t3_hw.c 105 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545
  1. /*
  2. * Copyright (c) 2003-2007 Chelsio, Inc. All rights reserved.
  3. *
  4. * This software is available to you under a choice of one of two
  5. * licenses. You may choose to be licensed under the terms of the GNU
  6. * General Public License (GPL) Version 2, available from the file
  7. * COPYING in the main directory of this source tree, or the
  8. * OpenIB.org BSD license below:
  9. *
  10. * Redistribution and use in source and binary forms, with or
  11. * without modification, are permitted provided that the following
  12. * conditions are met:
  13. *
  14. * - Redistributions of source code must retain the above
  15. * copyright notice, this list of conditions and the following
  16. * disclaimer.
  17. *
  18. * - Redistributions in binary form must reproduce the above
  19. * copyright notice, this list of conditions and the following
  20. * disclaimer in the documentation and/or other materials
  21. * provided with the distribution.
  22. *
  23. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30. * SOFTWARE.
  31. */
  32. #include "common.h"
  33. #include "regs.h"
  34. #include "sge_defs.h"
  35. #include "firmware_exports.h"
  36. /**
  37. * t3_wait_op_done_val - wait until an operation is completed
  38. * @adapter: the adapter performing the operation
  39. * @reg: the register to check for completion
  40. * @mask: a single-bit field within @reg that indicates completion
  41. * @polarity: the value of the field when the operation is completed
  42. * @attempts: number of check iterations
  43. * @delay: delay in usecs between iterations
  44. * @valp: where to store the value of the register at completion time
  45. *
  46. * Wait until an operation is completed by checking a bit in a register
  47. * up to @attempts times. If @valp is not NULL the value of the register
  48. * at the time it indicated completion is stored there. Returns 0 if the
  49. * operation completes and -EAGAIN otherwise.
  50. */
  51. int t3_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
  52. int polarity, int attempts, int delay, u32 *valp)
  53. {
  54. while (1) {
  55. u32 val = t3_read_reg(adapter, reg);
  56. if (!!(val & mask) == polarity) {
  57. if (valp)
  58. *valp = val;
  59. return 0;
  60. }
  61. if (--attempts == 0)
  62. return -EAGAIN;
  63. if (delay)
  64. udelay(delay);
  65. }
  66. }
  67. /**
  68. * t3_write_regs - write a bunch of registers
  69. * @adapter: the adapter to program
  70. * @p: an array of register address/register value pairs
  71. * @n: the number of address/value pairs
  72. * @offset: register address offset
  73. *
  74. * Takes an array of register address/register value pairs and writes each
  75. * value to the corresponding register. Register addresses are adjusted
  76. * by the supplied offset.
  77. */
  78. void t3_write_regs(struct adapter *adapter, const struct addr_val_pair *p,
  79. int n, unsigned int offset)
  80. {
  81. while (n--) {
  82. t3_write_reg(adapter, p->reg_addr + offset, p->val);
  83. p++;
  84. }
  85. }
  86. /**
  87. * t3_set_reg_field - set a register field to a value
  88. * @adapter: the adapter to program
  89. * @addr: the register address
  90. * @mask: specifies the portion of the register to modify
  91. * @val: the new value for the register field
  92. *
  93. * Sets a register field specified by the supplied mask to the
  94. * given value.
  95. */
  96. void t3_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
  97. u32 val)
  98. {
  99. u32 v = t3_read_reg(adapter, addr) & ~mask;
  100. t3_write_reg(adapter, addr, v | val);
  101. t3_read_reg(adapter, addr); /* flush */
  102. }
  103. /**
  104. * t3_read_indirect - read indirectly addressed registers
  105. * @adap: the adapter
  106. * @addr_reg: register holding the indirect address
  107. * @data_reg: register holding the value of the indirect register
  108. * @vals: where the read register values are stored
  109. * @start_idx: index of first indirect register to read
  110. * @nregs: how many indirect registers to read
  111. *
  112. * Reads registers that are accessed indirectly through an address/data
  113. * register pair.
  114. */
  115. static void t3_read_indirect(struct adapter *adap, unsigned int addr_reg,
  116. unsigned int data_reg, u32 *vals,
  117. unsigned int nregs, unsigned int start_idx)
  118. {
  119. while (nregs--) {
  120. t3_write_reg(adap, addr_reg, start_idx);
  121. *vals++ = t3_read_reg(adap, data_reg);
  122. start_idx++;
  123. }
  124. }
  125. /**
  126. * t3_mc7_bd_read - read from MC7 through backdoor accesses
  127. * @mc7: identifies MC7 to read from
  128. * @start: index of first 64-bit word to read
  129. * @n: number of 64-bit words to read
  130. * @buf: where to store the read result
  131. *
  132. * Read n 64-bit words from MC7 starting at word start, using backdoor
  133. * accesses.
  134. */
  135. int t3_mc7_bd_read(struct mc7 *mc7, unsigned int start, unsigned int n,
  136. u64 *buf)
  137. {
  138. static const int shift[] = { 0, 0, 16, 24 };
  139. static const int step[] = { 0, 32, 16, 8 };
  140. unsigned int size64 = mc7->size / 8; /* # of 64-bit words */
  141. struct adapter *adap = mc7->adapter;
  142. if (start >= size64 || start + n > size64)
  143. return -EINVAL;
  144. start *= (8 << mc7->width);
  145. while (n--) {
  146. int i;
  147. u64 val64 = 0;
  148. for (i = (1 << mc7->width) - 1; i >= 0; --i) {
  149. int attempts = 10;
  150. u32 val;
  151. t3_write_reg(adap, mc7->offset + A_MC7_BD_ADDR, start);
  152. t3_write_reg(adap, mc7->offset + A_MC7_BD_OP, 0);
  153. val = t3_read_reg(adap, mc7->offset + A_MC7_BD_OP);
  154. while ((val & F_BUSY) && attempts--)
  155. val = t3_read_reg(adap,
  156. mc7->offset + A_MC7_BD_OP);
  157. if (val & F_BUSY)
  158. return -EIO;
  159. val = t3_read_reg(adap, mc7->offset + A_MC7_BD_DATA1);
  160. if (mc7->width == 0) {
  161. val64 = t3_read_reg(adap,
  162. mc7->offset +
  163. A_MC7_BD_DATA0);
  164. val64 |= (u64) val << 32;
  165. } else {
  166. if (mc7->width > 1)
  167. val >>= shift[mc7->width];
  168. val64 |= (u64) val << (step[mc7->width] * i);
  169. }
  170. start += 8;
  171. }
  172. *buf++ = val64;
  173. }
  174. return 0;
  175. }
  176. /*
  177. * Initialize MI1.
  178. */
  179. static void mi1_init(struct adapter *adap, const struct adapter_info *ai)
  180. {
  181. u32 clkdiv = adap->params.vpd.cclk / (2 * adap->params.vpd.mdc) - 1;
  182. u32 val = F_PREEN | V_MDIINV(ai->mdiinv) | V_MDIEN(ai->mdien) |
  183. V_CLKDIV(clkdiv);
  184. if (!(ai->caps & SUPPORTED_10000baseT_Full))
  185. val |= V_ST(1);
  186. t3_write_reg(adap, A_MI1_CFG, val);
  187. }
  188. #define MDIO_ATTEMPTS 10
  189. /*
  190. * MI1 read/write operations for direct-addressed PHYs.
  191. */
  192. static int mi1_read(struct adapter *adapter, int phy_addr, int mmd_addr,
  193. int reg_addr, unsigned int *valp)
  194. {
  195. int ret;
  196. u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr);
  197. if (mmd_addr)
  198. return -EINVAL;
  199. mutex_lock(&adapter->mdio_lock);
  200. t3_write_reg(adapter, A_MI1_ADDR, addr);
  201. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(2));
  202. ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20);
  203. if (!ret)
  204. *valp = t3_read_reg(adapter, A_MI1_DATA);
  205. mutex_unlock(&adapter->mdio_lock);
  206. return ret;
  207. }
  208. static int mi1_write(struct adapter *adapter, int phy_addr, int mmd_addr,
  209. int reg_addr, unsigned int val)
  210. {
  211. int ret;
  212. u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr);
  213. if (mmd_addr)
  214. return -EINVAL;
  215. mutex_lock(&adapter->mdio_lock);
  216. t3_write_reg(adapter, A_MI1_ADDR, addr);
  217. t3_write_reg(adapter, A_MI1_DATA, val);
  218. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1));
  219. ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20);
  220. mutex_unlock(&adapter->mdio_lock);
  221. return ret;
  222. }
  223. static const struct mdio_ops mi1_mdio_ops = {
  224. mi1_read,
  225. mi1_write
  226. };
  227. /*
  228. * MI1 read/write operations for indirect-addressed PHYs.
  229. */
  230. static int mi1_ext_read(struct adapter *adapter, int phy_addr, int mmd_addr,
  231. int reg_addr, unsigned int *valp)
  232. {
  233. int ret;
  234. u32 addr = V_REGADDR(mmd_addr) | V_PHYADDR(phy_addr);
  235. mutex_lock(&adapter->mdio_lock);
  236. t3_write_reg(adapter, A_MI1_ADDR, addr);
  237. t3_write_reg(adapter, A_MI1_DATA, reg_addr);
  238. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(0));
  239. ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20);
  240. if (!ret) {
  241. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(3));
  242. ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
  243. MDIO_ATTEMPTS, 20);
  244. if (!ret)
  245. *valp = t3_read_reg(adapter, A_MI1_DATA);
  246. }
  247. mutex_unlock(&adapter->mdio_lock);
  248. return ret;
  249. }
  250. static int mi1_ext_write(struct adapter *adapter, int phy_addr, int mmd_addr,
  251. int reg_addr, unsigned int val)
  252. {
  253. int ret;
  254. u32 addr = V_REGADDR(mmd_addr) | V_PHYADDR(phy_addr);
  255. mutex_lock(&adapter->mdio_lock);
  256. t3_write_reg(adapter, A_MI1_ADDR, addr);
  257. t3_write_reg(adapter, A_MI1_DATA, reg_addr);
  258. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(0));
  259. ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20);
  260. if (!ret) {
  261. t3_write_reg(adapter, A_MI1_DATA, val);
  262. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1));
  263. ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
  264. MDIO_ATTEMPTS, 20);
  265. }
  266. mutex_unlock(&adapter->mdio_lock);
  267. return ret;
  268. }
  269. static const struct mdio_ops mi1_mdio_ext_ops = {
  270. mi1_ext_read,
  271. mi1_ext_write
  272. };
  273. /**
  274. * t3_mdio_change_bits - modify the value of a PHY register
  275. * @phy: the PHY to operate on
  276. * @mmd: the device address
  277. * @reg: the register address
  278. * @clear: what part of the register value to mask off
  279. * @set: what part of the register value to set
  280. *
  281. * Changes the value of a PHY register by applying a mask to its current
  282. * value and ORing the result with a new value.
  283. */
  284. int t3_mdio_change_bits(struct cphy *phy, int mmd, int reg, unsigned int clear,
  285. unsigned int set)
  286. {
  287. int ret;
  288. unsigned int val;
  289. ret = mdio_read(phy, mmd, reg, &val);
  290. if (!ret) {
  291. val &= ~clear;
  292. ret = mdio_write(phy, mmd, reg, val | set);
  293. }
  294. return ret;
  295. }
  296. /**
  297. * t3_phy_reset - reset a PHY block
  298. * @phy: the PHY to operate on
  299. * @mmd: the device address of the PHY block to reset
  300. * @wait: how long to wait for the reset to complete in 1ms increments
  301. *
  302. * Resets a PHY block and optionally waits for the reset to complete.
  303. * @mmd should be 0 for 10/100/1000 PHYs and the device address to reset
  304. * for 10G PHYs.
  305. */
  306. int t3_phy_reset(struct cphy *phy, int mmd, int wait)
  307. {
  308. int err;
  309. unsigned int ctl;
  310. err = t3_mdio_change_bits(phy, mmd, MII_BMCR, BMCR_PDOWN, BMCR_RESET);
  311. if (err || !wait)
  312. return err;
  313. do {
  314. err = mdio_read(phy, mmd, MII_BMCR, &ctl);
  315. if (err)
  316. return err;
  317. ctl &= BMCR_RESET;
  318. if (ctl)
  319. msleep(1);
  320. } while (ctl && --wait);
  321. return ctl ? -1 : 0;
  322. }
  323. /**
  324. * t3_phy_advertise - set the PHY advertisement registers for autoneg
  325. * @phy: the PHY to operate on
  326. * @advert: bitmap of capabilities the PHY should advertise
  327. *
  328. * Sets a 10/100/1000 PHY's advertisement registers to advertise the
  329. * requested capabilities.
  330. */
  331. int t3_phy_advertise(struct cphy *phy, unsigned int advert)
  332. {
  333. int err;
  334. unsigned int val = 0;
  335. err = mdio_read(phy, 0, MII_CTRL1000, &val);
  336. if (err)
  337. return err;
  338. val &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL);
  339. if (advert & ADVERTISED_1000baseT_Half)
  340. val |= ADVERTISE_1000HALF;
  341. if (advert & ADVERTISED_1000baseT_Full)
  342. val |= ADVERTISE_1000FULL;
  343. err = mdio_write(phy, 0, MII_CTRL1000, val);
  344. if (err)
  345. return err;
  346. val = 1;
  347. if (advert & ADVERTISED_10baseT_Half)
  348. val |= ADVERTISE_10HALF;
  349. if (advert & ADVERTISED_10baseT_Full)
  350. val |= ADVERTISE_10FULL;
  351. if (advert & ADVERTISED_100baseT_Half)
  352. val |= ADVERTISE_100HALF;
  353. if (advert & ADVERTISED_100baseT_Full)
  354. val |= ADVERTISE_100FULL;
  355. if (advert & ADVERTISED_Pause)
  356. val |= ADVERTISE_PAUSE_CAP;
  357. if (advert & ADVERTISED_Asym_Pause)
  358. val |= ADVERTISE_PAUSE_ASYM;
  359. return mdio_write(phy, 0, MII_ADVERTISE, val);
  360. }
  361. /**
  362. * t3_set_phy_speed_duplex - force PHY speed and duplex
  363. * @phy: the PHY to operate on
  364. * @speed: requested PHY speed
  365. * @duplex: requested PHY duplex
  366. *
  367. * Force a 10/100/1000 PHY's speed and duplex. This also disables
  368. * auto-negotiation except for GigE, where auto-negotiation is mandatory.
  369. */
  370. int t3_set_phy_speed_duplex(struct cphy *phy, int speed, int duplex)
  371. {
  372. int err;
  373. unsigned int ctl;
  374. err = mdio_read(phy, 0, MII_BMCR, &ctl);
  375. if (err)
  376. return err;
  377. if (speed >= 0) {
  378. ctl &= ~(BMCR_SPEED100 | BMCR_SPEED1000 | BMCR_ANENABLE);
  379. if (speed == SPEED_100)
  380. ctl |= BMCR_SPEED100;
  381. else if (speed == SPEED_1000)
  382. ctl |= BMCR_SPEED1000;
  383. }
  384. if (duplex >= 0) {
  385. ctl &= ~(BMCR_FULLDPLX | BMCR_ANENABLE);
  386. if (duplex == DUPLEX_FULL)
  387. ctl |= BMCR_FULLDPLX;
  388. }
  389. if (ctl & BMCR_SPEED1000) /* auto-negotiation required for GigE */
  390. ctl |= BMCR_ANENABLE;
  391. return mdio_write(phy, 0, MII_BMCR, ctl);
  392. }
  393. static const struct adapter_info t3_adap_info[] = {
  394. {2, 0, 0, 0,
  395. F_GPIO2_OEN | F_GPIO4_OEN |
  396. F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, F_GPIO3 | F_GPIO5,
  397. 0,
  398. &mi1_mdio_ops, "Chelsio PE9000"},
  399. {2, 0, 0, 0,
  400. F_GPIO2_OEN | F_GPIO4_OEN |
  401. F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, F_GPIO3 | F_GPIO5,
  402. 0,
  403. &mi1_mdio_ops, "Chelsio T302"},
  404. {1, 0, 0, 0,
  405. F_GPIO1_OEN | F_GPIO6_OEN | F_GPIO7_OEN | F_GPIO10_OEN |
  406. F_GPIO1_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL, 0,
  407. SUPPORTED_10000baseT_Full | SUPPORTED_AUI,
  408. &mi1_mdio_ext_ops, "Chelsio T310"},
  409. {2, 0, 0, 0,
  410. F_GPIO1_OEN | F_GPIO2_OEN | F_GPIO4_OEN | F_GPIO5_OEN | F_GPIO6_OEN |
  411. F_GPIO7_OEN | F_GPIO10_OEN | F_GPIO11_OEN | F_GPIO1_OUT_VAL |
  412. F_GPIO5_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL, 0,
  413. SUPPORTED_10000baseT_Full | SUPPORTED_AUI,
  414. &mi1_mdio_ext_ops, "Chelsio T320"},
  415. };
  416. /*
  417. * Return the adapter_info structure with a given index. Out-of-range indices
  418. * return NULL.
  419. */
  420. const struct adapter_info *t3_get_adapter_info(unsigned int id)
  421. {
  422. return id < ARRAY_SIZE(t3_adap_info) ? &t3_adap_info[id] : NULL;
  423. }
  424. #define CAPS_1G (SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Full | \
  425. SUPPORTED_1000baseT_Full | SUPPORTED_Autoneg | SUPPORTED_MII)
  426. #define CAPS_10G (SUPPORTED_10000baseT_Full | SUPPORTED_AUI)
  427. static const struct port_type_info port_types[] = {
  428. {NULL},
  429. {t3_ael1002_phy_prep, CAPS_10G | SUPPORTED_FIBRE,
  430. "10GBASE-XR"},
  431. {t3_vsc8211_phy_prep, CAPS_1G | SUPPORTED_TP | SUPPORTED_IRQ,
  432. "10/100/1000BASE-T"},
  433. {NULL, CAPS_1G | SUPPORTED_TP | SUPPORTED_IRQ,
  434. "10/100/1000BASE-T"},
  435. {t3_xaui_direct_phy_prep, CAPS_10G | SUPPORTED_TP, "10GBASE-CX4"},
  436. {NULL, CAPS_10G, "10GBASE-KX4"},
  437. {t3_qt2045_phy_prep, CAPS_10G | SUPPORTED_TP, "10GBASE-CX4"},
  438. {t3_ael1006_phy_prep, CAPS_10G | SUPPORTED_FIBRE,
  439. "10GBASE-SR"},
  440. {NULL, CAPS_10G | SUPPORTED_TP, "10GBASE-CX4"},
  441. };
  442. #undef CAPS_1G
  443. #undef CAPS_10G
  444. #define VPD_ENTRY(name, len) \
  445. u8 name##_kword[2]; u8 name##_len; u8 name##_data[len]
  446. /*
  447. * Partial EEPROM Vital Product Data structure. Includes only the ID and
  448. * VPD-R sections.
  449. */
  450. struct t3_vpd {
  451. u8 id_tag;
  452. u8 id_len[2];
  453. u8 id_data[16];
  454. u8 vpdr_tag;
  455. u8 vpdr_len[2];
  456. VPD_ENTRY(pn, 16); /* part number */
  457. VPD_ENTRY(ec, 16); /* EC level */
  458. VPD_ENTRY(sn, SERNUM_LEN); /* serial number */
  459. VPD_ENTRY(na, 12); /* MAC address base */
  460. VPD_ENTRY(cclk, 6); /* core clock */
  461. VPD_ENTRY(mclk, 6); /* mem clock */
  462. VPD_ENTRY(uclk, 6); /* uP clk */
  463. VPD_ENTRY(mdc, 6); /* MDIO clk */
  464. VPD_ENTRY(mt, 2); /* mem timing */
  465. VPD_ENTRY(xaui0cfg, 6); /* XAUI0 config */
  466. VPD_ENTRY(xaui1cfg, 6); /* XAUI1 config */
  467. VPD_ENTRY(port0, 2); /* PHY0 complex */
  468. VPD_ENTRY(port1, 2); /* PHY1 complex */
  469. VPD_ENTRY(port2, 2); /* PHY2 complex */
  470. VPD_ENTRY(port3, 2); /* PHY3 complex */
  471. VPD_ENTRY(rv, 1); /* csum */
  472. u32 pad; /* for multiple-of-4 sizing and alignment */
  473. };
  474. #define EEPROM_MAX_POLL 4
  475. #define EEPROM_STAT_ADDR 0x4000
  476. #define VPD_BASE 0xc00
  477. /**
  478. * t3_seeprom_read - read a VPD EEPROM location
  479. * @adapter: adapter to read
  480. * @addr: EEPROM address
  481. * @data: where to store the read data
  482. *
  483. * Read a 32-bit word from a location in VPD EEPROM using the card's PCI
  484. * VPD ROM capability. A zero is written to the flag bit when the
  485. * addres is written to the control register. The hardware device will
  486. * set the flag to 1 when 4 bytes have been read into the data register.
  487. */
  488. int t3_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
  489. {
  490. u16 val;
  491. int attempts = EEPROM_MAX_POLL;
  492. unsigned int base = adapter->params.pci.vpd_cap_addr;
  493. if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3))
  494. return -EINVAL;
  495. pci_write_config_word(adapter->pdev, base + PCI_VPD_ADDR, addr);
  496. do {
  497. udelay(10);
  498. pci_read_config_word(adapter->pdev, base + PCI_VPD_ADDR, &val);
  499. } while (!(val & PCI_VPD_ADDR_F) && --attempts);
  500. if (!(val & PCI_VPD_ADDR_F)) {
  501. CH_ERR(adapter, "reading EEPROM address 0x%x failed\n", addr);
  502. return -EIO;
  503. }
  504. pci_read_config_dword(adapter->pdev, base + PCI_VPD_DATA, data);
  505. *data = le32_to_cpu(*data);
  506. return 0;
  507. }
  508. /**
  509. * t3_seeprom_write - write a VPD EEPROM location
  510. * @adapter: adapter to write
  511. * @addr: EEPROM address
  512. * @data: value to write
  513. *
  514. * Write a 32-bit word to a location in VPD EEPROM using the card's PCI
  515. * VPD ROM capability.
  516. */
  517. int t3_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
  518. {
  519. u16 val;
  520. int attempts = EEPROM_MAX_POLL;
  521. unsigned int base = adapter->params.pci.vpd_cap_addr;
  522. if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3))
  523. return -EINVAL;
  524. pci_write_config_dword(adapter->pdev, base + PCI_VPD_DATA,
  525. cpu_to_le32(data));
  526. pci_write_config_word(adapter->pdev,base + PCI_VPD_ADDR,
  527. addr | PCI_VPD_ADDR_F);
  528. do {
  529. msleep(1);
  530. pci_read_config_word(adapter->pdev, base + PCI_VPD_ADDR, &val);
  531. } while ((val & PCI_VPD_ADDR_F) && --attempts);
  532. if (val & PCI_VPD_ADDR_F) {
  533. CH_ERR(adapter, "write to EEPROM address 0x%x failed\n", addr);
  534. return -EIO;
  535. }
  536. return 0;
  537. }
  538. /**
  539. * t3_seeprom_wp - enable/disable EEPROM write protection
  540. * @adapter: the adapter
  541. * @enable: 1 to enable write protection, 0 to disable it
  542. *
  543. * Enables or disables write protection on the serial EEPROM.
  544. */
  545. int t3_seeprom_wp(struct adapter *adapter, int enable)
  546. {
  547. return t3_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
  548. }
  549. /*
  550. * Convert a character holding a hex digit to a number.
  551. */
  552. static unsigned int hex2int(unsigned char c)
  553. {
  554. return isdigit(c) ? c - '0' : toupper(c) - 'A' + 10;
  555. }
  556. /**
  557. * get_vpd_params - read VPD parameters from VPD EEPROM
  558. * @adapter: adapter to read
  559. * @p: where to store the parameters
  560. *
  561. * Reads card parameters stored in VPD EEPROM.
  562. */
  563. static int get_vpd_params(struct adapter *adapter, struct vpd_params *p)
  564. {
  565. int i, addr, ret;
  566. struct t3_vpd vpd;
  567. /*
  568. * Card information is normally at VPD_BASE but some early cards had
  569. * it at 0.
  570. */
  571. ret = t3_seeprom_read(adapter, VPD_BASE, (u32 *)&vpd);
  572. if (ret)
  573. return ret;
  574. addr = vpd.id_tag == 0x82 ? VPD_BASE : 0;
  575. for (i = 0; i < sizeof(vpd); i += 4) {
  576. ret = t3_seeprom_read(adapter, addr + i,
  577. (u32 *)((u8 *)&vpd + i));
  578. if (ret)
  579. return ret;
  580. }
  581. p->cclk = simple_strtoul(vpd.cclk_data, NULL, 10);
  582. p->mclk = simple_strtoul(vpd.mclk_data, NULL, 10);
  583. p->uclk = simple_strtoul(vpd.uclk_data, NULL, 10);
  584. p->mdc = simple_strtoul(vpd.mdc_data, NULL, 10);
  585. p->mem_timing = simple_strtoul(vpd.mt_data, NULL, 10);
  586. memcpy(p->sn, vpd.sn_data, SERNUM_LEN);
  587. /* Old eeproms didn't have port information */
  588. if (adapter->params.rev == 0 && !vpd.port0_data[0]) {
  589. p->port_type[0] = uses_xaui(adapter) ? 1 : 2;
  590. p->port_type[1] = uses_xaui(adapter) ? 6 : 2;
  591. } else {
  592. p->port_type[0] = hex2int(vpd.port0_data[0]);
  593. p->port_type[1] = hex2int(vpd.port1_data[0]);
  594. p->xauicfg[0] = simple_strtoul(vpd.xaui0cfg_data, NULL, 16);
  595. p->xauicfg[1] = simple_strtoul(vpd.xaui1cfg_data, NULL, 16);
  596. }
  597. for (i = 0; i < 6; i++)
  598. p->eth_base[i] = hex2int(vpd.na_data[2 * i]) * 16 +
  599. hex2int(vpd.na_data[2 * i + 1]);
  600. return 0;
  601. }
  602. /* serial flash and firmware constants */
  603. enum {
  604. SF_ATTEMPTS = 5, /* max retries for SF1 operations */
  605. SF_SEC_SIZE = 64 * 1024, /* serial flash sector size */
  606. SF_SIZE = SF_SEC_SIZE * 8, /* serial flash size */
  607. /* flash command opcodes */
  608. SF_PROG_PAGE = 2, /* program page */
  609. SF_WR_DISABLE = 4, /* disable writes */
  610. SF_RD_STATUS = 5, /* read status register */
  611. SF_WR_ENABLE = 6, /* enable writes */
  612. SF_RD_DATA_FAST = 0xb, /* read flash */
  613. SF_ERASE_SECTOR = 0xd8, /* erase sector */
  614. FW_FLASH_BOOT_ADDR = 0x70000, /* start address of FW in flash */
  615. FW_VERS_ADDR = 0x77ffc, /* flash address holding FW version */
  616. FW_MIN_SIZE = 8 /* at least version and csum */
  617. };
  618. /**
  619. * sf1_read - read data from the serial flash
  620. * @adapter: the adapter
  621. * @byte_cnt: number of bytes to read
  622. * @cont: whether another operation will be chained
  623. * @valp: where to store the read data
  624. *
  625. * Reads up to 4 bytes of data from the serial flash. The location of
  626. * the read needs to be specified prior to calling this by issuing the
  627. * appropriate commands to the serial flash.
  628. */
  629. static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
  630. u32 *valp)
  631. {
  632. int ret;
  633. if (!byte_cnt || byte_cnt > 4)
  634. return -EINVAL;
  635. if (t3_read_reg(adapter, A_SF_OP) & F_BUSY)
  636. return -EBUSY;
  637. t3_write_reg(adapter, A_SF_OP, V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
  638. ret = t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10);
  639. if (!ret)
  640. *valp = t3_read_reg(adapter, A_SF_DATA);
  641. return ret;
  642. }
  643. /**
  644. * sf1_write - write data to the serial flash
  645. * @adapter: the adapter
  646. * @byte_cnt: number of bytes to write
  647. * @cont: whether another operation will be chained
  648. * @val: value to write
  649. *
  650. * Writes up to 4 bytes of data to the serial flash. The location of
  651. * the write needs to be specified prior to calling this by issuing the
  652. * appropriate commands to the serial flash.
  653. */
  654. static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
  655. u32 val)
  656. {
  657. if (!byte_cnt || byte_cnt > 4)
  658. return -EINVAL;
  659. if (t3_read_reg(adapter, A_SF_OP) & F_BUSY)
  660. return -EBUSY;
  661. t3_write_reg(adapter, A_SF_DATA, val);
  662. t3_write_reg(adapter, A_SF_OP,
  663. V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
  664. return t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10);
  665. }
  666. /**
  667. * flash_wait_op - wait for a flash operation to complete
  668. * @adapter: the adapter
  669. * @attempts: max number of polls of the status register
  670. * @delay: delay between polls in ms
  671. *
  672. * Wait for a flash operation to complete by polling the status register.
  673. */
  674. static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
  675. {
  676. int ret;
  677. u32 status;
  678. while (1) {
  679. if ((ret = sf1_write(adapter, 1, 1, SF_RD_STATUS)) != 0 ||
  680. (ret = sf1_read(adapter, 1, 0, &status)) != 0)
  681. return ret;
  682. if (!(status & 1))
  683. return 0;
  684. if (--attempts == 0)
  685. return -EAGAIN;
  686. if (delay)
  687. msleep(delay);
  688. }
  689. }
  690. /**
  691. * t3_read_flash - read words from serial flash
  692. * @adapter: the adapter
  693. * @addr: the start address for the read
  694. * @nwords: how many 32-bit words to read
  695. * @data: where to store the read data
  696. * @byte_oriented: whether to store data as bytes or as words
  697. *
  698. * Read the specified number of 32-bit words from the serial flash.
  699. * If @byte_oriented is set the read data is stored as a byte array
  700. * (i.e., big-endian), otherwise as 32-bit words in the platform's
  701. * natural endianess.
  702. */
  703. int t3_read_flash(struct adapter *adapter, unsigned int addr,
  704. unsigned int nwords, u32 *data, int byte_oriented)
  705. {
  706. int ret;
  707. if (addr + nwords * sizeof(u32) > SF_SIZE || (addr & 3))
  708. return -EINVAL;
  709. addr = swab32(addr) | SF_RD_DATA_FAST;
  710. if ((ret = sf1_write(adapter, 4, 1, addr)) != 0 ||
  711. (ret = sf1_read(adapter, 1, 1, data)) != 0)
  712. return ret;
  713. for (; nwords; nwords--, data++) {
  714. ret = sf1_read(adapter, 4, nwords > 1, data);
  715. if (ret)
  716. return ret;
  717. if (byte_oriented)
  718. *data = htonl(*data);
  719. }
  720. return 0;
  721. }
  722. /**
  723. * t3_write_flash - write up to a page of data to the serial flash
  724. * @adapter: the adapter
  725. * @addr: the start address to write
  726. * @n: length of data to write
  727. * @data: the data to write
  728. *
  729. * Writes up to a page of data (256 bytes) to the serial flash starting
  730. * at the given address.
  731. */
  732. static int t3_write_flash(struct adapter *adapter, unsigned int addr,
  733. unsigned int n, const u8 *data)
  734. {
  735. int ret;
  736. u32 buf[64];
  737. unsigned int i, c, left, val, offset = addr & 0xff;
  738. if (addr + n > SF_SIZE || offset + n > 256)
  739. return -EINVAL;
  740. val = swab32(addr) | SF_PROG_PAGE;
  741. if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 ||
  742. (ret = sf1_write(adapter, 4, 1, val)) != 0)
  743. return ret;
  744. for (left = n; left; left -= c) {
  745. c = min(left, 4U);
  746. for (val = 0, i = 0; i < c; ++i)
  747. val = (val << 8) + *data++;
  748. ret = sf1_write(adapter, c, c != left, val);
  749. if (ret)
  750. return ret;
  751. }
  752. if ((ret = flash_wait_op(adapter, 5, 1)) != 0)
  753. return ret;
  754. /* Read the page to verify the write succeeded */
  755. ret = t3_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
  756. if (ret)
  757. return ret;
  758. if (memcmp(data - n, (u8 *) buf + offset, n))
  759. return -EIO;
  760. return 0;
  761. }
  762. /**
  763. * t3_get_tp_version - read the tp sram version
  764. * @adapter: the adapter
  765. * @vers: where to place the version
  766. *
  767. * Reads the protocol sram version from sram.
  768. */
  769. int t3_get_tp_version(struct adapter *adapter, u32 *vers)
  770. {
  771. int ret;
  772. /* Get version loaded in SRAM */
  773. t3_write_reg(adapter, A_TP_EMBED_OP_FIELD0, 0);
  774. ret = t3_wait_op_done(adapter, A_TP_EMBED_OP_FIELD0,
  775. 1, 1, 5, 1);
  776. if (ret)
  777. return ret;
  778. *vers = t3_read_reg(adapter, A_TP_EMBED_OP_FIELD1);
  779. return 0;
  780. }
  781. /**
  782. * t3_check_tpsram_version - read the tp sram version
  783. * @adapter: the adapter
  784. * @must_load: set to 1 if loading a new microcode image is required
  785. *
  786. * Reads the protocol sram version from flash.
  787. */
  788. int t3_check_tpsram_version(struct adapter *adapter, int *must_load)
  789. {
  790. int ret;
  791. u32 vers;
  792. unsigned int major, minor;
  793. if (adapter->params.rev == T3_REV_A)
  794. return 0;
  795. *must_load = 1;
  796. ret = t3_get_tp_version(adapter, &vers);
  797. if (ret)
  798. return ret;
  799. major = G_TP_VERSION_MAJOR(vers);
  800. minor = G_TP_VERSION_MINOR(vers);
  801. if (major == TP_VERSION_MAJOR && minor == TP_VERSION_MINOR)
  802. return 0;
  803. if (major != TP_VERSION_MAJOR)
  804. CH_ERR(adapter, "found wrong TP version (%u.%u), "
  805. "driver needs version %d.%d\n", major, minor,
  806. TP_VERSION_MAJOR, TP_VERSION_MINOR);
  807. else {
  808. *must_load = 0;
  809. CH_ERR(adapter, "found wrong TP version (%u.%u), "
  810. "driver compiled for version %d.%d\n", major, minor,
  811. TP_VERSION_MAJOR, TP_VERSION_MINOR);
  812. }
  813. return -EINVAL;
  814. }
  815. /**
  816. * t3_check_tpsram - check if provided protocol SRAM
  817. * is compatible with this driver
  818. * @adapter: the adapter
  819. * @tp_sram: the firmware image to write
  820. * @size: image size
  821. *
  822. * Checks if an adapter's tp sram is compatible with the driver.
  823. * Returns 0 if the versions are compatible, a negative error otherwise.
  824. */
  825. int t3_check_tpsram(struct adapter *adapter, u8 *tp_sram, unsigned int size)
  826. {
  827. u32 csum;
  828. unsigned int i;
  829. const u32 *p = (const u32 *)tp_sram;
  830. /* Verify checksum */
  831. for (csum = 0, i = 0; i < size / sizeof(csum); i++)
  832. csum += ntohl(p[i]);
  833. if (csum != 0xffffffff) {
  834. CH_ERR(adapter, "corrupted protocol SRAM image, checksum %u\n",
  835. csum);
  836. return -EINVAL;
  837. }
  838. return 0;
  839. }
  840. enum fw_version_type {
  841. FW_VERSION_N3,
  842. FW_VERSION_T3
  843. };
  844. /**
  845. * t3_get_fw_version - read the firmware version
  846. * @adapter: the adapter
  847. * @vers: where to place the version
  848. *
  849. * Reads the FW version from flash.
  850. */
  851. int t3_get_fw_version(struct adapter *adapter, u32 *vers)
  852. {
  853. return t3_read_flash(adapter, FW_VERS_ADDR, 1, vers, 0);
  854. }
  855. /**
  856. * t3_check_fw_version - check if the FW is compatible with this driver
  857. * @adapter: the adapter
  858. * @must_load: set to 1 if loading a new FW image is required
  859. * Checks if an adapter's FW is compatible with the driver. Returns 0
  860. * if the versions are compatible, a negative error otherwise.
  861. */
  862. int t3_check_fw_version(struct adapter *adapter, int *must_load)
  863. {
  864. int ret;
  865. u32 vers;
  866. unsigned int type, major, minor;
  867. *must_load = 1;
  868. ret = t3_get_fw_version(adapter, &vers);
  869. if (ret)
  870. return ret;
  871. type = G_FW_VERSION_TYPE(vers);
  872. major = G_FW_VERSION_MAJOR(vers);
  873. minor = G_FW_VERSION_MINOR(vers);
  874. if (type == FW_VERSION_T3 && major == FW_VERSION_MAJOR &&
  875. minor == FW_VERSION_MINOR)
  876. return 0;
  877. if (major != FW_VERSION_MAJOR)
  878. CH_ERR(adapter, "found wrong FW version(%u.%u), "
  879. "driver needs version %u.%u\n", major, minor,
  880. FW_VERSION_MAJOR, FW_VERSION_MINOR);
  881. else {
  882. *must_load = 0;
  883. CH_WARN(adapter, "found wrong FW minor version(%u.%u), "
  884. "driver compiled for version %u.%u\n", major, minor,
  885. FW_VERSION_MAJOR, FW_VERSION_MINOR);
  886. }
  887. return -EINVAL;
  888. }
  889. /**
  890. * t3_flash_erase_sectors - erase a range of flash sectors
  891. * @adapter: the adapter
  892. * @start: the first sector to erase
  893. * @end: the last sector to erase
  894. *
  895. * Erases the sectors in the given range.
  896. */
  897. static int t3_flash_erase_sectors(struct adapter *adapter, int start, int end)
  898. {
  899. while (start <= end) {
  900. int ret;
  901. if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 ||
  902. (ret = sf1_write(adapter, 4, 0,
  903. SF_ERASE_SECTOR | (start << 8))) != 0 ||
  904. (ret = flash_wait_op(adapter, 5, 500)) != 0)
  905. return ret;
  906. start++;
  907. }
  908. return 0;
  909. }
  910. /*
  911. * t3_load_fw - download firmware
  912. * @adapter: the adapter
  913. * @fw_data: the firmware image to write
  914. * @size: image size
  915. *
  916. * Write the supplied firmware image to the card's serial flash.
  917. * The FW image has the following sections: @size - 8 bytes of code and
  918. * data, followed by 4 bytes of FW version, followed by the 32-bit
  919. * 1's complement checksum of the whole image.
  920. */
  921. int t3_load_fw(struct adapter *adapter, const u8 *fw_data, unsigned int size)
  922. {
  923. u32 csum;
  924. unsigned int i;
  925. const u32 *p = (const u32 *)fw_data;
  926. int ret, addr, fw_sector = FW_FLASH_BOOT_ADDR >> 16;
  927. if ((size & 3) || size < FW_MIN_SIZE)
  928. return -EINVAL;
  929. if (size > FW_VERS_ADDR + 8 - FW_FLASH_BOOT_ADDR)
  930. return -EFBIG;
  931. for (csum = 0, i = 0; i < size / sizeof(csum); i++)
  932. csum += ntohl(p[i]);
  933. if (csum != 0xffffffff) {
  934. CH_ERR(adapter, "corrupted firmware image, checksum %u\n",
  935. csum);
  936. return -EINVAL;
  937. }
  938. ret = t3_flash_erase_sectors(adapter, fw_sector, fw_sector);
  939. if (ret)
  940. goto out;
  941. size -= 8; /* trim off version and checksum */
  942. for (addr = FW_FLASH_BOOT_ADDR; size;) {
  943. unsigned int chunk_size = min(size, 256U);
  944. ret = t3_write_flash(adapter, addr, chunk_size, fw_data);
  945. if (ret)
  946. goto out;
  947. addr += chunk_size;
  948. fw_data += chunk_size;
  949. size -= chunk_size;
  950. }
  951. ret = t3_write_flash(adapter, FW_VERS_ADDR, 4, fw_data);
  952. out:
  953. if (ret)
  954. CH_ERR(adapter, "firmware download failed, error %d\n", ret);
  955. return ret;
  956. }
  957. #define CIM_CTL_BASE 0x2000
  958. /**
  959. * t3_cim_ctl_blk_read - read a block from CIM control region
  960. *
  961. * @adap: the adapter
  962. * @addr: the start address within the CIM control region
  963. * @n: number of words to read
  964. * @valp: where to store the result
  965. *
  966. * Reads a block of 4-byte words from the CIM control region.
  967. */
  968. int t3_cim_ctl_blk_read(struct adapter *adap, unsigned int addr,
  969. unsigned int n, unsigned int *valp)
  970. {
  971. int ret = 0;
  972. if (t3_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
  973. return -EBUSY;
  974. for ( ; !ret && n--; addr += 4) {
  975. t3_write_reg(adap, A_CIM_HOST_ACC_CTRL, CIM_CTL_BASE + addr);
  976. ret = t3_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
  977. 0, 5, 2);
  978. if (!ret)
  979. *valp++ = t3_read_reg(adap, A_CIM_HOST_ACC_DATA);
  980. }
  981. return ret;
  982. }
  983. /**
  984. * t3_link_changed - handle interface link changes
  985. * @adapter: the adapter
  986. * @port_id: the port index that changed link state
  987. *
  988. * Called when a port's link settings change to propagate the new values
  989. * to the associated PHY and MAC. After performing the common tasks it
  990. * invokes an OS-specific handler.
  991. */
  992. void t3_link_changed(struct adapter *adapter, int port_id)
  993. {
  994. int link_ok, speed, duplex, fc;
  995. struct port_info *pi = adap2pinfo(adapter, port_id);
  996. struct cphy *phy = &pi->phy;
  997. struct cmac *mac = &pi->mac;
  998. struct link_config *lc = &pi->link_config;
  999. phy->ops->get_link_status(phy, &link_ok, &speed, &duplex, &fc);
  1000. if (link_ok != lc->link_ok && adapter->params.rev > 0 &&
  1001. uses_xaui(adapter)) {
  1002. if (link_ok)
  1003. t3b_pcs_reset(mac);
  1004. t3_write_reg(adapter, A_XGM_XAUI_ACT_CTRL + mac->offset,
  1005. link_ok ? F_TXACTENABLE | F_RXEN : 0);
  1006. }
  1007. lc->link_ok = link_ok;
  1008. lc->speed = speed < 0 ? SPEED_INVALID : speed;
  1009. lc->duplex = duplex < 0 ? DUPLEX_INVALID : duplex;
  1010. if (lc->requested_fc & PAUSE_AUTONEG)
  1011. fc &= lc->requested_fc;
  1012. else
  1013. fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
  1014. if (link_ok && speed >= 0 && lc->autoneg == AUTONEG_ENABLE) {
  1015. /* Set MAC speed, duplex, and flow control to match PHY. */
  1016. t3_mac_set_speed_duplex_fc(mac, speed, duplex, fc);
  1017. lc->fc = fc;
  1018. }
  1019. t3_os_link_changed(adapter, port_id, link_ok, speed, duplex, fc);
  1020. }
  1021. /**
  1022. * t3_link_start - apply link configuration to MAC/PHY
  1023. * @phy: the PHY to setup
  1024. * @mac: the MAC to setup
  1025. * @lc: the requested link configuration
  1026. *
  1027. * Set up a port's MAC and PHY according to a desired link configuration.
  1028. * - If the PHY can auto-negotiate first decide what to advertise, then
  1029. * enable/disable auto-negotiation as desired, and reset.
  1030. * - If the PHY does not auto-negotiate just reset it.
  1031. * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
  1032. * otherwise do it later based on the outcome of auto-negotiation.
  1033. */
  1034. int t3_link_start(struct cphy *phy, struct cmac *mac, struct link_config *lc)
  1035. {
  1036. unsigned int fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
  1037. lc->link_ok = 0;
  1038. if (lc->supported & SUPPORTED_Autoneg) {
  1039. lc->advertising &= ~(ADVERTISED_Asym_Pause | ADVERTISED_Pause);
  1040. if (fc) {
  1041. lc->advertising |= ADVERTISED_Asym_Pause;
  1042. if (fc & PAUSE_RX)
  1043. lc->advertising |= ADVERTISED_Pause;
  1044. }
  1045. phy->ops->advertise(phy, lc->advertising);
  1046. if (lc->autoneg == AUTONEG_DISABLE) {
  1047. lc->speed = lc->requested_speed;
  1048. lc->duplex = lc->requested_duplex;
  1049. lc->fc = (unsigned char)fc;
  1050. t3_mac_set_speed_duplex_fc(mac, lc->speed, lc->duplex,
  1051. fc);
  1052. /* Also disables autoneg */
  1053. phy->ops->set_speed_duplex(phy, lc->speed, lc->duplex);
  1054. phy->ops->reset(phy, 0);
  1055. } else
  1056. phy->ops->autoneg_enable(phy);
  1057. } else {
  1058. t3_mac_set_speed_duplex_fc(mac, -1, -1, fc);
  1059. lc->fc = (unsigned char)fc;
  1060. phy->ops->reset(phy, 0);
  1061. }
  1062. return 0;
  1063. }
  1064. /**
  1065. * t3_set_vlan_accel - control HW VLAN extraction
  1066. * @adapter: the adapter
  1067. * @ports: bitmap of adapter ports to operate on
  1068. * @on: enable (1) or disable (0) HW VLAN extraction
  1069. *
  1070. * Enables or disables HW extraction of VLAN tags for the given port.
  1071. */
  1072. void t3_set_vlan_accel(struct adapter *adapter, unsigned int ports, int on)
  1073. {
  1074. t3_set_reg_field(adapter, A_TP_OUT_CONFIG,
  1075. ports << S_VLANEXTRACTIONENABLE,
  1076. on ? (ports << S_VLANEXTRACTIONENABLE) : 0);
  1077. }
  1078. struct intr_info {
  1079. unsigned int mask; /* bits to check in interrupt status */
  1080. const char *msg; /* message to print or NULL */
  1081. short stat_idx; /* stat counter to increment or -1 */
  1082. unsigned short fatal:1; /* whether the condition reported is fatal */
  1083. };
  1084. /**
  1085. * t3_handle_intr_status - table driven interrupt handler
  1086. * @adapter: the adapter that generated the interrupt
  1087. * @reg: the interrupt status register to process
  1088. * @mask: a mask to apply to the interrupt status
  1089. * @acts: table of interrupt actions
  1090. * @stats: statistics counters tracking interrupt occurences
  1091. *
  1092. * A table driven interrupt handler that applies a set of masks to an
  1093. * interrupt status word and performs the corresponding actions if the
  1094. * interrupts described by the mask have occured. The actions include
  1095. * optionally printing a warning or alert message, and optionally
  1096. * incrementing a stat counter. The table is terminated by an entry
  1097. * specifying mask 0. Returns the number of fatal interrupt conditions.
  1098. */
  1099. static int t3_handle_intr_status(struct adapter *adapter, unsigned int reg,
  1100. unsigned int mask,
  1101. const struct intr_info *acts,
  1102. unsigned long *stats)
  1103. {
  1104. int fatal = 0;
  1105. unsigned int status = t3_read_reg(adapter, reg) & mask;
  1106. for (; acts->mask; ++acts) {
  1107. if (!(status & acts->mask))
  1108. continue;
  1109. if (acts->fatal) {
  1110. fatal++;
  1111. CH_ALERT(adapter, "%s (0x%x)\n",
  1112. acts->msg, status & acts->mask);
  1113. } else if (acts->msg)
  1114. CH_WARN(adapter, "%s (0x%x)\n",
  1115. acts->msg, status & acts->mask);
  1116. if (acts->stat_idx >= 0)
  1117. stats[acts->stat_idx]++;
  1118. }
  1119. if (status) /* clear processed interrupts */
  1120. t3_write_reg(adapter, reg, status);
  1121. return fatal;
  1122. }
  1123. #define SGE_INTR_MASK (F_RSPQDISABLED)
  1124. #define MC5_INTR_MASK (F_PARITYERR | F_ACTRGNFULL | F_UNKNOWNCMD | \
  1125. F_REQQPARERR | F_DISPQPARERR | F_DELACTEMPTY | \
  1126. F_NFASRCHFAIL)
  1127. #define MC7_INTR_MASK (F_AE | F_UE | F_CE | V_PE(M_PE))
  1128. #define XGM_INTR_MASK (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \
  1129. V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR) | \
  1130. F_TXFIFO_UNDERRUN | F_RXFIFO_OVERFLOW)
  1131. #define PCIX_INTR_MASK (F_MSTDETPARERR | F_SIGTARABT | F_RCVTARABT | \
  1132. F_RCVMSTABT | F_SIGSYSERR | F_DETPARERR | \
  1133. F_SPLCMPDIS | F_UNXSPLCMP | F_RCVSPLCMPERR | \
  1134. F_DETCORECCERR | F_DETUNCECCERR | F_PIOPARERR | \
  1135. V_WFPARERR(M_WFPARERR) | V_RFPARERR(M_RFPARERR) | \
  1136. V_CFPARERR(M_CFPARERR) /* | V_MSIXPARERR(M_MSIXPARERR) */)
  1137. #define PCIE_INTR_MASK (F_UNXSPLCPLERRR | F_UNXSPLCPLERRC | F_PCIE_PIOPARERR |\
  1138. F_PCIE_WFPARERR | F_PCIE_RFPARERR | F_PCIE_CFPARERR | \
  1139. /* V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR) | */ \
  1140. V_BISTERR(M_BISTERR) | F_PEXERR)
  1141. #define ULPRX_INTR_MASK F_PARERR
  1142. #define ULPTX_INTR_MASK 0
  1143. #define CPLSW_INTR_MASK (F_TP_FRAMING_ERROR | \
  1144. F_SGE_FRAMING_ERROR | F_CIM_FRAMING_ERROR | \
  1145. F_ZERO_SWITCH_ERROR)
  1146. #define CIM_INTR_MASK (F_BLKWRPLINT | F_BLKRDPLINT | F_BLKWRCTLINT | \
  1147. F_BLKRDCTLINT | F_BLKWRFLASHINT | F_BLKRDFLASHINT | \
  1148. F_SGLWRFLASHINT | F_WRBLKFLASHINT | F_BLKWRBOOTINT | \
  1149. F_FLASHRANGEINT | F_SDRAMRANGEINT | F_RSVDSPACEINT)
  1150. #define PMTX_INTR_MASK (F_ZERO_C_CMD_ERROR | ICSPI_FRM_ERR | OESPI_FRM_ERR | \
  1151. V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR) | \
  1152. V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR))
  1153. #define PMRX_INTR_MASK (F_ZERO_E_CMD_ERROR | IESPI_FRM_ERR | OCSPI_FRM_ERR | \
  1154. V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR) | \
  1155. V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR))
  1156. #define MPS_INTR_MASK (V_TX0TPPARERRENB(M_TX0TPPARERRENB) | \
  1157. V_TX1TPPARERRENB(M_TX1TPPARERRENB) | \
  1158. V_RXTPPARERRENB(M_RXTPPARERRENB) | \
  1159. V_MCAPARERRENB(M_MCAPARERRENB))
  1160. #define PL_INTR_MASK (F_T3DBG | F_XGMAC0_0 | F_XGMAC0_1 | F_MC5A | F_PM1_TX | \
  1161. F_PM1_RX | F_ULP2_TX | F_ULP2_RX | F_TP1 | F_CIM | \
  1162. F_MC7_CM | F_MC7_PMTX | F_MC7_PMRX | F_SGE3 | F_PCIM0 | \
  1163. F_MPS0 | F_CPL_SWITCH)
  1164. /*
  1165. * Interrupt handler for the PCIX1 module.
  1166. */
  1167. static void pci_intr_handler(struct adapter *adapter)
  1168. {
  1169. static const struct intr_info pcix1_intr_info[] = {
  1170. {F_MSTDETPARERR, "PCI master detected parity error", -1, 1},
  1171. {F_SIGTARABT, "PCI signaled target abort", -1, 1},
  1172. {F_RCVTARABT, "PCI received target abort", -1, 1},
  1173. {F_RCVMSTABT, "PCI received master abort", -1, 1},
  1174. {F_SIGSYSERR, "PCI signaled system error", -1, 1},
  1175. {F_DETPARERR, "PCI detected parity error", -1, 1},
  1176. {F_SPLCMPDIS, "PCI split completion discarded", -1, 1},
  1177. {F_UNXSPLCMP, "PCI unexpected split completion error", -1, 1},
  1178. {F_RCVSPLCMPERR, "PCI received split completion error", -1,
  1179. 1},
  1180. {F_DETCORECCERR, "PCI correctable ECC error",
  1181. STAT_PCI_CORR_ECC, 0},
  1182. {F_DETUNCECCERR, "PCI uncorrectable ECC error", -1, 1},
  1183. {F_PIOPARERR, "PCI PIO FIFO parity error", -1, 1},
  1184. {V_WFPARERR(M_WFPARERR), "PCI write FIFO parity error", -1,
  1185. 1},
  1186. {V_RFPARERR(M_RFPARERR), "PCI read FIFO parity error", -1,
  1187. 1},
  1188. {V_CFPARERR(M_CFPARERR), "PCI command FIFO parity error", -1,
  1189. 1},
  1190. {V_MSIXPARERR(M_MSIXPARERR), "PCI MSI-X table/PBA parity "
  1191. "error", -1, 1},
  1192. {0}
  1193. };
  1194. if (t3_handle_intr_status(adapter, A_PCIX_INT_CAUSE, PCIX_INTR_MASK,
  1195. pcix1_intr_info, adapter->irq_stats))
  1196. t3_fatal_err(adapter);
  1197. }
  1198. /*
  1199. * Interrupt handler for the PCIE module.
  1200. */
  1201. static void pcie_intr_handler(struct adapter *adapter)
  1202. {
  1203. static const struct intr_info pcie_intr_info[] = {
  1204. {F_PEXERR, "PCI PEX error", -1, 1},
  1205. {F_UNXSPLCPLERRR,
  1206. "PCI unexpected split completion DMA read error", -1, 1},
  1207. {F_UNXSPLCPLERRC,
  1208. "PCI unexpected split completion DMA command error", -1, 1},
  1209. {F_PCIE_PIOPARERR, "PCI PIO FIFO parity error", -1, 1},
  1210. {F_PCIE_WFPARERR, "PCI write FIFO parity error", -1, 1},
  1211. {F_PCIE_RFPARERR, "PCI read FIFO parity error", -1, 1},
  1212. {F_PCIE_CFPARERR, "PCI command FIFO parity error", -1, 1},
  1213. {V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR),
  1214. "PCI MSI-X table/PBA parity error", -1, 1},
  1215. {V_BISTERR(M_BISTERR), "PCI BIST error", -1, 1},
  1216. {0}
  1217. };
  1218. if (t3_read_reg(adapter, A_PCIE_INT_CAUSE) & F_PEXERR)
  1219. CH_ALERT(adapter, "PEX error code 0x%x\n",
  1220. t3_read_reg(adapter, A_PCIE_PEX_ERR));
  1221. if (t3_handle_intr_status(adapter, A_PCIE_INT_CAUSE, PCIE_INTR_MASK,
  1222. pcie_intr_info, adapter->irq_stats))
  1223. t3_fatal_err(adapter);
  1224. }
  1225. /*
  1226. * TP interrupt handler.
  1227. */
  1228. static void tp_intr_handler(struct adapter *adapter)
  1229. {
  1230. static const struct intr_info tp_intr_info[] = {
  1231. {0xffffff, "TP parity error", -1, 1},
  1232. {0x1000000, "TP out of Rx pages", -1, 1},
  1233. {0x2000000, "TP out of Tx pages", -1, 1},
  1234. {0}
  1235. };
  1236. if (t3_handle_intr_status(adapter, A_TP_INT_CAUSE, 0xffffffff,
  1237. tp_intr_info, NULL))
  1238. t3_fatal_err(adapter);
  1239. }
  1240. /*
  1241. * CIM interrupt handler.
  1242. */
  1243. static void cim_intr_handler(struct adapter *adapter)
  1244. {
  1245. static const struct intr_info cim_intr_info[] = {
  1246. {F_RSVDSPACEINT, "CIM reserved space write", -1, 1},
  1247. {F_SDRAMRANGEINT, "CIM SDRAM address out of range", -1, 1},
  1248. {F_FLASHRANGEINT, "CIM flash address out of range", -1, 1},
  1249. {F_BLKWRBOOTINT, "CIM block write to boot space", -1, 1},
  1250. {F_WRBLKFLASHINT, "CIM write to cached flash space", -1, 1},
  1251. {F_SGLWRFLASHINT, "CIM single write to flash space", -1, 1},
  1252. {F_BLKRDFLASHINT, "CIM block read from flash space", -1, 1},
  1253. {F_BLKWRFLASHINT, "CIM block write to flash space", -1, 1},
  1254. {F_BLKRDCTLINT, "CIM block read from CTL space", -1, 1},
  1255. {F_BLKWRCTLINT, "CIM block write to CTL space", -1, 1},
  1256. {F_BLKRDPLINT, "CIM block read from PL space", -1, 1},
  1257. {F_BLKWRPLINT, "CIM block write to PL space", -1, 1},
  1258. {0}
  1259. };
  1260. if (t3_handle_intr_status(adapter, A_CIM_HOST_INT_CAUSE, 0xffffffff,
  1261. cim_intr_info, NULL))
  1262. t3_fatal_err(adapter);
  1263. }
  1264. /*
  1265. * ULP RX interrupt handler.
  1266. */
  1267. static void ulprx_intr_handler(struct adapter *adapter)
  1268. {
  1269. static const struct intr_info ulprx_intr_info[] = {
  1270. {F_PARERR, "ULP RX parity error", -1, 1},
  1271. {0}
  1272. };
  1273. if (t3_handle_intr_status(adapter, A_ULPRX_INT_CAUSE, 0xffffffff,
  1274. ulprx_intr_info, NULL))
  1275. t3_fatal_err(adapter);
  1276. }
  1277. /*
  1278. * ULP TX interrupt handler.
  1279. */
  1280. static void ulptx_intr_handler(struct adapter *adapter)
  1281. {
  1282. static const struct intr_info ulptx_intr_info[] = {
  1283. {F_PBL_BOUND_ERR_CH0, "ULP TX channel 0 PBL out of bounds",
  1284. STAT_ULP_CH0_PBL_OOB, 0},
  1285. {F_PBL_BOUND_ERR_CH1, "ULP TX channel 1 PBL out of bounds",
  1286. STAT_ULP_CH1_PBL_OOB, 0},
  1287. {0}
  1288. };
  1289. if (t3_handle_intr_status(adapter, A_ULPTX_INT_CAUSE, 0xffffffff,
  1290. ulptx_intr_info, adapter->irq_stats))
  1291. t3_fatal_err(adapter);
  1292. }
  1293. #define ICSPI_FRM_ERR (F_ICSPI0_FIFO2X_RX_FRAMING_ERROR | \
  1294. F_ICSPI1_FIFO2X_RX_FRAMING_ERROR | F_ICSPI0_RX_FRAMING_ERROR | \
  1295. F_ICSPI1_RX_FRAMING_ERROR | F_ICSPI0_TX_FRAMING_ERROR | \
  1296. F_ICSPI1_TX_FRAMING_ERROR)
  1297. #define OESPI_FRM_ERR (F_OESPI0_RX_FRAMING_ERROR | \
  1298. F_OESPI1_RX_FRAMING_ERROR | F_OESPI0_TX_FRAMING_ERROR | \
  1299. F_OESPI1_TX_FRAMING_ERROR | F_OESPI0_OFIFO2X_TX_FRAMING_ERROR | \
  1300. F_OESPI1_OFIFO2X_TX_FRAMING_ERROR)
  1301. /*
  1302. * PM TX interrupt handler.
  1303. */
  1304. static void pmtx_intr_handler(struct adapter *adapter)
  1305. {
  1306. static const struct intr_info pmtx_intr_info[] = {
  1307. {F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1},
  1308. {ICSPI_FRM_ERR, "PMTX ispi framing error", -1, 1},
  1309. {OESPI_FRM_ERR, "PMTX ospi framing error", -1, 1},
  1310. {V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR),
  1311. "PMTX ispi parity error", -1, 1},
  1312. {V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR),
  1313. "PMTX ospi parity error", -1, 1},
  1314. {0}
  1315. };
  1316. if (t3_handle_intr_status(adapter, A_PM1_TX_INT_CAUSE, 0xffffffff,
  1317. pmtx_intr_info, NULL))
  1318. t3_fatal_err(adapter);
  1319. }
  1320. #define IESPI_FRM_ERR (F_IESPI0_FIFO2X_RX_FRAMING_ERROR | \
  1321. F_IESPI1_FIFO2X_RX_FRAMING_ERROR | F_IESPI0_RX_FRAMING_ERROR | \
  1322. F_IESPI1_RX_FRAMING_ERROR | F_IESPI0_TX_FRAMING_ERROR | \
  1323. F_IESPI1_TX_FRAMING_ERROR)
  1324. #define OCSPI_FRM_ERR (F_OCSPI0_RX_FRAMING_ERROR | \
  1325. F_OCSPI1_RX_FRAMING_ERROR | F_OCSPI0_TX_FRAMING_ERROR | \
  1326. F_OCSPI1_TX_FRAMING_ERROR | F_OCSPI0_OFIFO2X_TX_FRAMING_ERROR | \
  1327. F_OCSPI1_OFIFO2X_TX_FRAMING_ERROR)
  1328. /*
  1329. * PM RX interrupt handler.
  1330. */
  1331. static void pmrx_intr_handler(struct adapter *adapter)
  1332. {
  1333. static const struct intr_info pmrx_intr_info[] = {
  1334. {F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1},
  1335. {IESPI_FRM_ERR, "PMRX ispi framing error", -1, 1},
  1336. {OCSPI_FRM_ERR, "PMRX ospi framing error", -1, 1},
  1337. {V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR),
  1338. "PMRX ispi parity error", -1, 1},
  1339. {V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR),
  1340. "PMRX ospi parity error", -1, 1},
  1341. {0}
  1342. };
  1343. if (t3_handle_intr_status(adapter, A_PM1_RX_INT_CAUSE, 0xffffffff,
  1344. pmrx_intr_info, NULL))
  1345. t3_fatal_err(adapter);
  1346. }
  1347. /*
  1348. * CPL switch interrupt handler.
  1349. */
  1350. static void cplsw_intr_handler(struct adapter *adapter)
  1351. {
  1352. static const struct intr_info cplsw_intr_info[] = {
  1353. /* { F_CIM_OVFL_ERROR, "CPL switch CIM overflow", -1, 1 }, */
  1354. {F_TP_FRAMING_ERROR, "CPL switch TP framing error", -1, 1},
  1355. {F_SGE_FRAMING_ERROR, "CPL switch SGE framing error", -1, 1},
  1356. {F_CIM_FRAMING_ERROR, "CPL switch CIM framing error", -1, 1},
  1357. {F_ZERO_SWITCH_ERROR, "CPL switch no-switch error", -1, 1},
  1358. {0}
  1359. };
  1360. if (t3_handle_intr_status(adapter, A_CPL_INTR_CAUSE, 0xffffffff,
  1361. cplsw_intr_info, NULL))
  1362. t3_fatal_err(adapter);
  1363. }
  1364. /*
  1365. * MPS interrupt handler.
  1366. */
  1367. static void mps_intr_handler(struct adapter *adapter)
  1368. {
  1369. static const struct intr_info mps_intr_info[] = {
  1370. {0x1ff, "MPS parity error", -1, 1},
  1371. {0}
  1372. };
  1373. if (t3_handle_intr_status(adapter, A_MPS_INT_CAUSE, 0xffffffff,
  1374. mps_intr_info, NULL))
  1375. t3_fatal_err(adapter);
  1376. }
  1377. #define MC7_INTR_FATAL (F_UE | V_PE(M_PE) | F_AE)
  1378. /*
  1379. * MC7 interrupt handler.
  1380. */
  1381. static void mc7_intr_handler(struct mc7 *mc7)
  1382. {
  1383. struct adapter *adapter = mc7->adapter;
  1384. u32 cause = t3_read_reg(adapter, mc7->offset + A_MC7_INT_CAUSE);
  1385. if (cause & F_CE) {
  1386. mc7->stats.corr_err++;
  1387. CH_WARN(adapter, "%s MC7 correctable error at addr 0x%x, "
  1388. "data 0x%x 0x%x 0x%x\n", mc7->name,
  1389. t3_read_reg(adapter, mc7->offset + A_MC7_CE_ADDR),
  1390. t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA0),
  1391. t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA1),
  1392. t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA2));
  1393. }
  1394. if (cause & F_UE) {
  1395. mc7->stats.uncorr_err++;
  1396. CH_ALERT(adapter, "%s MC7 uncorrectable error at addr 0x%x, "
  1397. "data 0x%x 0x%x 0x%x\n", mc7->name,
  1398. t3_read_reg(adapter, mc7->offset + A_MC7_UE_ADDR),
  1399. t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA0),
  1400. t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA1),
  1401. t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA2));
  1402. }
  1403. if (G_PE(cause)) {
  1404. mc7->stats.parity_err++;
  1405. CH_ALERT(adapter, "%s MC7 parity error 0x%x\n",
  1406. mc7->name, G_PE(cause));
  1407. }
  1408. if (cause & F_AE) {
  1409. u32 addr = 0;
  1410. if (adapter->params.rev > 0)
  1411. addr = t3_read_reg(adapter,
  1412. mc7->offset + A_MC7_ERR_ADDR);
  1413. mc7->stats.addr_err++;
  1414. CH_ALERT(adapter, "%s MC7 address error: 0x%x\n",
  1415. mc7->name, addr);
  1416. }
  1417. if (cause & MC7_INTR_FATAL)
  1418. t3_fatal_err(adapter);
  1419. t3_write_reg(adapter, mc7->offset + A_MC7_INT_CAUSE, cause);
  1420. }
  1421. #define XGM_INTR_FATAL (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \
  1422. V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR))
  1423. /*
  1424. * XGMAC interrupt handler.
  1425. */
  1426. static int mac_intr_handler(struct adapter *adap, unsigned int idx)
  1427. {
  1428. struct cmac *mac = &adap2pinfo(adap, idx)->mac;
  1429. u32 cause = t3_read_reg(adap, A_XGM_INT_CAUSE + mac->offset);
  1430. if (cause & V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR)) {
  1431. mac->stats.tx_fifo_parity_err++;
  1432. CH_ALERT(adap, "port%d: MAC TX FIFO parity error\n", idx);
  1433. }
  1434. if (cause & V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR)) {
  1435. mac->stats.rx_fifo_parity_err++;
  1436. CH_ALERT(adap, "port%d: MAC RX FIFO parity error\n", idx);
  1437. }
  1438. if (cause & F_TXFIFO_UNDERRUN)
  1439. mac->stats.tx_fifo_urun++;
  1440. if (cause & F_RXFIFO_OVERFLOW)
  1441. mac->stats.rx_fifo_ovfl++;
  1442. if (cause & V_SERDES_LOS(M_SERDES_LOS))
  1443. mac->stats.serdes_signal_loss++;
  1444. if (cause & F_XAUIPCSCTCERR)
  1445. mac->stats.xaui_pcs_ctc_err++;
  1446. if (cause & F_XAUIPCSALIGNCHANGE)
  1447. mac->stats.xaui_pcs_align_change++;
  1448. t3_write_reg(adap, A_XGM_INT_CAUSE + mac->offset, cause);
  1449. if (cause & XGM_INTR_FATAL)
  1450. t3_fatal_err(adap);
  1451. return cause != 0;
  1452. }
  1453. /*
  1454. * Interrupt handler for PHY events.
  1455. */
  1456. int t3_phy_intr_handler(struct adapter *adapter)
  1457. {
  1458. u32 mask, gpi = adapter_info(adapter)->gpio_intr;
  1459. u32 i, cause = t3_read_reg(adapter, A_T3DBG_INT_CAUSE);
  1460. for_each_port(adapter, i) {
  1461. struct port_info *p = adap2pinfo(adapter, i);
  1462. mask = gpi - (gpi & (gpi - 1));
  1463. gpi -= mask;
  1464. if (!(p->port_type->caps & SUPPORTED_IRQ))
  1465. continue;
  1466. if (cause & mask) {
  1467. int phy_cause = p->phy.ops->intr_handler(&p->phy);
  1468. if (phy_cause & cphy_cause_link_change)
  1469. t3_link_changed(adapter, i);
  1470. if (phy_cause & cphy_cause_fifo_error)
  1471. p->phy.fifo_errors++;
  1472. }
  1473. }
  1474. t3_write_reg(adapter, A_T3DBG_INT_CAUSE, cause);
  1475. return 0;
  1476. }
  1477. /*
  1478. * T3 slow path (non-data) interrupt handler.
  1479. */
  1480. int t3_slow_intr_handler(struct adapter *adapter)
  1481. {
  1482. u32 cause = t3_read_reg(adapter, A_PL_INT_CAUSE0);
  1483. cause &= adapter->slow_intr_mask;
  1484. if (!cause)
  1485. return 0;
  1486. if (cause & F_PCIM0) {
  1487. if (is_pcie(adapter))
  1488. pcie_intr_handler(adapter);
  1489. else
  1490. pci_intr_handler(adapter);
  1491. }
  1492. if (cause & F_SGE3)
  1493. t3_sge_err_intr_handler(adapter);
  1494. if (cause & F_MC7_PMRX)
  1495. mc7_intr_handler(&adapter->pmrx);
  1496. if (cause & F_MC7_PMTX)
  1497. mc7_intr_handler(&adapter->pmtx);
  1498. if (cause & F_MC7_CM)
  1499. mc7_intr_handler(&adapter->cm);
  1500. if (cause & F_CIM)
  1501. cim_intr_handler(adapter);
  1502. if (cause & F_TP1)
  1503. tp_intr_handler(adapter);
  1504. if (cause & F_ULP2_RX)
  1505. ulprx_intr_handler(adapter);
  1506. if (cause & F_ULP2_TX)
  1507. ulptx_intr_handler(adapter);
  1508. if (cause & F_PM1_RX)
  1509. pmrx_intr_handler(adapter);
  1510. if (cause & F_PM1_TX)
  1511. pmtx_intr_handler(adapter);
  1512. if (cause & F_CPL_SWITCH)
  1513. cplsw_intr_handler(adapter);
  1514. if (cause & F_MPS0)
  1515. mps_intr_handler(adapter);
  1516. if (cause & F_MC5A)
  1517. t3_mc5_intr_handler(&adapter->mc5);
  1518. if (cause & F_XGMAC0_0)
  1519. mac_intr_handler(adapter, 0);
  1520. if (cause & F_XGMAC0_1)
  1521. mac_intr_handler(adapter, 1);
  1522. if (cause & F_T3DBG)
  1523. t3_os_ext_intr_handler(adapter);
  1524. /* Clear the interrupts just processed. */
  1525. t3_write_reg(adapter, A_PL_INT_CAUSE0, cause);
  1526. t3_read_reg(adapter, A_PL_INT_CAUSE0); /* flush */
  1527. return 1;
  1528. }
  1529. /**
  1530. * t3_intr_enable - enable interrupts
  1531. * @adapter: the adapter whose interrupts should be enabled
  1532. *
  1533. * Enable interrupts by setting the interrupt enable registers of the
  1534. * various HW modules and then enabling the top-level interrupt
  1535. * concentrator.
  1536. */
  1537. void t3_intr_enable(struct adapter *adapter)
  1538. {
  1539. static const struct addr_val_pair intr_en_avp[] = {
  1540. {A_SG_INT_ENABLE, SGE_INTR_MASK},
  1541. {A_MC7_INT_ENABLE, MC7_INTR_MASK},
  1542. {A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR,
  1543. MC7_INTR_MASK},
  1544. {A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR,
  1545. MC7_INTR_MASK},
  1546. {A_MC5_DB_INT_ENABLE, MC5_INTR_MASK},
  1547. {A_ULPRX_INT_ENABLE, ULPRX_INTR_MASK},
  1548. {A_TP_INT_ENABLE, 0x3bfffff},
  1549. {A_PM1_TX_INT_ENABLE, PMTX_INTR_MASK},
  1550. {A_PM1_RX_INT_ENABLE, PMRX_INTR_MASK},
  1551. {A_CIM_HOST_INT_ENABLE, CIM_INTR_MASK},
  1552. {A_MPS_INT_ENABLE, MPS_INTR_MASK},
  1553. };
  1554. adapter->slow_intr_mask = PL_INTR_MASK;
  1555. t3_write_regs(adapter, intr_en_avp, ARRAY_SIZE(intr_en_avp), 0);
  1556. if (adapter->params.rev > 0) {
  1557. t3_write_reg(adapter, A_CPL_INTR_ENABLE,
  1558. CPLSW_INTR_MASK | F_CIM_OVFL_ERROR);
  1559. t3_write_reg(adapter, A_ULPTX_INT_ENABLE,
  1560. ULPTX_INTR_MASK | F_PBL_BOUND_ERR_CH0 |
  1561. F_PBL_BOUND_ERR_CH1);
  1562. } else {
  1563. t3_write_reg(adapter, A_CPL_INTR_ENABLE, CPLSW_INTR_MASK);
  1564. t3_write_reg(adapter, A_ULPTX_INT_ENABLE, ULPTX_INTR_MASK);
  1565. }
  1566. t3_write_reg(adapter, A_T3DBG_GPIO_ACT_LOW,
  1567. adapter_info(adapter)->gpio_intr);
  1568. t3_write_reg(adapter, A_T3DBG_INT_ENABLE,
  1569. adapter_info(adapter)->gpio_intr);
  1570. if (is_pcie(adapter))
  1571. t3_write_reg(adapter, A_PCIE_INT_ENABLE, PCIE_INTR_MASK);
  1572. else
  1573. t3_write_reg(adapter, A_PCIX_INT_ENABLE, PCIX_INTR_MASK);
  1574. t3_write_reg(adapter, A_PL_INT_ENABLE0, adapter->slow_intr_mask);
  1575. t3_read_reg(adapter, A_PL_INT_ENABLE0); /* flush */
  1576. }
  1577. /**
  1578. * t3_intr_disable - disable a card's interrupts
  1579. * @adapter: the adapter whose interrupts should be disabled
  1580. *
  1581. * Disable interrupts. We only disable the top-level interrupt
  1582. * concentrator and the SGE data interrupts.
  1583. */
  1584. void t3_intr_disable(struct adapter *adapter)
  1585. {
  1586. t3_write_reg(adapter, A_PL_INT_ENABLE0, 0);
  1587. t3_read_reg(adapter, A_PL_INT_ENABLE0); /* flush */
  1588. adapter->slow_intr_mask = 0;
  1589. }
  1590. /**
  1591. * t3_intr_clear - clear all interrupts
  1592. * @adapter: the adapter whose interrupts should be cleared
  1593. *
  1594. * Clears all interrupts.
  1595. */
  1596. void t3_intr_clear(struct adapter *adapter)
  1597. {
  1598. static const unsigned int cause_reg_addr[] = {
  1599. A_SG_INT_CAUSE,
  1600. A_SG_RSPQ_FL_STATUS,
  1601. A_PCIX_INT_CAUSE,
  1602. A_MC7_INT_CAUSE,
  1603. A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR,
  1604. A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR,
  1605. A_CIM_HOST_INT_CAUSE,
  1606. A_TP_INT_CAUSE,
  1607. A_MC5_DB_INT_CAUSE,
  1608. A_ULPRX_INT_CAUSE,
  1609. A_ULPTX_INT_CAUSE,
  1610. A_CPL_INTR_CAUSE,
  1611. A_PM1_TX_INT_CAUSE,
  1612. A_PM1_RX_INT_CAUSE,
  1613. A_MPS_INT_CAUSE,
  1614. A_T3DBG_INT_CAUSE,
  1615. };
  1616. unsigned int i;
  1617. /* Clear PHY and MAC interrupts for each port. */
  1618. for_each_port(adapter, i)
  1619. t3_port_intr_clear(adapter, i);
  1620. for (i = 0; i < ARRAY_SIZE(cause_reg_addr); ++i)
  1621. t3_write_reg(adapter, cause_reg_addr[i], 0xffffffff);
  1622. if (is_pcie(adapter))
  1623. t3_write_reg(adapter, A_PCIE_PEX_ERR, 0xffffffff);
  1624. t3_write_reg(adapter, A_PL_INT_CAUSE0, 0xffffffff);
  1625. t3_read_reg(adapter, A_PL_INT_CAUSE0); /* flush */
  1626. }
  1627. /**
  1628. * t3_port_intr_enable - enable port-specific interrupts
  1629. * @adapter: associated adapter
  1630. * @idx: index of port whose interrupts should be enabled
  1631. *
  1632. * Enable port-specific (i.e., MAC and PHY) interrupts for the given
  1633. * adapter port.
  1634. */
  1635. void t3_port_intr_enable(struct adapter *adapter, int idx)
  1636. {
  1637. struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
  1638. t3_write_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx), XGM_INTR_MASK);
  1639. t3_read_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx)); /* flush */
  1640. phy->ops->intr_enable(phy);
  1641. }
  1642. /**
  1643. * t3_port_intr_disable - disable port-specific interrupts
  1644. * @adapter: associated adapter
  1645. * @idx: index of port whose interrupts should be disabled
  1646. *
  1647. * Disable port-specific (i.e., MAC and PHY) interrupts for the given
  1648. * adapter port.
  1649. */
  1650. void t3_port_intr_disable(struct adapter *adapter, int idx)
  1651. {
  1652. struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
  1653. t3_write_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx), 0);
  1654. t3_read_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx)); /* flush */
  1655. phy->ops->intr_disable(phy);
  1656. }
  1657. /**
  1658. * t3_port_intr_clear - clear port-specific interrupts
  1659. * @adapter: associated adapter
  1660. * @idx: index of port whose interrupts to clear
  1661. *
  1662. * Clear port-specific (i.e., MAC and PHY) interrupts for the given
  1663. * adapter port.
  1664. */
  1665. void t3_port_intr_clear(struct adapter *adapter, int idx)
  1666. {
  1667. struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
  1668. t3_write_reg(adapter, XGM_REG(A_XGM_INT_CAUSE, idx), 0xffffffff);
  1669. t3_read_reg(adapter, XGM_REG(A_XGM_INT_CAUSE, idx)); /* flush */
  1670. phy->ops->intr_clear(phy);
  1671. }
  1672. #define SG_CONTEXT_CMD_ATTEMPTS 100
  1673. /**
  1674. * t3_sge_write_context - write an SGE context
  1675. * @adapter: the adapter
  1676. * @id: the context id
  1677. * @type: the context type
  1678. *
  1679. * Program an SGE context with the values already loaded in the
  1680. * CONTEXT_DATA? registers.
  1681. */
  1682. static int t3_sge_write_context(struct adapter *adapter, unsigned int id,
  1683. unsigned int type)
  1684. {
  1685. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0xffffffff);
  1686. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0xffffffff);
  1687. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0xffffffff);
  1688. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0xffffffff);
  1689. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  1690. V_CONTEXT_CMD_OPCODE(1) | type | V_CONTEXT(id));
  1691. return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  1692. 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
  1693. }
  1694. /**
  1695. * t3_sge_init_ecntxt - initialize an SGE egress context
  1696. * @adapter: the adapter to configure
  1697. * @id: the context id
  1698. * @gts_enable: whether to enable GTS for the context
  1699. * @type: the egress context type
  1700. * @respq: associated response queue
  1701. * @base_addr: base address of queue
  1702. * @size: number of queue entries
  1703. * @token: uP token
  1704. * @gen: initial generation value for the context
  1705. * @cidx: consumer pointer
  1706. *
  1707. * Initialize an SGE egress context and make it ready for use. If the
  1708. * platform allows concurrent context operations, the caller is
  1709. * responsible for appropriate locking.
  1710. */
  1711. int t3_sge_init_ecntxt(struct adapter *adapter, unsigned int id, int gts_enable,
  1712. enum sge_context_type type, int respq, u64 base_addr,
  1713. unsigned int size, unsigned int token, int gen,
  1714. unsigned int cidx)
  1715. {
  1716. unsigned int credits = type == SGE_CNTXT_OFLD ? 0 : FW_WR_NUM;
  1717. if (base_addr & 0xfff) /* must be 4K aligned */
  1718. return -EINVAL;
  1719. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1720. return -EBUSY;
  1721. base_addr >>= 12;
  1722. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_EC_INDEX(cidx) |
  1723. V_EC_CREDITS(credits) | V_EC_GTS(gts_enable));
  1724. t3_write_reg(adapter, A_SG_CONTEXT_DATA1, V_EC_SIZE(size) |
  1725. V_EC_BASE_LO(base_addr & 0xffff));
  1726. base_addr >>= 16;
  1727. t3_write_reg(adapter, A_SG_CONTEXT_DATA2, base_addr);
  1728. base_addr >>= 32;
  1729. t3_write_reg(adapter, A_SG_CONTEXT_DATA3,
  1730. V_EC_BASE_HI(base_addr & 0xf) | V_EC_RESPQ(respq) |
  1731. V_EC_TYPE(type) | V_EC_GEN(gen) | V_EC_UP_TOKEN(token) |
  1732. F_EC_VALID);
  1733. return t3_sge_write_context(adapter, id, F_EGRESS);
  1734. }
  1735. /**
  1736. * t3_sge_init_flcntxt - initialize an SGE free-buffer list context
  1737. * @adapter: the adapter to configure
  1738. * @id: the context id
  1739. * @gts_enable: whether to enable GTS for the context
  1740. * @base_addr: base address of queue
  1741. * @size: number of queue entries
  1742. * @bsize: size of each buffer for this queue
  1743. * @cong_thres: threshold to signal congestion to upstream producers
  1744. * @gen: initial generation value for the context
  1745. * @cidx: consumer pointer
  1746. *
  1747. * Initialize an SGE free list context and make it ready for use. The
  1748. * caller is responsible for ensuring only one context operation occurs
  1749. * at a time.
  1750. */
  1751. int t3_sge_init_flcntxt(struct adapter *adapter, unsigned int id,
  1752. int gts_enable, u64 base_addr, unsigned int size,
  1753. unsigned int bsize, unsigned int cong_thres, int gen,
  1754. unsigned int cidx)
  1755. {
  1756. if (base_addr & 0xfff) /* must be 4K aligned */
  1757. return -EINVAL;
  1758. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1759. return -EBUSY;
  1760. base_addr >>= 12;
  1761. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, base_addr);
  1762. base_addr >>= 32;
  1763. t3_write_reg(adapter, A_SG_CONTEXT_DATA1,
  1764. V_FL_BASE_HI((u32) base_addr) |
  1765. V_FL_INDEX_LO(cidx & M_FL_INDEX_LO));
  1766. t3_write_reg(adapter, A_SG_CONTEXT_DATA2, V_FL_SIZE(size) |
  1767. V_FL_GEN(gen) | V_FL_INDEX_HI(cidx >> 12) |
  1768. V_FL_ENTRY_SIZE_LO(bsize & M_FL_ENTRY_SIZE_LO));
  1769. t3_write_reg(adapter, A_SG_CONTEXT_DATA3,
  1770. V_FL_ENTRY_SIZE_HI(bsize >> (32 - S_FL_ENTRY_SIZE_LO)) |
  1771. V_FL_CONG_THRES(cong_thres) | V_FL_GTS(gts_enable));
  1772. return t3_sge_write_context(adapter, id, F_FREELIST);
  1773. }
  1774. /**
  1775. * t3_sge_init_rspcntxt - initialize an SGE response queue context
  1776. * @adapter: the adapter to configure
  1777. * @id: the context id
  1778. * @irq_vec_idx: MSI-X interrupt vector index, 0 if no MSI-X, -1 if no IRQ
  1779. * @base_addr: base address of queue
  1780. * @size: number of queue entries
  1781. * @fl_thres: threshold for selecting the normal or jumbo free list
  1782. * @gen: initial generation value for the context
  1783. * @cidx: consumer pointer
  1784. *
  1785. * Initialize an SGE response queue context and make it ready for use.
  1786. * The caller is responsible for ensuring only one context operation
  1787. * occurs at a time.
  1788. */
  1789. int t3_sge_init_rspcntxt(struct adapter *adapter, unsigned int id,
  1790. int irq_vec_idx, u64 base_addr, unsigned int size,
  1791. unsigned int fl_thres, int gen, unsigned int cidx)
  1792. {
  1793. unsigned int intr = 0;
  1794. if (base_addr & 0xfff) /* must be 4K aligned */
  1795. return -EINVAL;
  1796. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1797. return -EBUSY;
  1798. base_addr >>= 12;
  1799. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size) |
  1800. V_CQ_INDEX(cidx));
  1801. t3_write_reg(adapter, A_SG_CONTEXT_DATA1, base_addr);
  1802. base_addr >>= 32;
  1803. if (irq_vec_idx >= 0)
  1804. intr = V_RQ_MSI_VEC(irq_vec_idx) | F_RQ_INTR_EN;
  1805. t3_write_reg(adapter, A_SG_CONTEXT_DATA2,
  1806. V_CQ_BASE_HI((u32) base_addr) | intr | V_RQ_GEN(gen));
  1807. t3_write_reg(adapter, A_SG_CONTEXT_DATA3, fl_thres);
  1808. return t3_sge_write_context(adapter, id, F_RESPONSEQ);
  1809. }
  1810. /**
  1811. * t3_sge_init_cqcntxt - initialize an SGE completion queue context
  1812. * @adapter: the adapter to configure
  1813. * @id: the context id
  1814. * @base_addr: base address of queue
  1815. * @size: number of queue entries
  1816. * @rspq: response queue for async notifications
  1817. * @ovfl_mode: CQ overflow mode
  1818. * @credits: completion queue credits
  1819. * @credit_thres: the credit threshold
  1820. *
  1821. * Initialize an SGE completion queue context and make it ready for use.
  1822. * The caller is responsible for ensuring only one context operation
  1823. * occurs at a time.
  1824. */
  1825. int t3_sge_init_cqcntxt(struct adapter *adapter, unsigned int id, u64 base_addr,
  1826. unsigned int size, int rspq, int ovfl_mode,
  1827. unsigned int credits, unsigned int credit_thres)
  1828. {
  1829. if (base_addr & 0xfff) /* must be 4K aligned */
  1830. return -EINVAL;
  1831. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1832. return -EBUSY;
  1833. base_addr >>= 12;
  1834. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size));
  1835. t3_write_reg(adapter, A_SG_CONTEXT_DATA1, base_addr);
  1836. base_addr >>= 32;
  1837. t3_write_reg(adapter, A_SG_CONTEXT_DATA2,
  1838. V_CQ_BASE_HI((u32) base_addr) | V_CQ_RSPQ(rspq) |
  1839. V_CQ_GEN(1) | V_CQ_OVERFLOW_MODE(ovfl_mode) |
  1840. V_CQ_ERR(ovfl_mode));
  1841. t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_CQ_CREDITS(credits) |
  1842. V_CQ_CREDIT_THRES(credit_thres));
  1843. return t3_sge_write_context(adapter, id, F_CQ);
  1844. }
  1845. /**
  1846. * t3_sge_enable_ecntxt - enable/disable an SGE egress context
  1847. * @adapter: the adapter
  1848. * @id: the egress context id
  1849. * @enable: enable (1) or disable (0) the context
  1850. *
  1851. * Enable or disable an SGE egress context. The caller is responsible for
  1852. * ensuring only one context operation occurs at a time.
  1853. */
  1854. int t3_sge_enable_ecntxt(struct adapter *adapter, unsigned int id, int enable)
  1855. {
  1856. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1857. return -EBUSY;
  1858. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0);
  1859. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
  1860. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
  1861. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, F_EC_VALID);
  1862. t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_EC_VALID(enable));
  1863. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  1864. V_CONTEXT_CMD_OPCODE(1) | F_EGRESS | V_CONTEXT(id));
  1865. return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  1866. 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
  1867. }
  1868. /**
  1869. * t3_sge_disable_fl - disable an SGE free-buffer list
  1870. * @adapter: the adapter
  1871. * @id: the free list context id
  1872. *
  1873. * Disable an SGE free-buffer list. The caller is responsible for
  1874. * ensuring only one context operation occurs at a time.
  1875. */
  1876. int t3_sge_disable_fl(struct adapter *adapter, unsigned int id)
  1877. {
  1878. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1879. return -EBUSY;
  1880. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0);
  1881. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
  1882. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, V_FL_SIZE(M_FL_SIZE));
  1883. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
  1884. t3_write_reg(adapter, A_SG_CONTEXT_DATA2, 0);
  1885. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  1886. V_CONTEXT_CMD_OPCODE(1) | F_FREELIST | V_CONTEXT(id));
  1887. return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  1888. 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
  1889. }
  1890. /**
  1891. * t3_sge_disable_rspcntxt - disable an SGE response queue
  1892. * @adapter: the adapter
  1893. * @id: the response queue context id
  1894. *
  1895. * Disable an SGE response queue. The caller is responsible for
  1896. * ensuring only one context operation occurs at a time.
  1897. */
  1898. int t3_sge_disable_rspcntxt(struct adapter *adapter, unsigned int id)
  1899. {
  1900. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1901. return -EBUSY;
  1902. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE));
  1903. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
  1904. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
  1905. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
  1906. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0);
  1907. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  1908. V_CONTEXT_CMD_OPCODE(1) | F_RESPONSEQ | V_CONTEXT(id));
  1909. return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  1910. 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
  1911. }
  1912. /**
  1913. * t3_sge_disable_cqcntxt - disable an SGE completion queue
  1914. * @adapter: the adapter
  1915. * @id: the completion queue context id
  1916. *
  1917. * Disable an SGE completion queue. The caller is responsible for
  1918. * ensuring only one context operation occurs at a time.
  1919. */
  1920. int t3_sge_disable_cqcntxt(struct adapter *adapter, unsigned int id)
  1921. {
  1922. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1923. return -EBUSY;
  1924. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE));
  1925. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
  1926. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
  1927. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
  1928. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0);
  1929. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  1930. V_CONTEXT_CMD_OPCODE(1) | F_CQ | V_CONTEXT(id));
  1931. return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  1932. 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
  1933. }
  1934. /**
  1935. * t3_sge_cqcntxt_op - perform an operation on a completion queue context
  1936. * @adapter: the adapter
  1937. * @id: the context id
  1938. * @op: the operation to perform
  1939. *
  1940. * Perform the selected operation on an SGE completion queue context.
  1941. * The caller is responsible for ensuring only one context operation
  1942. * occurs at a time.
  1943. */
  1944. int t3_sge_cqcntxt_op(struct adapter *adapter, unsigned int id, unsigned int op,
  1945. unsigned int credits)
  1946. {
  1947. u32 val;
  1948. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1949. return -EBUSY;
  1950. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, credits << 16);
  1951. t3_write_reg(adapter, A_SG_CONTEXT_CMD, V_CONTEXT_CMD_OPCODE(op) |
  1952. V_CONTEXT(id) | F_CQ);
  1953. if (t3_wait_op_done_val(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  1954. 0, SG_CONTEXT_CMD_ATTEMPTS, 1, &val))
  1955. return -EIO;
  1956. if (op >= 2 && op < 7) {
  1957. if (adapter->params.rev > 0)
  1958. return G_CQ_INDEX(val);
  1959. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  1960. V_CONTEXT_CMD_OPCODE(0) | F_CQ | V_CONTEXT(id));
  1961. if (t3_wait_op_done(adapter, A_SG_CONTEXT_CMD,
  1962. F_CONTEXT_CMD_BUSY, 0,
  1963. SG_CONTEXT_CMD_ATTEMPTS, 1))
  1964. return -EIO;
  1965. return G_CQ_INDEX(t3_read_reg(adapter, A_SG_CONTEXT_DATA0));
  1966. }
  1967. return 0;
  1968. }
  1969. /**
  1970. * t3_sge_read_context - read an SGE context
  1971. * @type: the context type
  1972. * @adapter: the adapter
  1973. * @id: the context id
  1974. * @data: holds the retrieved context
  1975. *
  1976. * Read an SGE egress context. The caller is responsible for ensuring
  1977. * only one context operation occurs at a time.
  1978. */
  1979. static int t3_sge_read_context(unsigned int type, struct adapter *adapter,
  1980. unsigned int id, u32 data[4])
  1981. {
  1982. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1983. return -EBUSY;
  1984. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  1985. V_CONTEXT_CMD_OPCODE(0) | type | V_CONTEXT(id));
  1986. if (t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, 0,
  1987. SG_CONTEXT_CMD_ATTEMPTS, 1))
  1988. return -EIO;
  1989. data[0] = t3_read_reg(adapter, A_SG_CONTEXT_DATA0);
  1990. data[1] = t3_read_reg(adapter, A_SG_CONTEXT_DATA1);
  1991. data[2] = t3_read_reg(adapter, A_SG_CONTEXT_DATA2);
  1992. data[3] = t3_read_reg(adapter, A_SG_CONTEXT_DATA3);
  1993. return 0;
  1994. }
  1995. /**
  1996. * t3_sge_read_ecntxt - read an SGE egress context
  1997. * @adapter: the adapter
  1998. * @id: the context id
  1999. * @data: holds the retrieved context
  2000. *
  2001. * Read an SGE egress context. The caller is responsible for ensuring
  2002. * only one context operation occurs at a time.
  2003. */
  2004. int t3_sge_read_ecntxt(struct adapter *adapter, unsigned int id, u32 data[4])
  2005. {
  2006. if (id >= 65536)
  2007. return -EINVAL;
  2008. return t3_sge_read_context(F_EGRESS, adapter, id, data);
  2009. }
  2010. /**
  2011. * t3_sge_read_cq - read an SGE CQ context
  2012. * @adapter: the adapter
  2013. * @id: the context id
  2014. * @data: holds the retrieved context
  2015. *
  2016. * Read an SGE CQ context. The caller is responsible for ensuring
  2017. * only one context operation occurs at a time.
  2018. */
  2019. int t3_sge_read_cq(struct adapter *adapter, unsigned int id, u32 data[4])
  2020. {
  2021. if (id >= 65536)
  2022. return -EINVAL;
  2023. return t3_sge_read_context(F_CQ, adapter, id, data);
  2024. }
  2025. /**
  2026. * t3_sge_read_fl - read an SGE free-list context
  2027. * @adapter: the adapter
  2028. * @id: the context id
  2029. * @data: holds the retrieved context
  2030. *
  2031. * Read an SGE free-list context. The caller is responsible for ensuring
  2032. * only one context operation occurs at a time.
  2033. */
  2034. int t3_sge_read_fl(struct adapter *adapter, unsigned int id, u32 data[4])
  2035. {
  2036. if (id >= SGE_QSETS * 2)
  2037. return -EINVAL;
  2038. return t3_sge_read_context(F_FREELIST, adapter, id, data);
  2039. }
  2040. /**
  2041. * t3_sge_read_rspq - read an SGE response queue context
  2042. * @adapter: the adapter
  2043. * @id: the context id
  2044. * @data: holds the retrieved context
  2045. *
  2046. * Read an SGE response queue context. The caller is responsible for
  2047. * ensuring only one context operation occurs at a time.
  2048. */
  2049. int t3_sge_read_rspq(struct adapter *adapter, unsigned int id, u32 data[4])
  2050. {
  2051. if (id >= SGE_QSETS)
  2052. return -EINVAL;
  2053. return t3_sge_read_context(F_RESPONSEQ, adapter, id, data);
  2054. }
  2055. /**
  2056. * t3_config_rss - configure Rx packet steering
  2057. * @adapter: the adapter
  2058. * @rss_config: RSS settings (written to TP_RSS_CONFIG)
  2059. * @cpus: values for the CPU lookup table (0xff terminated)
  2060. * @rspq: values for the response queue lookup table (0xffff terminated)
  2061. *
  2062. * Programs the receive packet steering logic. @cpus and @rspq provide
  2063. * the values for the CPU and response queue lookup tables. If they
  2064. * provide fewer values than the size of the tables the supplied values
  2065. * are used repeatedly until the tables are fully populated.
  2066. */
  2067. void t3_config_rss(struct adapter *adapter, unsigned int rss_config,
  2068. const u8 * cpus, const u16 *rspq)
  2069. {
  2070. int i, j, cpu_idx = 0, q_idx = 0;
  2071. if (cpus)
  2072. for (i = 0; i < RSS_TABLE_SIZE; ++i) {
  2073. u32 val = i << 16;
  2074. for (j = 0; j < 2; ++j) {
  2075. val |= (cpus[cpu_idx++] & 0x3f) << (8 * j);
  2076. if (cpus[cpu_idx] == 0xff)
  2077. cpu_idx = 0;
  2078. }
  2079. t3_write_reg(adapter, A_TP_RSS_LKP_TABLE, val);
  2080. }
  2081. if (rspq)
  2082. for (i = 0; i < RSS_TABLE_SIZE; ++i) {
  2083. t3_write_reg(adapter, A_TP_RSS_MAP_TABLE,
  2084. (i << 16) | rspq[q_idx++]);
  2085. if (rspq[q_idx] == 0xffff)
  2086. q_idx = 0;
  2087. }
  2088. t3_write_reg(adapter, A_TP_RSS_CONFIG, rss_config);
  2089. }
  2090. /**
  2091. * t3_read_rss - read the contents of the RSS tables
  2092. * @adapter: the adapter
  2093. * @lkup: holds the contents of the RSS lookup table
  2094. * @map: holds the contents of the RSS map table
  2095. *
  2096. * Reads the contents of the receive packet steering tables.
  2097. */
  2098. int t3_read_rss(struct adapter *adapter, u8 * lkup, u16 *map)
  2099. {
  2100. int i;
  2101. u32 val;
  2102. if (lkup)
  2103. for (i = 0; i < RSS_TABLE_SIZE; ++i) {
  2104. t3_write_reg(adapter, A_TP_RSS_LKP_TABLE,
  2105. 0xffff0000 | i);
  2106. val = t3_read_reg(adapter, A_TP_RSS_LKP_TABLE);
  2107. if (!(val & 0x80000000))
  2108. return -EAGAIN;
  2109. *lkup++ = val;
  2110. *lkup++ = (val >> 8);
  2111. }
  2112. if (map)
  2113. for (i = 0; i < RSS_TABLE_SIZE; ++i) {
  2114. t3_write_reg(adapter, A_TP_RSS_MAP_TABLE,
  2115. 0xffff0000 | i);
  2116. val = t3_read_reg(adapter, A_TP_RSS_MAP_TABLE);
  2117. if (!(val & 0x80000000))
  2118. return -EAGAIN;
  2119. *map++ = val;
  2120. }
  2121. return 0;
  2122. }
  2123. /**
  2124. * t3_tp_set_offload_mode - put TP in NIC/offload mode
  2125. * @adap: the adapter
  2126. * @enable: 1 to select offload mode, 0 for regular NIC
  2127. *
  2128. * Switches TP to NIC/offload mode.
  2129. */
  2130. void t3_tp_set_offload_mode(struct adapter *adap, int enable)
  2131. {
  2132. if (is_offload(adap) || !enable)
  2133. t3_set_reg_field(adap, A_TP_IN_CONFIG, F_NICMODE,
  2134. V_NICMODE(!enable));
  2135. }
  2136. /**
  2137. * pm_num_pages - calculate the number of pages of the payload memory
  2138. * @mem_size: the size of the payload memory
  2139. * @pg_size: the size of each payload memory page
  2140. *
  2141. * Calculate the number of pages, each of the given size, that fit in a
  2142. * memory of the specified size, respecting the HW requirement that the
  2143. * number of pages must be a multiple of 24.
  2144. */
  2145. static inline unsigned int pm_num_pages(unsigned int mem_size,
  2146. unsigned int pg_size)
  2147. {
  2148. unsigned int n = mem_size / pg_size;
  2149. return n - n % 24;
  2150. }
  2151. #define mem_region(adap, start, size, reg) \
  2152. t3_write_reg((adap), A_ ## reg, (start)); \
  2153. start += size
  2154. /*
  2155. * partition_mem - partition memory and configure TP memory settings
  2156. * @adap: the adapter
  2157. * @p: the TP parameters
  2158. *
  2159. * Partitions context and payload memory and configures TP's memory
  2160. * registers.
  2161. */
  2162. static void partition_mem(struct adapter *adap, const struct tp_params *p)
  2163. {
  2164. unsigned int m, pstructs, tids = t3_mc5_size(&adap->mc5);
  2165. unsigned int timers = 0, timers_shift = 22;
  2166. if (adap->params.rev > 0) {
  2167. if (tids <= 16 * 1024) {
  2168. timers = 1;
  2169. timers_shift = 16;
  2170. } else if (tids <= 64 * 1024) {
  2171. timers = 2;
  2172. timers_shift = 18;
  2173. } else if (tids <= 256 * 1024) {
  2174. timers = 3;
  2175. timers_shift = 20;
  2176. }
  2177. }
  2178. t3_write_reg(adap, A_TP_PMM_SIZE,
  2179. p->chan_rx_size | (p->chan_tx_size >> 16));
  2180. t3_write_reg(adap, A_TP_PMM_TX_BASE, 0);
  2181. t3_write_reg(adap, A_TP_PMM_TX_PAGE_SIZE, p->tx_pg_size);
  2182. t3_write_reg(adap, A_TP_PMM_TX_MAX_PAGE, p->tx_num_pgs);
  2183. t3_set_reg_field(adap, A_TP_PARA_REG3, V_TXDATAACKIDX(M_TXDATAACKIDX),
  2184. V_TXDATAACKIDX(fls(p->tx_pg_size) - 12));
  2185. t3_write_reg(adap, A_TP_PMM_RX_BASE, 0);
  2186. t3_write_reg(adap, A_TP_PMM_RX_PAGE_SIZE, p->rx_pg_size);
  2187. t3_write_reg(adap, A_TP_PMM_RX_MAX_PAGE, p->rx_num_pgs);
  2188. pstructs = p->rx_num_pgs + p->tx_num_pgs;
  2189. /* Add a bit of headroom and make multiple of 24 */
  2190. pstructs += 48;
  2191. pstructs -= pstructs % 24;
  2192. t3_write_reg(adap, A_TP_CMM_MM_MAX_PSTRUCT, pstructs);
  2193. m = tids * TCB_SIZE;
  2194. mem_region(adap, m, (64 << 10) * 64, SG_EGR_CNTX_BADDR);
  2195. mem_region(adap, m, (64 << 10) * 64, SG_CQ_CONTEXT_BADDR);
  2196. t3_write_reg(adap, A_TP_CMM_TIMER_BASE, V_CMTIMERMAXNUM(timers) | m);
  2197. m += ((p->ntimer_qs - 1) << timers_shift) + (1 << 22);
  2198. mem_region(adap, m, pstructs * 64, TP_CMM_MM_BASE);
  2199. mem_region(adap, m, 64 * (pstructs / 24), TP_CMM_MM_PS_FLST_BASE);
  2200. mem_region(adap, m, 64 * (p->rx_num_pgs / 24), TP_CMM_MM_RX_FLST_BASE);
  2201. mem_region(adap, m, 64 * (p->tx_num_pgs / 24), TP_CMM_MM_TX_FLST_BASE);
  2202. m = (m + 4095) & ~0xfff;
  2203. t3_write_reg(adap, A_CIM_SDRAM_BASE_ADDR, m);
  2204. t3_write_reg(adap, A_CIM_SDRAM_ADDR_SIZE, p->cm_size - m);
  2205. tids = (p->cm_size - m - (3 << 20)) / 3072 - 32;
  2206. m = t3_mc5_size(&adap->mc5) - adap->params.mc5.nservers -
  2207. adap->params.mc5.nfilters - adap->params.mc5.nroutes;
  2208. if (tids < m)
  2209. adap->params.mc5.nservers += m - tids;
  2210. }
  2211. static inline void tp_wr_indirect(struct adapter *adap, unsigned int addr,
  2212. u32 val)
  2213. {
  2214. t3_write_reg(adap, A_TP_PIO_ADDR, addr);
  2215. t3_write_reg(adap, A_TP_PIO_DATA, val);
  2216. }
  2217. static void tp_config(struct adapter *adap, const struct tp_params *p)
  2218. {
  2219. t3_write_reg(adap, A_TP_GLOBAL_CONFIG, F_TXPACINGENABLE | F_PATHMTU |
  2220. F_IPCHECKSUMOFFLOAD | F_UDPCHECKSUMOFFLOAD |
  2221. F_TCPCHECKSUMOFFLOAD | V_IPTTL(64));
  2222. t3_write_reg(adap, A_TP_TCP_OPTIONS, V_MTUDEFAULT(576) |
  2223. F_MTUENABLE | V_WINDOWSCALEMODE(1) |
  2224. V_TIMESTAMPSMODE(0) | V_SACKMODE(1) | V_SACKRX(1));
  2225. t3_write_reg(adap, A_TP_DACK_CONFIG, V_AUTOSTATE3(1) |
  2226. V_AUTOSTATE2(1) | V_AUTOSTATE1(0) |
  2227. V_BYTETHRESHOLD(16384) | V_MSSTHRESHOLD(2) |
  2228. F_AUTOCAREFUL | F_AUTOENABLE | V_DACK_MODE(1));
  2229. t3_set_reg_field(adap, A_TP_IN_CONFIG, F_IPV6ENABLE | F_NICMODE,
  2230. F_IPV6ENABLE | F_NICMODE);
  2231. t3_write_reg(adap, A_TP_TX_RESOURCE_LIMIT, 0x18141814);
  2232. t3_write_reg(adap, A_TP_PARA_REG4, 0x5050105);
  2233. t3_set_reg_field(adap, A_TP_PARA_REG6, 0,
  2234. adap->params.rev > 0 ? F_ENABLEESND :
  2235. F_T3A_ENABLEESND);
  2236. t3_set_reg_field(adap, A_TP_PC_CONFIG,
  2237. F_ENABLEEPCMDAFULL,
  2238. F_ENABLEOCSPIFULL |F_TXDEFERENABLE | F_HEARBEATDACK |
  2239. F_TXCONGESTIONMODE | F_RXCONGESTIONMODE);
  2240. t3_set_reg_field(adap, A_TP_PC_CONFIG2, F_CHDRAFULL, 0);
  2241. t3_write_reg(adap, A_TP_PROXY_FLOW_CNTL, 1080);
  2242. t3_write_reg(adap, A_TP_PROXY_FLOW_CNTL, 1000);
  2243. if (adap->params.rev > 0) {
  2244. tp_wr_indirect(adap, A_TP_EGRESS_CONFIG, F_REWRITEFORCETOSIZE);
  2245. t3_set_reg_field(adap, A_TP_PARA_REG3, F_TXPACEAUTO,
  2246. F_TXPACEAUTO);
  2247. t3_set_reg_field(adap, A_TP_PC_CONFIG, F_LOCKTID, F_LOCKTID);
  2248. t3_set_reg_field(adap, A_TP_PARA_REG3, 0, F_TXPACEAUTOSTRICT);
  2249. } else
  2250. t3_set_reg_field(adap, A_TP_PARA_REG3, 0, F_TXPACEFIXED);
  2251. t3_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT1, 0);
  2252. t3_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT0, 0);
  2253. t3_write_reg(adap, A_TP_MOD_CHANNEL_WEIGHT, 0);
  2254. t3_write_reg(adap, A_TP_MOD_RATE_LIMIT, 0xf2200000);
  2255. }
  2256. /* Desired TP timer resolution in usec */
  2257. #define TP_TMR_RES 50
  2258. /* TCP timer values in ms */
  2259. #define TP_DACK_TIMER 50
  2260. #define TP_RTO_MIN 250
  2261. /**
  2262. * tp_set_timers - set TP timing parameters
  2263. * @adap: the adapter to set
  2264. * @core_clk: the core clock frequency in Hz
  2265. *
  2266. * Set TP's timing parameters, such as the various timer resolutions and
  2267. * the TCP timer values.
  2268. */
  2269. static void tp_set_timers(struct adapter *adap, unsigned int core_clk)
  2270. {
  2271. unsigned int tre = fls(core_clk / (1000000 / TP_TMR_RES)) - 1;
  2272. unsigned int dack_re = fls(core_clk / 5000) - 1; /* 200us */
  2273. unsigned int tstamp_re = fls(core_clk / 1000); /* 1ms, at least */
  2274. unsigned int tps = core_clk >> tre;
  2275. t3_write_reg(adap, A_TP_TIMER_RESOLUTION, V_TIMERRESOLUTION(tre) |
  2276. V_DELAYEDACKRESOLUTION(dack_re) |
  2277. V_TIMESTAMPRESOLUTION(tstamp_re));
  2278. t3_write_reg(adap, A_TP_DACK_TIMER,
  2279. (core_clk >> dack_re) / (1000 / TP_DACK_TIMER));
  2280. t3_write_reg(adap, A_TP_TCP_BACKOFF_REG0, 0x3020100);
  2281. t3_write_reg(adap, A_TP_TCP_BACKOFF_REG1, 0x7060504);
  2282. t3_write_reg(adap, A_TP_TCP_BACKOFF_REG2, 0xb0a0908);
  2283. t3_write_reg(adap, A_TP_TCP_BACKOFF_REG3, 0xf0e0d0c);
  2284. t3_write_reg(adap, A_TP_SHIFT_CNT, V_SYNSHIFTMAX(6) |
  2285. V_RXTSHIFTMAXR1(4) | V_RXTSHIFTMAXR2(15) |
  2286. V_PERSHIFTBACKOFFMAX(8) | V_PERSHIFTMAX(8) |
  2287. V_KEEPALIVEMAX(9));
  2288. #define SECONDS * tps
  2289. t3_write_reg(adap, A_TP_MSL, adap->params.rev > 0 ? 0 : 2 SECONDS);
  2290. t3_write_reg(adap, A_TP_RXT_MIN, tps / (1000 / TP_RTO_MIN));
  2291. t3_write_reg(adap, A_TP_RXT_MAX, 64 SECONDS);
  2292. t3_write_reg(adap, A_TP_PERS_MIN, 5 SECONDS);
  2293. t3_write_reg(adap, A_TP_PERS_MAX, 64 SECONDS);
  2294. t3_write_reg(adap, A_TP_KEEP_IDLE, 7200 SECONDS);
  2295. t3_write_reg(adap, A_TP_KEEP_INTVL, 75 SECONDS);
  2296. t3_write_reg(adap, A_TP_INIT_SRTT, 3 SECONDS);
  2297. t3_write_reg(adap, A_TP_FINWAIT2_TIMER, 600 SECONDS);
  2298. #undef SECONDS
  2299. }
  2300. /**
  2301. * t3_tp_set_coalescing_size - set receive coalescing size
  2302. * @adap: the adapter
  2303. * @size: the receive coalescing size
  2304. * @psh: whether a set PSH bit should deliver coalesced data
  2305. *
  2306. * Set the receive coalescing size and PSH bit handling.
  2307. */
  2308. int t3_tp_set_coalescing_size(struct adapter *adap, unsigned int size, int psh)
  2309. {
  2310. u32 val;
  2311. if (size > MAX_RX_COALESCING_LEN)
  2312. return -EINVAL;
  2313. val = t3_read_reg(adap, A_TP_PARA_REG3);
  2314. val &= ~(F_RXCOALESCEENABLE | F_RXCOALESCEPSHEN);
  2315. if (size) {
  2316. val |= F_RXCOALESCEENABLE;
  2317. if (psh)
  2318. val |= F_RXCOALESCEPSHEN;
  2319. size = min(MAX_RX_COALESCING_LEN, size);
  2320. t3_write_reg(adap, A_TP_PARA_REG2, V_RXCOALESCESIZE(size) |
  2321. V_MAXRXDATA(MAX_RX_COALESCING_LEN));
  2322. }
  2323. t3_write_reg(adap, A_TP_PARA_REG3, val);
  2324. return 0;
  2325. }
  2326. /**
  2327. * t3_tp_set_max_rxsize - set the max receive size
  2328. * @adap: the adapter
  2329. * @size: the max receive size
  2330. *
  2331. * Set TP's max receive size. This is the limit that applies when
  2332. * receive coalescing is disabled.
  2333. */
  2334. void t3_tp_set_max_rxsize(struct adapter *adap, unsigned int size)
  2335. {
  2336. t3_write_reg(adap, A_TP_PARA_REG7,
  2337. V_PMMAXXFERLEN0(size) | V_PMMAXXFERLEN1(size));
  2338. }
  2339. static void __devinit init_mtus(unsigned short mtus[])
  2340. {
  2341. /*
  2342. * See draft-mathis-plpmtud-00.txt for the values. The min is 88 so
  2343. * it can accomodate max size TCP/IP headers when SACK and timestamps
  2344. * are enabled and still have at least 8 bytes of payload.
  2345. */
  2346. mtus[1] = 88;
  2347. mtus[1] = 88;
  2348. mtus[2] = 256;
  2349. mtus[3] = 512;
  2350. mtus[4] = 576;
  2351. mtus[5] = 1024;
  2352. mtus[6] = 1280;
  2353. mtus[7] = 1492;
  2354. mtus[8] = 1500;
  2355. mtus[9] = 2002;
  2356. mtus[10] = 2048;
  2357. mtus[11] = 4096;
  2358. mtus[12] = 4352;
  2359. mtus[13] = 8192;
  2360. mtus[14] = 9000;
  2361. mtus[15] = 9600;
  2362. }
  2363. /*
  2364. * Initial congestion control parameters.
  2365. */
  2366. static void __devinit init_cong_ctrl(unsigned short *a, unsigned short *b)
  2367. {
  2368. a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
  2369. a[9] = 2;
  2370. a[10] = 3;
  2371. a[11] = 4;
  2372. a[12] = 5;
  2373. a[13] = 6;
  2374. a[14] = 7;
  2375. a[15] = 8;
  2376. a[16] = 9;
  2377. a[17] = 10;
  2378. a[18] = 14;
  2379. a[19] = 17;
  2380. a[20] = 21;
  2381. a[21] = 25;
  2382. a[22] = 30;
  2383. a[23] = 35;
  2384. a[24] = 45;
  2385. a[25] = 60;
  2386. a[26] = 80;
  2387. a[27] = 100;
  2388. a[28] = 200;
  2389. a[29] = 300;
  2390. a[30] = 400;
  2391. a[31] = 500;
  2392. b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
  2393. b[9] = b[10] = 1;
  2394. b[11] = b[12] = 2;
  2395. b[13] = b[14] = b[15] = b[16] = 3;
  2396. b[17] = b[18] = b[19] = b[20] = b[21] = 4;
  2397. b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
  2398. b[28] = b[29] = 6;
  2399. b[30] = b[31] = 7;
  2400. }
  2401. /* The minimum additive increment value for the congestion control table */
  2402. #define CC_MIN_INCR 2U
  2403. /**
  2404. * t3_load_mtus - write the MTU and congestion control HW tables
  2405. * @adap: the adapter
  2406. * @mtus: the unrestricted values for the MTU table
  2407. * @alphs: the values for the congestion control alpha parameter
  2408. * @beta: the values for the congestion control beta parameter
  2409. * @mtu_cap: the maximum permitted effective MTU
  2410. *
  2411. * Write the MTU table with the supplied MTUs capping each at &mtu_cap.
  2412. * Update the high-speed congestion control table with the supplied alpha,
  2413. * beta, and MTUs.
  2414. */
  2415. void t3_load_mtus(struct adapter *adap, unsigned short mtus[NMTUS],
  2416. unsigned short alpha[NCCTRL_WIN],
  2417. unsigned short beta[NCCTRL_WIN], unsigned short mtu_cap)
  2418. {
  2419. static const unsigned int avg_pkts[NCCTRL_WIN] = {
  2420. 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
  2421. 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
  2422. 28672, 40960, 57344, 81920, 114688, 163840, 229376
  2423. };
  2424. unsigned int i, w;
  2425. for (i = 0; i < NMTUS; ++i) {
  2426. unsigned int mtu = min(mtus[i], mtu_cap);
  2427. unsigned int log2 = fls(mtu);
  2428. if (!(mtu & ((1 << log2) >> 2))) /* round */
  2429. log2--;
  2430. t3_write_reg(adap, A_TP_MTU_TABLE,
  2431. (i << 24) | (log2 << 16) | mtu);
  2432. for (w = 0; w < NCCTRL_WIN; ++w) {
  2433. unsigned int inc;
  2434. inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
  2435. CC_MIN_INCR);
  2436. t3_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
  2437. (w << 16) | (beta[w] << 13) | inc);
  2438. }
  2439. }
  2440. }
  2441. /**
  2442. * t3_read_hw_mtus - returns the values in the HW MTU table
  2443. * @adap: the adapter
  2444. * @mtus: where to store the HW MTU values
  2445. *
  2446. * Reads the HW MTU table.
  2447. */
  2448. void t3_read_hw_mtus(struct adapter *adap, unsigned short mtus[NMTUS])
  2449. {
  2450. int i;
  2451. for (i = 0; i < NMTUS; ++i) {
  2452. unsigned int val;
  2453. t3_write_reg(adap, A_TP_MTU_TABLE, 0xff000000 | i);
  2454. val = t3_read_reg(adap, A_TP_MTU_TABLE);
  2455. mtus[i] = val & 0x3fff;
  2456. }
  2457. }
  2458. /**
  2459. * t3_get_cong_cntl_tab - reads the congestion control table
  2460. * @adap: the adapter
  2461. * @incr: where to store the alpha values
  2462. *
  2463. * Reads the additive increments programmed into the HW congestion
  2464. * control table.
  2465. */
  2466. void t3_get_cong_cntl_tab(struct adapter *adap,
  2467. unsigned short incr[NMTUS][NCCTRL_WIN])
  2468. {
  2469. unsigned int mtu, w;
  2470. for (mtu = 0; mtu < NMTUS; ++mtu)
  2471. for (w = 0; w < NCCTRL_WIN; ++w) {
  2472. t3_write_reg(adap, A_TP_CCTRL_TABLE,
  2473. 0xffff0000 | (mtu << 5) | w);
  2474. incr[mtu][w] = t3_read_reg(adap, A_TP_CCTRL_TABLE) &
  2475. 0x1fff;
  2476. }
  2477. }
  2478. /**
  2479. * t3_tp_get_mib_stats - read TP's MIB counters
  2480. * @adap: the adapter
  2481. * @tps: holds the returned counter values
  2482. *
  2483. * Returns the values of TP's MIB counters.
  2484. */
  2485. void t3_tp_get_mib_stats(struct adapter *adap, struct tp_mib_stats *tps)
  2486. {
  2487. t3_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_RDATA, (u32 *) tps,
  2488. sizeof(*tps) / sizeof(u32), 0);
  2489. }
  2490. #define ulp_region(adap, name, start, len) \
  2491. t3_write_reg((adap), A_ULPRX_ ## name ## _LLIMIT, (start)); \
  2492. t3_write_reg((adap), A_ULPRX_ ## name ## _ULIMIT, \
  2493. (start) + (len) - 1); \
  2494. start += len
  2495. #define ulptx_region(adap, name, start, len) \
  2496. t3_write_reg((adap), A_ULPTX_ ## name ## _LLIMIT, (start)); \
  2497. t3_write_reg((adap), A_ULPTX_ ## name ## _ULIMIT, \
  2498. (start) + (len) - 1)
  2499. static void ulp_config(struct adapter *adap, const struct tp_params *p)
  2500. {
  2501. unsigned int m = p->chan_rx_size;
  2502. ulp_region(adap, ISCSI, m, p->chan_rx_size / 8);
  2503. ulp_region(adap, TDDP, m, p->chan_rx_size / 8);
  2504. ulptx_region(adap, TPT, m, p->chan_rx_size / 4);
  2505. ulp_region(adap, STAG, m, p->chan_rx_size / 4);
  2506. ulp_region(adap, RQ, m, p->chan_rx_size / 4);
  2507. ulptx_region(adap, PBL, m, p->chan_rx_size / 4);
  2508. ulp_region(adap, PBL, m, p->chan_rx_size / 4);
  2509. t3_write_reg(adap, A_ULPRX_TDDP_TAGMASK, 0xffffffff);
  2510. }
  2511. /**
  2512. * t3_set_proto_sram - set the contents of the protocol sram
  2513. * @adapter: the adapter
  2514. * @data: the protocol image
  2515. *
  2516. * Write the contents of the protocol SRAM.
  2517. */
  2518. int t3_set_proto_sram(struct adapter *adap, u8 *data)
  2519. {
  2520. int i;
  2521. u32 *buf = (u32 *)data;
  2522. for (i = 0; i < PROTO_SRAM_LINES; i++) {
  2523. t3_write_reg(adap, A_TP_EMBED_OP_FIELD5, cpu_to_be32(*buf++));
  2524. t3_write_reg(adap, A_TP_EMBED_OP_FIELD4, cpu_to_be32(*buf++));
  2525. t3_write_reg(adap, A_TP_EMBED_OP_FIELD3, cpu_to_be32(*buf++));
  2526. t3_write_reg(adap, A_TP_EMBED_OP_FIELD2, cpu_to_be32(*buf++));
  2527. t3_write_reg(adap, A_TP_EMBED_OP_FIELD1, cpu_to_be32(*buf++));
  2528. t3_write_reg(adap, A_TP_EMBED_OP_FIELD0, i << 1 | 1 << 31);
  2529. if (t3_wait_op_done(adap, A_TP_EMBED_OP_FIELD0, 1, 1, 5, 1))
  2530. return -EIO;
  2531. }
  2532. t3_write_reg(adap, A_TP_EMBED_OP_FIELD0, 0);
  2533. return 0;
  2534. }
  2535. void t3_config_trace_filter(struct adapter *adapter,
  2536. const struct trace_params *tp, int filter_index,
  2537. int invert, int enable)
  2538. {
  2539. u32 addr, key[4], mask[4];
  2540. key[0] = tp->sport | (tp->sip << 16);
  2541. key[1] = (tp->sip >> 16) | (tp->dport << 16);
  2542. key[2] = tp->dip;
  2543. key[3] = tp->proto | (tp->vlan << 8) | (tp->intf << 20);
  2544. mask[0] = tp->sport_mask | (tp->sip_mask << 16);
  2545. mask[1] = (tp->sip_mask >> 16) | (tp->dport_mask << 16);
  2546. mask[2] = tp->dip_mask;
  2547. mask[3] = tp->proto_mask | (tp->vlan_mask << 8) | (tp->intf_mask << 20);
  2548. if (invert)
  2549. key[3] |= (1 << 29);
  2550. if (enable)
  2551. key[3] |= (1 << 28);
  2552. addr = filter_index ? A_TP_RX_TRC_KEY0 : A_TP_TX_TRC_KEY0;
  2553. tp_wr_indirect(adapter, addr++, key[0]);
  2554. tp_wr_indirect(adapter, addr++, mask[0]);
  2555. tp_wr_indirect(adapter, addr++, key[1]);
  2556. tp_wr_indirect(adapter, addr++, mask[1]);
  2557. tp_wr_indirect(adapter, addr++, key[2]);
  2558. tp_wr_indirect(adapter, addr++, mask[2]);
  2559. tp_wr_indirect(adapter, addr++, key[3]);
  2560. tp_wr_indirect(adapter, addr, mask[3]);
  2561. t3_read_reg(adapter, A_TP_PIO_DATA);
  2562. }
  2563. /**
  2564. * t3_config_sched - configure a HW traffic scheduler
  2565. * @adap: the adapter
  2566. * @kbps: target rate in Kbps
  2567. * @sched: the scheduler index
  2568. *
  2569. * Configure a HW scheduler for the target rate
  2570. */
  2571. int t3_config_sched(struct adapter *adap, unsigned int kbps, int sched)
  2572. {
  2573. unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
  2574. unsigned int clk = adap->params.vpd.cclk * 1000;
  2575. unsigned int selected_cpt = 0, selected_bpt = 0;
  2576. if (kbps > 0) {
  2577. kbps *= 125; /* -> bytes */
  2578. for (cpt = 1; cpt <= 255; cpt++) {
  2579. tps = clk / cpt;
  2580. bpt = (kbps + tps / 2) / tps;
  2581. if (bpt > 0 && bpt <= 255) {
  2582. v = bpt * tps;
  2583. delta = v >= kbps ? v - kbps : kbps - v;
  2584. if (delta <= mindelta) {
  2585. mindelta = delta;
  2586. selected_cpt = cpt;
  2587. selected_bpt = bpt;
  2588. }
  2589. } else if (selected_cpt)
  2590. break;
  2591. }
  2592. if (!selected_cpt)
  2593. return -EINVAL;
  2594. }
  2595. t3_write_reg(adap, A_TP_TM_PIO_ADDR,
  2596. A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
  2597. v = t3_read_reg(adap, A_TP_TM_PIO_DATA);
  2598. if (sched & 1)
  2599. v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
  2600. else
  2601. v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
  2602. t3_write_reg(adap, A_TP_TM_PIO_DATA, v);
  2603. return 0;
  2604. }
  2605. static int tp_init(struct adapter *adap, const struct tp_params *p)
  2606. {
  2607. int busy = 0;
  2608. tp_config(adap, p);
  2609. t3_set_vlan_accel(adap, 3, 0);
  2610. if (is_offload(adap)) {
  2611. tp_set_timers(adap, adap->params.vpd.cclk * 1000);
  2612. t3_write_reg(adap, A_TP_RESET, F_FLSTINITENABLE);
  2613. busy = t3_wait_op_done(adap, A_TP_RESET, F_FLSTINITENABLE,
  2614. 0, 1000, 5);
  2615. if (busy)
  2616. CH_ERR(adap, "TP initialization timed out\n");
  2617. }
  2618. if (!busy)
  2619. t3_write_reg(adap, A_TP_RESET, F_TPRESET);
  2620. return busy;
  2621. }
  2622. int t3_mps_set_active_ports(struct adapter *adap, unsigned int port_mask)
  2623. {
  2624. if (port_mask & ~((1 << adap->params.nports) - 1))
  2625. return -EINVAL;
  2626. t3_set_reg_field(adap, A_MPS_CFG, F_PORT1ACTIVE | F_PORT0ACTIVE,
  2627. port_mask << S_PORT0ACTIVE);
  2628. return 0;
  2629. }
  2630. /*
  2631. * Perform the bits of HW initialization that are dependent on the number
  2632. * of available ports.
  2633. */
  2634. static void init_hw_for_avail_ports(struct adapter *adap, int nports)
  2635. {
  2636. int i;
  2637. if (nports == 1) {
  2638. t3_set_reg_field(adap, A_ULPRX_CTL, F_ROUND_ROBIN, 0);
  2639. t3_set_reg_field(adap, A_ULPTX_CONFIG, F_CFG_RR_ARB, 0);
  2640. t3_write_reg(adap, A_MPS_CFG, F_TPRXPORTEN | F_TPTXPORT0EN |
  2641. F_PORT0ACTIVE | F_ENFORCEPKT);
  2642. t3_write_reg(adap, A_PM1_TX_CFG, 0xffffffff);
  2643. } else {
  2644. t3_set_reg_field(adap, A_ULPRX_CTL, 0, F_ROUND_ROBIN);
  2645. t3_set_reg_field(adap, A_ULPTX_CONFIG, 0, F_CFG_RR_ARB);
  2646. t3_write_reg(adap, A_ULPTX_DMA_WEIGHT,
  2647. V_D1_WEIGHT(16) | V_D0_WEIGHT(16));
  2648. t3_write_reg(adap, A_MPS_CFG, F_TPTXPORT0EN | F_TPTXPORT1EN |
  2649. F_TPRXPORTEN | F_PORT0ACTIVE | F_PORT1ACTIVE |
  2650. F_ENFORCEPKT);
  2651. t3_write_reg(adap, A_PM1_TX_CFG, 0x80008000);
  2652. t3_set_reg_field(adap, A_TP_PC_CONFIG, 0, F_TXTOSQUEUEMAPMODE);
  2653. t3_write_reg(adap, A_TP_TX_MOD_QUEUE_REQ_MAP,
  2654. V_TX_MOD_QUEUE_REQ_MAP(0xaa));
  2655. for (i = 0; i < 16; i++)
  2656. t3_write_reg(adap, A_TP_TX_MOD_QUE_TABLE,
  2657. (i << 16) | 0x1010);
  2658. }
  2659. }
  2660. static int calibrate_xgm(struct adapter *adapter)
  2661. {
  2662. if (uses_xaui(adapter)) {
  2663. unsigned int v, i;
  2664. for (i = 0; i < 5; ++i) {
  2665. t3_write_reg(adapter, A_XGM_XAUI_IMP, 0);
  2666. t3_read_reg(adapter, A_XGM_XAUI_IMP);
  2667. msleep(1);
  2668. v = t3_read_reg(adapter, A_XGM_XAUI_IMP);
  2669. if (!(v & (F_XGM_CALFAULT | F_CALBUSY))) {
  2670. t3_write_reg(adapter, A_XGM_XAUI_IMP,
  2671. V_XAUIIMP(G_CALIMP(v) >> 2));
  2672. return 0;
  2673. }
  2674. }
  2675. CH_ERR(adapter, "MAC calibration failed\n");
  2676. return -1;
  2677. } else {
  2678. t3_write_reg(adapter, A_XGM_RGMII_IMP,
  2679. V_RGMIIIMPPD(2) | V_RGMIIIMPPU(3));
  2680. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_XGM_IMPSETUPDATE,
  2681. F_XGM_IMPSETUPDATE);
  2682. }
  2683. return 0;
  2684. }
  2685. static void calibrate_xgm_t3b(struct adapter *adapter)
  2686. {
  2687. if (!uses_xaui(adapter)) {
  2688. t3_write_reg(adapter, A_XGM_RGMII_IMP, F_CALRESET |
  2689. F_CALUPDATE | V_RGMIIIMPPD(2) | V_RGMIIIMPPU(3));
  2690. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_CALRESET, 0);
  2691. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, 0,
  2692. F_XGM_IMPSETUPDATE);
  2693. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_XGM_IMPSETUPDATE,
  2694. 0);
  2695. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_CALUPDATE, 0);
  2696. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, 0, F_CALUPDATE);
  2697. }
  2698. }
  2699. struct mc7_timing_params {
  2700. unsigned char ActToPreDly;
  2701. unsigned char ActToRdWrDly;
  2702. unsigned char PreCyc;
  2703. unsigned char RefCyc[5];
  2704. unsigned char BkCyc;
  2705. unsigned char WrToRdDly;
  2706. unsigned char RdToWrDly;
  2707. };
  2708. /*
  2709. * Write a value to a register and check that the write completed. These
  2710. * writes normally complete in a cycle or two, so one read should suffice.
  2711. * The very first read exists to flush the posted write to the device.
  2712. */
  2713. static int wrreg_wait(struct adapter *adapter, unsigned int addr, u32 val)
  2714. {
  2715. t3_write_reg(adapter, addr, val);
  2716. t3_read_reg(adapter, addr); /* flush */
  2717. if (!(t3_read_reg(adapter, addr) & F_BUSY))
  2718. return 0;
  2719. CH_ERR(adapter, "write to MC7 register 0x%x timed out\n", addr);
  2720. return -EIO;
  2721. }
  2722. static int mc7_init(struct mc7 *mc7, unsigned int mc7_clock, int mem_type)
  2723. {
  2724. static const unsigned int mc7_mode[] = {
  2725. 0x632, 0x642, 0x652, 0x432, 0x442
  2726. };
  2727. static const struct mc7_timing_params mc7_timings[] = {
  2728. {12, 3, 4, {20, 28, 34, 52, 0}, 15, 6, 4},
  2729. {12, 4, 5, {20, 28, 34, 52, 0}, 16, 7, 4},
  2730. {12, 5, 6, {20, 28, 34, 52, 0}, 17, 8, 4},
  2731. {9, 3, 4, {15, 21, 26, 39, 0}, 12, 6, 4},
  2732. {9, 4, 5, {15, 21, 26, 39, 0}, 13, 7, 4}
  2733. };
  2734. u32 val;
  2735. unsigned int width, density, slow, attempts;
  2736. struct adapter *adapter = mc7->adapter;
  2737. const struct mc7_timing_params *p = &mc7_timings[mem_type];
  2738. if (!mc7->size)
  2739. return 0;
  2740. val = t3_read_reg(adapter, mc7->offset + A_MC7_CFG);
  2741. slow = val & F_SLOW;
  2742. width = G_WIDTH(val);
  2743. density = G_DEN(val);
  2744. t3_write_reg(adapter, mc7->offset + A_MC7_CFG, val | F_IFEN);
  2745. val = t3_read_reg(adapter, mc7->offset + A_MC7_CFG); /* flush */
  2746. msleep(1);
  2747. if (!slow) {
  2748. t3_write_reg(adapter, mc7->offset + A_MC7_CAL, F_SGL_CAL_EN);
  2749. t3_read_reg(adapter, mc7->offset + A_MC7_CAL);
  2750. msleep(1);
  2751. if (t3_read_reg(adapter, mc7->offset + A_MC7_CAL) &
  2752. (F_BUSY | F_SGL_CAL_EN | F_CAL_FAULT)) {
  2753. CH_ERR(adapter, "%s MC7 calibration timed out\n",
  2754. mc7->name);
  2755. goto out_fail;
  2756. }
  2757. }
  2758. t3_write_reg(adapter, mc7->offset + A_MC7_PARM,
  2759. V_ACTTOPREDLY(p->ActToPreDly) |
  2760. V_ACTTORDWRDLY(p->ActToRdWrDly) | V_PRECYC(p->PreCyc) |
  2761. V_REFCYC(p->RefCyc[density]) | V_BKCYC(p->BkCyc) |
  2762. V_WRTORDDLY(p->WrToRdDly) | V_RDTOWRDLY(p->RdToWrDly));
  2763. t3_write_reg(adapter, mc7->offset + A_MC7_CFG,
  2764. val | F_CLKEN | F_TERM150);
  2765. t3_read_reg(adapter, mc7->offset + A_MC7_CFG); /* flush */
  2766. if (!slow)
  2767. t3_set_reg_field(adapter, mc7->offset + A_MC7_DLL, F_DLLENB,
  2768. F_DLLENB);
  2769. udelay(1);
  2770. val = slow ? 3 : 6;
  2771. if (wrreg_wait(adapter, mc7->offset + A_MC7_PRE, 0) ||
  2772. wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE2, 0) ||
  2773. wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE3, 0) ||
  2774. wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val))
  2775. goto out_fail;
  2776. if (!slow) {
  2777. t3_write_reg(adapter, mc7->offset + A_MC7_MODE, 0x100);
  2778. t3_set_reg_field(adapter, mc7->offset + A_MC7_DLL, F_DLLRST, 0);
  2779. udelay(5);
  2780. }
  2781. if (wrreg_wait(adapter, mc7->offset + A_MC7_PRE, 0) ||
  2782. wrreg_wait(adapter, mc7->offset + A_MC7_REF, 0) ||
  2783. wrreg_wait(adapter, mc7->offset + A_MC7_REF, 0) ||
  2784. wrreg_wait(adapter, mc7->offset + A_MC7_MODE,
  2785. mc7_mode[mem_type]) ||
  2786. wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val | 0x380) ||
  2787. wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val))
  2788. goto out_fail;
  2789. /* clock value is in KHz */
  2790. mc7_clock = mc7_clock * 7812 + mc7_clock / 2; /* ns */
  2791. mc7_clock /= 1000000; /* KHz->MHz, ns->us */
  2792. t3_write_reg(adapter, mc7->offset + A_MC7_REF,
  2793. F_PERREFEN | V_PREREFDIV(mc7_clock));
  2794. t3_read_reg(adapter, mc7->offset + A_MC7_REF); /* flush */
  2795. t3_write_reg(adapter, mc7->offset + A_MC7_ECC, F_ECCGENEN | F_ECCCHKEN);
  2796. t3_write_reg(adapter, mc7->offset + A_MC7_BIST_DATA, 0);
  2797. t3_write_reg(adapter, mc7->offset + A_MC7_BIST_ADDR_BEG, 0);
  2798. t3_write_reg(adapter, mc7->offset + A_MC7_BIST_ADDR_END,
  2799. (mc7->size << width) - 1);
  2800. t3_write_reg(adapter, mc7->offset + A_MC7_BIST_OP, V_OP(1));
  2801. t3_read_reg(adapter, mc7->offset + A_MC7_BIST_OP); /* flush */
  2802. attempts = 50;
  2803. do {
  2804. msleep(250);
  2805. val = t3_read_reg(adapter, mc7->offset + A_MC7_BIST_OP);
  2806. } while ((val & F_BUSY) && --attempts);
  2807. if (val & F_BUSY) {
  2808. CH_ERR(adapter, "%s MC7 BIST timed out\n", mc7->name);
  2809. goto out_fail;
  2810. }
  2811. /* Enable normal memory accesses. */
  2812. t3_set_reg_field(adapter, mc7->offset + A_MC7_CFG, 0, F_RDY);
  2813. return 0;
  2814. out_fail:
  2815. return -1;
  2816. }
  2817. static void config_pcie(struct adapter *adap)
  2818. {
  2819. static const u16 ack_lat[4][6] = {
  2820. {237, 416, 559, 1071, 2095, 4143},
  2821. {128, 217, 289, 545, 1057, 2081},
  2822. {73, 118, 154, 282, 538, 1050},
  2823. {67, 107, 86, 150, 278, 534}
  2824. };
  2825. static const u16 rpl_tmr[4][6] = {
  2826. {711, 1248, 1677, 3213, 6285, 12429},
  2827. {384, 651, 867, 1635, 3171, 6243},
  2828. {219, 354, 462, 846, 1614, 3150},
  2829. {201, 321, 258, 450, 834, 1602}
  2830. };
  2831. u16 val;
  2832. unsigned int log2_width, pldsize;
  2833. unsigned int fst_trn_rx, fst_trn_tx, acklat, rpllmt;
  2834. pci_read_config_word(adap->pdev,
  2835. adap->params.pci.pcie_cap_addr + PCI_EXP_DEVCTL,
  2836. &val);
  2837. pldsize = (val & PCI_EXP_DEVCTL_PAYLOAD) >> 5;
  2838. pci_read_config_word(adap->pdev,
  2839. adap->params.pci.pcie_cap_addr + PCI_EXP_LNKCTL,
  2840. &val);
  2841. fst_trn_tx = G_NUMFSTTRNSEQ(t3_read_reg(adap, A_PCIE_PEX_CTRL0));
  2842. fst_trn_rx = adap->params.rev == 0 ? fst_trn_tx :
  2843. G_NUMFSTTRNSEQRX(t3_read_reg(adap, A_PCIE_MODE));
  2844. log2_width = fls(adap->params.pci.width) - 1;
  2845. acklat = ack_lat[log2_width][pldsize];
  2846. if (val & 1) /* check LOsEnable */
  2847. acklat += fst_trn_tx * 4;
  2848. rpllmt = rpl_tmr[log2_width][pldsize] + fst_trn_rx * 4;
  2849. if (adap->params.rev == 0)
  2850. t3_set_reg_field(adap, A_PCIE_PEX_CTRL1,
  2851. V_T3A_ACKLAT(M_T3A_ACKLAT),
  2852. V_T3A_ACKLAT(acklat));
  2853. else
  2854. t3_set_reg_field(adap, A_PCIE_PEX_CTRL1, V_ACKLAT(M_ACKLAT),
  2855. V_ACKLAT(acklat));
  2856. t3_set_reg_field(adap, A_PCIE_PEX_CTRL0, V_REPLAYLMT(M_REPLAYLMT),
  2857. V_REPLAYLMT(rpllmt));
  2858. t3_write_reg(adap, A_PCIE_PEX_ERR, 0xffffffff);
  2859. t3_set_reg_field(adap, A_PCIE_CFG, F_PCIE_CLIDECEN, F_PCIE_CLIDECEN);
  2860. }
  2861. /*
  2862. * Initialize and configure T3 HW modules. This performs the
  2863. * initialization steps that need to be done once after a card is reset.
  2864. * MAC and PHY initialization is handled separarely whenever a port is enabled.
  2865. *
  2866. * fw_params are passed to FW and their value is platform dependent. Only the
  2867. * top 8 bits are available for use, the rest must be 0.
  2868. */
  2869. int t3_init_hw(struct adapter *adapter, u32 fw_params)
  2870. {
  2871. int err = -EIO, attempts = 100;
  2872. const struct vpd_params *vpd = &adapter->params.vpd;
  2873. if (adapter->params.rev > 0)
  2874. calibrate_xgm_t3b(adapter);
  2875. else if (calibrate_xgm(adapter))
  2876. goto out_err;
  2877. if (vpd->mclk) {
  2878. partition_mem(adapter, &adapter->params.tp);
  2879. if (mc7_init(&adapter->pmrx, vpd->mclk, vpd->mem_timing) ||
  2880. mc7_init(&adapter->pmtx, vpd->mclk, vpd->mem_timing) ||
  2881. mc7_init(&adapter->cm, vpd->mclk, vpd->mem_timing) ||
  2882. t3_mc5_init(&adapter->mc5, adapter->params.mc5.nservers,
  2883. adapter->params.mc5.nfilters,
  2884. adapter->params.mc5.nroutes))
  2885. goto out_err;
  2886. }
  2887. if (tp_init(adapter, &adapter->params.tp))
  2888. goto out_err;
  2889. t3_tp_set_coalescing_size(adapter,
  2890. min(adapter->params.sge.max_pkt_size,
  2891. MAX_RX_COALESCING_LEN), 1);
  2892. t3_tp_set_max_rxsize(adapter,
  2893. min(adapter->params.sge.max_pkt_size, 16384U));
  2894. ulp_config(adapter, &adapter->params.tp);
  2895. if (is_pcie(adapter))
  2896. config_pcie(adapter);
  2897. else
  2898. t3_set_reg_field(adapter, A_PCIX_CFG, 0, F_CLIDECEN);
  2899. t3_write_reg(adapter, A_PM1_RX_CFG, 0xffffffff);
  2900. t3_write_reg(adapter, A_PM1_RX_MODE, 0);
  2901. t3_write_reg(adapter, A_PM1_TX_MODE, 0);
  2902. init_hw_for_avail_ports(adapter, adapter->params.nports);
  2903. t3_sge_init(adapter, &adapter->params.sge);
  2904. t3_write_reg(adapter, A_CIM_HOST_ACC_DATA, vpd->uclk | fw_params);
  2905. t3_write_reg(adapter, A_CIM_BOOT_CFG,
  2906. V_BOOTADDR(FW_FLASH_BOOT_ADDR >> 2));
  2907. t3_read_reg(adapter, A_CIM_BOOT_CFG); /* flush */
  2908. do { /* wait for uP to initialize */
  2909. msleep(20);
  2910. } while (t3_read_reg(adapter, A_CIM_HOST_ACC_DATA) && --attempts);
  2911. if (!attempts) {
  2912. CH_ERR(adapter, "uP initialization timed out\n");
  2913. goto out_err;
  2914. }
  2915. err = 0;
  2916. out_err:
  2917. return err;
  2918. }
  2919. /**
  2920. * get_pci_mode - determine a card's PCI mode
  2921. * @adapter: the adapter
  2922. * @p: where to store the PCI settings
  2923. *
  2924. * Determines a card's PCI mode and associated parameters, such as speed
  2925. * and width.
  2926. */
  2927. static void __devinit get_pci_mode(struct adapter *adapter,
  2928. struct pci_params *p)
  2929. {
  2930. static unsigned short speed_map[] = { 33, 66, 100, 133 };
  2931. u32 pci_mode, pcie_cap;
  2932. pcie_cap = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
  2933. if (pcie_cap) {
  2934. u16 val;
  2935. p->variant = PCI_VARIANT_PCIE;
  2936. p->pcie_cap_addr = pcie_cap;
  2937. pci_read_config_word(adapter->pdev, pcie_cap + PCI_EXP_LNKSTA,
  2938. &val);
  2939. p->width = (val >> 4) & 0x3f;
  2940. return;
  2941. }
  2942. pci_mode = t3_read_reg(adapter, A_PCIX_MODE);
  2943. p->speed = speed_map[G_PCLKRANGE(pci_mode)];
  2944. p->width = (pci_mode & F_64BIT) ? 64 : 32;
  2945. pci_mode = G_PCIXINITPAT(pci_mode);
  2946. if (pci_mode == 0)
  2947. p->variant = PCI_VARIANT_PCI;
  2948. else if (pci_mode < 4)
  2949. p->variant = PCI_VARIANT_PCIX_MODE1_PARITY;
  2950. else if (pci_mode < 8)
  2951. p->variant = PCI_VARIANT_PCIX_MODE1_ECC;
  2952. else
  2953. p->variant = PCI_VARIANT_PCIX_266_MODE2;
  2954. }
  2955. /**
  2956. * init_link_config - initialize a link's SW state
  2957. * @lc: structure holding the link state
  2958. * @ai: information about the current card
  2959. *
  2960. * Initializes the SW state maintained for each link, including the link's
  2961. * capabilities and default speed/duplex/flow-control/autonegotiation
  2962. * settings.
  2963. */
  2964. static void __devinit init_link_config(struct link_config *lc,
  2965. unsigned int caps)
  2966. {
  2967. lc->supported = caps;
  2968. lc->requested_speed = lc->speed = SPEED_INVALID;
  2969. lc->requested_duplex = lc->duplex = DUPLEX_INVALID;
  2970. lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
  2971. if (lc->supported & SUPPORTED_Autoneg) {
  2972. lc->advertising = lc->supported;
  2973. lc->autoneg = AUTONEG_ENABLE;
  2974. lc->requested_fc |= PAUSE_AUTONEG;
  2975. } else {
  2976. lc->advertising = 0;
  2977. lc->autoneg = AUTONEG_DISABLE;
  2978. }
  2979. }
  2980. /**
  2981. * mc7_calc_size - calculate MC7 memory size
  2982. * @cfg: the MC7 configuration
  2983. *
  2984. * Calculates the size of an MC7 memory in bytes from the value of its
  2985. * configuration register.
  2986. */
  2987. static unsigned int __devinit mc7_calc_size(u32 cfg)
  2988. {
  2989. unsigned int width = G_WIDTH(cfg);
  2990. unsigned int banks = !!(cfg & F_BKS) + 1;
  2991. unsigned int org = !!(cfg & F_ORG) + 1;
  2992. unsigned int density = G_DEN(cfg);
  2993. unsigned int MBs = ((256 << density) * banks) / (org << width);
  2994. return MBs << 20;
  2995. }
  2996. static void __devinit mc7_prep(struct adapter *adapter, struct mc7 *mc7,
  2997. unsigned int base_addr, const char *name)
  2998. {
  2999. u32 cfg;
  3000. mc7->adapter = adapter;
  3001. mc7->name = name;
  3002. mc7->offset = base_addr - MC7_PMRX_BASE_ADDR;
  3003. cfg = t3_read_reg(adapter, mc7->offset + A_MC7_CFG);
  3004. mc7->size = mc7->size = G_DEN(cfg) == M_DEN ? 0 : mc7_calc_size(cfg);
  3005. mc7->width = G_WIDTH(cfg);
  3006. }
  3007. void mac_prep(struct cmac *mac, struct adapter *adapter, int index)
  3008. {
  3009. mac->adapter = adapter;
  3010. mac->offset = (XGMAC0_1_BASE_ADDR - XGMAC0_0_BASE_ADDR) * index;
  3011. mac->nucast = 1;
  3012. if (adapter->params.rev == 0 && uses_xaui(adapter)) {
  3013. t3_write_reg(adapter, A_XGM_SERDES_CTRL + mac->offset,
  3014. is_10G(adapter) ? 0x2901c04 : 0x2301c04);
  3015. t3_set_reg_field(adapter, A_XGM_PORT_CFG + mac->offset,
  3016. F_ENRGMII, 0);
  3017. }
  3018. }
  3019. void early_hw_init(struct adapter *adapter, const struct adapter_info *ai)
  3020. {
  3021. u32 val = V_PORTSPEED(is_10G(adapter) ? 3 : 2);
  3022. mi1_init(adapter, ai);
  3023. t3_write_reg(adapter, A_I2C_CFG, /* set for 80KHz */
  3024. V_I2C_CLKDIV(adapter->params.vpd.cclk / 80 - 1));
  3025. t3_write_reg(adapter, A_T3DBG_GPIO_EN,
  3026. ai->gpio_out | F_GPIO0_OEN | F_GPIO0_OUT_VAL);
  3027. t3_write_reg(adapter, A_MC5_DB_SERVER_INDEX, 0);
  3028. if (adapter->params.rev == 0 || !uses_xaui(adapter))
  3029. val |= F_ENRGMII;
  3030. /* Enable MAC clocks so we can access the registers */
  3031. t3_write_reg(adapter, A_XGM_PORT_CFG, val);
  3032. t3_read_reg(adapter, A_XGM_PORT_CFG);
  3033. val |= F_CLKDIVRESET_;
  3034. t3_write_reg(adapter, A_XGM_PORT_CFG, val);
  3035. t3_read_reg(adapter, A_XGM_PORT_CFG);
  3036. t3_write_reg(adapter, XGM_REG(A_XGM_PORT_CFG, 1), val);
  3037. t3_read_reg(adapter, A_XGM_PORT_CFG);
  3038. }
  3039. /*
  3040. * Reset the adapter.
  3041. * Older PCIe cards lose their config space during reset, PCI-X
  3042. * ones don't.
  3043. */
  3044. static int t3_reset_adapter(struct adapter *adapter)
  3045. {
  3046. int i, save_and_restore_pcie =
  3047. adapter->params.rev < T3_REV_B2 && is_pcie(adapter);
  3048. uint16_t devid = 0;
  3049. if (save_and_restore_pcie)
  3050. pci_save_state(adapter->pdev);
  3051. t3_write_reg(adapter, A_PL_RST, F_CRSTWRM | F_CRSTWRMMODE);
  3052. /*
  3053. * Delay. Give Some time to device to reset fully.
  3054. * XXX The delay time should be modified.
  3055. */
  3056. for (i = 0; i < 10; i++) {
  3057. msleep(50);
  3058. pci_read_config_word(adapter->pdev, 0x00, &devid);
  3059. if (devid == 0x1425)
  3060. break;
  3061. }
  3062. if (devid != 0x1425)
  3063. return -1;
  3064. if (save_and_restore_pcie)
  3065. pci_restore_state(adapter->pdev);
  3066. return 0;
  3067. }
  3068. /*
  3069. * Initialize adapter SW state for the various HW modules, set initial values
  3070. * for some adapter tunables, take PHYs out of reset, and initialize the MDIO
  3071. * interface.
  3072. */
  3073. int __devinit t3_prep_adapter(struct adapter *adapter,
  3074. const struct adapter_info *ai, int reset)
  3075. {
  3076. int ret;
  3077. unsigned int i, j = 0;
  3078. get_pci_mode(adapter, &adapter->params.pci);
  3079. adapter->params.info = ai;
  3080. adapter->params.nports = ai->nports;
  3081. adapter->params.rev = t3_read_reg(adapter, A_PL_REV);
  3082. adapter->params.linkpoll_period = 0;
  3083. adapter->params.stats_update_period = is_10G(adapter) ?
  3084. MAC_STATS_ACCUM_SECS : (MAC_STATS_ACCUM_SECS * 10);
  3085. adapter->params.pci.vpd_cap_addr =
  3086. pci_find_capability(adapter->pdev, PCI_CAP_ID_VPD);
  3087. ret = get_vpd_params(adapter, &adapter->params.vpd);
  3088. if (ret < 0)
  3089. return ret;
  3090. if (reset && t3_reset_adapter(adapter))
  3091. return -1;
  3092. t3_sge_prep(adapter, &adapter->params.sge);
  3093. if (adapter->params.vpd.mclk) {
  3094. struct tp_params *p = &adapter->params.tp;
  3095. mc7_prep(adapter, &adapter->pmrx, MC7_PMRX_BASE_ADDR, "PMRX");
  3096. mc7_prep(adapter, &adapter->pmtx, MC7_PMTX_BASE_ADDR, "PMTX");
  3097. mc7_prep(adapter, &adapter->cm, MC7_CM_BASE_ADDR, "CM");
  3098. p->nchan = ai->nports;
  3099. p->pmrx_size = t3_mc7_size(&adapter->pmrx);
  3100. p->pmtx_size = t3_mc7_size(&adapter->pmtx);
  3101. p->cm_size = t3_mc7_size(&adapter->cm);
  3102. p->chan_rx_size = p->pmrx_size / 2; /* only 1 Rx channel */
  3103. p->chan_tx_size = p->pmtx_size / p->nchan;
  3104. p->rx_pg_size = 64 * 1024;
  3105. p->tx_pg_size = is_10G(adapter) ? 64 * 1024 : 16 * 1024;
  3106. p->rx_num_pgs = pm_num_pages(p->chan_rx_size, p->rx_pg_size);
  3107. p->tx_num_pgs = pm_num_pages(p->chan_tx_size, p->tx_pg_size);
  3108. p->ntimer_qs = p->cm_size >= (128 << 20) ||
  3109. adapter->params.rev > 0 ? 12 : 6;
  3110. }
  3111. adapter->params.offload = t3_mc7_size(&adapter->pmrx) &&
  3112. t3_mc7_size(&adapter->pmtx) &&
  3113. t3_mc7_size(&adapter->cm);
  3114. if (is_offload(adapter)) {
  3115. adapter->params.mc5.nservers = DEFAULT_NSERVERS;
  3116. adapter->params.mc5.nfilters = adapter->params.rev > 0 ?
  3117. DEFAULT_NFILTERS : 0;
  3118. adapter->params.mc5.nroutes = 0;
  3119. t3_mc5_prep(adapter, &adapter->mc5, MC5_MODE_144_BIT);
  3120. init_mtus(adapter->params.mtus);
  3121. init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
  3122. }
  3123. early_hw_init(adapter, ai);
  3124. for_each_port(adapter, i) {
  3125. u8 hw_addr[6];
  3126. struct port_info *p = adap2pinfo(adapter, i);
  3127. while (!adapter->params.vpd.port_type[j])
  3128. ++j;
  3129. p->port_type = &port_types[adapter->params.vpd.port_type[j]];
  3130. p->port_type->phy_prep(&p->phy, adapter, ai->phy_base_addr + j,
  3131. ai->mdio_ops);
  3132. mac_prep(&p->mac, adapter, j);
  3133. ++j;
  3134. /*
  3135. * The VPD EEPROM stores the base Ethernet address for the
  3136. * card. A port's address is derived from the base by adding
  3137. * the port's index to the base's low octet.
  3138. */
  3139. memcpy(hw_addr, adapter->params.vpd.eth_base, 5);
  3140. hw_addr[5] = adapter->params.vpd.eth_base[5] + i;
  3141. memcpy(adapter->port[i]->dev_addr, hw_addr,
  3142. ETH_ALEN);
  3143. memcpy(adapter->port[i]->perm_addr, hw_addr,
  3144. ETH_ALEN);
  3145. init_link_config(&p->link_config, p->port_type->caps);
  3146. p->phy.ops->power_down(&p->phy, 1);
  3147. if (!(p->port_type->caps & SUPPORTED_IRQ))
  3148. adapter->params.linkpoll_period = 10;
  3149. }
  3150. return 0;
  3151. }
  3152. void t3_led_ready(struct adapter *adapter)
  3153. {
  3154. t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL,
  3155. F_GPIO0_OUT_VAL);
  3156. }