sk_buff *skb;
  2490. dma_addr_t map;
  2491. int err;
  2492. for (i = 0; i < qdev->num_large_buffers; i++) {
  2493. skb = netdev_alloc_skb(qdev->ndev,
  2494. qdev->lrg_buffer_len);
  2495. if (unlikely(!skb)) {
  2496. /* Better luck next round */
  2497. printk(KERN_ERR PFX
  2498. "%s: large buff alloc failed, "
  2499. "for %d bytes at index %d.\n",
  2500. qdev->ndev->name,
  2501. qdev->lrg_buffer_len * 2, i);
  2502. ql_free_large_buffers(qdev);
  2503. return -ENOMEM;
  2504. } else {
  2505. lrg_buf_cb = &qdev->lrg_buf[i];
  2506. memset(lrg_buf_cb, 0, sizeof(struct ql_rcv_buf_cb));
  2507. lrg_buf_cb->index = i;
  2508. lrg_buf_cb->skb = skb;
  2509. /*
  2510. * We save some space to copy the ethhdr from first
  2511. * buffer
  2512. */
  2513. skb_reserve(skb, QL_HEADER_SPACE);
  2514. map = pci_map_single(qdev->pdev,
  2515. skb->data,
  2516. qdev->lrg_buffer_len -
  2517. QL_HEADER_SPACE,
  2518. PCI_DMA_FROMDEVICE);
  2519. err = pci_dma_mapping_error(map);
  2520. if(err) {
  2521. printk(KERN_ERR "%s: PCI mapping failed with error: %d\n",
  2522. qdev->ndev->name, err);
  2523. ql_free_large_buffers(qdev);
  2524. return -ENOMEM;
  2525. }
  2526. pci_unmap_addr_set(lrg_buf_cb, mapaddr, map);
  2527. pci_unmap_len_set(lrg_buf_cb, maplen,
  2528. qdev->lrg_buffer_len -
  2529. QL_HEADER_SPACE);
  2530. lrg_buf_cb->buf_phy_addr_low =
  2531. cpu_to_le32(LS_64BITS(map));
  2532. lrg_buf_cb->buf_phy_addr_high =
  2533. cpu_to_le32(MS_64BITS(map));
  2534. }
  2535. }
  2536. return 0;
  2537. }
  2538. static void ql_free_send_free_list(struct ql3_adapter *qdev)
  2539. {
  2540. struct ql_tx_buf_cb *tx_cb;
  2541. int i;
  2542. tx_cb = &qdev->tx_buf[0];
  2543. for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
  2544. if (tx_cb->oal) {
  2545. kfree(tx_cb->oal);
  2546. tx_cb->oal = NULL;
  2547. }
  2548. tx_cb++;
  2549. }
  2550. }
  2551. static int ql_create_send_free_list(struct ql3_adapter *qdev)
  2552. {
  2553. struct ql_tx_buf_cb *tx_cb;
  2554. int i;
  2555. struct ob_mac_iocb_req *req_q_curr =
  2556. qdev->req_q_virt_addr;
  2557. /* Create free list of transmit buffers */
  2558. for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
  2559. tx_cb = &qdev->tx_buf[i];
  2560. tx_cb->skb = NULL;
  2561. tx_cb->queue_entry = req_q_curr;
  2562. req_q_curr++;
  2563. tx_cb->oal = kmalloc(512, GFP_KERNEL);
  2564. if (tx_cb->oal == NULL)
  2565. return -1;
  2566. }
  2567. return 0;
  2568. }
  2569. static int ql_alloc_mem_resources(struct ql3_adapter *qdev)
  2570. {
  2571. if (qdev->ndev->mtu == NORMAL_MTU_SIZE) {
  2572. qdev->num_lbufq_entries = NUM_LBUFQ_ENTRIES;
  2573. qdev->lrg_buffer_len = NORMAL_MTU_SIZE;
  2574. }
  2575. else if (qdev->ndev->mtu == JUMBO_MTU_SIZE) {
  2576. /*
  2577. * Bigger buffers, so less of them.
  2578. */
  2579. qdev->num_lbufq_entries = JUMBO_NUM_LBUFQ_ENTRIES;
  2580. qdev->lrg_buffer_len = JUMBO_MTU_SIZE;
  2581. } else {
  2582. printk(KERN_ERR PFX
  2583. "%s: Invalid mtu size. Only 1500 and 9000 are accepted.\n",
  2584. qdev->ndev->name);
  2585. return -ENOMEM;
  2586. }
  2587. qdev->num_large_buffers = qdev->num_lbufq_entries * QL_ADDR_ELE_PER_BUFQ_ENTRY;
  2588. qdev->lrg_buffer_len += VLAN_ETH_HLEN + VLAN_ID_LEN + QL_HEADER_SPACE;
  2589. qdev->max_frame_size =
  2590. (qdev->lrg_buffer_len - QL_HEADER_SPACE) + ETHERNET_CRC_SIZE;
  2591. /*
  2592. * First allocate a page of shared memory and use it for shadow
  2593. * locations of Network Request Queue Consumer Address Register and
  2594. * Network Completion Queue Producer Index Register
  2595. */
  2596. qdev->shadow_reg_virt_addr =
  2597. pci_alloc_consistent(qdev->pdev,
  2598. PAGE_SIZE, &qdev->shadow_reg_phy_addr);
  2599. if (qdev->shadow_reg_virt_addr != NULL) {
  2600. qdev->preq_consumer_index = (u16 *) qdev->shadow_reg_virt_addr;
  2601. qdev->req_consumer_index_phy_addr_high =
  2602. MS_64BITS(qdev->shadow_reg_phy_addr);
  2603. qdev->req_consumer_index_phy_addr_low =
  2604. LS_64BITS(qdev->shadow_reg_phy_addr);
  2605. qdev->prsp_producer_index =
  2606. (u32 *) (((u8 *) qdev->preq_consumer_index) + 8);
  2607. qdev->rsp_producer_index_phy_addr_high =
  2608. qdev->req_consumer_index_phy_addr_high;
  2609. qdev->rsp_producer_index_phy_addr_low =
  2610. qdev->req_consumer_index_phy_addr_low + 8;
  2611. } else {
  2612. printk(KERN_ERR PFX
  2613. "%s: shadowReg Alloc failed.\n", qdev->ndev->name);
  2614. return -ENOMEM;
  2615. }
  2616. if (ql_alloc_net_req_rsp_queues(qdev) != 0) {
  2617. printk(KERN_ERR PFX
  2618. "%s: ql_alloc_net_req_rsp_queues failed.\n",
  2619. qdev->ndev->name);
  2620. goto err_req_rsp;
  2621. }
  2622. if (ql_alloc_buffer_queues(qdev) != 0) {
  2623. printk(KERN_ERR PFX
  2624. "%s: ql_alloc_buffer_queues failed.\n",
  2625. qdev->ndev->name);
  2626. goto err_buffer_queues;
  2627. }
  2628. if (ql_alloc_small_buffers(qdev) != 0) {
  2629. printk(KERN_ERR PFX
  2630. "%s: ql_alloc_small_buffers failed\n", qdev->ndev->name);
  2631. goto err_small_buffers;
  2632. }
  2633. if (ql_alloc_large_buffers(qdev) != 0) {
  2634. printk(KERN_ERR PFX
  2635. "%s: ql_alloc_large_buffers failed\n", qdev->ndev->name);
  2636. goto err_small_buffers;
  2637. }
  2638. /* Initialize the large buffer queue. */
  2639. ql_init_large_buffers(qdev);
  2640. if (ql_create_send_free_list(qdev))
  2641. goto err_free_list;
  2642. qdev->rsp_current = qdev->rsp_q_virt_addr;
  2643. return 0;
  2644. err_free_list:
  2645. ql_free_send_free_list(qdev);
  2646. err_small_buffers:
  2647. ql_free_buffer_queues(qdev);
  2648. err_buffer_queues:
  2649. ql_free_net_req_rsp_queues(qdev);
  2650. err_req_rsp:
  2651. pci_free_consistent(qdev->pdev,
  2652. PAGE_SIZE,
  2653. qdev->shadow_reg_virt_addr,
  2654. qdev->shadow_reg_phy_addr);
  2655. return -ENOMEM;
  2656. }
  2657. static void ql_free_mem_resources(struct ql3_adapter *qdev)
  2658. {
  2659. ql_free_send_free_list(qdev);
  2660. ql_free_large_buffers(qdev);
  2661. ql_free_small_buffers(qdev);
  2662. ql_free_buffer_queues(qdev);
  2663. ql_free_net_req_rsp_queues(qdev);
  2664. if (qdev->shadow_reg_virt_addr != NULL) {
  2665. pci_free_consistent(qdev->pdev,
  2666. PAGE_SIZE,
  2667. qdev->shadow_reg_virt_addr,
  2668. qdev->shadow_reg_phy_addr);
  2669. qdev->shadow_reg_virt_addr = NULL;
  2670. }
  2671. }
  2672. static int ql_init_misc_registers(struct ql3_adapter *qdev)
  2673. {
  2674. struct ql3xxx_local_ram_registers __iomem *local_ram =
  2675. (void __iomem *)qdev->mem_map_registers;
  2676. if(ql_sem_spinlock(qdev, QL_DDR_RAM_SEM_MASK,
  2677. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  2678. 2) << 4))
  2679. return -1;
  2680. ql_write_page2_reg(qdev,
  2681. &local_ram->bufletSize, qdev->nvram_data.bufletSize);
  2682. ql_write_page2_reg(qdev,
  2683. &local_ram->maxBufletCount,
  2684. qdev->nvram_data.bufletCount);
  2685. ql_write_page2_reg(qdev,
  2686. &local_ram->freeBufletThresholdLow,
  2687. (qdev->nvram_data.tcpWindowThreshold25 << 16) |
  2688. (qdev->nvram_data.tcpWindowThreshold0));
  2689. ql_write_page2_reg(qdev,
  2690. &local_ram->freeBufletThresholdHigh,
  2691. qdev->nvram_data.tcpWindowThreshold50);
  2692. ql_write_page2_reg(qdev,
  2693. &local_ram->ipHashTableBase,
  2694. (qdev->nvram_data.ipHashTableBaseHi << 16) |
  2695. qdev->nvram_data.ipHashTableBaseLo);
  2696. ql_write_page2_reg(qdev,
  2697. &local_ram->ipHashTableCount,
  2698. qdev->nvram_data.ipHashTableSize);
  2699. ql_write_page2_reg(qdev,
  2700. &local_ram->tcpHashTableBase,
  2701. (qdev->nvram_data.tcpHashTableBaseHi << 16) |
  2702. qdev->nvram_data.tcpHashTableBaseLo);
  2703. ql_write_page2_reg(qdev,
  2704. &local_ram->tcpHashTableCount,
  2705. qdev->nvram_data.tcpHashTableSize);
  2706. ql_write_page2_reg(qdev,
  2707. &local_ram->ncbBase,
  2708. (qdev->nvram_data.ncbTableBaseHi << 16) |
  2709. qdev->nvram_data.ncbTableBaseLo);
  2710. ql_write_page2_reg(qdev,
  2711. &local_ram->maxNcbCount,
  2712. qdev->nvram_data.ncbTableSize);
  2713. ql_write_page2_reg(qdev,
  2714. &local_ram->drbBase,
  2715. (qdev->nvram_data.drbTableBaseHi << 16) |
  2716. qdev->nvram_data.drbTableBaseLo);
  2717. ql_write_page2_reg(qdev,
  2718. &local_ram->maxDrbCount,
  2719. qdev->nvram_data.drbTableSize);
  2720. ql_sem_unlock(qdev, QL_DDR_RAM_SEM_MASK);
  2721. return 0;
  2722. }
  2723. static int ql_adapter_initialize(struct ql3_adapter *qdev)
  2724. {
  2725. u32 value;
  2726. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  2727. struct ql3xxx_host_memory_registers __iomem *hmem_regs =
  2728. (void __iomem *)port_regs;
  2729. u32 delay = 10;
  2730. int status = 0;
  2731. if(ql_mii_setup(qdev))
  2732. return -1;
  2733. /* Bring out PHY out of reset */
  2734. ql_write_common_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  2735. (ISP_SERIAL_PORT_IF_WE |
  2736. (ISP_SERIAL_PORT_IF_WE << 16)));
  2737. qdev->port_link_state = LS_DOWN;
  2738. netif_carrier_off(qdev->ndev);
  2739. /* V2 chip fix for ARS-39168. */
  2740. ql_write_common_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  2741. (ISP_SERIAL_PORT_IF_SDE |
  2742. (ISP_SERIAL_PORT_IF_SDE << 16)));
  2743. /* Request Queue Registers */
  2744. *((u32 *) (qdev->preq_consumer_index)) = 0;
  2745. atomic_set(&qdev->tx_count,NUM_REQ_Q_ENTRIES);
  2746. qdev->req_producer_index = 0;
  2747. ql_write_page1_reg(qdev,
  2748. &hmem_regs->reqConsumerIndexAddrHigh,
  2749. qdev->req_consumer_index_phy_addr_high);
  2750. ql_write_page1_reg(qdev,
  2751. &hmem_regs->reqConsumerIndexAddrLow,
  2752. qdev->req_consumer_index_phy_addr_low);
  2753. ql_write_page1_reg(qdev,
  2754. &hmem_regs->reqBaseAddrHigh,
  2755. MS_64BITS(qdev->req_q_phy_addr));
  2756. ql_write_page1_reg(qdev,
  2757. &hmem_regs->reqBaseAddrLow,
  2758. LS_64BITS(qdev->req_q_phy_addr));
  2759. ql_write_page1_reg(qdev, &hmem_regs->reqLength, NUM_REQ_Q_ENTRIES);
  2760. /* Response Queue Registers */
  2761. *((u16 *) (qdev->prsp_producer_index)) = 0;
  2762. qdev->rsp_consumer_index = 0;
  2763. qdev->rsp_current = qdev->rsp_q_virt_addr;
  2764. ql_write_page1_reg(qdev,
  2765. &hmem_regs->rspProducerIndexAddrHigh,
  2766. qdev->rsp_producer_index_phy_addr_high);
  2767. ql_write_page1_reg(qdev,
  2768. &hmem_regs->rspProducerIndexAddrLow,
  2769. qdev->rsp_producer_index_phy_addr_low);
  2770. ql_write_page1_reg(qdev,
  2771. &hmem_regs->rspBaseAddrHigh,
  2772. MS_64BITS(qdev->rsp_q_phy_addr));
  2773. ql_write_page1_reg(qdev,
  2774. &hmem_regs->rspBaseAddrLow,
  2775. LS_64BITS(qdev->rsp_q_phy_addr));
  2776. ql_write_page1_reg(qdev, &hmem_regs->rspLength, NUM_RSP_Q_ENTRIES);
  2777. /* Large Buffer Queue */
  2778. ql_write_page1_reg(qdev,
  2779. &hmem_regs->rxLargeQBaseAddrHigh,
  2780. MS_64BITS(qdev->lrg_buf_q_phy_addr));
  2781. ql_write_page1_reg(qdev,
  2782. &hmem_regs->rxLargeQBaseAddrLow,
  2783. LS_64BITS(qdev->lrg_buf_q_phy_addr));
  2784. ql_write_page1_reg(qdev, &hmem_regs->rxLargeQLength, qdev->num_lbufq_entries);
  2785. ql_write_page1_reg(qdev,
  2786. &hmem_regs->rxLargeBufferLength,
  2787. qdev->lrg_buffer_len);
  2788. /* Small Buffer Queue */
  2789. ql_write_page1_reg(qdev,
  2790. &hmem_regs->rxSmallQBaseAddrHigh,
  2791. MS_64BITS(qdev->small_buf_q_phy_addr));
  2792. ql_write_page1_reg(qdev,
  2793. &hmem_regs->rxSmallQBaseAddrLow,
  2794. LS_64BITS(qdev->small_buf_q_phy_addr));
  2795. ql_write_page1_reg(qdev, &hmem_regs->rxSmallQLength, NUM_SBUFQ_ENTRIES);
  2796. ql_write_page1_reg(qdev,
  2797. &hmem_regs->rxSmallBufferLength,
  2798. QL_SMALL_BUFFER_SIZE);
  2799. qdev->small_buf_q_producer_index = NUM_SBUFQ_ENTRIES - 1;
  2800. qdev->small_buf_release_cnt = 8;
  2801. qdev->lrg_buf_q_producer_index = qdev->num_lbufq_entries - 1;
  2802. qdev->lrg_buf_release_cnt = 8;
  2803. qdev->lrg_buf_next_free =
  2804. (struct bufq_addr_element *)qdev->lrg_buf_q_virt_addr;
  2805. qdev->small_buf_index = 0;
  2806. qdev->lrg_buf_index = 0;
  2807. qdev->lrg_buf_free_count = 0;
  2808. qdev->lrg_buf_free_head = NULL;
  2809. qdev->lrg_buf_free_tail = NULL;
  2810. ql_write_common_reg(qdev,
  2811. &port_regs->CommonRegs.
  2812. rxSmallQProducerIndex,
  2813. qdev->small_buf_q_producer_index);
  2814. ql_write_common_reg(qdev,
  2815. &port_regs->CommonRegs.
  2816. rxLargeQProducerIndex,
  2817. qdev->lrg_buf_q_producer_index);
  2818. /*
  2819. * Find out if the chip has already been initialized. If it has, then
  2820. * we skip some of the initialization.
  2821. */
  2822. clear_bit(QL_LINK_MASTER, &qdev->flags);
  2823. value = ql_read_page0_reg(qdev, &port_regs->portStatus);
  2824. if ((value & PORT_STATUS_IC) == 0) {
  2825. /* Chip has not been configured yet, so let it rip. */
  2826. if(ql_init_misc_registers(qdev)) {
  2827. status = -1;
  2828. goto out;
  2829. }
  2830. value = qdev->nvram_data.tcpMaxWindowSize;
  2831. ql_write_page0_reg(qdev, &port_regs->tcpMaxWindow, value);
  2832. value = (0xFFFF << 16) | qdev->nvram_data.extHwConfig;
  2833. if(ql_sem_spinlock(qdev, QL_FLASH_SEM_MASK,
  2834. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index)
  2835. * 2) << 13)) {
  2836. status = -1;
  2837. goto out;
  2838. }
  2839. ql_write_page0_reg(qdev, &port_regs->ExternalHWConfig, value);
  2840. ql_write_page0_reg(qdev, &port_regs->InternalChipConfig,
  2841. (((INTERNAL_CHIP_SD | INTERNAL_CHIP_WE) <<
  2842. 16) | (INTERNAL_CHIP_SD |
  2843. INTERNAL_CHIP_WE)));
  2844. ql_sem_unlock(qdev, QL_FLASH_SEM_MASK);
  2845. }
  2846. if (qdev->mac_index)
  2847. ql_write_page0_reg(qdev,
  2848. &port_regs->mac1MaxFrameLengthReg,
  2849. qdev->max_frame_size);
  2850. else
  2851. ql_write_page0_reg(qdev,
  2852. &port_regs->mac0MaxFrameLengthReg,
  2853. qdev->max_frame_size);
  2854. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  2855. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  2856. 2) << 7)) {
  2857. status = -1;
  2858. goto out;
  2859. }
  2860. PHY_Setup(qdev);
  2861. ql_init_scan_mode(qdev);
  2862. ql_get_phy_owner(qdev);
  2863. /* Load the MAC Configuration */
  2864. /* Program lower 32 bits of the MAC address */
  2865. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  2866. (MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16));
  2867. ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
  2868. ((qdev->ndev->dev_addr[2] << 24)
  2869. | (qdev->ndev->dev_addr[3] << 16)
  2870. | (qdev->ndev->dev_addr[4] << 8)
  2871. | qdev->ndev->dev_addr[5]));
  2872. /* Program top 16 bits of the MAC address */
  2873. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  2874. ((MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16) | 1));
  2875. ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
  2876. ((qdev->ndev->dev_addr[0] << 8)
  2877. | qdev->ndev->dev_addr[1]));
  2878. /* Enable Primary MAC */
  2879. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  2880. ((MAC_ADDR_INDIRECT_PTR_REG_PE << 16) |
  2881. MAC_ADDR_INDIRECT_PTR_REG_PE));
  2882. /* Clear Primary and Secondary IP addresses */
  2883. ql_write_page0_reg(qdev, &port_regs->ipAddrIndexReg,
  2884. ((IP_ADDR_INDEX_REG_MASK << 16) |
  2885. (qdev->mac_index << 2)));
  2886. ql_write_page0_reg(qdev, &port_regs->ipAddrDataReg, 0);
  2887. ql_write_page0_reg(qdev, &port_regs->ipAddrIndexReg,
  2888. ((IP_ADDR_INDEX_REG_MASK << 16) |
  2889. ((qdev->mac_index << 2) + 1)));
  2890. ql_write_page0_reg(qdev, &port_regs->ipAddrDataReg, 0);
  2891. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  2892. /* Indicate Configuration Complete */
  2893. ql_write_page0_reg(qdev,
  2894. &port_regs->portControl,
  2895. ((PORT_CONTROL_CC << 16) | PORT_CONTROL_CC));
  2896. do {
  2897. value = ql_read_page0_reg(qdev, &port_regs->portStatus);
  2898. if (value & PORT_STATUS_IC)
  2899. break;
  2900. msleep(500);
  2901. } while (--delay);
  2902. if (delay == 0) {
  2903. printk(KERN_ERR PFX
  2904. "%s: Hw Initialization timeout.\n", qdev->ndev->name);
  2905. status = -1;
  2906. goto out;
  2907. }
  2908. /* Enable Ethernet Function */
  2909. if (qdev->device_id == QL3032_DEVICE_ID) {
  2910. value =
  2911. (QL3032_PORT_CONTROL_EF | QL3032_PORT_CONTROL_KIE |
  2912. QL3032_PORT_CONTROL_EIv6 | QL3032_PORT_CONTROL_EIv4 |
  2913. QL3032_PORT_CONTROL_ET);
  2914. ql_write_page0_reg(qdev, &port_regs->functionControl,
  2915. ((value << 16) | value));
  2916. } else {
  2917. value =
  2918. (PORT_CONTROL_EF | PORT_CONTROL_ET | PORT_CONTROL_EI |
  2919. PORT_CONTROL_HH);
  2920. ql_write_page0_reg(qdev, &port_regs->portControl,
  2921. ((value << 16) | value));
  2922. }
  2923. out:
  2924. return status;
  2925. }
  2926. /*
  2927. * Caller holds hw_lock.
  2928. */
  2929. static int ql_adapter_reset(struct ql3_adapter *qdev)
  2930. {
  2931. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  2932. int status = 0;
  2933. u16 value;
  2934. int max_wait_time;
  2935. set_bit(QL_RESET_ACTIVE, &qdev->flags);
  2936. clear_bit(QL_RESET_DONE, &qdev->flags);
  2937. /*
  2938. * Issue soft reset to chip.
  2939. */
  2940. printk(KERN_DEBUG PFX
  2941. "%s: Issue soft reset to chip.\n",
  2942. qdev->ndev->name);
  2943. ql_write_common_reg(qdev,
  2944. &port_regs->CommonRegs.ispControlStatus,
  2945. ((ISP_CONTROL_SR << 16) | ISP_CONTROL_SR));
  2946. /* Wait 3 seconds for reset to complete. */
  2947. printk(KERN_DEBUG PFX
  2948. "%s: Wait 10 milliseconds for reset to complete.\n",
  2949. qdev->ndev->name);
  2950. /* Wait until the firmware tells us the Soft Reset is done */
  2951. max_wait_time = 5;
  2952. do {
  2953. value =
  2954. ql_read_common_reg(qdev,
  2955. &port_regs->CommonRegs.ispControlStatus);
  2956. if ((value & ISP_CONTROL_SR) == 0)
  2957. break;
  2958. ssleep(1);
  2959. } while ((--max_wait_time));
  2960. /*
  2961. * Also, make sure that the Network Reset Interrupt bit has been
  2962. * cleared after the soft reset has taken place.
  2963. */
  2964. value =
  2965. ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus);
  2966. if (value & ISP_CONTROL_RI) {
  2967. printk(KERN_DEBUG PFX
  2968. "ql_adapter_reset: clearing RI after reset.\n");
  2969. ql_write_common_reg(qdev,
  2970. &port_regs->CommonRegs.
  2971. ispControlStatus,
  2972. ((ISP_CONTROL_RI << 16) | ISP_CONTROL_RI));
  2973. }
  2974. if (max_wait_time == 0) {
  2975. /* Issue Force Soft Reset */
  2976. ql_write_common_reg(qdev,
  2977. &port_regs->CommonRegs.
  2978. ispControlStatus,
  2979. ((ISP_CONTROL_FSR << 16) |
  2980. ISP_CONTROL_FSR));
  2981. /*
  2982. * Wait until the firmware tells us the Force Soft Reset is
  2983. * done
  2984. */
  2985. max_wait_time = 5;
  2986. do {
  2987. value =
  2988. ql_read_common_reg(qdev,
  2989. &port_regs->CommonRegs.
  2990. ispControlStatus);
  2991. if ((value & ISP_CONTROL_FSR) == 0) {
  2992. break;
  2993. }
  2994. ssleep(1);
  2995. } while ((--max_wait_time));
  2996. }
  2997. if (max_wait_time == 0)
  2998. status = 1;
  2999. clear_bit(QL_RESET_ACTIVE, &qdev->flags);
  3000. set_bit(QL_RESET_DONE, &qdev->flags);
  3001. return status;
  3002. }
  3003. static void ql_set_mac_info(struct ql3_adapter *qdev)
  3004. {
  3005. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  3006. u32 value, port_status;
  3007. u8 func_number;
  3008. /* Get the function number */
  3009. value =
  3010. ql_read_common_reg_l(qdev, &port_regs->CommonRegs.ispControlStatus);
  3011. func_number = (u8) ((value >> 4) & OPCODE_FUNC_ID_MASK);
  3012. port_status = ql_read_page0_reg(qdev, &port_regs->portStatus);
  3013. switch (value & ISP_CONTROL_FN_MASK) {
  3014. case ISP_CONTROL_FN0_NET:
  3015. qdev->mac_index = 0;
  3016. qdev->mac_ob_opcode = OUTBOUND_MAC_IOCB | func_number;
  3017. qdev->tcp_ob_opcode = OUTBOUND_TCP_IOCB | func_number;
  3018. qdev->update_ob_opcode = UPDATE_NCB_IOCB | func_number;
  3019. qdev->mb_bit_mask = FN0_MA_BITS_MASK;
  3020. qdev->PHYAddr = PORT0_PHY_ADDRESS;
  3021. if (port_status & PORT_STATUS_SM0)
  3022. set_bit(QL_LINK_OPTICAL,&qdev->flags);
  3023. else
  3024. clear_bit(QL_LINK_OPTICAL,&qdev->flags);
  3025. break;
  3026. case ISP_CONTROL_FN1_NET:
  3027. qdev->mac_index = 1;
  3028. qdev->mac_ob_opcode = OUTBOUND_MAC_IOCB | func_number;
  3029. qdev->tcp_ob_opcode = OUTBOUND_TCP_IOCB | func_number;
  3030. qdev->update_ob_opcode = UPDATE_NCB_IOCB | func_number;
  3031. qdev->mb_bit_mask = FN1_MA_BITS_MASK;
  3032. qdev->PHYAddr = PORT1_PHY_ADDRESS;
  3033. if (port_status & PORT_STATUS_SM1)
  3034. set_bit(QL_LINK_OPTICAL,&qdev->flags);
  3035. else
  3036. clear_bit(QL_LINK_OPTICAL,&qdev->flags);
  3037. break;
  3038. case ISP_CONTROL_FN0_SCSI:
  3039. case ISP_CONTROL_FN1_SCSI:
  3040. default:
  3041. printk(KERN_DEBUG PFX
  3042. "%s: Invalid function number, ispControlStatus = 0x%x\n",
  3043. qdev->ndev->name,value);
  3044. break;
  3045. }
  3046. qdev->numPorts = qdev->nvram_data.numPorts;
  3047. }
  3048. static void ql_display_dev_info(struct net_device *ndev)
  3049. {
  3050. struct ql3_adapter *qdev = (struct ql3_adapter *)netdev_priv(ndev);
  3051. struct pci_dev *pdev = qdev->pdev;
  3052. DECLARE_MAC_BUF(mac);
  3053. printk(KERN_INFO PFX
  3054. "\n%s Adapter %d RevisionID %d found %s on PCI slot %d.\n",
  3055. DRV_NAME, qdev->index, qdev->chip_rev_id,
  3056. (qdev->device_id == QL3032_DEVICE_ID) ? "QLA3032" : "QLA3022",
  3057. qdev->pci_slot);
  3058. printk(KERN_INFO PFX
  3059. "%s Interface.\n",
  3060. test_bit(QL_LINK_OPTICAL,&qdev->flags) ? "OPTICAL" : "COPPER");
  3061. /*
  3062. * Print PCI bus width/type.
  3063. */
  3064. printk(KERN_INFO PFX
  3065. "Bus interface is %s %s.\n",
  3066. ((qdev->pci_width == 64) ? "64-bit" : "32-bit"),
  3067. ((qdev->pci_x) ? "PCI-X" : "PCI"));
  3068. printk(KERN_INFO PFX
  3069. "mem IO base address adjusted = 0x%p\n",
  3070. qdev->mem_map_registers);
  3071. printk(KERN_INFO PFX "Interrupt number = %d\n", pdev->irq);
  3072. if (netif_msg_probe(qdev))
  3073. printk(KERN_INFO PFX
  3074. "%s: MAC address %s\n",
  3075. ndev->name, print_mac(mac, ndev->dev_addr));
  3076. }
  3077. static int ql_adapter_down(struct ql3_adapter *qdev, int do_reset)
  3078. {
  3079. struct net_device *ndev = qdev->ndev;
  3080. int retval = 0;
  3081. netif_stop_queue(ndev);
  3082. netif_carrier_off(ndev);
  3083. clear_bit(QL_ADAPTER_UP,&qdev->flags);
  3084. clear_bit(QL_LINK_MASTER,&qdev->flags);
  3085. ql_disable_interrupts(qdev);
  3086. free_irq(qdev->pdev->irq, ndev);
  3087. if (qdev->msi && test_bit(QL_MSI_ENABLED,&qdev->flags)) {
  3088. printk(KERN_INFO PFX
  3089. "%s: calling pci_disable_msi().\n", qdev->ndev->name);
  3090. clear_bit(QL_MSI_ENABLED,&qdev->flags);
  3091. pci_disable_msi(qdev->pdev);
  3092. }
  3093. del_timer_sync(&qdev->adapter_timer);
  3094. napi_disable(&qdev->napi);
  3095. if (do_reset) {
  3096. int soft_reset;
  3097. unsigned long hw_flags;
  3098. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  3099. if (ql_wait_for_drvr_lock(qdev)) {
  3100. if ((soft_reset = ql_adapter_reset(qdev))) {
  3101. printk(KERN_ERR PFX
  3102. "%s: ql_adapter_reset(%d) FAILED!\n",
  3103. ndev->name, qdev->index);
  3104. }
  3105. printk(KERN_ERR PFX
  3106. "%s: Releaseing driver lock via chip reset.\n",ndev->name);
  3107. } else {
  3108. printk(KERN_ERR PFX
  3109. "%s: Could not acquire driver lock to do "
  3110. "reset!\n", ndev->name);
  3111. retval = -1;
  3112. }
  3113. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  3114. }
  3115. ql_free_mem_resources(qdev);
  3116. return retval;
  3117. }
  3118. static int ql_adapter_up(struct ql3_adapter *qdev)
  3119. {
  3120. struct net_device *ndev = qdev->ndev;
  3121. int err;
  3122. unsigned long irq_flags = IRQF_SAMPLE_RANDOM | IRQF_SHARED;
  3123. unsigned long hw_flags;
  3124. if (ql_alloc_mem_resources(qdev)) {
  3125. printk(KERN_ERR PFX
  3126. "%s Unable to allocate buffers.\n", ndev->name);
  3127. return -ENOMEM;
  3128. }
  3129. if (qdev->msi) {
  3130. if (pci_enable_msi(qdev->pdev)) {
  3131. printk(KERN_ERR PFX
  3132. "%s: User requested MSI, but MSI failed to "
  3133. "initialize. Continuing without MSI.\n",
  3134. qdev->ndev->name);
  3135. qdev->msi = 0;
  3136. } else {
  3137. printk(KERN_INFO PFX "%s: MSI Enabled...\n", qdev->ndev->name);
  3138. set_bit(QL_MSI_ENABLED,&qdev->flags);
  3139. irq_flags &= ~IRQF_SHARED;
  3140. }
  3141. }
  3142. if ((err = request_irq(qdev->pdev->irq,
  3143. ql3xxx_isr,
  3144. irq_flags, ndev->name, ndev))) {
  3145. printk(KERN_ERR PFX
  3146. "%s: Failed to reserve interrupt %d already in use.\n",
  3147. ndev->name, qdev->pdev->irq);
  3148. goto err_irq;
  3149. }
  3150. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  3151. if ((err = ql_wait_for_drvr_lock(qdev))) {
  3152. if ((err = ql_adapter_initialize(qdev))) {
  3153. printk(KERN_ERR PFX
  3154. "%s: Unable to initialize adapter.\n",
  3155. ndev->name);
  3156. goto err_init;
  3157. }
  3158. printk(KERN_ERR PFX
  3159. "%s: Releaseing driver lock.\n",ndev->name);
  3160. ql_sem_unlock(qdev, QL_DRVR_SEM_MASK);
  3161. } else {
  3162. printk(KERN_ERR PFX
  3163. "%s: Could not aquire driver lock.\n",
  3164. ndev->name);
  3165. goto err_lock;
  3166. }
  3167. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  3168. set_bit(QL_ADAPTER_UP,&qdev->flags);
  3169. mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
  3170. napi_enable(&qdev->napi);
  3171. ql_enable_interrupts(qdev);
  3172. return 0;
  3173. err_init:
  3174. ql_sem_unlock(qdev, QL_DRVR_SEM_MASK);
  3175. err_lock:
  3176. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  3177. free_irq(qdev->pdev->irq, ndev);
  3178. err_irq:
  3179. if (qdev->msi && test_bit(QL_MSI_ENABLED,&qdev->flags)) {
  3180. printk(KERN_INFO PFX
  3181. "%s: calling pci_disable_msi().\n",
  3182. qdev->ndev->name);
  3183. clear_bit(QL_MSI_ENABLED,&qdev->flags);
  3184. pci_disable_msi(qdev->pdev);
  3185. }
  3186. return err;
  3187. }
  3188. static int ql_cycle_adapter(struct ql3_adapter *qdev, int reset)
  3189. {
  3190. if( ql_adapter_down(qdev,reset) || ql_adapter_up(qdev)) {
  3191. printk(KERN_ERR PFX
  3192. "%s: Driver up/down cycle failed, "
  3193. "closing device\n",qdev->ndev->name);
  3194. dev_close(qdev->ndev);
  3195. return -1;
  3196. }
  3197. return 0;
  3198. }
  3199. static int ql3xxx_close(struct net_device *ndev)
  3200. {
  3201. struct ql3_adapter *qdev = netdev_priv(ndev);
  3202. /*
  3203. * Wait for device to recover from a reset.
  3204. * (Rarely happens, but possible.)
  3205. */
  3206. while (!test_bit(QL_ADAPTER_UP,&qdev->flags))
  3207. msleep(50);
  3208. ql_adapter_down(qdev,QL_DO_RESET);
  3209. return 0;
  3210. }
  3211. static int ql3xxx_open(struct net_device *ndev)
  3212. {
  3213. struct ql3_adapter *qdev = netdev_priv(ndev);
  3214. return (ql_adapter_up(qdev));
  3215. }
  3216. static void ql3xxx_set_multicast_list(struct net_device *ndev)
  3217. {
  3218. /*
  3219. * We are manually parsing the list in the net_device structure.
  3220. */
  3221. return;
  3222. }
  3223. static int ql3xxx_set_mac_address(struct net_device *ndev, void *p)
  3224. {
  3225. struct ql3_adapter *qdev = (struct ql3_adapter *)netdev_priv(ndev);
  3226. struct ql3xxx_port_registers __iomem *port_regs =
  3227. qdev->mem_map_registers;
  3228. struct sockaddr *addr = p;
  3229. unsigned long hw_flags;
  3230. if (netif_running(ndev))
  3231. return -EBUSY;
  3232. if (!is_valid_ether_addr(addr->sa_data))
  3233. return -EADDRNOTAVAIL;
  3234. memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
  3235. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  3236. /* Program lower 32 bits of the MAC address */
  3237. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  3238. (MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16));
  3239. ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
  3240. ((ndev->dev_addr[2] << 24) | (ndev->
  3241. dev_addr[3] << 16) |
  3242. (ndev->dev_addr[4] << 8) | ndev->dev_addr[5]));
  3243. /* Program top 16 bits of the MAC address */
  3244. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  3245. ((MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16) | 1));
  3246. ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
  3247. ((ndev->dev_addr[0] << 8) | ndev->dev_addr[1]));
  3248. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  3249. return 0;
  3250. }
  3251. static void ql3xxx_tx_timeout(struct net_device *ndev)
  3252. {
  3253. struct ql3_adapter *qdev = (struct ql3_adapter *)netdev_priv(ndev);
  3254. printk(KERN_ERR PFX "%s: Resetting...\n", ndev->name);
  3255. /*
  3256. * Stop the queues, we've got a problem.
  3257. */
  3258. netif_stop_queue(ndev);
  3259. /*
  3260. * Wake up the worker to process this event.
  3261. */
  3262. queue_delayed_work(qdev->workqueue, &qdev->tx_timeout_work, 0);
  3263. }
  3264. static void ql_reset_work(struct work_struct *work)
  3265. {
  3266. struct ql3_adapter *qdev =
  3267. container_of(work, struct ql3_adapter, reset_work.work);
  3268. struct net_device *ndev = qdev->ndev;
  3269. u32 value;
  3270. struct ql_tx_buf_cb *tx_cb;
  3271. int max_wait_time, i;
  3272. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  3273. unsigned long hw_flags;
  3274. if (test_bit((QL_RESET_PER_SCSI | QL_RESET_START),&qdev->flags)) {
  3275. clear_bit(QL_LINK_MASTER,&qdev->flags);
  3276. /*
  3277. * Loop through the active list and return the skb.
  3278. */
  3279. for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
  3280. int j;
  3281. tx_cb = &qdev->tx_buf[i];
  3282. if (tx_cb->skb) {
  3283. printk(KERN_DEBUG PFX
  3284. "%s: Freeing lost SKB.\n",
  3285. qdev->ndev->name);
  3286. pci_unmap_single(qdev->pdev,
  3287. pci_unmap_addr(&tx_cb->map[0], mapaddr),
  3288. pci_unmap_len(&tx_cb->map[0], maplen),
  3289. PCI_DMA_TODEVICE);
  3290. for(j=1;j<tx_cb->seg_count;j++) {
  3291. pci_unmap_page(qdev->pdev,
  3292. pci_unmap_addr(&tx_cb->map[j],mapaddr),
  3293. pci_unmap_len(&tx_cb->map[j],maplen),
  3294. PCI_DMA_TODEVICE);
  3295. }
  3296. dev_kfree_skb(tx_cb->skb);
  3297. tx_cb->skb = NULL;
  3298. }
  3299. }
  3300. printk(KERN_ERR PFX
  3301. "%s: Clearing NRI after reset.\n", qdev->ndev->name);
  3302. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  3303. ql_write_common_reg(qdev,
  3304. &port_regs->CommonRegs.
  3305. ispControlStatus,
  3306. ((ISP_CONTROL_RI << 16) | ISP_CONTROL_RI));
  3307. /*
  3308. * Wait the for Soft Reset to Complete.
  3309. */
  3310. max_wait_time = 10;
  3311. do {
  3312. value = ql_read_common_reg(qdev,
  3313. &port_regs->CommonRegs.
  3314. ispControlStatus);
  3315. if ((value & ISP_CONTROL_SR) == 0) {
  3316. printk(KERN_DEBUG PFX
  3317. "%s: reset completed.\n",
  3318. qdev->ndev->name);
  3319. break;
  3320. }
  3321. if (value & ISP_CONTROL_RI) {
  3322. printk(KERN_DEBUG PFX
  3323. "%s: clearing NRI after reset.\n",
  3324. qdev->ndev->name);
  3325. ql_write_common_reg(qdev,
  3326. &port_regs->
  3327. CommonRegs.
  3328. ispControlStatus,
  3329. ((ISP_CONTROL_RI <<
  3330. 16) | ISP_CONTROL_RI));
  3331. }
  3332. ssleep(1);
  3333. } while (--max_wait_time);
  3334. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  3335. if (value & ISP_CONTROL_SR) {
  3336. /*
  3337. * Set the reset flags and clear the board again.
  3338. * Nothing else to do...
  3339. */
  3340. printk(KERN_ERR PFX
  3341. "%s: Timed out waiting for reset to "
  3342. "complete.\n", ndev->name);
  3343. printk(KERN_ERR PFX
  3344. "%s: Do a reset.\n", ndev->name);
  3345. clear_bit(QL_RESET_PER_SCSI,&qdev->flags);
  3346. clear_bit(QL_RESET_START,&qdev->flags);
  3347. ql_cycle_adapter(qdev,QL_DO_RESET);
  3348. return;
  3349. }
  3350. clear_bit(QL_RESET_ACTIVE,&qdev->flags);
  3351. clear_bit(QL_RESET_PER_SCSI,&qdev->flags);
  3352. clear_bit(QL_RESET_START,&qdev->flags);
  3353. ql_cycle_adapter(qdev,QL_NO_RESET);
  3354. }
  3355. }
  3356. static void ql_tx_timeout_work(struct work_struct *work)
  3357. {
  3358. struct ql3_adapter *qdev =
  3359. container_of(work, struct ql3_adapter, tx_timeout_work.work);
  3360. ql_cycle_adapter(qdev, QL_DO_RESET);
  3361. }
  3362. static void ql_get_board_info(struct ql3_adapter *qdev)
  3363. {
  3364. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  3365. u32 value;
  3366. value = ql_read_page0_reg_l(qdev, &port_regs->portStatus);
  3367. qdev->chip_rev_id = ((value & PORT_STATUS_REV_ID_MASK) >> 12);
  3368. if (value & PORT_STATUS_64)
  3369. qdev->pci_width = 64;
  3370. else
  3371. qdev->pci_width = 32;
  3372. if (value & PORT_STATUS_X)
  3373. qdev->pci_x = 1;
  3374. else
  3375. qdev->pci_x = 0;
  3376. qdev->pci_slot = (u8) PCI_SLOT(qdev->pdev->devfn);
  3377. }
  3378. static void ql3xxx_timer(unsigned long ptr)
  3379. {
  3380. struct ql3_adapter *qdev = (struct ql3_adapter *)ptr;
  3381. if (test_bit(QL_RESET_ACTIVE,&qdev->flags)) {
  3382. printk(KERN_DEBUG PFX
  3383. "%s: Reset in progress.\n",
  3384. qdev->ndev->name);
  3385. goto end;
  3386. }
  3387. ql_link_state_machine(qdev);
  3388. /* Restart timer on 2 second interval. */
  3389. end:
  3390. mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
  3391. }
  3392. static int __devinit ql3xxx_probe(struct pci_dev *pdev,
  3393. const struct pci_device_id *pci_entry)
  3394. {
  3395. struct net_device *ndev = NULL;
  3396. struct ql3_adapter *qdev = NULL;
  3397. static int cards_found = 0;
  3398. int pci_using_dac, err;
  3399. err = pci_enable_device(pdev);
  3400. if (err) {
  3401. printk(KERN_ERR PFX "%s cannot enable PCI device\n",
  3402. pci_name(pdev));
  3403. goto err_out;
  3404. }
  3405. err = pci_request_regions(pdev, DRV_NAME);
  3406. if (err) {
  3407. printk(KERN_ERR PFX "%s cannot obtain PCI resources\n",
  3408. pci_name(pdev));
  3409. goto err_out_disable_pdev;
  3410. }
  3411. pci_set_master(pdev);
  3412. if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
  3413. pci_using_dac = 1;
  3414. err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
  3415. } else if (!(err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
  3416. pci_using_dac = 0;
  3417. err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
  3418. }
  3419. if (err) {
  3420. printk(KERN_ERR PFX "%s no usable DMA configuration\n",
  3421. pci_name(pdev));
  3422. goto err_out_free_regions;
  3423. }
  3424. ndev = alloc_etherdev(sizeof(struct ql3_adapter));
  3425. if (!ndev) {
  3426. printk(KERN_ERR PFX "%s could not alloc etherdev\n",
  3427. pci_name(pdev));
  3428. err = -ENOMEM;
  3429. goto err_out_free_regions;
  3430. }
  3431. SET_NETDEV_DEV(ndev, &pdev->dev);
  3432. pci_set_drvdata(pdev, ndev);
  3433. qdev = netdev_priv(ndev);
  3434. qdev->index = cards_found;
  3435. qdev->ndev = ndev;
  3436. qdev->pdev = pdev;
  3437. qdev->device_id = pci_entry->device;
  3438. qdev->port_link_state = LS_DOWN;
  3439. if (msi)
  3440. qdev->msi = 1;
  3441. qdev->msg_enable = netif_msg_init(debug, default_msg);
  3442. if (pci_using_dac)
  3443. ndev->features |= NETIF_F_HIGHDMA;
  3444. if (qdev->device_id == QL3032_DEVICE_ID)
  3445. ndev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  3446. qdev->mem_map_registers =
  3447. ioremap_nocache(pci_resource_start(pdev, 1),
  3448. pci_resource_len(qdev->pdev, 1));
  3449. if (!qdev->mem_map_registers) {
  3450. printk(KERN_ERR PFX "%s: cannot map device registers\n",
  3451. pci_name(pdev));
  3452. err = -EIO;
  3453. goto err_out_free_ndev;
  3454. }
  3455. spin_lock_init(&qdev->adapter_lock);
  3456. spin_lock_init(&qdev->hw_lock);
  3457. /* Set driver entry points */
  3458. ndev->open = ql3xxx_open;
  3459. ndev->hard_start_xmit = ql3xxx_send;
  3460. ndev->stop = ql3xxx_close;
  3461. ndev->set_multicast_list = ql3xxx_set_multicast_list;
  3462. SET_ETHTOOL_OPS(ndev, &ql3xxx_ethtool_ops);
  3463. ndev->set_mac_address = ql3xxx_set_mac_address;
  3464. ndev->tx_timeout = ql3xxx_tx_timeout;
  3465. ndev->watchdog_timeo = 5 * HZ;
  3466. netif_napi_add(ndev, &qdev->napi, ql_poll, 64);
  3467. ndev->irq = pdev->irq;
  3468. /* make sure the EEPROM is good */
  3469. if (ql_get_nvram_params(qdev)) {
  3470. printk(KERN_ALERT PFX
  3471. "ql3xxx_probe: Adapter #%d, Invalid NVRAM parameters.\n",
  3472. qdev->index);
  3473. err = -EIO;
  3474. goto err_out_iounmap;
  3475. }
  3476. ql_set_mac_info(qdev);
  3477. /* Validate and set parameters */
  3478. if (qdev->mac_index) {
  3479. ndev->mtu = qdev->nvram_data.macCfg_port1.etherMtu_mac ;
  3480. memcpy(ndev->dev_addr, &qdev->nvram_data.funcCfg_fn2.macAddress,
  3481. ETH_ALEN);
  3482. } else {
  3483. ndev->mtu = qdev->nvram_data.macCfg_port0.etherMtu_mac ;
  3484. memcpy(ndev->dev_addr, &qdev->nvram_data.funcCfg_fn0.macAddress,
  3485. ETH_ALEN);
  3486. }
  3487. memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
  3488. ndev->tx_queue_len = NUM_REQ_Q_ENTRIES;
  3489. /* Turn off support for multicasting */
  3490. ndev->flags &= ~IFF_MULTICAST;
  3491. /* Record PCI bus information. */
  3492. ql_get_board_info(qdev);
  3493. /*
  3494. * Set the Maximum Memory Read Byte Count value. We do this to handle
  3495. * jumbo frames.
  3496. */
  3497. if (qdev->pci_x) {
  3498. pci_write_config_word(pdev, (int)0x4e, (u16) 0x0036);
  3499. }
  3500. err = register_netdev(ndev);
  3501. if (err) {
  3502. printk(KERN_ERR PFX "%s: cannot register net device\n",
  3503. pci_name(pdev));
  3504. goto err_out_iounmap;
  3505. }
  3506. /* we're going to reset, so assume we have no link for now */
  3507. netif_carrier_off(ndev);
  3508. netif_stop_queue(ndev);
  3509. qdev->workqueue = create_singlethread_workqueue(ndev->name);
  3510. INIT_DELAYED_WORK(&qdev->reset_work, ql_reset_work);
  3511. INIT_DELAYED_WORK(&qdev->tx_timeout_work, ql_tx_timeout_work);
  3512. init_timer(&qdev->adapter_timer);
  3513. qdev->adapter_timer.function = ql3xxx_timer;
  3514. qdev->adapter_timer.expires = jiffies + HZ * 2; /* two second delay */
  3515. qdev->adapter_timer.data = (unsigned long)qdev;
  3516. if(!cards_found) {
  3517. printk(KERN_ALERT PFX "%s\n", DRV_STRING);
  3518. printk(KERN_ALERT PFX "Driver name: %s, Version: %s.\n",
  3519. DRV_NAME, DRV_VERSION);
  3520. }
  3521. ql_display_dev_info(ndev);
  3522. cards_found++;
  3523. return 0;
  3524. err_out_iounmap:
  3525. iounmap(qdev->mem_map_registers);
  3526. err_out_free_ndev:
  3527. free_netdev(ndev);
  3528. err_out_free_regions:
  3529. pci_release_regions(pdev);
  3530. err_out_disable_pdev:
  3531. pci_disable_device(pdev);
  3532. pci_set_drvdata(pdev, NULL);
  3533. err_out:
  3534. return err;
  3535. }
  3536. static void __devexit ql3xxx_remove(struct pci_dev *pdev)
  3537. {
  3538. struct net_device *ndev = pci_get_drvdata(pdev);
  3539. struct ql3_adapter *qdev = netdev_priv(ndev);
  3540. unregister_netdev(ndev);
  3541. qdev = netdev_priv(ndev);
  3542. ql_disable_interrupts(qdev);
  3543. if (qdev->workqueue) {
  3544. cancel_delayed_work(&qdev->reset_work);
  3545. cancel_delayed_work(&qdev->tx_timeout_work);
  3546. destroy_workqueue(qdev->workqueue);
  3547. qdev->workqueue = NULL;
  3548. }
  3549. iounmap(qdev->mem_map_registers);
  3550. pci_release_regions(pdev);
  3551. pci_set_drvdata(pdev, NULL);
  3552. free_netdev(ndev);
  3553. }
  3554. static struct pci_driver ql3xxx_driver = {
  3555. .name = DRV_NAME,
  3556. .id_table = ql3xxx_pci_tbl,
  3557. .probe = ql3xxx_probe,
  3558. .remove = __devexit_p(ql3xxx_remove),
  3559. };
  3560. static int __init ql3xxx_init_module(void)
  3561. {
  3562. return pci_register_driver(&ql3xxx_driver);
  3563. }
  3564. static void __exit ql3xxx_exit(void)
  3565. {
  3566. pci_unregister_driver(&ql3xxx_driver);
  3567. }
  3568. module_init(ql3xxx_init_module);
  3569. module_exit(ql3xxx_exit);